1
|
Bentley EP, Scholl D, Wright PE, Deniz AA. Coupling of binding and differential subdomain folding of the intrinsically disordered transcription factor CREB. FEBS Lett 2023; 597:917-932. [PMID: 36480418 PMCID: PMC10089947 DOI: 10.1002/1873-3468.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The cyclic AMP response element binding protein (CREB) contains a basic leucine zipper motif (bZIP) that forms a coiled coil structure upon dimerization and specific DNA binding. Although this state is well characterized, key features of CREB bZIP binding and folding are not well understood. We used single-molecule Förster resonance energy transfer (smFRET) to probe conformations of CREB bZIP subdomains. We found differential folding of the basic region and leucine zipper in response to different binding partners; a strong and previously unreported DNA-independent dimerization affinity; folding upon binding to nonspecific DNA; and evidence of long-range interdomain interactions in full-length CREB that modulate DNA binding. These studies provide new insights into DNA binding and dimerization and have implications for CREB function.
Collapse
Affiliation(s)
- Emily P. Bentley
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Daniel Scholl
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
2
|
Cui D, Cui X, Xu X, Zhang W, Yu Y, Gao Y, Mei C, Zheng W. Identification of TLN1 as a prognostic biomarker to effect cell proliferation and differentiation in acute myeloid leukemia. BMC Cancer 2022; 22:1027. [PMID: 36175877 PMCID: PMC9520853 DOI: 10.1186/s12885-022-10099-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
The protein Talin1 encoded by the TLN1 gene is a focal adhesion-related protein that binds to various cytoskeletal proteins and plays an important role in cell adhesion and movement. Recent studies have shown that it is overexpressed in prostate cancer, liver cancer, and oral squamous cell carcinoma, and is closely related to tumor progression and metastasis. This study integrated bioinformatics and functional analysis to reveal the prognosis and potential functions of TLN1 in AML. The results showed that the expression level of TLN1 was abnormally increased in AML and localized in the cell membrane and cytoplasm, and TLN1 is a significant prognostic indicator of overall survival (OS). Enrichment analysis of related genes showed that TLN1 is related to neutrophil mediated immunity, neutrophil activation and may regulate important signal pathways in hematological tumors including tyrosine kinase receptor, FLT3 and PIK3/AKT. The PPI network shows that TLN1 and MYH9 may be involved in the process of AML tumors together with PIP5K1C, ROCK1, S100A4, MY01A and WAC. Immune infiltration analysis explains that TLN1 is associated with multiple immune cells and may be an important immune marker in AML. Furthermore, molecular biology experiments confirmed that TLN1 is related to the proliferation, differentiation and cycle of AML cells. Silencing TLN1 can inhibit the proliferation of AML cells and promote differentiation through the Talin1/P-AKT/CREB signaling pathway.
Collapse
Affiliation(s)
- Di Cui
- Medical College, Fuyang Normal University, Fuyang, 236037, Anhui, China
| | - Xilong Cui
- Spinal Deformity Clinical Medichine and Research Center of Anhui Province, 501 Sanqing Road, Fuyang, 236000, Anhui, China
| | - Xiaoliang Xu
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Wenjing Zhang
- Division of Life Sciences and Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yu Yu
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Yingxin Gao
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Chuanzhong Mei
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui, China.
| | - Weiwei Zheng
- Division of Life Sciences and Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
3
|
Ahmed MB, Alghamdi AAA, Islam SU, Lee JS, Lee YS. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach. Cells 2022; 11:cells11132020. [PMID: 35805104 PMCID: PMC9266045 DOI: 10.3390/cells11132020] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of death globally. Despite extensive research and considerable advances in cancer therapy, the fundamentals of the disease remain unclear. Understanding the key signaling mechanisms that cause cancer cell malignancy may help to uncover new pharmaco-targets. Cyclic adenosine monophosphate (cAMP) regulates various biological functions, including those in malignant cells. Understanding intracellular second messenger pathways is crucial for identifying downstream proteins involved in cancer growth and development. cAMP regulates cell signaling and a variety of physiological and pathological activities. There may be an impact on gene transcription from protein kinase A (PKA) as well as its downstream effectors, such as cAMP response element-binding protein (CREB). The position of CREB downstream of numerous growth signaling pathways implies its oncogenic potential in tumor cells. Tumor growth is associated with increased CREB expression and activation. PKA can be used as both an onco-drug target and a biomarker to find, identify, and stage tumors. Exploring cAMP effectors and their downstream pathways in cancer has become easier using exchange protein directly activated by cAMP (EPAC) modulators. This signaling system may inhibit or accelerate tumor growth depending on the tumor and its environment. As cAMP and its effectors are critical for cancer development, targeting them may be a useful cancer treatment strategy. Moreover, by reviewing the material from a distinct viewpoint, this review aims to give a knowledge of the impact of the cAMP signaling pathway and the related effectors on cancer incidence and development. These innovative insights seek to encourage the development of novel treatment techniques and new approaches.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | | | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan;
| | - Joon-Seok Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | - Young-Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
- Correspondence: ; Tel.: +82-53-950-6353; Fax: +82-53-943-2762
| |
Collapse
|
4
|
Bolandi SM, Pakjoo M, Beigi P, Kiani M, Allahgholipour A, Goudarzi N, Khorashad JS, Eiring AM. A Role for the Bone Marrow Microenvironment in Drug Resistance of Acute Myeloid Leukemia. Cells 2021; 10:2833. [PMID: 34831055 PMCID: PMC8616250 DOI: 10.3390/cells10112833] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis and remarkable resistance to chemotherapeutic agents. Understanding resistance mechanisms against currently available drugs helps to recognize the therapeutic obstacles. Various mechanisms of resistance to chemotherapy or targeted inhibitors have been described for AML cells, including a role for the bone marrow niche in both the initiation and persistence of the disease, and in drug resistance of the leukemic stem cell (LSC) population. The BM niche supports LSC survival through direct and indirect interactions among the stromal cells, hematopoietic stem/progenitor cells, and leukemic cells. Additionally, the BM niche mediates changes in metabolic and signal pathway activation due to the acquisition of new mutations or selection and expansion of a minor clone. This review briefly discusses the role of the BM microenvironment and metabolic pathways in resistance to therapy, as discovered through AML clinical studies or cell line and animal models.
Collapse
Affiliation(s)
- Seyed Mohammadreza Bolandi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Peyman Beigi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Mohammad Kiani
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Ali Allahgholipour
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Negar Goudarzi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
| | - Jamshid S. Khorashad
- Centre for Haematology, Hammersmith Hospital, Imperial College London, London W12 0HS, UK;
| | - Anna M. Eiring
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| |
Collapse
|
5
|
Perez DR, Sklar LA, Chigaev A, Matlawska-Wasowska K. Drug repurposing for targeting cyclic nucleotide transporters in acute leukemias - A missed opportunity. Semin Cancer Biol 2020; 68:199-208. [PMID: 32044470 DOI: 10.1016/j.semcancer.2020.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 02/03/2020] [Indexed: 02/08/2023]
Abstract
While current treatment regimens for acute leukemia can dramatically improve patient survival, there remains room for improvement. Due to its roles in cell differentiation, cell survival, and apoptotic signaling, modulation of the cyclic AMP (cAMP) pathway has provided a meaningful target in hematological malignancies. Several studies have demonstrated that gene expression profiles associated with increased pro-survival cAMP activity or downregulation of various pro-apoptotic factors associated with the cAMP pathway are apparent in acute leukemia patients. Previous work to increase leukemia cell intracellular cAMP focused on the use of cAMP analogs, stimulating cAMP production via transmembrane-associated adenylyl cyclases, or decreasing cAMP degradation by inhibiting phosphodiesterase activity. However, targeting cyclic nucleotide efflux by ATP-binding cassette (ABC) transporters represents an unexplored approach for modulation of intracellular cyclic nucleotide levels. Preliminary studies have shown that inhibition of cAMP efflux can stimulate leukemia cell differentiation, cell growth arrest, and apoptosis, indicating that targeting cAMP efflux may show promise for future therapeutic development. Furthermore, inhibition of cyclic nucleotide transporter activity may also contribute multiple anticancer benefits by reducing extracellular pro-survival signaling in malignant cells. Hence, several opportunities for drug repurposing may exist for targeting cyclic nucleotide transporters.
