1
|
Akiyama H, Kantarjian H, Jabbour E, Issa G, Haddad FG, Short NJ, Hu S, Ishizawa J, Andreeff M, Sasaki K. Outcome of 3q26.2/MECOM rearrangements in chronic myeloid leukemia. Int J Hematol 2024; 120:203-211. [PMID: 38748089 DOI: 10.1007/s12185-024-03787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 07/29/2024]
Abstract
STUDY AIMS To evaluate the outcomes of patients with 3q26.2/MECOM-rearranged chronic myeloid leukemia (CML). METHODS We reviewed consecutive adult patients with 3q26.2/MECOM-rearranged CML between January 1, 1998 and February 16, 2023. Rearrangements of 3q26.2/MECOM were confirmed by conventional cytogenetics, and fluorescence in situ hybridization starting in 2015. RESULTS We identified 55 patients with MECOM-rearranged CML, including 23 in chronic phase (CP) or accelerated phase (AP) and 32 in blast phase (BP). Nine patients (16%) achieved a major cytogenetic response (MCyR) or deeper. At a median follow-up of 89 months, median survival was 14 months. The 5-year survival rate was 19% overall, 23% in CML-CP/AP, and 15% in CML-BP. In the 6-month landmark analysis, the 5-year survival rate was 41% for allogeneic stem cell transplantation (allo-SCT) recipients versus 17% for non-recipients (P = 0.050). Multivariate analysis showed that the percentage of marrow blasts and achievement of MCyR or deeper could predict survival. CONCLUSION Outcomes of 3q26.2/MECOM-rearranged CML are poor despite the availability of multiple BCR::ABL1 tyrosine kinase inhibitors (TKIs). Third-generation TKIs in combination with novel agents and possible allo-SCT could be considered given the poor outcomes and resistance to second-generation TKIs.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Female
- Humans
- Male
- Middle Aged
- Young Adult
- Chromosomes, Human, Pair 3/genetics
- Follow-Up Studies
- Gene Rearrangement
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Retrospective Studies
- Survival Rate
- Treatment Outcome
Collapse
Affiliation(s)
- Hiroki Akiyama
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 428, Houston, TX, 77030, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 428, Houston, TX, 77030, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 428, Houston, TX, 77030, USA
| | - Ghayas Issa
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 428, Houston, TX, 77030, USA
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 428, Houston, TX, 77030, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 428, Houston, TX, 77030, USA
| | - Shimin Hu
- Department of Hematopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jo Ishizawa
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 428, Houston, TX, 77030, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 428, Houston, TX, 77030, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 428, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Benchikh S, Charlène SSG, Bousfiha A, Razoki L, Aboulfaraj J, Zarouf L, Hamouchi AE, Malki A, Nassereddine S. Cytogenetic and epidemiological profile of chronic myeloid leukemia in Morocco. Ann Hematol 2024; 103:2765-2774. [PMID: 38653807 DOI: 10.1007/s00277-024-05747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Chronic myeloid leukemia (CML) is a neoplastic disease of genetic origin resulting from clonal proliferation of hematopoietic stem cells (HSCs). The reciprocal translocation t(9;22)(q34;q11) is the main chromosomal abnormality involved in this pathology, usually detected by conventional cytogenetics. This article aims to investigate the epidemiological, cytogenetic, therapeutic, and clinical characteristics of Moroccan patients with CML. This research represents the first large-scale study of CML patients in Morocco and was carried out at Institut Pasteur of Morocco. Bone marrow samples were processed for cytogenetic analysis, and karyotypes were described according to an international system of human cytogenetic nomenclature (ISCN 2016). Patients were studied according to their epidemiological characteristics, clinical information and cytogenetic results. For statistical calculations, R version 4.3.1 was used to analyze the data and calculate the statistical parameters. RStudio and Power BI were used for data visualization. The National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) method of incidence estimation was used to calculate our incidence. We received 826 patients (from 1992 to 2023) who were referred for suspected CML or who were undergoing treatment. Only 650 patients with confirmed CML were included in the study, all of whom underwent their first cytogenetic test. The median age of our patients was 45 years and the sex ratio was 1.03. At the time of diagnosis, 147 (30%) of the patients had clinical manifestations. Most patients were diagnosed in the chronic phase (94.5%). Nineteen complex variant translocations of the Philadelphia (Ph) chromosome were detected. At the time of diagnosis, 55 (11.5%) patients had ACAs, of which 30 (54.5%) were high-risk ACAs. Based on data from 174 patients treated with imatinib, the median time to complete cytogenetic response (CCyR) was 11 months, and at the last cytogenetic follow-up, 81 patients (46.6%) achieved CCyR, while 64 patients (36.8%) showed no response to treatment. Regarding adherence to European LeukemiaNet (ELN) guidelines, 58 patients (33%) were followed according to these guidelines, with optimal treatment in 8.6%, suboptimal treatment in 7% and treatment failure in 18%. The estimated incidence of chronic myeloid leukemia calculated is 0.6 cases per 100,000 in the Casablanca region. This study provides a detailed overview of CML in Morocco, highlighting important clinical, cytogenetic and therapeutic aspects despite some limitations. It also highlights the need to deepen our understanding of this complex disease for disease management in our specific context.
Collapse
MESH Headings
- Humans
- Morocco/epidemiology
- Male
- Female
- Middle Aged
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/epidemiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Adult
- Aged
- Adolescent
- Young Adult
- Child
- Cytogenetic Analysis
- Translocation, Genetic
- Aged, 80 and over
- Incidence
- Child, Preschool
Collapse
Affiliation(s)
- Sara Benchikh
- Laboratory of Cytogenetics, Pasteur Institute of Morocco, Casablanca, Morocco.
