1
|
Dutta D, Ray P, De A, Ghosh A, Hazra RS, Ghosh P, Banerjee S, Diaz FJ, Upadhyay SP, Quadir M, Banerjee SK. pH-responsive targeted nanoparticles release ERK-inhibitor in the hypoxic zone and sensitize free gemcitabine in mutant K-Ras-addicted pancreatic cancer cells and mouse model. PLoS One 2024; 19:e0297749. [PMID: 38687749 PMCID: PMC11060587 DOI: 10.1371/journal.pone.0297749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/12/2024] [Indexed: 05/02/2024] Open
Abstract
Therapeutic options for managing Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest types of aggressive malignancies, are limited and disappointing. Therefore, despite suboptimal clinical effects, gemcitabine (GEM) remains the first-line chemotherapeutic drug in the clinic for PDAC treatment. The therapeutic limitations of GEM are primarily due to poor bioavailability and the development of chemoresistance resulting from the addiction of mutant-K-RAS/AKT/ERK signaling-mediated desmoplastic barriers with a hypoxic microenvironment. Several new therapeutic approaches, including nanoparticle-assisted drug delivery, are being investigated by us and others. This study used pH-responsive nanoparticles encapsulated ERK inhibitor (SCH772984) and surface functionalized with tumor-penetrating peptide, iRGD, to target PDAC tumors. We used a small molecule, SCH772984, to target ERK1 and ERK2 in PDAC and other cancer cells. This nanocarrier efficiently released ERKi in hypoxic and low-pH environments. We also found that the free-GEM, which is functionally weak when combined with nanoencapsulated ERKi, led to significant synergistic treatment outcomes in vitro and in vivo. In particular, the combination approaches significantly enhanced the GEM effect in PDAC growth inhibition and prolonged survival of the animals in a genetically engineered KPC (LSL-KrasG12D/+/LSL-Trp53R172H/+/Pdx-1-Cre) pancreatic cancer mouse model, which is not observed in a single therapy. Mechanistically, we anticipate that the GEM efficacy was increased as ERKi blocks desmoplasia by impairing the production of desmoplastic regulatory factors in PDAC cells and KPC mouse tumors. Therefore, 2nd generation ERKi (SCH 772984)-iRGD-pHNPs are vital for the cellular response to GEM and denote a promising therapeutic target in PDAC with mutant K-RAS.
Collapse
Affiliation(s)
- Debasmita Dutta
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, United States of America
| | - Priyanka Ray
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, United States of America
| | - Archana De
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Raj Shankar Hazra
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, United States of America
| | - Pratyusha Ghosh
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, United States of America
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Francisco J. Diaz
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Sunil P. Upadhyay
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, United States of America
| | - Sushanta K. Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| |
Collapse
|
2
|
Fard D, Giraudo E, Tamagnone L. Mind the (guidance) signals! Translational relevance of semaphorins, plexins, and neuropilins in pancreatic cancer. Trends Mol Med 2023; 29:817-829. [PMID: 37598000 DOI: 10.1016/j.molmed.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
Pancreatic cancer is a major cause of demise worldwide. Although key associated genetic changes have been discovered, disease progression is sustained by pathogenic mechanisms that are poorly understood at the molecular level. In particular, the tissue microenvironment of pancreatic adenocarcinoma (PDAC) is usually characterized by high stromal content, scarce recruitment of immune cells, and the presence of neuronal fibers. Semaphorins and their receptors, plexins and neuropilins, comprise a wide family of regulatory signals that control neurons, endothelial and immune cells, embryo development, and normal tissue homeostasis, as well as the microenvironment of human tumors. We focus on the role of these molecular signals in pancreatic cancer progression, as revealed by experimental research and clinical studies, including novel approaches for cancer treatment.
Collapse
Affiliation(s)
- Damon Fard
- Università Cattolica del Sacro Cuore, Department of Life Sciences and Public Health, Rome, Italy
| | - Enrico Giraudo
- Department of Science and Drug Technology, University of Turin, Turin, Italy; Candiolo Cancer Institute, FPO IRCCS, Candiolo, Turin, Italy
| | - Luca Tamagnone
- Università Cattolica del Sacro Cuore, Department of Life Sciences and Public Health, Rome, Italy; Fondazione Policlinico Gemelli, IRCCS, Rome, Italy.
| |
Collapse
|
3
|
Wang L, Wang L, Xu P, Liu C, Wang S, Luo X, Li M, Liu J, Zhao Z, Lai W, Luo F, Yan J. pH-Responsive Liposomes Loaded with Targeting Procoagulant Proteins as Potential Embolic Agents for Solid Tumor-Targeted Therapy. Mol Pharm 2022; 19:1356-1367. [PMID: 35420039 DOI: 10.1021/acs.molpharmaceut.1c00912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selectively inducing tumor thrombosis and subsequent necrosis is a novel and promising antitumor strategy. We have previously designed a targeting procoagulant protein, called tTF-EG3287, which is a fusion of a truncated tissue factor (tTF) with EG3287, a short peptide against the neuropilin-1 (NRP1) binding site of vascular endothelial growth factor-A 165 (VEGF-A 165). However, off-target effects and high-dose requirements limit the further use of tTF-EG3287 in antitumor therapy. Therefore, we encapsulated tTF-EG3287 into poly(2-ethyl-2-oxazoline)-distearoyl phosphatidyl ethanolamine (PEOz-DSPE)-modified liposomes to construct pH-responsive liposomes as a novel vascular embolization agent, called tTF-EG3287@Liposomes. The liposomes had an average particle size of about 100 nm and showed considerable drug-loading capacity, encapsulation efficiency, and biocompatibility. Under the stimulation of acidic microenvironments (pH 6.5), the lipid membrane of tTF-EG3287@Liposomes collapsed, and the cumulative drug release rate within 72 h was 83 ± 1.26%. When administered to a mouse model of hepatocellular carcinoma (HCC), tTF-EG3287@Liposomes showed prolonged retention and enhanced accumulation in the tumor as well as a superior antitumor effec, compared with tTF-EG3287. This study demonstrates the potential of tTF-EG3287@Liposomes as a novel embolic agent for solid tumors and provides a new strategy for tumor-targeted infarction therapy.
Collapse
Affiliation(s)
- Li Wang
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Lanlan Wang
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Peilan Xu
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Cong Liu
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Shengyu Wang
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Xian Luo
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Mengqi Li
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Jiajing Liu
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Zhiyu Zhao
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Weisong Lai
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Fanghong Luo
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Jianghua Yan
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Bausch D, Fritz S, Bolm L, Wellner UF, Fernandez-Del-Castillo C, Warshaw AL, Thayer SP, Liss AS. Hedgehog signaling promotes angiogenesis directly and indirectly in pancreatic cancer. Angiogenesis 2020; 23:479-492. [PMID: 32444947 DOI: 10.1007/s10456-020-09725-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The inhibition of Hedgehog (Hh) signaling in pancreatic ductal adenocarcinoma (PDAC) reduces desmoplasia and promotes increased vascularity. In contrast to these findings, the Hh ligand Sonic Hedgehog (SHH) is a potent proangiogenic factor in non-tumor models. The aim of this study was to determine the molecular mechanisms by which SHH affects the tumor stroma and angiogenesis. METHODS Mice bearing three different xenografted human PDAC (n = 5/group) were treated with neutralizing antibodies to SHH. After treatment for 7 days, tumors were evaluated and the expression of 38 pro- and antiangiogenic factors was assessed in the tumor cells and their stroma. The effect of SHH on the regulation of pro- and antiangiogenic factors in fibroblasts and its impact on endothelial cells was then further assessed in in vitro model systems. RESULTS Inhibition of SHH affected tumor growth, stromal content, and vascularity. Its effect on the Hh signaling pathway was restricted to the stromal compartment of the three cancers. SHH-stimulated angiogenesis indirectly through the reduction of antiangiogenic THBS2 and TIMP2 in stromal cells. An additional direct effect of SHH on endothelial cells depended on the presence of VEGF. CONCLUSION Inhibition of Hh signaling reduces tumor vascularity, suggesting that Hh plays a role in the maintenance or formation of the tumor vasculature. Whether the reduction in tumor growth and viability seen in the epithelium is a direct consequence of Hh pathway inhibition, or indirectly caused by its effect on the stroma and vasculature, remains to be evaluated.
Collapse
Affiliation(s)
- Dirk Bausch
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Their 623, Boston, MA, 02114, USA.,Department of Surgery, Marien Hospital Herne, University Hospital of Ruhr University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Stefan Fritz
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Their 623, Boston, MA, 02114, USA.,Department of General, Visceral, Thoracic and Transplantation Surgery, Katharinenhospital Klinikum Stuttgart, Kriegsbergstraße 60, 70174, Stuttgart, Germany
| | - Louisa Bolm
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Their 623, Boston, MA, 02114, USA
| | - Ulrich F Wellner
- Department of Surgery, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Carlos Fernandez-Del-Castillo
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Their 623, Boston, MA, 02114, USA
| | - Andrew L Warshaw
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Their 623, Boston, MA, 02114, USA
| | - Sarah P Thayer
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Their 623, Boston, MA, 02114, USA. .,Division of Surgical Oncology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-6895, USA.
| | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Their 623, Boston, MA, 02114, USA.
| |
Collapse
|
5
|
Guo F, Ji G, Li Q, Yang Y, Shui L, Shen Y, Yang H. Bacterial particles retard tumor growth as a novel vascular disrupting agent. Biomed Pharmacother 2020; 122:109757. [DOI: 10.1016/j.biopha.2019.109757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/07/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023] Open
|
6
|
Grun D, Adhikary G, Eckert RL. NRP-1 interacts with GIPC1 and SYX to activate p38 MAPK signaling and cancer stem cell survival. Mol Carcinog 2019; 58:488-499. [PMID: 30456845 PMCID: PMC6417965 DOI: 10.1002/mc.22943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 01/13/2023]
Abstract
Epidermal cancer stem cells (ECS cells) comprise a limited population of cells that form aggressive, rapidly growing, and highly vascularized tumors. VEGF-A/NRP-1 signaling is a key driver of the ECS cell phenotype and aggressive tumor formation. However, relatively less is known regarding the downstream events following VEGF-A/NRP-1 interaction. In the present study, we show that VEGF-A/NRP-1, GIPC1, and Syx interact to increase RhoA-dependent p38 MAPK activity to enhance ECS cell spheroid formation, invasion, migration, and angiogenic potential. Inhibition or knockdown of NRP-1, GIPC1 or Syx attenuates RhoA and p38 activity to reduce the ECS cell phenotype, and NRP-1 knockout, or pharmacologic inhibition of VEGF-A/NRP-1 interaction or RhoA activity, reduces p38 MAPK activity and tumor growth. Moreover, expression of wild-type or constitutively-active RhoA, or p38, in NRP1-knockout cells, restores p38 activity and the ECS cell phenotype. These findings suggest that NRP-1 forms a complex with GIPC1 and Syx to activate RhoA/ROCK-dependent p38 activity to enhance the ECS cell phenotype and tumor formation.