Collapse
Affiliation(s)
- Dominique R Perez
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Larry A Sklar
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Alexandre Chigaev
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| | - Ksenia Matlawska-Wasowska
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA; Department of Pediatrics, Division of Hematology-Oncology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
6
|
Xie W, Tang G, Wang E, Kim Y, Cloe A, Shen Q, Zhou Y, Garcia-Manero G, Loghavi S, Hu AY, Wang S, Bueso-Ramos CE, Kantarjian HM, Medeiros LJ, Hu S. t(11;16)(q23;p13)/KMT2A-CREBBP in hematologic malignancies: presumptive evidence of myelodysplasia or therapy-related neoplasm? Ann Hematol 2020; 99:487-500. [PMID: 32006151 DOI: 10.1007/s00277-020-03909-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/13/2020] [Indexed: 11/30/2022]
Abstract
Fusion partners of KMT2A affect disease phenotype and influence the current World Health Organization classification of hematologic neoplasms. The t(11;16)(q23;p13)/KMT2A-CREBBP is considered presumptive evidence of a myelodysplastic syndrome (MDS) and a MDS-related cytogenetic abnormality in the classification of acute myeloid leukemia (AML). Here, we report 18 cases of hematologic neoplasms with t(11;16). There were 8 males and 10 females with a median age of 51.9 years at time of detection of t(11;16). Of 17 patients with enough clinical information and pathological materials for review, 16 had a history of cytotoxic therapies for various malignancies including 12/15 patients who received topoisomerase II inhibitors, and 15 were classified as having therapy-related neoplasms. The median interval from the diagnosis of primary malignancy to the detection of t(11;16) was 23.2 months. Dysplasia, usually mild, was observed in 7/17 patients. Blasts demonstrated monocytic differentiation in 8/8 patients who developed AML at the time or following detection of t(11;16). t(11;16) was observed as the sole chromosomal abnormality in 10/18 patients. KMT2A rearrangement was confirmed in 11/11 patients. The median survival from the detection of t(11;16) was 15.4 months. In summary, t(11;16)(q23;p13) is rare and overwhelmingly associated with prior exposure of cytotoxic therapy. Instead of being considered presumptive evidence of myelodysplasia, we suggest that the detection of t(11;16) should automatically prompt a search for a history of malignancy and cytotoxic therapy so that proper risk stratification and clinical management are made accordingly. The dismal outcome of patients with t(11;16) is in keeping with that of therapy-related neoplasms.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- CREB-Binding Protein/genetics
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 16/genetics
- Databases, Factual
- Female
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/mortality
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Male
- Middle Aged
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/mortality
- Myeloid-Lymphoid Leukemia Protein/genetics
- Neoplasms, Second Primary/drug therapy
- Neoplasms, Second Primary/genetics
- Neoplasms, Second Primary/mortality
- Oncogene Proteins, Fusion/genetics
- Risk Assessment
- Topoisomerase II Inhibitors/administration & dosage
- Translocation, Genetic
Collapse
Affiliation(s)
- Wei Xie
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Guiling Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Endi Wang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Young Kim
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Adam Cloe
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Qi Shen
- Department of Pathology, Florida Hospital, Orlando, FL, USA
| | - Yi Zhou
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | | | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Aileen Y Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Sa Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA
| | - Shimin Hu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 0072, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Sun H, Xi P, Sun Z, Wang Q, Zhu B, Zhou J, Jin H, Zheng W, Tang W, Cao H, Cao X. Circ-SFMBT2 promotes the proliferation of gastric cancer cells through sponging miR-182-5p to enhance CREB1 expression. Cancer Manag Res 2018; 10:5725-5734. [PMID: 30510446 PMCID: PMC6248399 DOI: 10.2147/cmar.s172592] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Circular RNAs(circRNAs) have been reported as a diverse class of endogenous RNA that regulate gene expression in eukaryotes. Recent evidence suggested that many circular RNAs can act as oncogenes or tumor suppressors through sponging microRNAs. However, the function of circular RNAs in gastric cancer remains largely unknown. Materials and methods The circRNA levels in gastric carcinoma tissues and plasmas were detected by real-time quantitative reverse transcription-polymerase chain reaction. The correlation between the expression of circRNA and clinic pathological features was analyzed. Rate of inhibiting of proliferation was measured using a CCK-8 cell proliferation assay. Clone formation ability was assessed with a clone formation inhibition test. We used the bioinformatics software to predict circRNA-miRNA and miRNA-mRNA interactions. Relative gene expression was assessed using quantitative real-time polymerase chain reaction and relative protein expression levels were determined with western blotting. CircRNA and miRNA interaction was confirmed by dual-luciferase reporter assays. Results We characterized that one circRNA named circ-SFMBT2 showed an increased expression level in gastric cancer tissues compared to adjacent non-cancerous tissues and was associated with higher tumor stages of gastric cancer. Silencing of circ-SFMBT2 inhibited the proliferation of gastric cancer cells significantly. Importantly, we demonstrated that circ-SFMBT2 could act as a sponge of miR-182-5p to regulate the expression of CREB1 mRNA, named as cAMP response element binding protein 1, and further promote the proliferation of gastric cancer cells. Conclusion Our study reveals that circ-SFMBT2 participates in progression of gastric cancer by competitively sharing miR-182-5p with CREB1, providing a novel target to improve the treatment of gastric cancer. mutation-analysis-of-beta-thalassemia-in-east-western-indian-populatio-peer-reviewed-article-TACG for an example.
Collapse
Affiliation(s)
- Handong Sun
- Department of Oncology Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,
| | - Pengcheng Xi
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,
| | - Zhiqiang Sun
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Stem Cells and Regenerative Medicine, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Qian Wang
- Department of Oncology Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,
| | - Bin Zhu
- Department of Oncology Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,
| | - Jian Zhou
- Department of Oncology Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,
| | - Hui Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, China
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,
| | - Xiufeng Cao
- Department of Oncology Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, .,Department of Thoracic Surgery, Taikang Xianlin Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China,
| |
Collapse
|
8
|
Berto M, Jean V, Zwart W, Picard D. ERα activity depends on interaction and target site corecruitment with phosphorylated CREB1. Life Sci Alliance 2018; 1:e201800055. [PMID: 30456355 PMCID: PMC6238530 DOI: 10.26508/lsa.201800055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
The two transcription factors estrogen receptor α (ERα) and cyclic adenosine monophosphate (cAMP)-responsive element binding protein 1 (CREB1) mediate different signals, bind different response elements, and control different transcriptional programs. And yet, results obtained with transfected reporter genes suggested that their activities may intersect. We demonstrate here that CREB1 stimulates and is necessary for ERα activity on a transfected reporter gene and several endogenous targets both in response to its cognate ligand estrogen and to ligand-independent activation by cAMP. The stimulatory activity of CREB1 requires its DNA binding and activation by phosphorylation, and affects the chromatin recruitment of ERα. CREB1 and ERα are biochemically associated and share hundreds to thousands of chromatin binding sites upon stimulation by estrogen and cAMP, respectively. These shared regulatory activities may underlie the anti-apoptotic effects of estrogen and cAMP signaling in ERα-positive breast cancer cells. Moreover, high levels of CREB1 are associated with good prognosis in ERα-positive breast cancer patients, which may be because of its ability to promote ERα functions, thereby maintaining it as a successful therapeutic target.
Collapse
Affiliation(s)
- Melissa Berto
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Genève, Switzerland
| | - Valerie Jean
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Genève, Switzerland
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Didier Picard
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Genève, Switzerland
| |
Collapse
|
9
|
Khosravi A, Alizadeh S, Jalili A, Shirzad R, Saki N. The impact of Mir-9 regulation in normal and malignant hematopoiesis. Oncol Rev 2018; 12:348. [PMID: 29774136 PMCID: PMC5939831 DOI: 10.4081/oncol.2018.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-9 (MiR-9) dysregulation has been observed in various cancers. Recently, MiR-9 is considered to have a part in hematopoiesis and hematologic malignancies. However, its importance in blood neoplasms is not yet well defined. Thus, this study was conducted in order to assess the significance of MiR-9 role in the development of hematologic neoplasia, prognosis, and treatment approaches. We have shown that a large number of MiR-9 targets (such as FOXOs, SIRT1, CCND1, ID2, CCNG1, Ets, and NFkB) play essential roles in leukemogenesis and that it is overexpressed in different leukemias. Our findings indicated MiR-9 downregulation in a majority of leukemias. However, its overexpression was reported in patients with dysregulated MiR-9 controlling factors (such as MLLr). Additionally, prognostic value of MiR-9 has been reported in some types of leukemia. This study generally emphasizes on the critical role of MiR-9 in hematologic malignancies as a prognostic factor and a therapeutic target.