- Laboratory of Physiopathology and Molecular Genetics, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco.
| | - Soro Somda Georgina Charlène
- Laboratory of Cytogenetics, Pasteur Institute of Morocco, Casablanca, Morocco
- Laboratory of Biology and Health, Faculty of Sciences Ben M'sik, Casablanca, Morocco
| | - Amale Bousfiha
- Laboratory of Physiopathology and Molecular Genetics, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Lunda Razoki
- Laboratory of Cytogenetics, Pasteur Institute of Morocco, Casablanca, Morocco
| | - Jamila Aboulfaraj
- Laboratory of Cytogenetics, Pasteur Institute of Morocco, Casablanca, Morocco
| | - Latifa Zarouf
- Laboratory of Cytogenetics, Pasteur Institute of Morocco, Casablanca, Morocco
| | - Adil El Hamouchi
- Laboratory of Cytogenetics, Pasteur Institute of Morocco, Casablanca, Morocco
| | - Abderrahim Malki
- Laboratory of Physiopathology and Molecular Genetics, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Sanaa Nassereddine
- Laboratory of Cytogenetics, Pasteur Institute of Morocco, Casablanca, Morocco
| |
Collapse
|
3
|
Alamri RM, Alanazi M, AlRajeh RK, Tashkandi SA, Alswayyed AF, Samman MA, Peer‐Zada AA. A rare presentation of BCR-ABL1 and RUNX1-MECOM rearrangement in a pediatric patient with acute myeloid leukemia. Clin Case Rep 2024; 12:e8917. [PMID: 38751957 PMCID: PMC11093904 DOI: 10.1002/ccr3.8917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
Key Clinical Message In a patient with de novo AML, co-existing BCR::ABL1 p190 isoform and RUNX1::MECOM rearrangement is accompanied by a very poor prognosis including limited response to treatment and no molecular remission. It is essential to develop a consensus on the therapeutic modalities different from the current regimen. Abstract Acquisition of BCR::ABL1 fusion as a primary or secondary event and RUNX1::MECOM fusion independently is reported in de novo and therapy-related MDS/AML, albeit with low frequency (<0.5%). Coexistence of BCR::ABL1 and MECOM translocation is known to cause leukemogenesis in animal models and progression towards blast crisis CML but not AML. Here we report a unique case of pediatric AML with concomitant BCR::ABL1 and RUNX1::MECOM fusion.Routine diagnostic work-up included WBC manual differential, immunophenotype, morphology, qPCR, FISH, and NGS-based CNV analyses. The patient presented with history of fever, dizziness, fatigue, gingival bleeding, and epistaxis associated with ecchymosis in right hand and heavy, prolonged menstrual period. At presentation, her hemoglobin was 5.3 g/dL, WBC 52.1(10*9/L), PLT 10(10*9/L), ESR 5 mm/h and LDH 2658 U/L. Bone marrow was hypercellular with 71% blasts, and flow cytometry showed myeloid markers including CD11c, CD33, CD34, and CD45 among others indicating AML with monocytic differentiation. FISH analyses showed variant t(9;22) (q34.1;q11.1), one additional copy each of chromosome 8 and Runx1 gene, while NGS-based CNV analyses revealed a terminal and proximal pathogenic gain within 9q34.12q34.3 and 22q11.1q11.23, respectively, and gain of entire chromosome 8 and 12 in mosaic state. qPCR confirmed the presence of p190 and also revealed RUNX1::MECOM fusion. Patient received ADE (cytarabine, daunorubicin, and etoposide) induction regimen but required multiple ICU admissions due to sepsis, cardiac shock, acute myocarditis, and thyroiditis. Coexisting BCR::ABL1 and RUNX1::MECOM fusion is suggestive of poor prognosis, and a need for consensus on the treatment modalities other than the current regimen is warranted.
Collapse
Affiliation(s)
- Ragdah M. Alamri
- Molecular Pathology (Genetics), Cytogenetics and Hemato‐pathology Section, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical CityRiyadhSaudi Arabia
| | - Maryam Alanazi
- Molecular Pathology (Genetics), Cytogenetics and Hemato‐pathology Section, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical CityRiyadhSaudi Arabia
| | - Rajeh K. AlRajeh
- Molecular Pathology (Genetics), Cytogenetics and Hemato‐pathology Section, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical CityRiyadhSaudi Arabia
| | - Suha A. Tashkandi
- Molecular Pathology (Genetics), Cytogenetics and Hemato‐pathology Section, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical CityRiyadhSaudi Arabia
| | - Azizah F. Alswayyed
- Molecular Pathology (Genetics), Cytogenetics and Hemato‐pathology Section, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical CityRiyadhSaudi Arabia
| | - Manar A. Samman
- Molecular Pathology (Genetics), Cytogenetics and Hemato‐pathology Section, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical CityRiyadhSaudi Arabia
| | - Abdul Ali Peer‐Zada
- Molecular Pathology (Genetics), Cytogenetics and Hemato‐pathology Section, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical CityRiyadhSaudi Arabia
| |
Collapse
|
4
|
Li N, Chen M, Yin CC. Advances in molecular evaluation of myeloproliferative neoplasms. Semin Diagn Pathol 2023; 40:187-194. [PMID: 37087305 DOI: 10.1053/j.semdp.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/24/2023]
Abstract
Myeloproliferative neoplasms (MPN) are a group of clonal hematopoietic stem cell disorders with uncontrolled proliferation of one or more hematopoietic cell types, including myeloid, erythroid and megakaryocytic lineages, and minimal defect in maturation. Most MPN are associated with well-defined molecular abnormalities involving genes that encode protein tyrosine kinases that lead to constitutive activation of the downstream signal transduction pathways and confer cells proliferative and survival advantage. Genome-wide sequencing analyses have discovered secondary cooperating mutations that are shared by most of the MPN subtypes as well as other myeloid neoplasms and play a major role in disease progression. Without appropriate management, the natural history of most MPN consists of an initial chronic phase and a terminal blast phase. Molecular aberrations involving protein tyrosine kinases have been used for the diagnosis, classification, detection of minimal/measurable residual disease, and target therapy. We review recent advances in molecular genetic aberrations in MPN with a focus on MPN associated with gene rearrangements or mutations involving tyrosine kinase pathways.
Collapse
Affiliation(s)
- Nianyi Li
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - C Cameron Yin
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
5
|
Krishnan V. The RUNX Family of Proteins, DNA Repair, and Cancer. Cells 2023; 12:cells12081106. [PMID: 37190015 DOI: 10.3390/cells12081106] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The RUNX family of transcription factors, including RUNX1, RUNX2, and RUNX3, are key regulators of development and can function as either tumor suppressors or oncogenes in cancer. Emerging evidence suggests that the dysregulation of RUNX genes can promote genomic instability in both leukemia and solid cancers by impairing DNA repair mechanisms. RUNX proteins control the cellular response to DNA damage by regulating the p53, Fanconi anemia, and oxidative stress repair pathways through transcriptional or non-transcriptional mechanisms. This review highlights the importance of RUNX-dependent DNA repair regulation in human cancers.