Collapse
Affiliation(s)
- Daniel Grun
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Puszko AK, Sosnowski P, Tymecka D, Raynaud F, Hermine O, Lepelletier Y, Misicka A. Neuropilin-1 peptide-like ligands with proline mimetics, tested using the improved chemiluminescence affinity detection method. MEDCHEMCOMM 2019; 10:332-340. [PMID: 30881620 PMCID: PMC6390686 DOI: 10.1039/c8md00537k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022]
Abstract
Many reports have suggested that NRP-1 acts as a co-receptor for VEGF-A165 and boosts tumour growth and metastasis. This NRP-1, due to its important role in tumour progression, triggered interest in the design of new molecules able to significantly inhibit NRP-1/VEGF-A165 interaction to suppress pathological angiogenesis. Our previous SAR studies of compounds, showing affinity for NRP-1, led us to develop branched peptides with general formula Lys(hArg)-AA2-AA3-Arg. Here, three series of analogues were synthesized, in which the middle fragment (AA2 and/or AA3) of initial sequences was substituted with unnatural Pro analogues with different rigidities and ring sizes. The synthesized compounds were screened for VEGF-A165 inhibitory activity on an improved assay (ELISA), which was selected based on our comparative inhibition study of the parent compounds, indicating that the method with chemiluminescence detection gives more accurate data. The results of affinity for NRP-1 and enzymatic stability of newly obtained compounds enabled the selection of new structures, showing a 2 and 4-fold lower IC50 value compared to parent peptides.
Collapse
Affiliation(s)
- Anna K Puszko
- Faculty of Chemistry , University of Warsaw , Pasteura 1 , 02-093 Warsaw , Poland . ;
| | - Piotr Sosnowski
- Department of Neuropeptides , Mossakowski Medical Research Centre , Polish Academy of Sciences , Pawinskiego 5 , 02-106 Warsaw , Poland
| | - Dagmara Tymecka
- Faculty of Chemistry , University of Warsaw , Pasteura 1 , 02-093 Warsaw , Poland . ;
| | - Françoise Raynaud
- Imagine Institute , Paris Descartes University-Sorbonne Paris Cité , 24 boulevard Montparnasse , 75015 Paris , France
- Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications , INSERM UMR 1163 , 24 boulevard Montparnasse , 75015 Paris , France
- CNRS ERL 8254 , 24 boulevard Montparnasse , 75015 Paris , France
| | - Olivier Hermine
- Imagine Institute , Paris Descartes University-Sorbonne Paris Cité , 24 boulevard Montparnasse , 75015 Paris , France
- Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications , INSERM UMR 1163 , 24 boulevard Montparnasse , 75015 Paris , France
- CNRS ERL 8254 , 24 boulevard Montparnasse , 75015 Paris , France
| | - Yves Lepelletier
- Imagine Institute , Paris Descartes University-Sorbonne Paris Cité , 24 boulevard Montparnasse , 75015 Paris , France
- Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications , INSERM UMR 1163 , 24 boulevard Montparnasse , 75015 Paris , France
- CNRS ERL 8254 , 24 boulevard Montparnasse , 75015 Paris , France
| | - Aleksandra Misicka
- Faculty of Chemistry , University of Warsaw , Pasteura 1 , 02-093 Warsaw , Poland . ;
- Department of Neuropeptides , Mossakowski Medical Research Centre , Polish Academy of Sciences , Pawinskiego 5 , 02-106 Warsaw , Poland
| |
Collapse
|
8
|
De Ford C, Penchalaiah K, Kreft A, Humar M, Heydenreuter W, Kangani M, Sieber SA, Tietze LF, Merfort I. Bifunctional Duocarmycin Analogues as Inhibitors of Protein Tyrosine Kinases. JOURNAL OF NATURAL PRODUCTS 2019; 82:16-26. [PMID: 30620194 DOI: 10.1021/acs.jnatprod.8b00233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bifunctional duocarmycin analogues are highly cytotoxic compounds that have been shown to be irreversible aldehyde dehydrogenase 1 inhibitors. Interestingly, cells with low aldehyde dehydrogenase 1 expression are also sensitive to bifunctional duocarmycin analogues, suggesting the existence of another target. Through in silico approaches, including principal component analysis, structure-similarity search, and docking calculations, protein tyrosine kinases, and especially the vascular endothelial growth factor receptor 2 (VEGFR-2), were predicted as targets of bifunctional duocarmycin analogues. Biochemical validation was performed in vitro, confirming the in silico results. Structural optimization was performed to mainly target VEGFR-2, but not aldehyde dehydrogenase 1. The optimized bifunctional duocarmycin analogue was synthesized. In vitro assays revealed this bifunctional duocarmycin analogue as a strong inhibitor of VEGFR-2, with low residual aldehyde dehydrogenase 1 activity. Altogether, studies revealed bifunctional duocarmycin analogues as a new class of naturally derived compounds that express a very high cytotoxicity to cancer cells overexpressing aldehyde dehydrogenase 1 as well as VEGFR-2.
Collapse
Affiliation(s)
- Christian De Ford
- Department of Pharmaceutical Biology and Biotechnology , Albert Ludwigs University Freiburg , Stefan-Meier-Strasse 19 , D-79104 Freiburg , Germany
- Spemann Graduate School of Biology and Medicine (SGBM) , Albert Ludwigs University Freiburg , Albertstrasse 19a , 79104 Freiburg , Germany
| | - Kamala Penchalaiah
- Institute of Organic and Biomolecular Chemistry , Georg-August University , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Alexander Kreft
- Institute of Organic and Biomolecular Chemistry , Georg-August University , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Matjaz Humar
- Department of Pharmaceutical Biology and Biotechnology , Albert Ludwigs University Freiburg , Stefan-Meier-Strasse 19 , D-79104 Freiburg , Germany
| | - Wolfgang Heydenreuter
- Institute of Organic Chemistry II , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Mehrnoush Kangani
- Institute of Organic and Biomolecular Chemistry , Georg-August University , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Stephan A Sieber
- Institute of Organic Chemistry II , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany
| | - Lutz F Tietze
- Institute of Organic and Biomolecular Chemistry , Georg-August University , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology , Albert Ludwigs University Freiburg , Stefan-Meier-Strasse 19 , D-79104 Freiburg , Germany
- Spemann Graduate School of Biology and Medicine (SGBM) , Albert Ludwigs University Freiburg , Albertstrasse 19a , 79104 Freiburg , Germany
| |
Collapse
|
9
|
Matkar PN, Jong ED, Ariyagunarajah R, Prud'homme GJ, Singh KK, Leong-Poi H. Jack of many trades: Multifaceted role of neuropilins in pancreatic cancer. Cancer Med 2018; 7:5036-5046. [PMID: 30216699 PMCID: PMC6198212 DOI: 10.1002/cam4.1715] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/04/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
Neuropilins (NRPs) have been described as receptors for class 3 semaphorins and coreceptors for a plethora of ligands, such as members of the vascular endothelial growth factor (VEGF) family of angiogenic cytokines and transforming growth factor (TGF). Initial studies using genetic models have indicated that neuropilin-1 (NRP-1) is essential for axonal guidance during neuronal and cardiovascular development, regulated via semaphorins and VEGF, respectively, whereas the other homolog of neuropilin, NRP-2, has been shown to play a more specific role in neuronal patterning and lymphangiogenesis. Pancreatic ductal adenocarcinoma (PDAC) remains a significant cause of cancer mortality with the lowest five-year survival rate compared to other types of cancer. Recent findings have indicated that NRPs are abundantly expressed in pancreatic cancer cell lines and pancreatic tumor tissues, where they mediate several essential cancer-initiating and cancer-promoting functional responses through their unique ability to bind multiple ligands. Specifically, NRPs have been implicated in numerous biological processes such as cancer cell proliferation, survival, invasion, and tumor growth. More recently, several other protumorigenic roles mediated by NRPs have emerged, advocating NRPs as ideal therapeutic targets against PDAC.
Collapse
Affiliation(s)
- Pratiek N Matkar
- Division of Cardiology, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Eric D Jong
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | | | - Gerald J Prud'homme
- Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Krishna K Singh
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Vascular Surgery, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Howard Leong-Poi
- Division of Cardiology, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Grun D, Adhikary G, Eckert RL. NRP-1 interacts with GIPC1 and α6/β4-integrins to increase YAP1/∆Np63α-dependent epidermal cancer stem cell survival. Oncogene 2018; 37:4711-4722. [PMID: 29755126 PMCID: PMC6381998 DOI: 10.1038/s41388-018-0290-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
We have identified an epidermal cancer stem (ECS) cell population that drives formation of rapidly growing and highly invasive and vascularized tumors. VEGF-A and neuropilin-1 (NRP-1) are highly expressed in ECS cell tumors and VEGF-A/NRP-1 interaction is required for ECS cell survival and tumor vascularization. We now identify a novel signaling cascade that is triggered by VEGF-A/NRP-1. We show that NRP-1 forms a complex with GIPC1 and α6/β4-integrin to activate FAK/Src signaling, which leads to stabilization of a YAP1/∆Np63α to enhance ECS cell survival, invasion, and angiogenesis. Loss of NRP-1, GIPC1, α6/β4-integrins, YAP1, or ∆Np63α reduces these responses. Moreover, restoration of constituently active YAP1 or ∆Np63α in NRP-1 null cells restores the ECS cell phenotype. Tumor xenograft experiments show that NRP-1 knockout ECS cells form small tumors characterized by reduced vascularization as compared to wild-type cells. The NRP-1 knockout tumors display signaling changes consistent with a role for the proposed signaling cascade. These studies suggest that VEGF-A interacts with NRP-1 and GIPC1 to regulate α6/β4-integrin, FAK, Src, PI3K/PDK1, LATS1 signaling to increase YAP1/∆Np63α accumulation to drive ECS cell survival, angiogenesis, and tumor formation.