Collapse
Affiliation(s)
- Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medi-cine, Tehran
| | - Shaban Alizadeh
- Hematology Department, Allied Medical School, Tehran University of Medical Sciences, Tehran
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology at Cell Science Re-search Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran
| | - Reza Shirzad
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jun-dishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Steven A, Leisz S, Sychra K, Hiebl B, Wickenhauser C, Mougiakakos D, Kiessling R, Denkert C, Seliger B. Hypoxia-mediated alterations and their role in the HER-2/neuregulated CREB status and localization. Oncotarget 2018; 7:52061-52084. [PMID: 27409833 PMCID: PMC5239535 DOI: 10.18632/oncotarget.10474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/17/2016] [Indexed: 01/16/2023] Open
Abstract
The cAMP-responsive element-binding protein (CREB) is involved in the tumorigenicity of HER-2/neu-overexpressing murine and human tumor cells, but a link between the HER-2/neu-mediated CREB activation, its posttranslational modification and localization and changes in the cellular metabolism, due to an altered (tumor) microenvironment remains to be established. The present study demonstrated that shRNA-mediated silencing of CREB in HER-2/neu-transformed cells resulted in decreased tumor formation, which was associated with reduced angiogenesis, but increased necrotic and hypoxic areas in the tumor. Hypoxia induced pCREBSer133, but not pCREBSer121 expression in HER-2/neu-transformed cells. This was accompanied by upregulation of the hypoxia-inducible genes GLUT1 and VEGF, increased cell migration and matrix metalloproteinase-mediated invasion. Treatment of HER-2/neu+ cells with signal transduction inhibitors targeting in particular HER-2/neu was able to revert hypoxia-controlled CREB activation. In addition to changes in the phosphorylation, hypoxic response of HER-2/neu+ cells caused a transient ubiquitination and SUMOylation as well as a co-localization of nuclear CREB to the mitochondrial matrix. A mitochondrial localization of CREB was also demonstrated in hypoxic areas of HER-2/neu+ mammary carcinoma lesions. This was accompanied by an altered gene expression pattern, activity and metabolism of mitochondria leading to an increased respiratory rate, oxidative phosphorylation and mitochondrial membrane potential and consequently to an enhanced apoptosis and reduced cell viability. These data suggest that the HER-2/neu-mediated CREB activation caused by a hypoxic tumor microenvironment contributes to the neoplastic phenotype of HER-2/neu+ cells at various levels.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sandra Leisz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Bernhard Hiebl
- Centre for Basic Medical Research, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
11
|
Steven A, Seliger B. Control of CREB expression in tumors: from molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget 2018; 7:35454-65. [PMID: 26934558 PMCID: PMC5085243 DOI: 10.18632/oncotarget.7721] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
The cyclic AMP response element binding (CREB) protein has pleiotropic activities in physiologic processes. Due to its central position downstream of many growth signaling pathways CREB has the ability to influence cell survival, growth and differentiation of normal, but also of tumor cells suggesting an oncogenic potential of CREB. Indeed, increased CREB expression and activation is associated with tumor progression, chemotherapy resistance and reduced patients' survival. We summarize here the different cellular functions of CREB in tumors of distinct histology as well as its use as potential prognostic marker. In addition, the underlying molecular mechanisms to achieve constitutive activation of CREB including structural alterations, such as gene amplification and chromosomal translocation, and deregulation, which could occur at the transcriptional, post-transcriptional and post-translational level, will be described. Since downregulation of CREB by different strategies resulted in inhibition of cell proliferation, invasion and induction of apoptosis, the role of CREB as a promising target for cancer therapy will be also discussed.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
12
|
Mitton B, Hsu K, Dutta R, Tiu BC, Cox N, McLure KG, Chae HD, Smith M, Eklund EA, Solow-Cordero DE, Sakamoto KM. Small molecule screen for inhibitors of expression from canonical CREB response element-containing promoters. Oncotarget 2017; 7:8653-62. [PMID: 26840025 PMCID: PMC4890994 DOI: 10.18632/oncotarget.7085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/13/2016] [Indexed: 12/31/2022] Open
Abstract
The transcription factor CREB (cAMP Response Element Binding Protein) is an important determinant in the growth of Acute Myeloid Leukemia (AML) cells. CREB overexpression increases AML cell growth by driving the expression of key regulators of apoptosis and the cell cycle. Conversely, CREB knockdown inhibits proliferation and survival of AML cells but not normal hematopoietic cells. Thus, CREB represents a promising drug target for the treatment of AML, which carries a poor prognosis. In this study, we performed a high-throughput small molecule screen to identify compounds that disrupt CREB function in AML cells. We screened ∼114,000 candidate compounds from Stanford University's small molecule library, and identified 5 molecules that inhibit CREB function at micromolar concentrations, but are non-toxic to normal hematopoietic cells. This study suggests that targeting CREB function using small molecules could provide alternative approaches to treat AML.
Collapse
Affiliation(s)
- Bryan Mitton
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Katie Hsu
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ritika Dutta
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Bruce C Tiu
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Nick Cox
- Medicinal Chemistry Knowledge Center, Stanford ChEM-H, Stanford, CA, USA
| | - Kevin G McLure
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Hee-Don Chae
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Mark Smith
- Medicinal Chemistry Knowledge Center, Stanford ChEM-H, Stanford, CA, USA
| | - Elizabeth A Eklund
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David E Solow-Cordero
- High-Throughput Bioscience Center, Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
13
|
Small molecule inhibition of cAMP response element binding protein in human acute myeloid leukemia cells. Leukemia 2016; 30:2302-2311. [PMID: 27211267 PMCID: PMC5143163 DOI: 10.1038/leu.2016.139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/24/2016] [Accepted: 05/04/2016] [Indexed: 12/16/2022]
Abstract
The transcription factor CREB (cAMP Response-Element Binding Protein) is overexpressed in the majority of acute myeloid leukemia (AML) patients, and this is associated with a worse prognosis. Previous work revealed that CREB overexpression augmented AML cell growth, while CREB knockdown disrupted key AML cell functions in vitro. In contrast, CREB knockdown had no effect on long-term hematopoietic stem cell activity in mouse transduction/transplantation assays. Together, these studies position CREB as a promising drug target for AML. To test this concept, a small molecule inhibitor of CREB, XX-650-23, was developed. This molecule blocks a critical interaction between CREB and its required co-activator CBP (CREB Binding Protein), leading to disruption of CREB-driven gene expression. Inhibition of CBP-CREB interaction induced apoptosis and cell-cycle arrest in AML cells, and prolonged survival in vivo in mice injected with human AML cells. XX-650-23 had little toxicity on normal human hematopoietic cells and tissues in mice. To understand the mechanism of XX-650-23, we performed RNA-seq, ChIP-seq and Cytometry Time of Flight with human AML cells. Our results demonstrate that small molecule inhibition of CBP-CREB interaction mostly affects apoptotic, cell-cycle and survival pathways, which may represent a novel approach for AML therapy.
Collapse
|
14
|
van der Sligte NE, Kampen KR, ter Elst A, Scherpen FJG, Meeuwsen-de Boer TGJ, Guryev V, van Leeuwen FN, Kornblau SM, de Bont ESJM. Essential role for cyclic-AMP responsive element binding protein 1 (CREB) in the survival of acute lymphoblastic leukemia. Oncotarget 2016; 6:14970-81. [PMID: 26008971 PMCID: PMC4558129 DOI: 10.18632/oncotarget.3911] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/24/2015] [Indexed: 01/27/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) relapse remains a leading cause of cancer related death in children, therefore, new therapeutic options are needed. Recently, we showed that a peptide derived from Cyclic-AMP Responsive Element Binding Protein (CREB) was highly phosphorylated in pediatric leukemias. In this study, we determined CREB phosphorylation and mRNA levels showing that CREB expression was significantly higher in ALL compared to normal bone marrow (phosphorylation: P < 0.0001, mRNA: P = 0.004). High CREB and phospho-CREB expression was correlated with a lower median overall survival in a cohort of 140 adult ALL patients. ShRNA mediated knockdown of CREB in ALL cell lines blocked leukemic cell growth by inducing cell cycle arrest and apoptosis. Gene expression array analysis showed downregulation of CREB target genes regulating cell proliferation and glucose metabolism and upregulation of apoptosis inducing genes. Similar to CREB knockdown, the CREB inhibitor KG-501 decreased leukemic cell viability and induced apoptosis in ALL cell lines, as well as primary T-ALL samples, with cases showing high phospho-CREB levels being more sensitive than those with lower phospho-CREB levels. Together, these in vitro findings support an important role for CREB in the survival of ALL cells and identify this transcription factor as a potential target for treatment.
Collapse
Affiliation(s)
- Naomi E van der Sligte
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kim R Kampen
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arja ter Elst
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Frank J G Scherpen
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tiny G J Meeuwsen-de Boer
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Victor Guryev
- European Research Institute for The Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Eveline S J M de Bont
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Chae HD, Mitton B, Lacayo NJ, Sakamoto KM. Replication factor C3 is a CREB target gene that regulates cell cycle progression through the modulation of chromatin loading of PCNA. Leukemia 2015; 29:1379-89. [PMID: 25541153 PMCID: PMC4456282 DOI: 10.1038/leu.2014.350] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/04/2014] [Accepted: 11/11/2014] [Indexed: 11/09/2022]
Abstract
CREB (cyclic AMP response element-binding protein) is a transcription factor overexpressed in normal and neoplastic myelopoiesis and regulates cell cycle progression, although its oncogenic mechanism has not been well characterized. Replication factor C3 (RFC3) is required for chromatin loading of proliferating cell nuclear antigen (PCNA) which is a sliding clamp platform for recruiting numerous proteins in the DNA metabolism. CREB1 expression, which was activated by E2F, was coupled with RFC3 expression during the G1/S progression in the KG-1 acute myeloid leukemia (AML) cell line. There was also a direct correlation between the expression of RFC3 and CREB1 in human AML cell lines as well as in the AML cells from the patients. CREB interacted directly with the CRE site in RFC3 promoter region. CREB-knockdown inhibited primarily G1/S cell cycle transition by decreasing the expression of RFC3 as well as PCNA loading onto the chromatin. Exogenous expression of RFC3 was sufficient to rescue the impaired G1/S progression and PCNA chromatin loading caused by CREB knockdown. These studies suggest that RFC3 may have a role in neoplastic myelopoiesis by promoting the G1/S progression and its expression is regulated by CREB.