Collapse
Affiliation(s)
- Vaidehi Krishnan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
6
|
Barnes EJ, Eide CA, Kaempf A, Bottomly D, Romine KA, Wilmot B, Saunders D, McWeeney SK, Tognon CE, Druker BJ. Secondary fusion proteins as a mechanism of BCR::ABL1 kinase-independent resistance in chronic myeloid leukaemia. Br J Haematol 2023; 200:323-328. [PMID: 36264026 PMCID: PMC9851972 DOI: 10.1111/bjh.18515] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 01/22/2023]
Abstract
Drug resistance in chronic myeloid leukaemia (CML) may occur via mutations in the causative BCR::ABL1 fusion or BCR::ABL1-independent mechanisms. We analysed 48 patients with BCR::ABL1-independent resistance for the presence of secondary fusion genes by RNA sequencing. We identified 10 of the most frequently detected secondary fusions in 21 patients. Validation studies, cell line models, gene expression analysis and drug screening revealed differences with respect to proliferation rate, differentiation and drug sensitivity. Notably, expression of RUNX1::MECOM led to resistance to ABL1 tyrosine kinase inhibitors in vitro. These results suggest secondary fusions contribute to BCR::ABL1-independent resistance and may be amenable to combined therapies.
Collapse
MESH Headings
- Humans
- Fusion Proteins, bcr-abl/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mutation
- Cell Line
- Drug Resistance, Neoplasm/genetics
Collapse
Affiliation(s)
- Evan J Barnes
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Christopher A Eide
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Andy Kaempf
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Daniel Bottomly
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Kyle A Romine
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Beth Wilmot
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Dominick Saunders
- Flow Cytometry Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina E Tognon
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J Druker
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Genetic landscape of chronic myeloid leukemia. Int J Hematol 2023; 117:30-36. [PMID: 36477676 DOI: 10.1007/s12185-022-03510-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by the BCR::ABL1 fusion gene, which aberrantly activates ABL1 kinase and promotes the overproduction of leukemic cells. CML typically develops in the chronic phase (CP) and progresses to a blast crisis (BC) after years without effective treatment. Although prognosis has substantially improved after the development of tyrosine kinase inhibitors (TKIs) targeting the BCR::ABL1 oncoprotein, some patients still experience TKI resistance and poor prognosis. One of the mechanisms of TKI resistance is ABL1 kinase domain mutations, which are found in approximately half of the cases, newly acquired during treatment. Moreover, genetic studies have revealed that CML patients carry additional mutations that are also observed in other myeloid neoplasms. ASXL1 mutations are often found in both CP and BC, whereas other mutations, such as those in RUNX1, IKZF1, and TP53, are preferentially found in BC. The presence of additional mutations, such as ASXL1 mutations, is a potential biomarker for predicting therapeutic efficacy. The mechanisms by which these additional mutations affect disease subtypes, drug resistance, and prognosis need to be elucidated. In this review, we have summarized and discussed the landscape and clinical impact of genetic abnormalities in CML.
Collapse
|
8
|
Liu J, Han W, Cai X, Wang Z, Cao L, Hua H, Jia Z, Chao H, Lu X, Shen H. Molecular genetic and clinical characterization of acute myeloid leukemia with trisomy 8 as the sole chromosome abnormality. Hematology 2022; 27:565-574. [PMID: 35549661 DOI: 10.1080/16078454.2022.2071799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION The aim of the study was to determine molecular genetic and clinical characterization of acute myeloid leukemia (AML) with trisomy 8 as the sole chromosome abnormality, a recurrent but rare chromosomal abnormality in AML. METHODS Interphase fluorescence in situ hybridization, reverse transcriptase-quantitative polymerase chain reaction for gene rearrangement and next-generation sequencing (NGS) were performed on sole trisomy 8 AML patients. RESULTS A total of 35 AML patients with trisomy 8 as the sole chromosome abnormality were screened. The most frequently mutated genes were DNMT3A(37.1%), RUNX1(28.6%), FLT3-ITD(28.6%), IDH2(22.9%), NPM1(17.1%), and ASXL1 (14.3%). The sole +8 AML patients exhibited more mutations in RUNX1 (28.6% vs. 4.8%, P = 0.001) and ASXL1 (14.3% vs. 4.8%, P = 0.039) by comparing with normal karyotype AML (NK AML) patients(n = 63). The sole +8 AML patients(n = 35) with RUNX1 or IDH2 mutations showed significantly lower WBC counts, while FLT3-ITD showed higher white blood cell (WBC) counts as compared to the corresponding wild-type groups. Total of 45.7% patients achieved complete remission (CR) after the first induction therapy. The CR rate of patients with FLT3-ITD or IDH1 mutation was significantly lower than that in the corresponding wild-type cases (P = 0.047, 0.005, respectively). The median overall survival (OS) and disease-free survival (PFS) were 18.0 (95% CI: 10.8-25.2) and 10 (95% CI: 6.7-13.3) months, respectively. FLT3-ITD mutations and allogeneic hematopoietic stem cell transplantation (allo-HSCT) were independent prognostic markers for OS in multivariable analysis. CONCLUSION The results suggest a possible association between trisomy 8 and additional mutations that may influence clinical feature and prognosis.