Collapse
Affiliation(s)
- Daniel Grun
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Reproductive Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
11
|
Dogan M, Demirkazik A, Konuk N, Yalcin B, Buyukcelik A, Utkan G, Tek I, Akbulut H, Sencan O, Icli F. The Effect of Venous Thromboembolism on Survival of Cancer Patients and its Relationship with Serum Levels of Factor VIII and Vascular Endothelial Growth Factor: A Prospective Matched-Paired Study. Int J Biol Markers 2018. [DOI: 10.1177/172460080602100402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Venous thromboembolism (VT) increases mortality and morbidity in cancer patients. The primary aim of this study was to evaluate the effect of VT on the survival of cancer patients and its relationship with serum vascular endothelial growth factor (VEGF) and plasma factor VIII levels. Patients and methods Eighty-two patients with locally advanced or metastatic cancer were included in this study between September 2001 and March 2004, and 31 of them had VT. Fifty-one matched-paired cancer patients without VT were prospectively selected as a control group in the same period. Criteria for the selection of control group patients were having the same malignancy, stage, metastatic site, performance status and age (±5 years) as patients in the VT group. Results Plasma factor VIII and serum D-dimer levels in the VT group were significantly higher than those in the control group (p=0.030 and p=0.016, respectively). However, mean serum VEGF levels were similar in both groups (p=0.199). In the VT group, the median survival of patients who had higher serum VEGF levels (>150 pg/mL) was significantly shorter than that of patients in the same group with lower serum VEGF levels (p=0.005). The median survival of the VT group was 14 months, whereas it was 25 months in the control group (p=0.199). Conclusion There was a worse prognostic trend for cancer patients with VT. Nevertheless, the difference in survival was not statistically significant between the groups. Plasma factor VIII and serum D-dimer levels might have prognostic value in cancer patients with VT. Cancer patients with VT and higher serum VEGF levels had a significantly poorer prognosis.
Collapse
Affiliation(s)
- M. Dogan
- Department of Medical Oncology, Ankara University School of Medicine, Cebeci Hospital, Dikimevi, Ankara - Turkey
| | - A. Demirkazik
- Department of Medical Oncology, Ankara University School of Medicine, Cebeci Hospital, Dikimevi, Ankara - Turkey
| | - N. Konuk
- Department of Hematology, Ankara University School of Medicine, Cebeci Hospital, Dikimevi, Ankara - Turkey
| | - B. Yalcin
- Department of Medical Oncology, Ankara University School of Medicine, Cebeci Hospital, Dikimevi, Ankara - Turkey
| | - A. Buyukcelik
- Department of Medical Oncology, Ankara University School of Medicine, Cebeci Hospital, Dikimevi, Ankara - Turkey
| | - G. Utkan
- Department of Medical Oncology, Ankara University School of Medicine, Cebeci Hospital, Dikimevi, Ankara - Turkey
| | - I. Tek
- Department of Medical Oncology, Ankara University School of Medicine, Cebeci Hospital, Dikimevi, Ankara - Turkey
| | - H. Akbulut
- Department of Medical Oncology, Ankara University School of Medicine, Cebeci Hospital, Dikimevi, Ankara - Turkey
| | - O. Sencan
- Department of Medical Oncology, Ankara University School of Medicine, Cebeci Hospital, Dikimevi, Ankara - Turkey
| | - F. Icli
- Department of Medical Oncology, Ankara University School of Medicine, Cebeci Hospital, Dikimevi, Ankara - Turkey
| |
Collapse
|
12
|
Al-Aqtash RA, Zihlif MA, Hammad H, Nassar ZD, Meliti JA, Taha MO. Ligand-based computational modelling of platelet-derived growth factor beta receptor leading to new angiogenesis inhibitory leads. Comput Biol Chem 2017; 71:170-179. [PMID: 29101826 DOI: 10.1016/j.compbiolchem.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 01/03/2023]
Abstract
Platelet derived growth factor beta receptor (PDGFR- β) plays an important role in angiogenesis. PDGFR-β expression is correlated with increased vascularity and maturation of blood vessels in cancer. Pharmacophore modeling and quantitative structure-activity relationship (QSAR) analysis were combined to explore the structural requirements for ligand-PDGFR-β recognition using 107 known PDGFR-β inhibitors. Genetic function algorithm (GFA) coupled to k nearest neighbor (kNN) and multiple linear regression (MLR) analysis were employed to generate predictive QSAR models based on optimal combinations of pharmacophores and physicochemical descriptors. The successful pharmacophores were complemented with exclusion spheres to optimize their receiver operating characteristic curve (ROC) profiles. The QSAR models and their associated pharmacophore hypotheses were validated by identification and experimental evaluation of new angiogenesis inhibitory leads retrieved from the National Cancer Institute (NCI) structural database. Two hits illustrated low micromolar IC50 values in two distinct anti-angiogenesis bioassays.
Collapse
Affiliation(s)
- Rua'a A Al-Aqtash
- Department of Pharmacology, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Malek A Zihlif
- Department of Pharmacology, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Hana Hammad
- Department of Biology, University of Jordan, Amman, Jordan
| | - Zeyad D Nassar
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Jehad Al Meliti
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| |
Collapse
|
13
|
Ong HS, Gokavarapu S, Xu Q, Tian Z, Li J, Ji T, Zhang CP. Cytoplasmic neuropilin 2 is associated with metastasis and a poor prognosis in early tongue cancer patients. Int J Oral Maxillofac Surg 2017; 46:1205-1219. [PMID: 28602571 DOI: 10.1016/j.ijom.2017.03.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/17/2017] [Accepted: 03/28/2017] [Indexed: 11/27/2022]
Abstract
Neuropilin 2 (Nrp2) plays an important role in regulating lymphangiogenesis. Nrp2 expression in early tongue cancer was investigated to predict lymph node metastasis and the long-term prognosis. The relationships between clinicopathological variables of cT1-T2N0 tongue squamous cell carcinoma (SCC) and overexpression of Nrp2, vascular endothelial growth factor C (VEGFC), vascular endothelial growth factor receptor 3 (VEGFR3), and semaphorin 3F (Sema3F) were analyzed. Expression levels were compared using oral SCC cell lines. The Nrp2 gene was silenced to determine the impact of Nrp2. Cytoplasmic Nrp2 overexpression predicted regional metastasis with sensitivity and specificity of 90.3% and 42.1%, respectively. Cytoplasmic Nrp2 overexpression (P<0.001) and VEGFC overexpression (P=0.006) were significantly related to regional metastasis (Student t-test). However, only cytoplasmic Nrp2 overexpression was an independent prognostic factor for both disease-free survival (DFS; P=0.008) and overall survival (OS; P=0.016) (Cox regression); the risk of recurrence was 12-times higher (P=0.015) and risk of mortality was 8-times higher (P=0.016). Co-localization of Nrp2 and VEGFC was greater within the cytoplasm of aggressive cell lines (HN12 and RCa-T). Nrp2 plays a role in tumourigenesis; VEGFC supplementation cannot rescue the biological function of Nrp2 in Nrp2-depleted cell lines. Cytoplasmic Nrp2 overexpression is associated with decreased OS and DFS. Cytoplasmic Nrp2 overexpression may be a reliable diagnostic and prognostic marker for early tongue SCC.
Collapse
Affiliation(s)
- H S Ong
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Gokavarapu
- Head and Neck Oncology Reconstructive Surgery, Department of Surgical Oncology, Krishna Institute of Medical Science, Hyderabad, Telangana, India
| | - Q Xu
- Shanghai Key Laboratory of Oral and Maxillofacial-Head and Neck Oncology and Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Tian
- Department of Oral Pathology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - T Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - C P Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Bhattacharyya S, Purkait K, Mukherjee A. Ruthenium(ii) p-cymene complexes of a benzimidazole-based ligand capable of VEGFR2 inhibition: hydrolysis, reactivity and cytotoxicity studies. Dalton Trans 2017. [DOI: 10.1039/c7dt00938k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(ii)-p-Cymene complexes of a bispyrazole-benzimidazole ligand inhibit vascular endothelial growth factor 2, reduce the cellular glutathione pool and inhibit cell migration.
Collapse
Affiliation(s)
- Sudipta Bhattacharyya
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur Campus
- Nadia-741246
- India
| | - Kallol Purkait
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur Campus
- Nadia-741246
- India
| | - Arindam Mukherjee
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur Campus
- Nadia-741246
- India
| |
Collapse
|
15
|
VEGF-A acts via neuropilin-1 to enhance epidermal cancer stem cell survival and formation of aggressive and highly vascularized tumors. Oncogene 2016; 35:4379-87. [PMID: 26804163 DOI: 10.1038/onc.2015.507] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/09/2015] [Accepted: 12/14/2015] [Indexed: 12/20/2022]
Abstract
We identify a limited subpopulation of epidermal cancer stem cells (ECS cells), in squamous cell carcinoma, that form rapidly growing, invasive and highly vascularized tumors, as compared with non-stem cancer cells. These ECS cells grow as non-attached spheroids, and display enhanced migration and invasion. We show that ECS cell-produced vascular endothelial growth factor (VEGF)-A is required for the maintenance of this phenotype, as knockdown of VEGF-A gene expression or treatment with VEGF-A-inactivating antibody reduces these responses. In addition, treatment with bevacizumab reduces tumor vascularity and growth. Surprisingly, the classical mechanism of VEGF-A action via interaction with VEGF receptors does not mediate these events, as these cells lack VEGFR1 and VEGFR2. Instead, VEGF-A acts via the neuropilin-1 (NRP-1) co-receptor. Knockdown of NRP-1 inhibits ECS cell spheroid formation, invasion and migration, and attenuates tumor formation. These studies suggest that VEGF-A acts via interaction with NRP-1 to trigger intracellular events leading to ECS cell survival and formation of aggressive, invasive and highly vascularized tumors.
Collapse
|
16
|
High neuropilin 1 expression was associated with angiogenesis and poor overall survival in resected pancreatic ductal adenocarcinoma. Pancreas 2014; 43:744-9. [PMID: 24632553 DOI: 10.1097/mpa.0000000000000117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Neuropilin 1 (NRP-1) appears to promote angiogenesis by acting as a coreceptor with vascular endothelial growth factor receptor. We correlated NRP-1 expression with microvessel density (MVD) and overall survival (OS) in human pancreatic ductal adenocarcinomas (PDACs). METHODS Neuropilin 1 expression was graded semiquantitatively using immunohistochemistry in patients with resected PDAC. Moreover, MVD was determined with an anti-CD31 antibody staining. Expression of NRP-1 was correlated with MVD and clinicopathologic features in patients with PDAC. Overall survival effects of NRP-1 expression were evaluated by multivariate Cox regression and Kaplan-Meier analyses. RESULTS High NRP-1 expression was associated with advanced Union for International Cancer Control stage (P = 0.046), T stage (P = 0.031), and lymph node invasion (P = 0.045). Microvessel density was significantly higher in the tumors with high NRP-1 expression than that in the tumors with low NRP-1 expression (mean, 13.9 [SD, 9.1] vs 10.2 [SD, 7.2] per high-power field; P = 0.001). The multivariate Cox regression analysis demonstrated that high NRP-1 expression was independently associated with reduced OS (hazard ratio, 2.10; 95% confidence interval, 1.19-3.70). CONCLUSIONS Neuropilin 1 is highly expressed in PDACs, and high expression of NRP-1 is significantly correlated with angiogenesis, advanced tumor-node-metastasis stage, p T stage, node invasion, and poor postoperative OS.