Collapse
MESH Headings
- Blotting, Western
- Cell Cycle/physiology
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Chromatin/genetics
- Chromatin Immunoprecipitation
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- Flow Cytometry
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Proliferating Cell Nuclear Antigen/genetics
- Proliferating Cell Nuclear Antigen/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Replication Protein C/genetics
- Replication Protein C/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Hee-Don Chae
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Bryan Mitton
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Norman J. Lacayo
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Kathleen M. Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
16
|
Sakamoto KM, Grant S, Saleiro D, Crispino JD, Hijiya N, Giles F, Platanias L, Eklund EA. Targeting novel signaling pathways for resistant acute myeloid leukemia. Mol Genet Metab 2015; 114:397-402. [PMID: 25533111 PMCID: PMC4355162 DOI: 10.1016/j.ymgme.2014.11.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 11/28/2014] [Accepted: 11/28/2014] [Indexed: 01/23/2023]
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy that is the most common type of acute leukemia diagnosed in adults and the second most common type in children. The overall survival is poor and treatment is associated with significant complications and even death. In addition, a significant number of patients will not respond to therapy or relapse. In this review, several new signaling proteins aberrantly regulated in AML are described, including CREB, Triad1, Bcl-2 family members, Stat3, and mTOR/MEK. Identifying more effective and less toxic agents will provide novel approaches to treat AML.
Collapse
Affiliation(s)
- Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven Grant
- Division of Hematology/Oncology and Palliative Care, Department of Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School of Medicine, Chicago, IL, USA
| | - John D Crispino
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School of Medicine, Chicago, IL, USA
| | - Nobuko Hijiya
- Division of Hematology/Oncology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francis Giles
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School of Medicine, Chicago, IL, USA
| | - Leonidas Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School of Medicine, Chicago, IL, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Elizabeth A Eklund
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Northwestern University Medical School of Medicine, Chicago, IL, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
17
|
Gee CT, Koleski EJ, Pomerantz WCK. Fragment screening and druggability assessment for the CBP/p300 KIX domain through protein-observed 19F NMR spectroscopy. Angew Chem Int Ed Engl 2015; 54:3735-9. [PMID: 25651535 DOI: 10.1002/anie.201411658] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 11/08/2022]
Abstract
(19)F NMR spectroscopy of labeled proteins is a sensitive method for characterizing structure, conformational dynamics, higher-order assembly, and ligand binding. Fluorination of aromatic side chains has been suggested as a labeling strategy for small-molecule ligand discovery for protein-protein interaction interfaces. Using a model transcription factor binding domain of the CREB binding protein (CBP)/p300, KIX, we report the first full small-molecule screen using protein-observed (19)F NMR spectroscopy. Screening of 508 compounds and validation by (1)H-(15)N HSQC NMR spectroscopy led to the identification of a minimal pharmacaphore for the MLL-KIX interaction site. Hit rate analysis for the CREB-KIX and MLL-KIX sites provided a metric to assess the ligandability or "druggability" of each interface informing future medicinal chemistry efforts. The structural information from the simplified spectra and data collection speed, affords a new screening tool for analysis of protein interfaces and discovery of small molecules.
Collapse
Affiliation(s)
- Clifford T Gee
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Twin Cities (USA)
| | | | | |
Collapse
|
18
|
Gee CT, Koleski EJ, Pomerantz WCK. Fragment Screening and Druggability Assessment for the CBP/p300 KIX Domain through Protein-Observed19F NMR Spectroscopy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Guan H, Liang W, Liu J, Wei G, Li H, Xiu L, Xiao H, Li Y. Transmembrane protease serine 4 promotes thyroid cancer proliferation via CREB phosphorylation. Thyroid 2015; 25:85-94. [PMID: 25244400 PMCID: PMC4290798 DOI: 10.1089/thy.2014.0155] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Transmembrane protease serine 4 (TMPRSS4), one of the type II transmembrane serine proteases (TTSPs), is elevated in various cancers and is associated with multiple malignant phenotypes. However, the expression pattern and biologic significance of TMPRSS4 in thyroid cancer are largely unknown. In this study, we investigated the expression of TMPRSS4 in thyroid cancer and assessed the pro-proliferative role of TMPRSS4 in thyroid cancer. METHODS Immunohistochemistry and real-time reverse transcription-polymerase chain reaction (RT-PCR) assays were performed to assess the expression of TMPRSS4 in thyroid cancer. We evaluated in vitro cell proliferation using MTT, colony formation, anchorage-independent growth, flow cytometry analysis, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays. Western blot, real-time RT-PCR, and luciferase assays were conducted to reveal the underlying mechanisms. RESULTS TMPRSS4 is overexpressed in thyroid cancer and is associated with the grade of malignancy. Depletion of TMPRSS4 in thyroid cancer cells significantly suppressed proliferation. Moreover, the proliferation of thyroid cancer cells with TMPRSS4 overexpression was significantly enhanced. We also show that cyclic adenosine monophosphate response element-binding protein (CREB)-cyclin D1 signaling mediates, at least partially, the role of TMPRSS4 in thyroid cancer cell proliferation. CONCLUSIONS TMPRSS4 is overexpressed in thyroid cancer and TMPRSS4-CREB signaling is needed to sustain thyroid cancer cell proliferation.
Collapse
Affiliation(s)
- Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hu F, Meng Y, Gou L, Zhang X. Analysis of promoters and CREB/AP-1 binding sites of the human TMEM174 gene. Exp Ther Med 2013; 6:1290-1294. [PMID: 24223660 PMCID: PMC3820833 DOI: 10.3892/etm.2013.1275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 08/01/2013] [Indexed: 11/16/2022] Open
Abstract
Transmembrane protein 174 (TMEM174) is a type III transmembrane protein with no clear signal peptide. The N and C terminals are located inside the cell. Our previous study demonstrated high expression of TMEM174 in the kidney and its potential involvement in renal cancer based on its capacity to stimulate cell proliferation. However, the mechanism by which TMEM174 promotes proliferation at the transcriptional level remains to be elucidated. In the present study, the TMEM174 promoter region was amplified from whole blood DNA. Six different regions of the regulatory sequences of the TMEM174 promoter region including ~2.5 kb of the upstream region were cloned into the dual luciferase expression vector pGL3-basic. Comparison of the activity of these fragments in dual luciferase reporter assays revealed higher levels of activity for the fragments spanning −186 to +674, −700 to +674, −1,000 to +674 and −2,500 to +1 bp. Lower levels of activity were detected for the fragments spanning −466 to +674 and −890 to +674 bp. The highest activity was detected for the fragment spanning −186 to +674 bp. Electrophoretic mobility shift assay (EMSA) was performed to determine effective transcription factor binding sites. Specific binding of the cyclic-AMP response element binding (CREB) within the TMEM174 gene promoter region was demonstrated, although binding of the activator protein-1 (AP-1) was also detected in this region. In conclusion, these results suggest that the core promoter region of the human TMEM174 gene is located within the region spanning −186 to +674 bp and that the transcription factors CREB and AP-1 are involved in the transcriptional regulation of this gene.
Collapse
Affiliation(s)
- Fen Hu
- College of Life Sciences, Hebei United University, Tangshan, Hebei 063000
| | | | | | | |
Collapse
|
21
|
Steven A, Leisz S, Massa C, Iezzi M, Lattanzio R, Lamolinara A, Bukur J, Müller A, Hiebl B, Holzhausen HJ, Seliger B. HER-2/neu mediates oncogenic transformation via altered CREB expression and function. Mol Cancer Res 2013; 11:1462-77. [PMID: 24025972 DOI: 10.1158/1541-7786.mcr-13-0125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The cyclic (c)AMP responsive element binding protein (CREB) plays a key role in many cellular processes, including differentiation, proliferation, and signal transduction. Furthermore, CREB overexpression was found in tumors of distinct origin and evidence suggests an association with tumorigenicity. To establish a mechanistic link between HER-2/neu-mediated transformation and CREB protein expression and function, in vitro models of HER-2/neu-overexpressing and HER-2/neu-negative/silenced counterparts as well as human mammary carcinoma lesions with defined HER-2/neu status were used. HER-2/neu overexpression resulted in the induction and activation of CREB protein in vitro and in vivo, whereas short hairpin RNA (shRNA)-mediated inhibition of HER-2/neu correlated with downregulated CREB activity. CREB activation in HER-2/neu-transformed cells enhanced distinct signal transduction pathways, whereas their inhibition negatively interfered with CREB expression and/or activation. CREB downregulation in HER-2/neu-transformed cells by shRNA and by the inhibitors KG-501 and lapatinib caused morphologic changes, reduced cell proliferation with G0-G1 cell-cycle arrest, which was rescued by CREB expression. This was accompanied by reduced cell migration, wound healing, an increased fibronectin adherence, invasion, and matrix metalloproteinase expression. In vivo shCREB-HER-2/neu(+) cells, but not control cells, exerted a significantly decreased tumorgenicity that was associated with decreased proliferative capacity, enhanced apoptosis, and increased frequency of T lymphocytes in peripheral blood mononuclear cells. Thus, CREB plays an important role in the HER-2/neu-mediated transformation by altering in vitro and in vivo growth characteristics. IMPLICATIONS These data suggest that CREB affects tumor immunogenicity and is a potential target for cancer therapy.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ishimoto T, Mano H, Ozawa T, Mori H. Measuring CREB activation using bioluminescent probes that detect KID-KIX interaction in living cells. Bioconjug Chem 2012; 23:923-32. [PMID: 22506514 DOI: 10.1021/bc200491j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cyclic adenosine monophosphate response element-binding protein (CREB) is a transcription factor that contributes to memory formation. The transcriptional activity of CREB is induced by its phosphorylation at Ser-133 and subsequent interaction with the CREB-binding protein (CBP)/p300. We designed and optimized firefly split luciferase probe proteins that detect the interaction of the kinase-inducible domain (KID) of CREB and the KIX domain of CBP/p300. The increase in the light intensity of the probe proteins results from the phosphorylation of the responsible serine corresponding to Ser-133 of CREB. Because these proteins have a high signal-to-noise ratio and are nontoxic, it has become possible for the first time to carry out long-term measurement of KID-KIX interaction in living cells. Furthermore, we examined the usefulness of the probe proteins for future high-throughput cell-based drug screening and found several herbal extracts that activated CREB.