Collapse
Affiliation(s)
- Jie Liu
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - WenMin Han
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, People's Republic of China.,Department of Hematology, The First Affiliated Hospital of NanJing Medical University, Nanjing, People's Republic of China
| | - Xiaohui Cai
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - Zheng Wang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Soochow, People's Republic of China.,SuZhou Jsuniwell Medical Laboratory, Suzhou, People's Republic of China
| | - LiuJun Cao
- Department of Hematology, Affiliated Jintan People's Hospital of Jiangsu University, Changzhou, People's Republic of China
| | - HaiYing Hua
- Department of Hematology, Wuxi Third people's hospital, Wuxi, People's Republic of China
| | - ZhuXia Jia
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - HongYing Chao
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - XuZhang Lu
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - HongJie Shen
- Department of Hematology, The First Affiliated Hospital of Soochow University, Soochow, People's Republic of China
| |
Collapse
|
9
|
Gao J, Gurbuxani S, Zak T, Kocherginsky M, Ji P, Wehbe F, Chen Q, Chen YH, Lu X, Jennings L, Frankfurt O, Altman J, Sukhanova M. Comparison of myeloid neoplasms with nonclassic 3q26.2/MECOM versus classic inv(3)/t(3;3) rearrangements reveals diverse clinicopathologic features, genetic profiles, and molecular mechanisms of MECOM activation. Genes Chromosomes Cancer 2022; 61:71-80. [PMID: 34668265 DOI: 10.1002/gcc.23004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/05/2022] Open
Abstract
MECOM rearrangements are recurrent in myeloid neoplasms and associated with poor prognosis. However, only inv(3)(q21q26.2) and t(3;3)(q21;q26.2), the classic MECOM rearrangements resulting in RPN1-MECOM rearrangement with Mecom overexpression and GATA2 haploinsufficiency, define the distinct subtype of acute myeloid leukemia (AML), and serve as presumptive evidence for myelodysplastic syndrome based on the current World Health Organization classification. Myeloid neoplasms with nonclassic 3q26.2/MECOM rearrangements have been found to be clinically aggressive, but comparative analysis of clinicopathologic and genomic features is limited. We retrospectively studied cohorts of myeloid neoplasms with classic and nonclassic MECOM rearrangements. Cases with classic rearrangements consisted predominantly of AML, often with inv(3) or t(3;3) as the sole chromosome abnormality, whereas the group of nonclassic rearrangements included a variety of myeloid neoplasms, often with complex karyotype without TP53 mutations and similarly dismal overall survival. Immunohistochemistry revealed Mecom protein overexpression in both groups, but overexpression in cases with nonclassic rearrangements was mediated through a mechanism other than GATA2 distal enhancer involvement typical for classic rearrangement. Our results demonstrated that myeloid neoplasms with nonclassic 3q26.2/MECOM rearrangements encompass a diverse group of diseases with poor clinical outcome, overexpression of Mecom protein as a result of the nonclassic mechanism of MECOM activation.
Collapse
Affiliation(s)
- Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sandeep Gurbuxani
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Taylor Zak
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Masha Kocherginsky
- Department of Preventive Medicine (Health and Biomedical Informatics), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peng Ji
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Firas Wehbe
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Preventive Medicine (Health and Biomedical Informatics), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Qing Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lawrence Jennings
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Olga Frankfurt
- Department of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jessica Altman
- Department of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
10
|
Adnan-Awad S, Kankainen M, Mustjoki S. Mutational landscape of chronic myeloid leukemia: more than a single oncogene leukemia. Leuk Lymphoma 2021; 62:2064-2078. [PMID: 33944660 DOI: 10.1080/10428194.2021.1894652] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The BCR-ABL1 fusion gene, which causes aberrant kinase activity and uncontrolled cell proliferation, is the hallmark of chronic myeloid leukemia (CML). The development of tyrosine kinase inhibitors (TKI) that target the BCR-ABL oncoprotein has led to dramatic improvement in CML management. However, some challenges remain to be addressed in the TKI era, including patient stratification and the selection of frontline TKIs and CML progression. Additionally, with the emerging goal of treatment-free remission (TFR) in CML management, biomarkers that predict the outcomes of stopping TKI remain to be identified. Notably, recent reports have revealed the power of genome screening in understanding the role of genome aberrations other than BCR-ABL1 in CML pathogenesis. These studies have discovered the presence of disease-phase specific mutations and linked certain mutations to inferior responses to TKI treatment and CML progression. A personalized approach that incorporates genetic data in tailoring treatment strategies has been successfully implemented in acute leukemia, and it represents a promising approach for the management of high-risk CML patients. In this article, we will review current knowledge about the mutational profile in different phases of CML as well as patterns of mutational dynamics in patients having different outcomes. We highlight the effects of somatic mutations involving certain genes (e.g. epigenetic modifiers) on the outcomes of TKI treatment. We also discuss the potential value of incorporating genetic data in treatment decisions and the routine care of CML patients as a future direction for optimizing CML management.
Collapse
Affiliation(s)
- Shady Adnan-Awad
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
11
|
Chen X, Wang F, Wang T, Zhang Y, Ma X, Yuan L, Teng W, Guo L, Liu M, Liu M, Chen J, Nie D, Zhang Y, Zhou X, Wang M, Chen KN, Zhu P, Liu H. The incidence, genetic characteristics, and prognosis of leukemia with concurrent pathogenic fusion genes: a series of 25 cases from a large cohort of leukemia patients. Cancer Gene Ther 2019; 27:89-97. [PMID: 31645680 DOI: 10.1038/s41417-019-0147-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 11/09/2022]
Abstract
Recurrent fusion genes (FGs) with clinical significances in leukemias are mainly mutually exclusive, and the coexistence of different FGs has been rarely reported. In this study, we retrospectively analyzed the incidence, genetic characteristics, and prognosis of leukemias with concurrent pathogenic FGs, which commonly reported in hematological malignancies in 8226 leukemia patients. A total of 25 patients with coexistence of double FGs were identified, accounting for 0.30% of all cases enrolled. More than half of the cases (14/25, 56%) were diagnosed as chronic myeloid leukemia in accelerated or blast phase, another six and five cases were acute myeloid leukemia and acute lymphocytic leukemia, respectively. Most cases (20/25, 80%) carried constitutively activated tyrosine kinases FGs (BCR-ABL1 or ETV6-PDGFRB) and transcription factors associated FGs simultaneously. Of the 11 patients with contemporaneous karyotype, 5 (45%) showed visible chromosomal abnormalities corresponding to both FGs. The concurrency of FGs was often associated with disease progressions. The prognosis was pessimistic for patients with concurrent FGs, even with the combination of targeted therapy and chemotherapy. Performing allogeneic hematopoietic stem cell transplantation as soon as possible after complete remission can ameliorate the dismal prognosis.