Collapse
|
17
|
Akashi Y, Oda T, Ohara Y, Miyamoto R, Kurokawa T, Hashimoto S, Enomoto T, Yamada K, Satake M, Ohkohchi N. Anticancer effects of gemcitabine are enhanced by co-administered iRGD peptide in murine pancreatic cancer models that overexpressed neuropilin-1. Br J Cancer 2014; 110:1481-7. [PMID: 24556620 PMCID: PMC3960621 DOI: 10.1038/bjc.2014.49] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/27/2013] [Accepted: 01/14/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Impaired drug transport is an important factor that reduces the efficacy of anticancer agents against pancreatic cancer. Here, we report a novel combination chemotherapy using gemcitabine (GEM) and internalised-RGD (iRGD) peptide, which enhances tumour-specific drug penetration by binding neuropilin-1 (NRP1) receptor. METHODS A total of five pancreatic cancer murine models (two cell line-based xenografts (CXs) and three tumour grafts (TGs)) were treated with either GEM (100 mg kg(-1), q3d × 4) alone or GEM plus iRGD peptide (8 μmol kg(-1)). Evaluation of NRP1 expression in xenografts and 48 clinical cancer specimens was performed by immunohistochemistry (IHC). RESULTS We identified a subset of pancreatic cancer models that showed NRP1 overexpression sensitive to iRGD co-administration. Treatment with GEM plus iRGD peptide resulted in a significant tumour reduction compared with GEM monotherapy in CXs, but not remarkable in TGs. Potential targets of iRGD were characterised as cases showing NRP1 overexpression (IHC-2+/3+), and these accounted for 45.8% of the clinical specimens. CONCLUSIONS Internalised RGD peptide enhances the effects of co-administered drugs in pancreatic cancer models, its efficacy is however only appreciable in those employing cell lines. Therefore, the clinical application needs to be given careful consideration.
Collapse
Affiliation(s)
- Y Akashi
- Department of Surgery, Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575 Ibaraki, Japan
| | - T Oda
- Department of Surgery, Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575 Ibaraki, Japan
| | - Y Ohara
- Department of Surgery, Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575 Ibaraki, Japan
| | - R Miyamoto
- Department of Surgery, Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575 Ibaraki, Japan
| | - T Kurokawa
- Department of Surgery, Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575 Ibaraki, Japan
| | - S Hashimoto
- Department of Surgery, Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575 Ibaraki, Japan
| | - T Enomoto
- Department of Surgery, Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575 Ibaraki, Japan
| | - K Yamada
- Department of Surgery, Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575 Ibaraki, Japan
| | - M Satake
- Department of Diagnostic Radiology, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - N Ohkohchi
- Department of Surgery, Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575 Ibaraki, Japan
| |
Collapse
|
18
|
Abstract
The function of vascular endothelial growth factor (VEGF) in cancer is not limited to angiogenesis and vascular permeability. VEGF-mediated signalling occurs in tumour cells, and this signalling contributes to key aspects of tumorigenesis, including the function of cancer stem cells and tumour initiation. In addition to VEGF receptor tyrosine kinases, the neuropilins are crucial for mediating the effects of VEGF on tumour cells, primarily because of their ability to regulate the function and the trafficking of growth factor receptors and integrins. This has important implications for our understanding of tumour biology and for the development of more effective therapeutic approaches.
Collapse
Affiliation(s)
- Hira Lal Goel
- Department of Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
19
|
Yang J, Zhang Y, Cui X, Yao W, Yu X, Cen P, Hodges SE, Fisher WE, Brunicardi FC, Chen C, Yao Q, Li M. Gene profile identifies zinc transporters differentially expressed in normal human organs and human pancreatic cancer. Curr Mol Med 2013. [PMID: 23331012 DOI: 10.2174/156652413805076786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deregulated expression of zinc transporters was linked to several cancers. However, the detailed expression profile of all human zinc transporters in normal human organs and in human cancer, especially in pancreatic cancer is not available. The objectives of this study are to investigate the complete expression patterns of 14 ZIP and 10 ZnT transporters in a large number of normal human organs and in human pancreatic cancer tissues and cell lines. We examined the expression patterns of ZIP and ZnT transporters in 22 different human organs and tissues, 11 pairs of clinical human pancreatic cancer specimens and surrounding normal/benign tissues, as well as 10 established human pancreatic cancer cell lines plus normal human pancreatic ductal epithelium (HPDE) cells, using real time RT-PCR and immunohistochemistry. The results indicate that human zinc transporters have tissue specific expression patterns, and may play different roles in different organs or tissues. Almost all the ZIPs except for ZIP4, and most ZnTs were down-regulated in human pancreatic cancer tissues compared to the surrounding benign tissues. The expression patterns of individual ZIPs and ZnTs are similar among different pancreatic cancer lines. Those results and our previous studies suggest that ZIP4 is the only zinc transporter that is significantly up-regulated in human pancreatic cancer and might be the major zinc transporter that plays an important role in pancreatic cancer growth. ZIP4 might serve as a novel molecular target for pancreatic cancer diagnosis and therapy.
Collapse
Affiliation(s)
- J Yang
- Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, 6431 Fannin Street, MSE R266, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pérez-Lozano ML, Sandoval P, Rynne-Vidal Á, Aguilera A, Jiménez-Heffernan JA, Albar-Vizcaíno P, Majano PL, Sánchez-Tomero JA, Selgas R, López-Cabrera M. Functional relevance of the switch of VEGF receptors/co-receptors during peritoneal dialysis-induced mesothelial to mesenchymal transition. PLoS One 2013; 8:e60776. [PMID: 23585849 PMCID: PMC3621952 DOI: 10.1371/journal.pone.0060776] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/02/2013] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is up-regulated during mesothelial to mesenchymal transition (MMT) and has been associated with peritoneal membrane dysfunction in peritoneal dialysis (PD) patients. It has been shown that normal and malignant mesothelial cells (MCs) express VEGF receptors (VEGFRs) and co-receptors and that VEGF is an autocrine growth factor for mesothelioma. Hence, we evaluated the expression patterns and the functional relevance of the VEGF/VEGFRs/co-receptors axis during the mesenchymal conversion of MCs induced by peritoneal dialysis. Omentum-derived MCs treated with TGF-β1 plus IL-1β (in vitro MMT) and PD effluent-derived MCs with non-epithelioid phenotype (ex vivo MMT) showed down-regulated expression of the two main receptors Flt-1/VEGFR-1 and KDR/VEGFR-2, whereas the co-receptor neuropilin-1 (Nrp-1) was up-regulated. The expression of the Nrp-1 ligand semaphorin-3A (Sema-3A), a functional VEGF competitor, was repressed throughout the MMT process. These expression pattern changes were accompanied by a reduction of the proliferation capacity and by a parallel induction of the invasive capacity of MCs that had undergone an in vitro or ex vivo MMT. Treatment with neutralizing anti-VEGF or anti-Nrp-1 antibodies showed that these molecules played a relevant role in cellular proliferation only in naïve omentum-derived MCs. Conversely, treatment with these blocking antibodies, as well as with recombinant Sema-3A, indicated that the switched VEGF/VEGFRs/co-receptors axis drove the enhanced invasion capacity of MCs undergoing MMT. In conclusion, the expression patterns of VEGFRs and co-receptors change in MCs during MMT, which in turn would determine their behaviour in terms of proliferation and invasion in response to VEGF.
Collapse
Affiliation(s)
| | - Pilar Sandoval
- Centro de Biología Molecular-Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Ángela Rynne-Vidal
- Centro de Biología Molecular-Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Abelardo Aguilera
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - José Antonio Jiménez-Heffernan
- Servicio de Anatomía Patológica, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Patricia Albar-Vizcaíno
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Pedro L. Majano
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - José Antonio Sánchez-Tomero
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Rafael Selgas
- Servicio de Nefrología. Hospital Universitario La Paz, Instituto de Investigación Sanitaria la Paz (IdiPAZ), Madrid, Spain
| | - Manuel López-Cabrera
- Centro de Biología Molecular-Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
21
|
Djordjevic S, Driscoll PC. Targeting VEGF signalling via the neuropilin co-receptor. Drug Discov Today 2012; 18:447-55. [PMID: 23228652 DOI: 10.1016/j.drudis.2012.11.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/20/2012] [Accepted: 11/28/2012] [Indexed: 12/14/2022]
Abstract
The blockade of tumour vascularisation and angiogenesis continues to be a focus for drug development in oncology and other pathologies. Historically, targeting vascular endothelial growth factor (VEGF) activity and its association with VEGF receptors (VEGFRs) has represented the most promising line of attack. More recently, the recognition that VEGFR co-receptors, neuropilin-1 and -2 (NRP1 and NRP2), are also engaged by specific VEGF isoforms in tandem with the VEGFRs has expanded the landscape for the development of modulators of VEGF-dependent signalling. Here, we review the recent structural characterisation of VEGF interactions with NRP subdomains and the impact this has had on drug development activity in this area.