Collapse
Affiliation(s)
- Tetsuya Ishimoto
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama, Japan
| | | | | | | |
Collapse
|
23
|
Kong WQ, Bai R, Liu T, Cai CL, Liu M, Li X, Tang H. MicroRNA-182 targets cAMP-responsive element-binding protein 1 and suppresses cell growth in human gastric adenocarcinoma. FEBS J 2012; 279:1252-60. [PMID: 22325466 DOI: 10.1111/j.1742-4658.2012.08519.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) constitute a class of noncoding RNAs that post-transcriptionally regulate gene expression. Recent evidence indicates that many miRNAs function as oncogenes or tumor suppressors by negatively regulating their target genes. In our previous study, using miRNA microarray analysis, we found that miRNA-182 (miR-182) was significantly downregulated in human gastric adenocarcinoma tissue samples. Here, we confirmed the downregulation of miR-182 in a larger sample of gastric tissue samples. Overexpression of miR-182 suppressed the proliferation and colony formation of gastric cancer cells. An oncogene, encoding cAMP-responsive element binding protein 1 (CREB1), serves as a direct target gene of miR-182. A fluorescent reporter assay confirmed that miR-182 binds specifically to the predicted site of the CREB1 mRNA 3'-UTR. When miR-182 was overexpressed in gastric cancer cell lines, both the mRNA and protein levels of CREB1 were depressed. Furthermore, CREB1 was present at a high level in human gastric adenocarcinoma tissues, and this was inversely correlated with miR-182 expression. Ectopic expression of CREB1 overcame the suppressive phenotypes of gastric cancer cells caused by miR-182. These results indicate that miR-182 targets the CREB1 gene and suppresses gastric adenocarcinoma cell growth, suggesting that miR-182 shows tumor-suppressive activity in human gastric cancer.
Collapse
Affiliation(s)
- Wei-Qing Kong
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Saggioro D. Anti-apoptotic effect of Tax: an NF-κB path or a CREB way? Viruses 2011; 3:1001-14. [PMID: 21994767 PMCID: PMC3185786 DOI: 10.3390/v3071001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/09/2011] [Accepted: 06/11/2011] [Indexed: 12/19/2022] Open
Abstract
The NF-κB pathway is intimately linked to the survival of mammalian cells, and its activation by Tax has consequently been considered important for human T-cell leukemia/lymphoma virus type 1 (HTLV-1)-infected cell resistance to death. Very little emphasis has been given to other mechanisms, although Tax regulates the expression and activity of several cellular genes. The finding that CREB protein is activated in HTLV-1 infected cells underlines the possibility that other mechanisms of survival may be implicated in HTLV-1 infection. Indeed, CREB activation or overexpression plays a role in normal hematopoiesis, as well as in leukemia development, and CREB is considered as a survival factor in various cell systems. A better understanding of the different molecular mechanisms used by Tax to counteract cell death will also help in the development of new therapeutic strategies for HTLV-1 associated diseases.
Collapse
Affiliation(s)
- Daniela Saggioro
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy.
| |
Collapse
|
25
|
Cook PR, Polakowski N, Lemasson I. HTLV-1 HBZ protein deregulates interactions between cellular factors and the KIX domain of p300/CBP. J Mol Biol 2011; 409:384-98. [PMID: 21497608 DOI: 10.1016/j.jmb.2011.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 04/01/2011] [Accepted: 04/01/2011] [Indexed: 12/11/2022]
Abstract
The complex retrovirus human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia. Deregulation of cellular transcription is thought to be an important step for T-cell transformation caused by viral infection. HTLV-1 basic leucine zipper factor (HBZ) is one of the viral proteins believed to be involved in this process, as it deregulates the expression of numerous cellular genes. In the context of the provirus, HBZ represses HTLV-1 transcription, in part, by binding to the homologous cellular coactivators p300 and CBP. These coactivators play a central role in transcriptional regulation. In this study, we determined that HBZ binds with high affinity to the KIX domain of p300/CBP. This domain contains two binding surfaces that are differentially targeted by multiple cellular factors. We show that two φXXφφ motifs in the activation domain of HBZ mediate binding to a single surface of the KIX domain, the mixed-lineage leukemia (MLL) binding surface. Formation of this interaction inhibits binding of MLL to the KIX domain while enhancing the binding of the transcription factor c-Myb to the opposite surface of KIX. Consequently, HBZ inhibits transcriptional activation mediated by MLL and enhances activation mediated by c-Myb. CREB, which binds the same surface of KIX as c-Myb, also exhibited an increase in activity through HBZ. These results indicate that HBZ is able to alter gene expression by competing with transcription factors for the occupancy of one surface of KIX while enhancing the binding of factors to the other surface.
Collapse
Affiliation(s)
- Pamela R Cook
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 278374, USA
| | | | | |
Collapse
|
26
|
Chiong M, Parra V, Eisner V, Ibarra C, Maldonado C, Criollo A, Bravo R, Quiroga C, Contreras A, Vicencio JM, Cea P, Bucarey JL, Molgó J, Jaimovich E, Hidalgo C, Kroemer G, Lavandero S. Parallel activation of Ca(2+)-induced survival and death pathways in cardiomyocytes by sorbitol-induced hyperosmotic stress. Apoptosis 2010; 15:887-903. [PMID: 20454859 DOI: 10.1007/s10495-010-0505-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hyperosmotic stress promotes rapid and pronounced apoptosis in cultured cardiomyocytes. Here, we investigated if Ca(2+) signals contribute to this response. Exposure of cardiomyocytes to sorbitol [600 mosmol (kg water)(-1)] elicited large and oscillatory intracellular Ca(2+) concentration increases. These Ca(2+) signals were inhibited by nifedipine, Cd(2+), U73122, xestospongin C and ryanodine, suggesting contributions from both Ca(2+) influx through voltage dependent L-type Ca(2+) channels plus Ca(2+) release from intracellular stores mediated by IP(3) receptors and ryanodine receptors. Hyperosmotic stress also increased mitochondrial Ca(2+) levels, promoted mitochondrial depolarization, reduced intracellular ATP content, and activated the transcriptional factor cyclic AMP responsive element binding protein (CREB), determined by increased CREB phosphorylation and electrophoretic mobility shift assays. Incubation with 1 mM EGTA to decrease extracellular [Ca(2+)] prevented cardiomyocyte apoptosis induced by hyperosmotic stress, while overexpression of an adenoviral dominant negative form of CREB abolished the cardioprotection provided by 1 mM EGTA. These results suggest that hyperosmotic stress induced by sorbitol, by increasing Ca(2+) influx and raising intracellular Ca(2+) concentration, activates Ca(2+) release from stores and causes cell death through mitochondrial function collapse. In addition, the present results suggest that the Ca(2+) increase induced by hyperosmotic stress promotes cell survival by recruiting CREB-mediated signaling. Thus, the fate of cardiomyocytes under hyperosmotic stress will depend on the balance between Ca(2+)-induced survival and death pathways.
Collapse
Affiliation(s)
- M Chiong
- Centro FONDAP Estudios Moleculares de la Célula, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kalle AM, Sachchidanand S, Pallu R. Bcr-Abl-independent mechanism of resistance to imatinib in K562 cells: Induction of cyclooxygenase-2 (COX-2) by histone deacetylases (HDACs). Leuk Res 2010; 34:1132-8. [PMID: 20206383 DOI: 10.1016/j.leukres.2010.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 01/25/2010] [Accepted: 01/26/2010] [Indexed: 11/26/2022]
Abstract
Our previous studies have shown that overexpression of MDR1 and cyclooygenase-2 (COX-2) resulted in resistance development to imatinib in chronic myelogenous leukemia (CML) K562 (IR-K562) cells. In the present study, the regulatory mechanism of MDR1 induction by COX-2 was investigated. A gradual overexpression of MDR1 and COX-2 during the process of development was observed. Furthermore, down regulation of MDR1 upon COX-2 knockdown by siRNA showed a decrease in the PKC levels and activation of PKC by addition of PGE(2) to K562 cells, suggesting a role for PKC in the COX-2 mediated induction of MDR1. The present study demonstrates COX-2 induction by HDACs and MDR1 induction by COX-2 via PGE(2)-cAMP-PKC-mediated pathway.