Collapse
Affiliation(s)
- Xue Chen
- Divison of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Fang Wang
- Divison of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Tong Wang
- Divison of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Yang Zhang
- Divison of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Xiaoli Ma
- Divison of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Lili Yuan
- Divison of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Wen Teng
- Divison of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Lei Guo
- Divison of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Mingyue Liu
- Divison of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Ming Liu
- Divison of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Jiaqi Chen
- Divison of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Daijing Nie
- Divison of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Yu Zhang
- Divison of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Xiaosu Zhou
- Divison of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China
| | - Mangju Wang
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China
| | - Kylan N Chen
- Beijing Lu Daopei Institute of Hematology, Beijing, 100076, China
| | - Ping Zhu
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China
| | - Hongxing Liu
- Divison of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, 065201, China. .,Beijing Lu Daopei Institute of Hematology, Beijing, 100076, China. .,Divison of Pathology & Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, 100076, China.
| |
Collapse
|
12
|
Abstract
Introduction: Trisomy 8 is one of the most common cytogenetic alterations in acute myeloid leukemia (AML), with a frequency between 10% and 15%.Areas covered: The authors summarize the latest research regarding biological, translational and clinical aspects of trisomy 8 in AML.Expert opinion: Trisomy 8 can be found together with other karyotypes, although it also occurs as a sole aberration. The last decade's research has brought attention to molecular genetic alterations as strong contributors of leukemogenesis. AML with trisomy 8 seems to be associated with mutations in DNA methylation genes, spliceosome complex genes, and myeloid transcription factor genes, and these alterations probably have stronger implication for leukemic pathogenesis, treatment and hence prognosis, than the existence of trisomy 8 itself. Especially mutations in the RUNX1 and ASXL1 genes occur in high frequencies, and search for such mutations should be mandatory part of the diagnostic workup. AML with trisomy 8 is classified as intermediate-risk AML after recent European Leukemia Net (ELN) classification, and hence allogenic hematopoietic stem cell transplantation (Allo-HSCT) should be consider as consolidation therapy for this patient group.Trisomy 8 is frequently occurring in AML, although future molecular genetic workup should be performed, to optimize the diagnosis and treatment of these patients.
Collapse
Affiliation(s)
- Anette Lodvir Hemsing
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Randi Hovland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Galina Tsykunova
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Håkon Reikvam
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Institute of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Regan S, Yang X, Finnberg NK, El-Deiry WS, Pu JJ. Occurrence of acute myeloid leukemia in hydroxyurea-treated sickle cell disease patient. Cancer Biol Ther 2019; 20:1389-1397. [PMID: 31423878 DOI: 10.1080/15384047.2019.1647055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Hydroxyurea (HU) has been widely used in sickle cell disease. Its potential long-term risk for carcinogenesis or leukemogenic risk remains undefined. Here, we report a 26 y old African-American female with Sickle Cell Disease (SCD) who developed refractory/relapsed acute myeloid leukemia (AML) 6 months after 26 months of HU use. That patient's cytogenetics and molecular genetics analyses demonstrated a complex mutation profile with 5q deletion, trisomy 8, and P53 deletion (deletion of 17p13.1). P53 gene sequence studies revealed a multitude of somatic mutations that most suggest a treatment-related etiology. The above-mentioned data indicates that the patient may have developed acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) as a direct result of HU exposure.
Collapse
Affiliation(s)
- Samuel Regan
- Department of Medicine, College of Medicine, SUNY Upstate Medical University , Syracuse , New York , USA
| | - Xuebin Yang
- Department of Pathology, Perelman School of Medicine at the University of Pennsylvania , Philadelphia , PA , USA
| | | | - Wafik S El-Deiry
- Department of Pathology, Warren Alpert Medical School, Brown University , Providence , Rhode Island , USA
| | - Jeffrey J Pu
- Department of Medicine, College of Medicine, SUNY Upstate Medical University , Syracuse , New York , USA.,Upstate Cancer Center, Departments of Medicine, Pathology, and Pharmacology, SUNY Upstate Medical University , Syracuse , New York , USA.,Syracuse VA Medical Center, SUNY Upstate Medical University , Syracuse , New York , USA
| |
Collapse
|
14
|
Li Y, Liu Q, Wang Z, Qin YZ, Dang H, Shi Y, He Q, Jiang Q, Jiang H, Lai YY. [Clinical analysis of myeloid neoplasms with t (3;21) (q26;q22)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:195-199. [PMID: 30929385 PMCID: PMC7342542 DOI: 10.3760/cma.j.issn.0253-2727.2019.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
目的 探讨伴有t(3;21)(q26;q22)髓系肿瘤的临床特征。 方法 回顾性分析2011年1月至2018年3月北京大学人民医院收治的19例伴有t(3;21)(q26;q22)血液恶性肿瘤患者的临床资料,并汇总文献报道的有详细生存资料的48例患者,采用Kaplan-Meier法进行生存分析。 结果 19例患者中男15例,女4例,中位年龄36(22~68)岁,包括原发急性髓系白血病(AML)4例,骨髓增生异常综合征(MDS)4例,MDS转化的AML3例,慢性髓性白血病(CML)急变8例。19例患者染色体核型均可见t(3;21)(q26;q22),其中13例伴有附加异常。19例中9例进行AML1-MDS1融合基因检测均阳性。9例患者有随访资料,6例接受化疗的患者中4例无效,2例获得完全缓解。随访期内除1例MDS患者因随访期短(6个月)仍存活,其余8例均死亡,中位生存时间为6(4.5~22)个月。汇总文献生存分析结果显示伴有t(3;21)(q26;q22)的髓系肿瘤患者整体预后差,中位生存时间为7个月,尤以AML/治疗相关的AML预后最差,移植和非移植组中位生存时间分别为20.9和4.7个月,差异有统计学意义(P<0.001)。 结论 t(3;21)(q26;q22)是罕见的重现性染色体异常,主要见于髓系血液肿瘤,临床预后差,建议尽早进行造血干细胞移植。
Collapse
Affiliation(s)
- Y Li
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tang Z, Tang G, Hu S, Patel KP, Yin CC, Wang W, Lin P, Toruner GA, Ok CY, Gu J, Lu X, Khoury JD, Medeiros LJ. Deciphering the complexities of MECOM rearrangement-driven chromosomal aberrations. Cancer Genet 2019; 233-234:21-31. [DOI: 10.1016/j.cancergen.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/13/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022]
|
16
|
Krishna Chandran R, Geetha N, Sakthivel KM, Suresh Kumar R, Jagathnath Krishna KMN, Sreedharan H. Impact of Additional Chromosomal Aberrations on the Disease Progression of Chronic Myelogenous Leukemia. Front Oncol 2019; 9:88. [PMID: 30891424 PMCID: PMC6411713 DOI: 10.3389/fonc.2019.00088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
The emergence of additional chromosomal abnormalities (ACAs) in Philadelphia chromosome/BCR-ABL1 positive chronic myeloid leukemia (CML), is considered to be a feature of disease evolution. However, their frequency of incidence, impact on prognosis and treatment response effect in CML is not conclusive. In the present study, we performed a chromosome analysis of 489 patients in different clinical stages of CML, using conventional GTG-banding, Fluorescent in situ Hybridization and Spectral Karyotyping. Among the de novo CP cases, ACAs were observed in 30 patients (10.20%) with lowest incidence, followed by IM resistant CP (16.66%) whereas in AP and BC, the occurrence of ACAs were higher, and was about 40.63 and 50.98%, respectively. The frequency of occurrence of ACAs were compared between the study groups and it was found that the incidence of ACAs was higher in BC compared to de novo and IM resistant CP cases. Likewise, it was higher in AP patients when compared between de novo and IM resistant CP cases, mirroring the fact of cytogenetic evolution with disease progression in CML. In addition, we observed 10 novel and 10 rare chromosomal aberrations among the study subjects. This study pinpoints the fact that the genome of advanced phase patients was highly unstable, and this environment of genomic instability is responsible for the high occurrence of ACAs. Treatment response analysis revealed that compared to initial phases, ACAs were associated with an adverse prognostic effect during the progressive stages of CML. This study further portrayed the cytogenetic mechanism of disease evolution in CML.