Collapse
Affiliation(s)
- Snezana Djordjevic
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
22
|
Shankar S, Marsh L, Srivastava RK. EGCG inhibits growth of human pancreatic tumors orthotopically implanted in Balb C nude mice through modulation of FKHRL1/FOXO3a and neuropilin. Mol Cell Biochem 2012; 372:83-94. [PMID: 22971992 DOI: 10.1007/s11010-012-1448-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 08/31/2012] [Indexed: 12/13/2022]
Abstract
Human pancreatic cancer is currently one of the fourth leading causes of cancer-related mortality with a 5-year survival rate of less than 5 %. Since pancreatic carcinoma is largely refractory to conventional therapies, there is a strong medical need for the development of novel and innovative cancer preventive strategies. The forkhead transcription factors of the O class (FOXO) play a major role in cell proliferation, angiogenesis, metastasis, and tumorigenesis. The objectives of this study were to examine whether FKHRL1/FOXO3a modulates antitumor activity of (-)-epigallocatechin-3-gallate (EGCG), an active ingredient in green tea, in pancreatic cancer model in vivo. PANC-1 cells were orthotopically implanted into Balb c nude mice and gavaged with EGCG after tumor formation. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of PI3K, AKT, ERK, and FOXO3a/FKHRL1 and its target genes were measured by the western blot analysis and/or q-RT-PCR. FOXO-DNA binding was measured by gel shift assay. EGCG-treated mice showed significant inhibition in tumor growth which was associated with reduced phosphorylation of ERK, PI3K, AKT, and FKHRL1/FOXO3a, and modulation of FOXO target genes. EGCG induced apoptosis by upregulating Bim and activating caspase-3. EGCG modulated markers of cell cycle (p27/KIP1), angiogenesis (CD31, VEGF, IL-6, IL-8, SEMA3F, and HIF1α), and metastasis (MMP2 and MMP7). The inhibition of VEGF by EGCG was associated with suppression of neuropilin. EGCG inhibited epithelial-mesenchymal transition by upregulating the expression of E-cadherin and inhibiting the expression of N-cadherin and Zeb1. These data suggest that EGCG inhibits pancreatic cancer orthotopic tumor growth, angiogenesis, and metastasis which are associated with inhibition of PI3K/AKT and ERK pathways and activation of FKHRL1/FOXO3a. As a conclusion, EGCG can be used for the prevention and/or treatment of pancreatic cancer.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/blood supply
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Catechin/analogs & derivatives
- Catechin/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Forkhead Box Protein O3
- Forkhead Transcription Factors/metabolism
- Gene Expression/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- MAP Kinase Signaling System/drug effects
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/prevention & control
- Neuropilins/metabolism
- Pancreas/pathology
- Pancreatic Neoplasms/blood supply
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Proliferating Cell Nuclear Antigen/metabolism
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sharmila Shankar
- Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
23
|
Wild JRL, Staton CA, Chapple K, Corfe BM. Neuropilins: expression and roles in the epithelium. Int J Exp Pathol 2012; 93:81-103. [PMID: 22414290 DOI: 10.1111/j.1365-2613.2012.00810.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Initially found expressed in neuronal and then later in endothelial cells, it is well established that the transmembrane glycoproteins neuropilin-1 (NRP1) and neuropilin-2 (NRP2) play essential roles in axonal growth and guidance and in physiological and pathological angiogenesis. Neuropilin expression and function in epithelial cells has received little attention when compared with neuronal and endothelial cells. Overexpression of NRPs is shown to enhance growth, correlate with invasion and is associated with poor prognosis in various tumour types, especially those of epithelial origin. The contribution of NRP and its ligands to tumour growth and metastasis has spurred a strong interest in NRPs as novel chemotherapy drug targets. Given NRP's role as a multifunctional co-receptor with an ability to bind with disparate ligand families, this has sparked new areas of research implicating NRPs in diverse biological functions. Here, we review the growing body of research demonstrating NRP expression and role in the normal and neoplastic epithelium.
Collapse
Affiliation(s)
- Jonathan R L Wild
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology, University of Sheffield, The Medical School, Sheffield, UK
| | | | | | | |
Collapse
|
24
|
Li X, Lee SO, Safe S. Structure-dependent activation of NR4A2 (Nurr1) by 1,1-bis(3'-indolyl)-1-(aromatic)methane analogs in pancreatic cancer cells. Biochem Pharmacol 2012; 83:1445-55. [PMID: 22405837 DOI: 10.1016/j.bcp.2012.02.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 11/27/2022]
Abstract
NR4A2 (Nurr1) is an orphan nuclear receptor with no known endogenous ligands and is highly expressed in many cancer cell lines including Panc1 and Panc28 pancreatic cancer cells. Structure-dependent activation of NR4A2 by a series of 1,1-bis(3'-indolyl)-1-(aromatic)methane (C-DIM) analogs was determined in pancreatic cancer cells transfected with yeast GAL4-Nurr1 chimeras and a UASx5-luc reporter gene or constructs containing response elements that bind NR4A2. Among 23 different structural analogs, phenyl groups containing p-substituted trifluoromethyl, t-butyl, cyano, bromo, iodo and trifluoromethoxy groups were the most active compounds in transactivation assay. The p-bromophenyl analog (DIM-C-pPhBr) was used as a model for structure-activity studies among a series of ortho-, meta- and para-bromophenyl isomers and the corresponding indole 2- and N-methyl analogs. Results show that NR4A2 activation was maximal with the p-bromophenyl analog and methylation of the indole NH group abrogated activity. Moreover, using GAL4-Nurr1 (full length) or GAL-Nurr1-A/B and GAL4-Nurr1-(C-F) chimeras expressing N- and C-terminal domains of Nurr1, respectively, DIM-C-pPhBr activated all three constructs and these responses were differentially affected by kinase inhibitors. DIM-C-pPhBr also modulated expression of several Nurr1-regulated genes in pancreatic cancer cells including vasoactive intestinal peptide (VIP), and the immunohistochemical and western blot analyses indicated that DIM-C-pPhBr activates nuclear NR4A2.
Collapse
Affiliation(s)
- Xi Li
- College of Medicine, Texas A&M Health Science Center, 1114 TAMU, College Station, TX 77843, USA
| | | | | |
Collapse
|
25
|
Obchoei S, Weakley SM, Wongkham S, Wongkham C, Sawanyawisuth K, Yao Q, Chen C. Cyclophilin A enhances cell proliferation and tumor growth of liver fluke-associated cholangiocarcinoma. Mol Cancer 2011; 10:102. [PMID: 21871105 PMCID: PMC3173387 DOI: 10.1186/1476-4598-10-102] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/26/2011] [Indexed: 12/01/2022] Open
Abstract
Background Cyclophilin A (CypA) expression is associated with malignant phenotypes in many cancers. However, the role and mechanisms of CypA in liver fluke-associated cholangiocarcinoma (CCA) are not presently known. In this study, we investigated the expression of CypA in CCA tumor tissues and CCA cell lines as well as regulation mechanisms of CypA in tumor growth using CCA cell lines. Methods CypA expression was determined by real time RT-PCR, Western blot or immunohistochemistry. CypA silence or overexpression in CCA cells was achieved using gene delivery techniques. Cell proliferation was assessed using MTS assay or Ki-67 staining. The effect of silencing CypA on CCA tumor growth was determined in nude mice. The effect of CypA knockdown on ERK1/2 activation was assessed by Western blot. Results CypA was upregulated in 68% of CCA tumor tissues. Silencing CypA significantly suppressed cell proliferation in several CCA cell lines. Likewise, inhibition of CypA peptidyl-prolyl cis-trans isomerase (PPIase) activity using cyclosporin A (CsA) decreased cell proliferation. In contrast, overexpression of CypA resulted in 30% to 35% increases in proliferation of CCA cell lines. Interestingly, neither silence nor overexpression of CypA affected cell proliferation of a non-tumor human cholangiocyte cell line, MMNK1. Suppression of CypA expression attenuated ERK1/2 activity in CCA M139 cells by using both transient and stable knockdown methods. In the in vivo study, there was a 43% reduction in weight of tumors derived from CypA-silenced CCA cell lines compared with control vector CCA tumors in mice; these tumors with stable CypA silencing showed a reduced cell proliferation. Conclusions CypA is upregulated in majority of CCA patients' tissues and confers a significant growth advantage in CCA cells. Suppression of CypA expression decreases proliferation of CCA cell lines in vitro and reduces tumor growth in the nude mouse model. Inhibition of CypA activity also reduces CCA cell proliferation. The ERK1/2 pathway may be involved in the CypA-mediated CCA cell proliferation. Thus, CypA may represent an important new therapeutic target for liver fluke-associated CCA.
Collapse
Affiliation(s)
- Sumalee Obchoei
- Molecular Surgeon Research Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Dogan M, Demirkazik A. Venous thromboembolism in patients with cancer and its relationship to the coagulation cascade and vascular endothelial growth factor. ACTA ACUST UNITED AC 2011; 3:28-34. [PMID: 18632433 DOI: 10.3816/sct.2005.n.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Venous thromboembolism (VTE) is a well-recognized problem in malignancy. Patients with cancer who have VTE have a worse prognosis than other patients with cancer. Hypercoagulability in patients with cancer is related to malignancy itself and its treatment. These patients have multiple risk factors for thromboembolism, such as being immobilized, having central venous catheters, and receiving chemoradiation therapy. Cancer procoagulant, tissue factor, factor VIII, and thrombin have important roles in causing cancer-associated thromboembolism. Tumors require neovascularization for delivering oxygen and other nutrients. Therefore, angiogenesis facilitates tumor growth, invasion, and metastasis. New blood vessels formed by angiogenesis are thrombogenic. Hypercoagulability and tumor growth are closely related. Vascular endothelial growth factor (VEGF) is a proangiogenic factor that may also cause VTE in patients with cancer. The relationship between cancer, angiogenesis, VEGF, and thrombosis is reviewed herein. Studies are ongoing to enhance our understanding of this complex interaction.
Collapse
Affiliation(s)
- Mutlu Dogan
- Department of Medical Oncology, Cebeci Hospital, Ankara University, Turkey
| | | |
Collapse
|
27
|
Grandclement C, Borg C. Neuropilins: a new target for cancer therapy. Cancers (Basel) 2011; 3:1899-928. [PMID: 24212788 PMCID: PMC3757396 DOI: 10.3390/cancers3021899] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/23/2011] [Accepted: 04/01/2011] [Indexed: 02/07/2023] Open
Abstract
Recent investigations highlighted strong similarities between neural crest migration during embryogenesis and metastatic processes. Indeed, some families of axon guidance molecules were also reported to participate in cancer invasion: plexins/semaphorins/neuropilins, ephrins/Eph receptors, netrin/DCC/UNC5. Neuropilins (NRPs) are transmembrane non tyrosine-kinase glycoproteins first identified as receptors for class-3 semaphorins. They are particularly involved in neural crest migration and axonal growth during development of the nervous system. Since many types of tumor and endothelial cells express NRP receptors, various soluble molecules were also found to interact with these receptors to modulate cancer progression. Among them, angiogenic factors belonging to the Vascular Endothelial Growth Factor (VEGF) family seem to be responsible for NRP-related angiogenesis. Because NRPs expression is often upregulated in cancer tissues and correlated with poor prognosis, NRPs expression might be considered as a prognostic factor. While NRP1 was intensively studied for many years and identified as an attractive angiogenesis target for cancer therapy, the NRP2 signaling pathway has just recently been studied. Although NRP genes share 44% homology, differences in their expression patterns, ligands specificities and signaling pathways were observed. Indeed, NRP2 may regulate tumor progression by several concurrent mechanisms, not only angiogenesis but lymphangiogenesis, epithelial-mesenchymal transition and metastasis. In view of their multiples functions in cancer promotion, NRPs fulfill all the criteria of a therapeutic target for innovative anti-tumor therapies. This review focuses on NRP-specific roles in tumor progression.