Collapse
Affiliation(s)
- Arunasree M Kalle
- Institute of Life Sciences, University of Hyderabad Campus, 500046 Hyderabad, A.P., India.
| | | | | |
Collapse
|
28
|
CREB: A Key Regulator of Normal and Neoplastic Hematopoiesis. Adv Hematol 2009; 2009:634292. [PMID: 19960054 PMCID: PMC2778441 DOI: 10.1155/2009/634292] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 05/30/2009] [Indexed: 11/17/2022] Open
Abstract
The cAMP response element-binding protein (CREB) is a nuclear transcription factor downstream of cell surface receptors and mitogens that is critical for normal and neoplastic hematopoiesis. Previous work from our laboratory demonstrated that a majority of patients with acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL) overexpress CREB in the bone marrow. To understand the role of CREB in leukemogenesis, we examined the biological effect of CREB overexpression on primary leukemia cells, leukemia cell lines, and CREB overexpressing transgenic mice. Our results demonstrated that CREB overexpression leads to an increase in cellular proliferation and survival. Furthermore, CREB transgenic mice develop a myeloproliferative disorder with aberrant myelopoiesis in both the bone marrow and spleen. Additional research from other groups has shown that the expression of the cAMP early inducible repressor (ICER), a CREB repressor, is also deregulated in leukemias. And, miR-34b, a microRNA that negative regulates CREB expression, is expressed at lower levels in myeloid leukemia cell lines compared to that of healthy bone marrow. Taken together, these data suggest that CREB plays a role in cellular transformation. The data also suggest that CREB-specific signaling pathways could possibly serve as potential targets for therapeutic intervention.
Collapse
|
29
|
Di Giacomo V, Sancilio S, Caravatta L, Rana RA, Di Pietro R, Cataldi A. Regulation of CREB activation by p38 mitogen activated protein kinase during human primary erythroblast differentiation. Int J Immunopathol Pharmacol 2009; 22:679-88. [PMID: 19822084 DOI: 10.1177/039463200902200313] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Among the molecular events underlying erythroid differentiation, we analyzed the signalling pathway leading to cAMP response element binding (CREB) nuclear transcription factor activation. Normal donor blood light density cells differentiated to pro-erythroblasts during the proliferative phase (10 days) of the human erythroblast massive amplification (HEMA) culture, and to orthochromatic erythroblasts, during the differentiation phase (4 additional days) of the culture. Since erythropoietin was present all over the culture, also pro-erythroblasts left in proliferative medium for 14 days continued their maturation without reaching the final steps of differentiation. p38 mitogen activated protein kinase (p38 MAPK) and CREB maximal activation occurred upon 4 days of differentiation induction, whereas a lower activation was detectable in the cells maintained in parallel in proliferative medium (14 days). Interestingly, when SB203580, a specific p38 MAPK inhibitor, was added to the culture the percentage of differentiated cells decreased along with p38 MAPK and CREB phosphorylation. All in all, our results evidence a role for p38 MAPK in activating CREB metabolic pathway in the events leading to erythroid differentiation.
Collapse
Affiliation(s)
- V Di Giacomo
- Dipartimento di Biomorfologia, Università G. d'Annunzio, Chieti-Pescara, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Vajente N, Trevisan R, Saggioro D. HTLV-1 Tax protein cooperates with Ras in protecting cells from apoptosis. Apoptosis 2009; 14:153-63. [PMID: 19089619 DOI: 10.1007/s10495-008-0289-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tax protein of the human T-cell leukemia virus type 1 (HTLV-1) plays a critical role in HTLV-I-correlated diseases through its ability to deregulate the expression of a vast array of cellular genes. We have previously shown that Tax counteracts apoptosis induced by stimuli triggering mitochondria apoptotic pathway, most likely by activating CREB-mediated transcription and affecting the phosphorylation levels of CREB at Ser-133. Here, we report data that indicate the oncoprotein Ras as a possible mediator of Tax-induced apoptosis protection and suggest a possible role of Tax in Ras activation. In addition, using inhibitors of down stream effectors of Ras, we found that ERK signaling is the most relevant for Tax-mediated apoptosis protection. As a whole, our findings provide intriguing evidence of a possible link between Ras signaling and Tax capability to counteract apoptosis and to enhance P-CREB levels, and implicates a potential role for Ras in HTLV-1-induced diseases.
Collapse
Affiliation(s)
- Nicola Vajente
- Department of Oncology and Surgical Sciences, Oncology Section, University of Padova, via Gattamelata 64, 35128 Padova, Italy
| | | | | |
Collapse
|
31
|
Pellegrini M, Cheng JC, Voutila J, Judelson D, Taylor J, Nelson SF, Sakamoto KM. Expression profile of CREB knockdown in myeloid leukemia cells. BMC Cancer 2008; 8:264. [PMID: 18801183 PMCID: PMC2647550 DOI: 10.1186/1471-2407-8-264] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 09/18/2008] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The cAMP Response Element Binding Protein, CREB, is a transcription factor that regulates cell proliferation, differentiation, and survival in several model systems, including neuronal and hematopoietic cells. We demonstrated that CREB is overexpressed in acute myeloid and leukemia cells compared to normal hematopoietic stem cells. CREB knockdown inhibits leukemic cell proliferation in vitro and in vivo, but does not affect long-term hematopoietic reconstitution. METHODS To understand downstream pathways regulating CREB, we performed expression profiling with RNA from the K562 myeloid leukemia cell line transduced with CREB shRNA. RESULTS By combining our expression data from CREB knockdown cells with prior ChIP data on CREB binding we were able to identify a list of putative CREB regulated genes. We performed extensive analyses on the top genes in this list as high confidence CREB targets. We found that this list is enriched for genes involved in cancer, and unexpectedly, highly enriched for histone genes. Furthermore, histone genes regulated by CREB were more likely to be specifically expressed in hematopoietic lineages. Decreased expression of specific histone genes was validated in K562, TF-1, and primary AML cells transduced with CREB shRNA. CONCLUSION We have identified a high confidence list of CREB targets in K562 cells. These genes allow us to begin to understand the mechanisms by which CREB contributes to acute leukemia. We speculate that regulation of histone genes may play an important role by possibly altering the regulation of DNA replication during the cell cycle.
Collapse
Affiliation(s)
- Matteo Pellegrini
- Department of Molecular, Cellular, and Developmental Biology, University of California, Los Angeles, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Seo HS, Liu DD, Bekele BN, Kim MK, Pisters K, Lippman SM, Wistuba II, Koo JS. Cyclic AMP response element-binding protein overexpression: a feature associated with negative prognosis in never smokers with non-small cell lung cancer. Cancer Res 2008; 68:6065-73. [PMID: 18676828 DOI: 10.1158/0008-5472.can-07-5376] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Recent advances in targeted therapies hold promise for the development of new treatments for certain subsets of cancer patients by targeting specific signaling molecule. Based on the identification of the transcription factor cyclic AMP response element-binding protein (CREB) as an important regulator of growth of several types of cancers and our recent findings of its importance in normal differentiation of bronchial epithelial cells, we hypothesized that CREB plays an important pathobiologic role in lung carcinogenesis. We conducted this initial study to determine whether the expression and activation status of CREB are altered in non-small cell lung cancer (NSCLC) and of any prognostic importance in NSCLC patients. We found that the expression levels of mRNA and protein of CREB and phosphorylated CREB (p-CREB) were significantly higher in most of the NSCLC cell lines and tumor specimens than in the normal human tracheobronchial epithelial cells and adjacent normal lung tissue, respectively. Analysis of CREB mRNA expression and the CREB gene copy number showed that CREB overexpression occurred mainly at the transcriptional level. Immunohistochemical analysis of tissue microarray slides containing sections of NSCLC specimens obtained from 310 patients showed that a decreased survival duration was significantly associated with overexpression of CREB or p-CREB in never smokers but not in current or former smokers with NSCLC. These are the first reported results illustrating the potential of CREB as a molecular target for the prevention and treatment of NSCLC, especially in never smokers.
Collapse
Affiliation(s)
- Hye-Sook Seo
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cheng JC, Esparza S, Sandoval S, Shankar D, Fu C, Sakamoto KM. Potential role of CREB as a prognostic marker in acute myeloid leukemia. Future Oncol 2008; 3:475-80. [PMID: 17661722 DOI: 10.2217/14796694.3.4.475] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The cAMP response element binding protein (CREB) is a leucine zipper transcription factor that regulates genes responsible for cell proliferation, differentiation and survival. CREB is overexpressed in the bone marrow from most patients with acute leukemia. Overexpression of CREB occurs both at the protein and at the transcript levels and is associated with gene amplification in leukemic blast cells. Higher levels of CREB correlate with a less favorable prognosis in a small cohort of adult patients with acute myeloid leukemia. In one study, patients whose bone marrow over-expresses CREB had an increased risk of relapse and decreased event-free survival. Mice that overexpress CREB in myeloid cells develop a myeloproliferative/myelodysplastic syndrome. These findings suggest that CREB plays an important role in the pathogenesis of acute leukemia and is a potential biomarker of disease.