Collapse
Affiliation(s)
- Ramachandran Krishna Chandran
- Laboratory of Cytogenetics and Molecular Diagnostics, Division of Cancer Research, Regional Cancer Centre, Trivandrum, India
| | - Narayanan Geetha
- Division of Medical Oncology, Regional Cancer Centre, Trivandrum, India
| | - Kunnathur Murugesan Sakthivel
- Laboratory of Cytogenetics and Molecular Diagnostics, Division of Cancer Research, Regional Cancer Centre, Trivandrum, India.,Department of Biochemistry, PSG College of Arts and Science, Coimbatore, India
| | - Raveendran Suresh Kumar
- Laboratory of Cytogenetics and Molecular Diagnostics, Division of Cancer Research, Regional Cancer Centre, Trivandrum, India
| | | | - Hariharan Sreedharan
- Laboratory of Cytogenetics and Molecular Diagnostics, Division of Cancer Research, Regional Cancer Centre, Trivandrum, India
| |
Collapse
|
17
|
Tanaka K, Oshikawa G, Akiyama H, Ishida S, Nagao T, Yamamoto M, Miura O. Acute myeloid leukemia with t(3;21)(q26.2;q22) developing following low-dose methotrexate therapy for rheumatoid arthritis and expressing two AML1/MDS1/EVI1 fusion proteins: A case report. Oncol Lett 2017; 14:97-102. [PMID: 28693140 PMCID: PMC5494941 DOI: 10.3892/ol.2017.6151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 03/03/2017] [Indexed: 11/09/2022] Open
Abstract
The t(3;21)(q26.2;q22) translocation is a rare chromosomal abnormality exhibited almost exclusively in therapy-related myelodysplastic syndrome/acute myeloid leukemia (t-MDS/AML) or in the blastic crisis phase of chronic myelogenous leukemia, which results in the fusion of the runt related transcription factor 1 (RUNX1, also called AML1) gene at 21q22 to the myelodysplasia syndrome 1 (MDS1)-ecotropic virus integration site 1 (EVI1) complex locus (MECOM) at 3q26.2, generating various fusion transcripts, including AML1/MDS1/EVI1 (AME). The present study examined the case of an 84-year-old Japanese woman who developed t-MDS/AML with t(3;21)(q26.2;q22) subsequent to receiving low-dose methotrexate (MTX) treatment for rheumatoid arthritis. Following treatment with MTX for 6 years, the patient developed anemia and neutropenia, and MTX was discontinued. A total of 3 years later, the patient was diagnosed with MDS with t(3;21)(q26.2;q22) and del (5q), which progressed rapidly to AML within 3 months. The patients was subsequently treated with azacitidine and cytarabine chemotherapy, but succumbed to the disease 6 months after diagnosis. Sequencing analysis of the nested reverse transcription-PCR products from the leukemic cells revealed the expression of two types of alternatively-spliced AME transcripts with or without RUNX1 exon 6 sequences. Western blot analysis of the leukemic cells of the patient additionally revealed that the corresponding AME fusion protein products were expressed at high levels, and that these cells also prominently expressed CCAAT/enhancer-binding protein α, the repression of which has been reported to be involved in leukemogenesis mediated by AME. To the best of our knowledge, the case discussed in the present study represents the first report of MDS/AML with t(3;21)(q26.2;q22) developing following low-dose MTX therapy for rheumatoid arthritis. Nonetheless, the clinical and molecular features of the patient in the present study were representative of those patients who typically develop this disease following exposure to chemotherapy or radiotherapy for primary malignancy, which implicates MTX in the pathogenesis of t-MDS/AML. Moreover, we confirmed the expression of two AME fusion proteins for the first time in primary leukemic cells and analyzed several cellular factors implicated in AME-mediated leukemogenesis to gain some insight into its molecular mechanisms.
Collapse
Affiliation(s)
- Keisuke Tanaka
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Gaku Oshikawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroki Akiyama
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shinya Ishida
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Toshikage Nagao
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masahide Yamamoto
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
18
|
Abstract
The spectrum of chromosomal abnormality associated with leukemogenesis of acute myeloid leukemia (AML) is broad and heterogeneous when compared to chronic myeloid leukemia and other myeloid neoplasms. Recurrent chromosomal translocations such as t(8;21), t(15;17), and inv(16) are frequently detected, but hundreds of other uncommon chromosomal aberrations from AML also exist. This chapter discusses 22 chromosomal abnormalities that are common structural, numerical aberrations, and other important but infrequent (less than 1 %) translocations emphasized in the WHO classification. Brief morphologic, cytogenetic, and clinical characteristics are summarized, so as to provide a concise reference to cancer cytogenetic laboratories. Morphology based on FAB classification is used together with the current WHO classification due to frequent mentioning in a vast number of reference literatures. Characteristic chromosomal aberrations of other myeloid neoplasms such as myelodysplastic syndrome and myeloproliferative neoplasm will be discussed in separate chapters-except for certain abnormalities such as t(9;22) in de novo AML. Gene mutations detected in normal karyotype AML by cutting edge next generation sequencing technology are also briefly mentioned.