Collapse
Affiliation(s)
- Camille Grandclement
- INSERM UMR 645, F-25020 Besançon, France; E-Mail:
- University of Franche-Comté, IFR133, F-25020 Besançon, France
- EFS Bourgogne Franche-Comté, F-25020 Besançon, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-3-81-61-56-15 or +33-3-81-66-93-21; Fax: +33-3-81-61-56-17
| | - Christophe Borg
- INSERM UMR 645, F-25020 Besançon, France; E-Mail:
- University of Franche-Comté, IFR133, F-25020 Besançon, France
- EFS Bourgogne Franche-Comté, F-25020 Besançon, France
- Department of Medical Oncology, CHU Besançon, F-25000 Besançon, France
| |
Collapse
|
28
|
Growth factor mediated signaling in pancreatic pathogenesis. Cancers (Basel) 2011; 3:841-71. [PMID: 24212642 PMCID: PMC3756392 DOI: 10.3390/cancers3010841] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 02/12/2011] [Accepted: 02/16/2011] [Indexed: 12/30/2022] Open
Abstract
Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed.
Collapse
|
29
|
Yoshizaki T, Motomura W, Tanno S, Kumei S, Yoshizaki Y, Tanno S, Okumura T. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:22. [PMID: 20214829 PMCID: PMC2851675 DOI: 10.1186/1756-9966-29-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 03/10/2010] [Indexed: 01/13/2023]
Abstract
Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF) gene via peroxisome proliferator-activated receptor γ (PPARγ); VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC). Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and A549. These mRNA expressions were evaluated by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis. We also studied the effect of Je-11, a VEGF inhibitor, on the growth of these cells. Results In NSCLC cells, thiazolidinediones increased the mRNA expression of VEGF and neuropilin-1, but not that of other receptors such as fms-like tyrosine kinase and kinase insert domain receptor-1. Furthermore, the PPARγ antagonist GW9662 completely reversed this thiazolidinedione-induced increase in VEGF expression. Furthermore, the addition of VEGF inhibitors into the culture medium resulted in the reversal of thiazolidinedione-induced growth inhibition. Conclusions Our results indicated that thiazolidinediones enhance VEGF and neuropilin-1 expression and induce the inhibition of cell growth. We propose the existence of a pathway for arresting cell growth that involves the interaction of thiazolidinedione-induced VEGF and neuropilin-1 in NSCLC.
Collapse
Affiliation(s)
- Takayuki Yoshizaki
- Innovation Center, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhang Y, Chen C, Yao Q, Li M. ZIP4 upregulates the expression of neuropilin-1, vascular endothelial growth factor, and matrix metalloproteases in pancreatic cancer cell lines and xenografts. Cancer Biol Ther 2010; 9:236-42. [PMID: 20023433 DOI: 10.4161/cbt.9.3.10749] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have recently found that a zinc transporter, ZIP4, is overexpressed in human pancreatic cancer and contributes to pancreatic cancer pathogenesis and progression. However, the detailed mechanism that how ZIP4 regulates pancreatic cancer growth is not clear. In this study, we further investigated the key molecules regulated by ZIP4 in pancreatic cancer angiogenesis and metastasis. We found that overexpression of ZIP4 caused significantly increased expression of NRP-1, VEGF, MMP-2 and MMP-9 in both pancreatic cancer cell lines and xenografts. Conversely, silencing of ZIP4 by short hairpin RNA (shRNA) was associated with decreased expression of NRP-1 and VEGF in pancreatic cancer xenografts. The ZIP4 expression and NRP-1 level are also correlated in established human pancreatic cancer cell lines. These results indicate that ZIP4-mediated pancreatic cancer growth might involve angiogenesis, invasion and metastasis pathways, and NRP-1, VEGF and MMPs are important intermediate molecules in transducing the ZIP4 initiated signal cascades in pancreatic cancer.
Collapse
Affiliation(s)
- Yuqing Zhang
- Molecular Surgeon Research Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
31
|
|
32
|
Profiling of 95 microRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis. World J Surg 2009; 33:698-709. [PMID: 19030927 DOI: 10.1007/s00268-008-9833-0] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are involved in cancer pathogenesis, apoptosis, and cell growth, thereby functioning as tumor suppressors or oncogenes. However, expression alterations and roles of these miRNAs in pancreatic cancer are largely unknown. We hypothesized that pancreatic cancer may have a unique miRNA profile, which may play a critical role in pancreatic cancer development, progression, diagnosis, and prognosis. METHODS Differential expression of 95 miRNAs was analyzed by real time RT-PCR using the QuantiMir System. All 95 miRNAs chosen for the array are based on their potential functions related to cancer biology, cell development, and apoptosis. The expression of miRNAs for pancreatic cancer tissue samples or cancer cell lines was normalized to U6 RNA and compared with those in relatively normal pancreatic tissues or normal human pancreatic ductal epithelial (HPDE) cells. Human pancreatic tissue with chronic pancreatitis also was included for analysis. RESULTS In the initial analysis, the expression of most 95 miRNAs was substantially changed in pancreatic cancer tissues (n=5) and cell lines (n=3) compared with relatively normal pancreatic tissues and HPDE cells. However, each pancreatic cancer tissue or cell type had a substantially different profiling pattern with other cases or cell types as well as chronic pancreatitis tissue, indicating the individual diversity of pancreatic cancer. Further analysis was performed on 10 pancreatic cancer cell lines and 17 pairs of pancreatic cancer/normal tissues. Eight miRNAs were significantly upregulated in most pancreatic cancer tissues and cell lines, including miR-196a, miR-190, miR-186, miR-221, miR-222, miR-200b, miR-15b, and miR-95. The incidence of upregulation of these eight genes between normal control subjects and tumor cells or tissues ranged from 70-100%. The magnitude of increase of these miRNAs in pancreatic cancer samples ranged from 3- to 2018-fold of normal control subjects. CONCLUSIONS Pancreatic cancer tissues or cell lines have a unique miRNA profiling pattern at the individual basis compared with relatively normal pancreatic tissues or cells as well as pancreatitis tissue. Upregulation of eight miRNAs occurs in most pancreatic cancer tissues and cell types. These miRNAs may share common pathways in pancreatic cancer pathogenesis. This study may provide useful information for further investigations of functional roles of miRNAs in pancreatic cancer development, progression, diagnosis, and prognosis.
Collapse
|
33
|
Li M, Zhang Y, Zhai Q, Feurino LW, Fisher WE, Chen C, Yao Q. Thymosin beta-10 is aberrantly expressed in pancreatic cancer and induces JNK activation. Cancer Invest 2009; 27:251-6. [PMID: 19194824 DOI: 10.1080/07357900802254016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thymosin beta-10 (T beta 10) has been shown to be associated with several cancers; however, its role in pancreatic cancer is not understood. The expression of T beta 10 was determined by immunohistochemistry and real-time polymerase chain reaction. The phosphorylation of JNK and the cytokine secretion was determined by using the Bio-Plex phosphoprotein and cytokines assays. Pancreatic cancer tissues and cells expressed higher amounts of T beta 10 than normal surrounding tissues and human pancreatic duct epithelial cells. Exogenous T beta 10 caused the phosphorylation of JNK and increased the secretion of cytokines interleukin (IL)-7 and IL-8 in BxPC-3 cells. T beta 10 might be a promising marker and a novel therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Min Li
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Li M, Wang X, Li W, Li F, Yang H, Wang H, Brunicardi FC, Chen C, Yao Q, Fisher WE. Somatostatin receptor-1 induces cell cycle arrest and inhibits tumor growth in pancreatic cancer. Cancer Sci 2008; 99:2218-23. [PMID: 18823376 DOI: 10.1111/j.1349-7006.2008.00940.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Functional somatostatin receptors (SSTR) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G(0)/G(1) growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n = 5, P < 0.05, Student's t-test), and inhibited tumor weight by 69% and 47% (n = 5, P < 0.05, Student's t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Min Li
- Michael E DeBakey Department of Surgery, Molecular Surgeon Research Center, Baylor College of Medicine, Houston, Texas, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Results of pancreaticoduodenectomy in patients with periampullary adenocarcinoma: perineural growth more important prognostic factor than tumor localization. Ann Surg 2008; 248:97-103. [PMID: 18580212 DOI: 10.1097/sla.0b013e31817b6609] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To study the impact of perineural growth as a prognostic factor in periampullary adenocarcinoma (pancreatic head, ampulla of Vater, distal bile duct, and duodenal carcinoma). SUMMARY BACKGROUND DATA Pancreatic head carcinoma is considered to have the worst prognosis of the periampullary carcinomas. Several other prognostic factors for periampullary tumors have been identified, eg, lymph node status, free resection margins, tumor size and differentiation, and vascular invasion. The impact of perineural growth as a prognostic factor in relation to the site of origin of periampullary carcinomas is unknown. METHODS Data of 205 patients with periampullary carcinomas were retrieved from our prospective database. Pancreaticoduodenectomy was performed in 121 patients. Their clinicopathological data were reviewed and analyzed in a multivariate analysis. RESULTS Perineural growth was present in 49% of the cases (37 of the 51 patients with pancreatic head carcinoma; 7 of the 30 patients with ampulla of Vater carcinoma; 7 of the 19 with distal bile duct carcinoma; and 8 of the 21 with duodenal carcinoma). Overall 5-year survival was 32.6% with a median survival of 20.7 months. Median survival in tumors with perineural growth was 13.1 months compared with 36.0 months in tumors without perineural growth (P < 0.0001) Using multivariate analysis, the following unfavorable prognostic factors were identified: perineural growth (RR = 2.90, 95% CI 1.62-5.22), nonradical resection (RR = 2.28, 95% CI 1.19-4.36), positive lymph nodes (RR = 1.96, 95% CI 1.11-3.45), and angioinvasion (RR = 1.79, 95% CI 1.05-3.06). Portal or superior mesenteric vein reconstruction and tumor localization were not of statistical significance. CONCLUSION Perineural growth is a more important risk factor for survival than the primary site of periampullary carcinomas.