Collapse
Affiliation(s)
- Jerry C Cheng
- Jonsson Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Pediatrics, Gwynne Hazen Cherry Memorial Laboratories, Los Angeles, CA 90095-1781, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Aggarwal S, Kim SW, Ryu SH, Chung WC, Koo JS. Growth suppression of lung cancer cells by targeting cyclic AMP response element-binding protein. Cancer Res 2008; 68:981-8. [PMID: 18281471 DOI: 10.1158/0008-5472.can-06-0249] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genes regulated by cyclic AMP-response element-binding protein (CREB) have been reported to suppress apoptosis, induce cell proliferation, and mediate inflammation and tumor metastasis. However, it is not clear whether CREB is critically involved in lung carcinogenesis. We found that non-small cell lung cancer (NSCLC) cell lines exhibited elevated constitutive activity in CREB, in its immediate upstream kinases (ribosomal s6 kinase and extracellular signal kinase), and in the CREB-regulated cell survival proteins Bcl-2 and Bcl-xL. We hypothesized that constitutively active CREB is important to lung cancer cell growth and survival and therefore could be a potential therapeutic target for NSCLC. Ectopic expression of dominant repressor CREB and transfection with small interfering RNA against CREB suppressed the growth and survival of NSCLC cells and induced apoptotic cell death. Furthermore, treating H1734 NSCLC cells with an inhibitor of the CREB signaling pathway Ro-31-8220 inhibited CREB activation by blocking the activity of extracellular signal kinase and ribosomal s6 kinase, arrested the cell cycle at the G(2)-M phase, and subsequently induced apoptosis with the suppression of Bcl-2 and Bcl-xL expression. Ro-31-8220 suppressed both the anchorage-dependent and independent growth of NSCLC cells, but its cytotoxic effect was much less prominent in normal bronchial epithelial cells. Our results indicate that active CREB plays an important role in NSCLC cell growth and survival. Thus, agents that suppress CREB activation could have potential therapeutic value for NSCLC treatment.
Collapse
Affiliation(s)
- Sita Aggarwal
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
35
|
McCormack E, Bruserud O, Gjertsen BT. Review: genetic models of acute myeloid leukaemia. Oncogene 2008; 27:3765-79. [PMID: 18264136 DOI: 10.1038/onc.2008.16] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of genetically engineered mice (GEM) have been critical in understanding disease states such as cancer, and none more so than acute myelogenous leukaemia (AML), a disease characterized by over 100 distinct chromosomal translocations. A substantial proportion of cases exhibiting recurrent reciprocal translocations at diagnosis, such as t(8;21) or t(15;17) have been exhaustively studied and are currently employed in clinical diagnosis. However, a definitive conclusion regarding the leukaemogenic potential of defined transgenes for this disease remains elusive. While it is increasingly apparent that a number of cooperating mutations are necessary to develop a leukaemic phenotype, the number of models reflecting these synergisms remains few. Furthermore, little emphasis has been paid to the effect of chromosomal translocations other than recurrent genetic abnormalities, with no models reflecting the multiple abnormalities observed in high-risk cases of AML accounting for 8-10% of adult AML. Here we review the differing technologies employed in generation of GEM of AML. We discuss the relevance of GEM AML from embryonic stem cell-mediated (for example retinoic acid receptor-alpha fusions and AML1/ETO) models; through to the valuable retroviral-mediated gene transfer models. The latter have been used to great effect in defining the transforming properties of chromosomal translocation products such as MLL (found in 5-6% of all AML cases) and NUP98 (denoting poor prognosis in therapy-related disease) and particularly when co-transduced with bad prognostic factors such as Flt3 mutations. Finally, we comment on the emergence of newer transduction technologies, which can regulate the level of expression to defined cell lineages in both primary murine and human xenografts, and discuss how combining multiple genetic modalities, more relevant models of this complex disease are being generated.
Collapse
Affiliation(s)
- E McCormack
- Institute of Medicine, Haematology Section, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
36
|
Caravatta L, Sancilio S, di Giacomo V, Rana R, Cataldi A, Di Pietro R. PI3-K/Akt-dependent activation of cAMP-response element-binding (CREB) protein in Jurkat T leukemia cells treated with TRAIL. J Cell Physiol 2008; 214:192-200. [PMID: 17579344 DOI: 10.1002/jcp.21186] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We recently demonstrated the activation of phosphatidylinositol 3-kinase (PI3-K/Akt) survival pathway in Jurkat T leukemia cells known for their sensitivity to the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)/Apo2L cytotoxic action. The present investigation was done to elucidate the role of cAMP-response element-binding (CREB) protein in this system. Jurkat T cells were treated with 100-1,000 ng/ml TRAIL for time intervals up to 24 h in the presence or absence of selective pharmacologic inhibitors of PI3-K/Akt (LY294002) or p38 MAPK (SB253580) pathways. Upon TRAIL treatment, a dose-dependent increase in the percentage of apoptotic cells as well as in caspase-3 activity was observed. A further enhancement of apoptotic cell death was obtained with the use of CREB1 siRNA technology, as demonstrated by flow cytometry. Western blot analysis showed a high constitutive level of CREB phosphorylation at Ser(133) in Jurkat T cells under normal serum culture conditions. Under low serum culture conditions, an early (within 1 h) and transient increase in CREB phosphorylation was detected in response to both TRAIL doses and reduced upon pre-treatment with LY294002 or SB253580, demonstrating the PI3-K/Akt- and p38 MAPK-dependency of this effect. The parallel analysis in immune fluorescence demonstrated the nuclear translocation of the phosphorylated form upon treatment with 100 ng/ml TRAIL, whereas the immune labeling was mainly detectable in the cytoplasm compartment upon the higher more cytotoxic dose. These results let us hypothesize that CREB activation can be an important player in the complex cross-talk among pro- and anti-apoptotic pathways in this peculiar cell model.
Collapse
Affiliation(s)
- Luciana Caravatta
- Dipartimento di Biomorfologia, Università G. d'Annunzio, Chieti-Pescara, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
The cAMP-responsive element binding protein (CREB) is a 43-kDa nuclear transcription factor that regulates cell growth, memory, and glucose homeostasis. We showed previously that CREB is amplified in myeloid leukemia blasts and expressed at higher levels in leukemia stem cells from patients with myeloid leukemia. CREB transgenic mice develop myeloproliferative disease after 1 year, but not leukemia, suggesting that CREB contributes to but is not sufficient for leukemogenesis. Here, we show that CREB is most highly expressed in lineage negative hematopoietic stem cells (HSCs). To understand the role of CREB in hematopoietic progenitors and leukemia cells, we examined the effects of RNA interference (RNAi) to knock down CREB expression in vitro and in vivo. Transduction of primary HSCs or myeloid leukemia cells with lentiviral CREB shRNAs resulted in decreased proliferation of stem cells, cell- cycle abnormalities, and inhibition of CREB transcription. Mice that received transplants of bone marrow transduced with CREB shRNA had decreased committed progenitors compared with control mice. Mice injected with Ba/F3 cells expressing either Bcr-Abl wild-type or T315I mutation with CREB shRNA had delayed leukemic infiltration by bioluminescence imaging and prolonged median survival. Our results suggest that CREB is critical for normal myelopoiesis and leukemia cell proliferation.
Collapse
|
38
|
Lin X, Zhang Y, Dong J, Zhu X, Ye M, Shi J, Lu J, Di Q, Shi J, Liu W. GM-CSF enhances neural differentiation of bone marrow stromal cells. Neuroreport 2007; 18:1113-7. [PMID: 17589309 DOI: 10.1097/wnr.0b013e3282010aff] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent reports suggest that bone marrow stromal cells may be induced into neural cells both in vivo and in vitro. The factors that regulate the neural differentiation and the mechanism involved, however, remains unclear. Here we demonstrated that granulocyte-macrophage colony-stimulating factor (GM-CSF), a potent hematopoietic factor, was able to enhance the neural differentiation of bone marrow stromal cells. Moreover, we found that GM-CSF receptors are abundantly distributed in the bone marrow stromal cells and GM-CSF significantly upregulated the phosphorylation of cAMP-responsive element binding protein in bone marrow stromal cells. These findings suggest that GM-CSF may activate its receptor and then enhance neural differentiation of bone marrow stromal cells by upregulating phosphorylation of cAMP-responsive element binding protein.
Collapse
Affiliation(s)
- Xingjian Lin
- Department of Neurology, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cheng L, Li L, Qiao X, Liu J, Yao X. Functional characterization of the promoter of human kinetochore protein HEC1: novel link between regulation of the cell cycle protein and CREB family transcription factors. ACTA ACUST UNITED AC 2007; 1769:593-602. [PMID: 17822787 DOI: 10.1016/j.bbaexp.2007.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2007] [Revised: 07/10/2007] [Accepted: 07/23/2007] [Indexed: 11/16/2022]
Abstract
HEC1 (highly expressed in cancer), which localizes to kinetochore in cell mitosis, plays an essential role in chromosome segregation for M phase progression. To clarify the mechanism of its transcriptional regulation, we searched out and isolated its 5'-flanking region. Mapping of this region identified that it is a TATA-less promoter and contains several putative binding sites for different transcription factors. The results from HeLa cells transfected with pGL3 luciferase reporter vectors containing progressive deletion of the HEC1 5'-flanking region demonstrated that two elements containing binding sites for cAMP responsive element binding (CREB) protein and activating transcription factor 4 (ATF4 or CREB2) are critical for transcriptional activity. Mutation of the two elements, not downstream E2F box, resulted in a significant reduction of the promoter activity. Gel shift and supershift assays also demonstrated specific binding of transcription factors to their putative binding sites. Furthermore, overexpression of either CREB or ATF4 enhanced the activation of the HEC1 promoter and overexpression of both of them had an additive effect on the activation of the HEC1 transcription. Conversely, overexpression of dominant negative mutants of either CREB or ATF4 resulted in downregulation of HEC1 mRNA significantly. Our study provided a new insight into a potential mechanism of how transcription factors of CREB family are involved in the regulation of kinetochore protein HEC1 in cancer-related cells.