Collapse
|
19
|
Bueso-Ramos CE, Kanagal-Shamanna R, Routbort MJ, Hanson CA. Therapy-Related Myeloid Neoplasms. Am J Clin Pathol 2015; 144:207-18. [PMID: 26185306 DOI: 10.1309/ajcpu1jo2lytwuav] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES In the 2008 World Health Organization classification, cases of acute myeloid leukemia (AML) and myelodysplastic syndrome that arise after chemotherapy or radiation therapy for a primary neoplasm are considered together as therapy-related myeloid neoplasms (TR-MNs). This concept, however, is not universally accepted since there are confounding variables in attributing myeloid neoplasms to earlier therapies. METHODS Cases in session 6 of the 2013 Workshop of the Society for Hematopathology/European Association for Haematopathology illustrated myeloid neoplasms thought likely to be TR-MNs, and discussed the differences and biologic similarities with de novo myeloid neoplasms. RESULTS We reviewed data showing that diagnosis of TR-MN alters patient outcome only in specific subsets. The session also included examples of therapy-related AML with recurrent genetic abnormalities, such as t(15;17), inv(16), and t(8;21), and reports were highlighted showing that patients with these neoplasms have clinical outcomes similar to patients with their de novo counterparts. CONCLUSIONS The study of TR-MNs will likely provide insight into the pathogenesis of de novo myeloid disease and may explain why some patients with cancer develop TR-MN and evidently have a higher genetic susceptibility, whereas most patients treated with the same agents do not. These studies will also result in critical reappraisal of current concepts related to TR-MNs.
Collapse
Affiliation(s)
- Carlos E. Bueso-Ramos
- Division of Pathology and Laboratory Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Rashmi Kanagal-Shamanna
- Division of Pathology and Laboratory Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Mark J. Routbort
- Division of Pathology and Laboratory Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston
| | | |
Collapse
|
20
|
An unusual case of splenomegaly and increased lactate dehydrogenase heralding acute myeloid leukemia with eosinophilia and RUNX1-MECOM fusion transcripts. Leuk Res Rep 2014; 3:83-5. [PMID: 25379409 PMCID: PMC4220014 DOI: 10.1016/j.lrr.2014.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/28/2014] [Accepted: 09/21/2014] [Indexed: 11/22/2022] Open
Abstract
We report the first case of acute myeloid leukemia (AML) with RUNX1-MECOM fusion transcripts, showing marked eosinophilia. A 63-year old man admitted in August 2013, had previously been observed in April 2013, because of persisting homogeneous splenomegaly and increased LDH, which were initially attributed to both minor β-thalassemia and previous acute myocardial infarction. However, based upon the retrospective analysis of clinical features combined with the documentation of both JAK2 V617F and c-KIT D816V mutations at AML diagnosis, an aggressive leukemic transformation with eosinophilia of a previously unrecognized myeloproliferative neoplasm, rather than the occurrence of de novo AML, may be hypothesized.
Collapse
|
21
|
Abstract
The BCR-ABL1 oncoprotein is the cause of chronic myeloid leukemia and occurs as a consequence of the translocation t(9;22), a well-defined genetic event that results in the formation of the Philadelphia chromosome. While this genomic aberration is recognized to be the main culprit of the chronic phase of chronic myeloid leukemia, the natural clonal evolution of this myeloproliferative neoplasm involves the accumulation of secondary alterations through genomic instability. Thus, efforts to dissect the frequency and nature of the genomic events at diagnosis and at later stages are producing valuable insights into understanding the mechanisms of blastic transformation and development of resistance in chronic myeloid leukemia. The identification of alternative BCR-ABL1-dependent and BCR-ABL1-independent targets that sustain the survival of leukemic blasts and/or leukemia-initiating cells will facilitate the development of novel viable therapeutic options for patients who become resistant or intolerant to the currently available therapeutic options based on tyrosine kinase inhibitors.
Collapse
|
22
|
Dolz S, Barragán E, Fuster Ó, Llop M, Cervera J, Such E, De Juan I, Palanca S, Murria R, Bolufer P, Luna I, Gómez I, López M, Ibáñez M, Sanz MA. Novel real-time polymerase chain reaction assay for simultaneous detection of recurrent fusion genes in acute myeloid leukemia. J Mol Diagn 2013; 15:678-86. [PMID: 23806810 DOI: 10.1016/j.jmoldx.2013.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 11/28/2022] Open
Abstract
The recent World Health Organization classification recognizes different subtypes of acute myeloid leukemia (AML) according to the presence of several recurrent genetic abnormalities. Detection of these abnormalities and other molecular changes is of increasing interest because it contributes to a refined diagnosis and prognostic assessment in AML and enables monitoring of minimal residual disease. These genetic abnormalities can be detected using single RT-PCR, although the screening is still labor intensive and costly. We have developed a novel real-time RT-PCR assay to simultaneously detect 15 AML-associated rearrangements that is a simple and easily applicable method for use in clinical diagnostic laboratories. This method showed 100% specificity and sensitivity (95% confidence interval, 91% to 100% and 92% to 100%, respectively). The procedure was validated in a series of 105 patients with AML. The method confirmed all translocations detected using standard cytogenetics and fluorescence in situ hybridization and some additional undetected rearrangements. Two patients demonstrated two molecular rearrangements simultaneously, with BCR-ABL1 implicated in both, in addition to RUNX1-MECOM in one patient and PML-RARA in another. In conclusion, this novel real-time RT-PCR assay for simultaneous detection of multiple AML-associated fusion genes is a versatile and sensitive method for reliable screening of recurrent rearrangements in AML.
Collapse
Affiliation(s)
- Sandra Dolz
- Laboratory of Molecular Biology, Department of Clinical Chemistry, University Hospital La Fe, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
t(15;17)(q24.1;q21.2)/PML-RARA in blast phase of chronic myelogenous leukemia: a rare form of clonal evolution. J Hematop 2012. [DOI: 10.1007/s12308-012-0172-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
25
|
Yang JJ, Cho SY, Suh JT, Lee HJ, Lee WI, Yoon HJ, Baek SK, Park TS. Detection of RUNX1-MECOM fusion gene and t(3;21) in a very elderly patient having acute myeloid leukemia with myelodysplasia-related changes. Ann Lab Med 2012; 32:362-5. [PMID: 22950073 PMCID: PMC3427825 DOI: 10.3343/alm.2012.32.5.362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/17/2012] [Accepted: 07/19/2012] [Indexed: 11/19/2022] Open
Abstract
An 87-yr-old woman was diagnosed with AML with myelodysplasia-related changes (AML-MRC). The initial complete blood count showed Hb level of 5.9 g/dL, platelet counts of 27×109/L, and white blood cell counts of 85.33×109/L with 55% blasts. Peripheral blood samples were used in all the tests, as bone marrow examination could not be performed because of the patient's extremely advanced age and poor general health condition. Flow cytometric analysis, chromosome analysis, FISH, and reverse transcriptase-PCR (RT-PCR) results indicated AML-MRC resulting from t(3;21) with the RUNX1-MECOM fusion gene. To our knowledge, this is the second most elderly de novo AML patient associated with t(3;21) to be reported.