Collapse
|
36
|
Li M, Bharadwaj U, Zhang R, Zhang S, Mu H, Fisher WE, Brunicardi FC, Chen C, Yao Q. Mesothelin is a malignant factor and therapeutic vaccine target for pancreatic cancer. Mol Cancer Ther 2008; 7:286-96. [PMID: 18281514 DOI: 10.1158/1535-7163.mct-07-0483] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Given the high fatality rate of pancreatic cancer, an effective treatment for this devastating disease is urgently needed. We have shown that mesothelin expression was higher in human pancreatic cancer cells than in human pancreatic duct epithelial cells, and mesothelin mRNA was substantially overexpressed in 18 of 21 (86%) clinical pancreatic adenocarcinoma specimens when compared with the surrounding normal tissues. However, the biological functions of mesothelin in tumor progression are not clearly understood. Here we studied the effects of mesothelin overexpression in pancreatic cancer cell proliferation and migration in vitro and pancreatic cancer progression in vivo. We found that forced expression of mesothelin significantly increased tumor cell proliferation and migration by 90% and 300%, respectively, and increased tumor volume by 4-fold in the nude mice xenograft model when compared with the vector control cell line. Silencing of mesothelin inhibited cell proliferation and migration in pancreatic cancer cells and ablated tumor progression in vivo. Vaccination with chimeric virus-like particles that contain human mesothelin substantially inhibited tumor progression in C57BL/6J mice. The increases in mesothelin-specific antibodies and CTL activity and the decrease in regulatory T cells correlated with reduced tumor progression and prolonged survival. This study revealed novel functions of mesothelin and suggested a new therapeutic vaccine strategy whereby mesothelin is targeted to control pancreatic cancer progression.
Collapse
Affiliation(s)
- Min Li
- Molecular Surgeon Research Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lu L, Zhang L, Xiao Z, Lu S, Yang R, Han ZC. Neuropilin-1 in acute myeloid leukemia: expression and role in proliferation and migration of leukemia cells. Leuk Lymphoma 2008; 49:331-8. [PMID: 18231921 DOI: 10.1080/10428190701809149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Neuropilin-1 (NRP-1) is a novel receptor of vascular endothelial growth factor (VEGF) and expressed in endothelial cells and tumor cells. The role of NRP-1 in the growth and progression of leukemia is unknown. Here we studied the mRNA expression and effect of NRP-1 in leukemic cells. Our results showed that NRP-1 mRNA was expressed in six of seven leukemic cell lines and primary leukemias derived from all 24 patients with acute myeloid leukemia (AML). Reduced NRP-1 expression by RNA interference led to a decrease of VEGF-mediated mitogenic and migration responses in acute myeloid leukemic cell line HEL. Increased NRP-1 expression was directly correlated with the blast percentage in both peripheral blood and bone marrow of AML patients. Our data demonstrated that a higher level of NRP-1 mRNA was expressed in leukemias and NRP-1 promoted proliferation and chemotaxis of leukemic cells in response to VEGF. Inhibition of NRP-1 functions may provide a new therapeutic strategy for treatment of AML.
Collapse
Affiliation(s)
- Lin Lu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Li M, Zhang Y, Feurino LW, Wang H, Fisher WE, Brunicardi FC, Chen C, Yao Q. Interleukin-8 increases vascular endothelial growth factor and neuropilin expression and stimulates ERK activation in human pancreatic cancer. Cancer Sci 2008; 99:733-7. [PMID: 18307536 DOI: 10.1111/j.1349-7006.2008.00740.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interleukin-8 (IL-8) is associated with tumorigenesis by promoting angiogenesis and metastasis. Although up-regulation of IL-8 is indicated in many cancers, its function in pancreatic cancer has not been well characterized. In this study we examined the expression of IL-8 on pancreatic cancer cells and clinical tissue specimens, and investigated the effect of exogenous IL-8 on gene expression, and signaling in human pancreatic cancer cells. We found that pancreatic cancer cells expressed higher amount of IL-8 mRNA than normal human pancreatic ductal epithelium cells. IL-8 mRNA was also substantially overexpressed in 11 of 14 (79%) clinical pancreatic-adenocarcinoma samples compared with that in their surrounding normal tissues. Exogenous IL-8 up-regulated the expression of vascular endothelial growth factor(165), and neuropilin (NRP)-2 in BxPC-3 cells, one of human pancreatic cancer cell lines. IL-8 expression was inducible by hypoxia mimicking reagent cobalt chloride. In addition, IL-8 activated extracellular signal-regulated kinase (ERK)1/2 signaling pathway in BxPC-3 cells. Our studies suggest that IL-8 might be a malignant factor in human pancreatic cancer by induction of vascular endothelial growth factor and NRP-2 expression and ERK activation. Targeting IL-8 along with other antiangiogenesis therapy could be an effective treatment for this malignancy.
Collapse
Affiliation(s)
- Min Li
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Dallas NA, Fan F, Gray MJ, Van Buren G, Lim SJ, Xia L, Ellis LM. Functional significance of vascular endothelial growth factor receptors on gastrointestinal cancer cells. Cancer Metastasis Rev 2008; 26:433-41. [PMID: 17786539 DOI: 10.1007/s10555-007-9070-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Vascular endothelial growth factor (VEGF) has been shown to be the major mediator of physiologic and pathologic angiogenesis. VEGF was initially thought to be an endothelial cell specific ligand, but recently, VEGF has been shown to mediate tumor cell function via activation of receptors on tumor cells themselves. Here, we review the expression patterns and binding profiles of the VEGF receptors and their ligands on gastrointestinal tumor cells. Furthermore, we describe the current knowledge in regards to the function of these receptors on tumor cells. Elucidating the function of VEGF receptors on tumor cells should help us to better understand the potential mechanisms of action of anti-VEGF therapies.
Collapse
Affiliation(s)
- Nikolaos A Dallas
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230-1402, USA,
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhang Y, Feurino LW, Zhai Q, Wang H, Fisher WE, Chen C, Yao Q, Li M. Thymosin Beta 4 is overexpressed in human pancreatic cancer cells and stimulates proinflammatory cytokine secretion and JNK activation. Cancer Biol Ther 2007; 7:419-23. [PMID: 18094619 DOI: 10.4161/cbt.7.3.5415] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Thymosin beta 4 (T beta 4) has been shown to be associated with tumor metastasis and angiogenesis; however, its role in pancreatic cancer has not been understood. In the current study, we examined the expression of T beta 4 in pancreatic cancer cells, and determined the effect of exogenous T beta 4 on cytokine secretion, and signal transduction in human pancreatic cancer cells. RESULTS Pancreatic cancer cell lines expressed higher amount of T beta 4 mRNA than normal human pancreatic ductal epithelium (HPDE) cells. Exogenous T beta 4 increased the secretion of proinflammatory cytokines IL-6, IL-8 and MCP-1 in Panc-1 cells. In addition, T beta 4 activated Jun N-terminal Kinase (JNK) signaling pathways in pancreatic cancer cells. METHODS The mRNA levels of T beta 4 were determined by real-time RT PCR. Phosphorylation of JNK in pancreatic cancer cells was determined using Bio-Plex phosphoprotein assay. The expression of cytokines in human pancreatic cancer cell lines was determined with Bio-Plex cytokine assay. CONCLUSIONS T beta 4 might be involved in stimulating human pancreatic cancer progression by promoting proinflammatory cytokine environment and activating JNK signaling pathway. Targeting T beta 4 and related molecules may be a novel therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Yuqing Zhang
- Molecular Surgeon Research Center, Elkins Pancreas Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Müller MW, Giese NA, Swiercz JM, Ceyhan GO, Esposito I, Hinz U, Büchler P, Giese T, Büchler MW, Offermanns S, Friess H. Association of axon guidance factor semaphorin 3A with poor outcome in pancreatic cancer. Int J Cancer 2007; 121:2421-33. [PMID: 17631638 DOI: 10.1002/ijc.22949] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neural alterations and aberrantly expressed nerve-specific factors promoting tumor progression are known to contribute to pancreatic cancer's extremely poor prognosis. Despite hints that axon guidance factor semaphorin 3A (SEMA3A) may function as a tumor inhibitor, its clinical importance and therapeutic potential have not yet been explored. The present study investigated the role of SEMA3A and its receptors-plexins A1-A4 (PLXNA1-A4) and neuropilin-1 (NRP1)-in pancreatic cancer. QRT-PCR and immunohistochemical analyses revealed overexpression of SEMA3A, NRP1 and PLXNA1 in metaplastic ducts, malignant cells and nerves of cancerous specimens, and showed that elevated levels of corresponding mRNA (6.8-fold, 2.0-fold and 1.5-fold, respectively) clearly correlated with negative clinicopathological manifestations such as shorter survival (SEMA3A and PLXNA1) and a lesser degree of tumor differentiation (NRP1) in Stages I-III patients. High SEMA3A expression in pancreata of Stage IV M1 patients and in peritoneal metastases, and consequent functional studies indicated that poor clinical outcome might be related to the ability of SEMA3A to promote dissemination and invasiveness of pancreatic cancer cells through activation of multiple pathways involving Rac1, GSK3b or p42/p44 MAPK, but not E- to N-cadherin switch, MMP-9 or VEGF induction. Thus, this study is the first to quantify expression of the SEMA3A system in human malignancy and to show that overexpression of SEMA3A by nerves and transformed cells leads to a SEMA3A-rich environment which may favor malignant activities of tumor cells. Furthermore, negative clinicopathological correlations suggest that SEMA3A might represent a novel intervention target but not a treatment option for pancreatic cancer patients.
Collapse
Affiliation(s)
- Michael W Müller
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc Natl Acad Sci U S A 2007; 104:18636-41. [PMID: 18003899 DOI: 10.1073/pnas.0709307104] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Zinc is an essential trace element and catalytic/structural component used by many metalloenzymes and transcription factors. Recent studies indicate a possible correlation of zinc levels with the cancer risk; however, the exact role of zinc and zinc transporters in cancer progression is unknown. We have observed that a zinc transporter, ZIP4 (SLC39A4), was substantially overexpressed in 16 of 17 (94%) clinical pancreatic adenocarcinoma specimens compared with the surrounding normal tissues, and ZIP4 mRNA expression was significantly higher in human pancreatic cancer cells than human pancreatic ductal epithelium (HPDE) cells. This indicates that aberrant ZIP4 up-regulation may contribute to the pancreatic cancer pathogenesis and progression. We studied the effects of ZIP4 overexpression in pancreatic cancer cell proliferation in vitro and pancreatic cancer progression in vivo. We found that forced expression of ZIP4 increased intracellular zinc levels, increased cell proliferation by 2-fold in vitro, and significantly increased tumor volume by 13-fold in the nude mice model with s.c. xenograft compared with the control cells. In the orthotopic nude mice model, overexpression of ZIP4 not only increased the primary tumor weight (7.2-fold), it also increased the peritoneal dissemination and ascites incidence. Moreover, increased cell proliferation and higher zinc content were also observed in the tumor tissues that overexpressed ZIP4. These data reveal an important outcome of aberrant ZIP4 expression in contributing to pancreatic cancer pathogenesis and progression. It may suggest a therapeutic strategy whereby ZIP4 is targeted to control pancreatic cancer growth.