Collapse
Affiliation(s)
- Liansheng Cheng
- Anhui Province Key Laboratory of Molecular Medicine, School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | | | | | | | | |
Collapse
|
40
|
Kuraishy AI, French SW, Sherman M, Herling M, Jones D, Wall R, Teitell MA. TORC2 regulates germinal center repression of the TCL1 oncoprotein to promote B cell development and inhibit transformation. Proc Natl Acad Sci U S A 2007; 104:10175-80. [PMID: 17548807 PMCID: PMC1891214 DOI: 10.1073/pnas.0704170104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aberrant expression of the TCL1 oncoprotein promotes malignant transformation of germinal center (GC) B cells. Repression of TCL1 in GC B cells facilitates FAS-mediated apoptosis and prevents lymphoma formation. However, the mechanism for this repression is unknown. Here we show that the CREB coactivator TORC2 directly regulates TCL1 expression independent of CREB Ser-133 phosphorylation and CBP/p300 recruitment. GC signaling through CD40 or the BCR, which activates pCREB-dependent genes, caused TORC2 phosphorylation, cytosolic emigration, and TCL1 repression. Signaling via cAMP-inducible pathways inhibited TCL1 repression and reduced apoptosis, consistent with a prosurvival role for TCL1 before GC selection and supporting an initiating role for aberrant TCL1 expression during GC lymphomagenesis. Our data indicate that a novel CREB/TORC2 regulatory mode controls the normal program of GC gene activation and repression that promotes B cell development and circumvents oncogenic progression. Our results also reconcile a paradox in which signals that activate pCREB/CBP/p300 genes concurrently repress TCL1 to initiate its silencing.
Collapse
Affiliation(s)
| | | | | | - Marco Herling
- Department of Hematopathology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Dan Jones
- Department of Hematopathology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Randolph Wall
- Microbiology, Immunology, and Molecular Genetics
- Molecular Biology Institute, and
- Institute for Stem Cell Biology and Medicine and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095; and
| | - Michael A. Teitell
- Pathology and Laboratory Medicine, and
- Molecular Biology Institute, and
- Institute for Stem Cell Biology and Medicine and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095; and
- **To whom correspondence should be addressed at:
Department of Pathology and Laboratory Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095. E-mail:
| |
Collapse
|
41
|
Di Pietro R, di Giacomo V, Caravatta L, Sancilio S, Rana RA, Cataldi A. Cyclic nucleotide response element binding (CREB) protein activation is involved in K562 erythroleukemia cells differentiation. J Cell Biochem 2007; 100:1070-9. [PMID: 17063485 DOI: 10.1002/jcb.21106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
K562 are human erythroleukemia cells inducible to differentiate into megakaryocytic or erythroid lineage by different agents. Cyclic nucleotide Response Element Binding (CREB) protein, a nuclear transcription factor which mediates c-AMP signaling, is a potential candidate involved in the occurrence of erythroid differentiation and adaptive response. Here we investigated signaling events in K562 cells induced with 30 microM hemin to undergo erythroid differentiation. CREB activation was detected early 1 h after hemin treatment and up to 4 and 6 days of treatment, when K562 terminal differentiation occurs together with caspase-3 maximal activation and PARP degradation. It was interesting to note that after hemin treatment in the presence of SB203580, p38 MAP kinase specific inhibitor, a reduced rate of CREB phosphorylation as well as a lower percentage of CD71/Gly+ (Glycophorin A) cells were detectable, demonstrating the p38 MAP kinase dependency of these phenomena. All in all these results document a novel relationship between CREB activation and differentiation-related apoptotic cell death and assign a role to p38 MAP kinase pathway in determining these events in K562 erythroleukemia cells.
Collapse
|
42
|
Nomura T, Huang WC, Zhau HE, Wu D, Xie Z, Mimata H, Zayzafoon M, Young AN, Marshall FF, Weitzmann MN, Chung LWK. Beta2-microglobulin promotes the growth of human renal cell carcinoma through the activation of the protein kinase A, cyclic AMP-responsive element-binding protein, and vascular endothelial growth factor axis. Clin Cancer Res 2006; 12:7294-305. [PMID: 17189401 DOI: 10.1158/1078-0432.ccr-06-2060] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Beta(2)-microglobulin (beta2M), a soluble protein secreted by cancer and host inflammatory cells, has various biological functions, including antigen presentation. Because aberrant expression of beta2M has been reported in human renal cell carcinoma, we investigated the effects of beta2M overexpression on cancer cell growth and analyzed its molecular signaling pathway. EXPERIMENTAL DESIGN We established clonal cell lines that overexpressed beta2M in human renal cell carcinoma (SN12C) cells and then examined cell growth in vitro and in vivo and studied the beta2M-mediated downstream cell signaling pathway. RESULTS Our results showed that beta2M expression positively correlates with (a) in vitro growth on plastic dishes and as Matrigel colonies, (b) cell invasion and migration in Boyden chambers, and (c) vascular endothelial growth factor (VEGF) expression and secretion by cells. We found, in addition, that beta2M mediates its action through increased phosphorylation of cyclic AMP-responsive element-binding protein (CREB) via the protein kinase A-CREB axis, resulting in increased VEGF expression and secretion. In convergence with this signal axis, beta2M overexpression also activated both phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Beta2M overexpression induced accelerated growth of SN12C in mouse subcutis and bone. Interrupting the beta2M signaling pathway using small interfering RNA led to apoptosis with increased activation of caspase-3 and caspase-9 and cleaved poly(ADP-ribose) polymerase. CONCLUSIONS Our results showed for the first time that the beta2M-protein kinase A-CREB-VEGF signaling axis plays a crucial role in support of renal cell carcinoma growth and progression and reveals a novel therapeutic target.
Collapse
Affiliation(s)
- Takeo Nomura
- Molecular Urology and Therapeutics Program, Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Colmone A, Li S, Wang CR. Activating Transcription Factor/cAMP Response Element Binding Protein Family Member Regulated Transcription of CD1A. THE JOURNAL OF IMMUNOLOGY 2006; 177:7024-32. [PMID: 17082618 DOI: 10.4049/jimmunol.177.10.7024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
CD1a has a unique expression pattern among Ag-presenting molecules, expressed specifically on cortical thymocytes and APCs. As autoimmune disease, infection, and tumors can all result in alteration of CD1a expression, we are attempting to characterize the transcriptional regulation, and thus shed some light on specific expression, of CD1A. In this study, we have identified a minimal proximal promoter region required for CD1A transcription. Computer searches within this region identified numerous potential binding sites for lymphoid-specific transcription factors, including the ETS transcription factors, C/EBP, GATA, and CREB. Deletion and site-specific mutant analysis revealed a critical role of a potential cAMP response element (CRE) 965 bp upstream of the CD1A translation start site. Two activating transcription factor (ATF)/CREB family members, CREB-1 and ATF-2, are able to bind this site in vitro and in vivo. Notably, activation of ATF/CREB family members decreases CD1A transcription, while decrease in ATF-2 expression results in increased CD1A RNA level. The fact that these factors also bind the CD1A promoter in human monocytes strongly suggests a role for ATF/CREB family members in regulation of CD1A expression.
Collapse
Affiliation(s)
- Angela Colmone
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
44
|
Guo MX, Wang D, Shao HJ, Qiu HL, Xue L, Zhao ZZ, Zhu CG, Shi YB, Li WX. Transcription of human zinc finger ZNF268 gene requires an intragenic promoter element. J Biol Chem 2006; 281:24623-36. [PMID: 16787922 DOI: 10.1074/jbc.m602753200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human ZNF268 gene is a typical Krüppel-associated box/C2H2 zinc finger gene whose homolog has been found only in higher mammals and not in lower mammals such as mouse. Its expression profiles have suggested that it plays a role in the differentiation of blood cells during early human embryonic development and the pathogenesis of leukemia. To gain additional insight into the molecular mechanisms controlling the expression of the ZNF268 gene and to provide the necessary tools for further genetic studies of leukemia, we have mapped the 5'-end of the human ZNF268 mRNA by reverse transcription-PCR and primer extension assays. We then cloned the 5'-flanking genomic DNA containing the putative ZNF268 gene promoter and analyzed its function in several different human and mouse tissue culture cell lines. Interestingly, our studies show that the ZNF268 gene lacks a typical eukaryotic promoter that is present upstream of the transcription start site and directs a basal level of transcription. Instead, the functional promoter requires an essential element that is located within the first exon of the gene. Deletion and mutational analysis reveals the requirement for a cAMP response-element-binding protein (CREB)-binding site within this element for promoter function. Gel mobility shift and chromatin immunoprecipitation assays confirm that CREB-2 binds to the site in vitro and in vivo. Furthermore, overexpression of CREB-2 enhances the promoter activity. These results demonstrate that the human ZNF268 gene promoter is atypical and requires an intragenic element located within the first exon that mediates the effect of CREB for its activity.
Collapse
Affiliation(s)
- Ming-Xiong Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|