Collapse
|
43
|
Abstract
Neuropilins (NRP) are receptors for the class 3 semaphorin (SEMA3) family of axon guidance molecules and the vascular endothelial growth factor (VEGF) family of angiogenesis factors. Although the seminal studies on SEMA3s and NRPs first showed them to be mediators of axon guidance, it has become very apparent that these proteins play an important role in vascular and tumor biology as well. Neuronal guidance and angiogenesis are regulated similarly at the molecular level. For example, SEMA3s not only repel neurons and collapse axon growth cones, but have similar effects on endothelial cells and tumor cells. Preclinical studies indicate that SEMA3F is a potent inhibitor of tumor angiogenesis and metastasis. In addition, neutralizing antibodies to NRP1 enhance the effects of anti-VEGF antibodies in suppressing tumor growth in xenograft models. This article reviews NRP and SEMA3 structural interactions and their role in developmental angiogenesis, tumor angiogenesis and metastasis based on cell culture, zebrafish and murine studies.
Collapse
Affiliation(s)
- Diane R Bielenberg
- Vascular Biology Program, Children's Hospital, Department of Surgery, Harvard Medical School, Karp Family Research Laboratories, 12.211, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
44
|
Larbouret C, Robert B, Navarro-Teulon I, Thèzenas S, Ladjemi MZ, Morisseau S, Campigna E, Bibeau F, Mach JP, Pèlegrin A, Azria D. In vivo therapeutic synergism of anti-epidermal growth factor receptor and anti-HER2 monoclonal antibodies against pancreatic carcinomas. Clin Cancer Res 2007; 13:3356-62. [PMID: 17545543 DOI: 10.1158/1078-0432.ccr-06-2302] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic carcinoma is highly resistant to therapy. Epidermal growth factor receptor (EGFR) and HER2 have been reported to be both dysregulated in this cancer. To evaluate the in vivo effect of binding both EGFR and HER2 with two therapeutic humanized monoclonal antibodies (mAb), we treated human pancreatic carcinoma xenografts, expressing high EGFR and low HER2 levels. EXPERIMENTAL DESIGN Nude mice, bearing xenografts of BxPC-3 or MiaPaCa-2 human pancreatic carcinoma cell lines, were injected twice weekly for 4 weeks with different doses of anti-EGFR (matuzumab) and anti-HER2 (trastuzumab) mAbs either alone or in combination. The effect of the two mAbs, on HER receptor phosphorylation, was also studied in vitro by Western blot analysis. RESULTS The combined mAb treatment significantly inhibited tumor progression of the BxPC-3 xenografts compared with single mAb injection (P = 0.006) or no treatment (P = 0.0004) and specifically induced some complete remissions. The two mAbs had more antitumor effect than 4-fold greater doses of each mAb. The significant synergistic effect of the two mAbs was confirmed on the MiaPaCa-2 xenograft and on another type of carcinoma, SK-OV-3 ovarian carcinoma xenografts. In vitro, the cooperative effect of the two mAbs was associated with a decrease in EGFR and HER2 receptor phosphorylation. CONCLUSIONS Anti-HER2 mAb has a synergistic therapeutic effect when combined with an anti-EGFR mAb on pancreatic carcinomas with low HER2 expression. These observations may open the way to the use of these two mAbs in a large panel of carcinomas expressing different levels of the two HER receptors.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/pharmacology
- Carcinoma/immunology
- Cell Line, Tumor
- Drug Synergism
- ErbB Receptors/chemistry
- ErbB Receptors/immunology
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Transplantation
- Pancreatic Neoplasms/immunology
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/immunology
- Trastuzumab
Collapse
Affiliation(s)
- Christel Larbouret
- Institut National de la Santé et de la Reserche Médicale, EMI 0227, Centre de Recherche en cancérologie de Montpellier, Université Montpellier I, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Martin L, Schilder R. Novel Approaches in Advancing the Treatment of Epithelial Ovarian Cancer: The Role of Angiogenesis Inhibition. J Clin Oncol 2007; 25:2894-901. [PMID: 17617520 DOI: 10.1200/jco.2007.11.1088] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite an aggressive approach of surgical cytoreduction and adjuvant combination chemotherapy, ovarian cancer mortality remains a significant problem. We are entering a new era of cancer therapeutics in which targeted therapies offer the potential for improvement in long-term disease control with fewer toxicities. The greatest success of targeted therapy to date in the setting of epithelial ovarian carcinoma has come from angiogenesis inhibition. This review will focus on the role of angiogenesis in normal ovarian function as well as in ovarian carcinoma development and disease progression. Current knowledge about the molecular pathways involved in angiogenesis and various approaches to angiogenesis inhibition in the treatment of ovarian cancer are discussed. Current data regarding the role of bevacizumab and other novel agents in the treatment of ovarian carcinoma are summarized.
Collapse
Affiliation(s)
- Lainie Martin
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
46
|
Staton CA, Kumar I, Reed MWR, Brown NJ. Neuropilins in physiological and pathological angiogenesis. J Pathol 2007; 212:237-48. [PMID: 17503412 DOI: 10.1002/path.2182] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuropilin-1 (Np1) and neuropilin-2 (Np2) are transmembrane glycoproteins with large extracellular domains that interact with both class 3 semaphorins and vascular endothelial growth factor (VEGF), and are involved in the regulation of many physiological pathways, including angiogenesis. The neuropilins also interact directly with the classical receptors for VEGF, VEGF-R1 and -R2, mediating signal transduction. The heart, glomeruli and osteoblasts express both Np1 and Np2, but there is differential expression in the adult vasculature, with Np1 expressed mainly by arterial endothelium, whereas Np2 is only expressed by venous and lymphatic endothelium. Both neuropilins are commonly over-expressed in regions of physiological (wound-healing) and pathological (tumour) angiogenesis, but the signal transduction pathways, neuropilin-mediated gene expression and the definitive role of neuropilins in angiogenic processes are not fully characterized. This review details the current evidence for the role of neuropilins in angiogenesis, and suggests future research directions that may enhance our understanding of the mechanisms of action of this unique family of proteins.
Collapse
Affiliation(s)
- C A Staton
- Microcirculation Research Group, Academic Unit of Surgical Oncology, University of Sheffield, Sheffield S10 2JF, UK
| | | | | | | |
Collapse
|
47
|
|
48
|
Abstract
Neuropilins are multifunctional non-tyrosine kinase receptors that bind to class 3 semaphorins and vascular endothelial growth factor. NRP-1 and NRP-2 were first identified for their key role in mediating axonal guidance in the developing nervous system through their interactions with class 3 semaphorins. Growing evidence supports a critical role for these receptors in tumor progression. Neuropilin expression is up-regulated in multiple tumor types, and correlates with tumor progression and prognosis in specific tumors. Neuropilins may indirectly mediate effects on tumor progression by affecting angiogenesis or directly through effects on tumor cells. This article reviews emerging evidence for the role of neuropilins in tumor biology. The therapeutic implications of these data are far-reaching and suggest that neuropilin-targeted interventions may be useful as a component of antineoplastic therapy.
Collapse
Affiliation(s)
- Lee M Ellis
- University of Texas M.D. Anderson Cancer Center, Unit 444, P.O. Box 301402, Houston, TX 77230-1402, USA.
| |
Collapse
|
49
|
Li M, Feurino LW, Li F, Wang H, Zhai Q, Fisher WE, Chen C, Yao Q. Thymosinalpha1 stimulates cell proliferation by activating ERK1/2, JNK, and increasing cytokine secretion in human pancreatic cancer cells. Cancer Lett 2006; 248:58-67. [PMID: 16828224 DOI: 10.1016/j.canlet.2006.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 05/31/2006] [Indexed: 01/23/2023]
Abstract
In this study, we investigated the expression and function of thymosinalpha1 (Thyalpha1) in human pancreatic cancer. We found that human pancreatic cancer cell lines Panc-1, Panc03.27, ASPC-1, and PL45 cells significantly over-expressed the mRNA of Thyalpha1 as compared to the normal human pancreatic ductal epithelium (HPDE) cells.. Thyalpha1 mRNA and protein levels were also over-expressed in clinical pancreatic adenocarcinoma specimens. In addition, synthetic Thyalpha1 significantly promoted Panc-1 cell proliferation and increased phosphorylation of ERK1/2 and JNK. Furthermore, Thyalpha1 increased the secretion of multiple cytokines including IL-10, IL-13, and IL-17 in Panc-1 cells. Thus, Thyalpha1 may have a new role in pancreatic cancer pathogenesis.
Collapse
Affiliation(s)
- Min Li
- Molecular Surgeon Research Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Li M, Zhai Q, Bharadwaj U, Wang H, Li F, Fisher WE, Chen C, Yao Q. Cyclophilin A is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147. Cancer 2006; 106:2284-94. [PMID: 16604531 DOI: 10.1002/cncr.21862] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Although overexpression of cyclophilin A (CypA) is associated with several types of cancer, its role in pancreatic cancer has not been studied. In this study the expression of CypA and its receptor CD147 on pancreatic cancer was determined as well as the effect of exogenous CypA on pancreatic cancer cell proliferation. METHODS The expression of CypA and CD147 in human pancreatic cancer cell lines and tissues was determined with real-time reverse transcriptase polymerase chain reaction (RT-PCR), Western blot, and immunostaining. Cell proliferation in response to CypA was performed by [3H]thymidine incorporation assay. Phosphorylation of MAPK and cytokine secretion profiles in pancreatic cancer cells were determined by using the Bio-Plex phosphoprotein assay and cytokine assay. RESULTS Pancreatic cancer cell lines expressed significantly higher levels of CypA and CD147 than normal human pancreatic ductal epithelium (HPDE) cells. Expression of CypA and CD147 was also substantially higher in human pancreatic adenocarcinoma tissues than those in normal pancreatic tissues. Addition of exogenous CypA significantly stimulated pancreatic cancer cell proliferation in a dose-dependent manner and this effect was effectively blocked by pretreatment with anti-CD147 antibody. In addition, CypA activated ERK1/2 and p38 MAPK signaling pathways and increased the secretion of 2 key cytokines IL-5 and IL-17 in Panc-1 cells. CONCLUSIONS The expression of CypA and CD147 was significantly increased in both pancreatic cancer cell lines and tissues. Exogenous CypA promotes pancreatic cancer cell growth, which may be mediated through the interaction with CD147 and the activation of ERK1/2 and p38 MAPKs.
Collapse
Affiliation(s)
- Min Li
- Molecular Surgeon Research Center, Houston, Texas, USA.
| | | | | | | | | | | | | | | |
Collapse
|