Collapse
|
26
|
Li S, Yin CC, Medeiros LJ, Bueso-Ramos C, Lu G, Lin P. Myelodysplastic syndrome/acute myeloid leukemia with t(3;21)(q26.2;q22) is commonly a therapy-related disease associated with poor outcome. Am J Clin Pathol 2012; 138:146-52. [PMID: 22706870 DOI: 10.1309/ajcpzrrl2dgc2oda] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The t(3;21)(q26.2;q22) translocation is rare in cases of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). We studied 17 patients with MDS/AML associated with t(3;21) and compared them with 17 patients with MDS associated with inv(3) (q21q26.2)/t(3;3)(q21;q26.2), because these entities share 3q26 locus abnormalities. The t(3;21) group included 9 men and 8 women, with a median age of 62 years (range, 13-81 years). One case was de novo AML and 16 cases were therapy-related, including 12 MDS (blasts, <15%) and 4 AML (blasts, 33%-50%). All patients had multilineage dysplasia, whereas none had thrombocytosis. Additional cytogenetic aberrations were identified in 12 cases, including -7/7q (n = 9) and a complex karyotype (n = 7). All patients died, with 1- and 2-year survival rates of 35% and 6%, respectively. Although multilineage dysplasia and frequent association with -7/7q were similar in both groups, MDS/AML cases associated with t(3;21) have a higher frequency of therapy-related disease and shorter survival times, suggesting that they are distinct from MDS/AML cases associated with inv(3)/t(3;3).
Collapse
|
27
|
Park HJ, Choi JH, Lee KA, Kim HC, Nam YS, Oh YH, Lee WS. A case of therapy-related acute myeloid leukemia following 5-fluorouracil chemotherapy. Korean J Intern Med 2012; 27:115-7. [PMID: 22403512 PMCID: PMC3295980 DOI: 10.3904/kjim.2012.27.1.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/15/2008] [Accepted: 12/29/2008] [Indexed: 11/27/2022] Open
Affiliation(s)
- Hye Jeong Park
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Jung-Hye Choi
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Kyeong A Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Hyun Cheol Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Young-Soo Nam
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Young-Ha Oh
- Department of Pathology, Hanyang University College of Medicine, Seoul, Korea
| | - Woong-Soo Lee
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Cytogenetic profile of 1,863 Ph/BCR-ABL-positive chronic myelogenous leukemia patients from the Chinese population. Ann Hematol 2012; 91:1065-72. [PMID: 22349721 DOI: 10.1007/s00277-012-1421-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/28/2012] [Indexed: 10/14/2022]
Abstract
Cytogenetic analyses of chronic myelogenous leukemia (CML) have been performed previously in a large number of reports, but systematical research based on large sample sizes from the Chinese population is seldom available. In this study, we analyzed the cytogenetic profiles of 1,863 Philadelphia (Ph)/BCR-ABL-positive CML patients from a research center in China. Of 1,266 newly diagnosed CML patients, the median age was 41 years, which is younger than the median age of diagnosis in western populations. The incidence of additional chromosome abnormalities (ACA) was 3.1% in newly diagnosed chronic phase (CP), 9.1% in CP after therapy, 35.4% in accelerated phase, and 52.9% in blast crisis (BC), reflecting cytogenetic evolution with CML progression. A higher prevalence of ACA was observed in variant Ph translocations than in standard t(9;22) in the disease progression, especially in BC (88.2% vs. 50%, P = 0.002). Moreover, a hyperdiploid karyotype and trisomy 8 were closely correlated with myeloid BC, while a hypodiploid karyotype and monosomy 7 were associated with lymphoid-BC. Among subsets of myeloid-BC, myeloid-BC with minimal differentiation had a higher ACA rate than myeloid-BC with granulocytic differentiation (80% vs. 46.8%, P = 0.009) and myeloid-BC with monocytic differentiation (80% vs. 42.9%, P = 0.006). These data provide novel insights into cytogenetics of CML within the Chinese population.
Collapse
|
29
|
Sun J, Yin CC, Cui W, Chen SS, Medeiros LJ, Lu G. Chromosome 20q deletion: a recurrent cytogenetic abnormality in patients with chronic myelogenous leukemia in remission. Am J Clin Pathol 2011; 135:391-7. [PMID: 21350093 DOI: 10.1309/ajcpqfsc9zjnmaz6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
del(20q) can be observed in hematologic neoplasms, including chronic myelogenous leukemia (CML), and has been reported in patients undergoing blast transformation. We describe 10 patients with CML in hematologic and cytogenetic remission with del(20q) detected by conventional cytogenetics. There were 6 men and 4 women with a median age of 56 years. All patients initially had BCR-ABL1 and t(9;22) (q34;q11.2) and achieved morphologic and cytogenetic remission after therapy. del(20q) was identified before (2/10 [20%]), at the time of (3/10 [30%]), or after (5/10 [50%]) cytogenetic remission and was not associated with morphologic evidence of dysplasia. At last follow-up, no patients had a myelodysplastic syndrome (MDS). Leukocyte and platelet counts were normal; 4 of 10 patients had mild anemia. Nine patients have remained in morphologic and cytogenetic remission with stable del(20q). BCR-ABL1 fusion transcript levels were absent or low (median, 0.01%). Recently, in 1 patient, recurrent CML developed and del(20q) was lost. We conclude that del(20q) in the setting of CML in remission is not predictive of MDS or blast transformation.
Collapse
Affiliation(s)
- Jianlan Sun
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston
| | - Wei Cui
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston
| | - Su S. Chen
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston
| | - Gary Lu
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston
| |
Collapse
|
30
|
Ng BL, Carter NP. Laser excitation power and the flow cytometric resolution of complex karyotypes. Cytometry A 2010; 77:585-8. [PMID: 20506467 DOI: 10.1002/cyto.a.20904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The analytical resolution of individual chromosome peaks in the flow karyotype of cell lines is dependent on sample preparation and the detection sensitivity of the flow cytometer. We have investigated the effect of laser power on the resolution of chromosome peaks in cell lines with complex karyotypes. Chromosomes were prepared from a human gastric cancer cell line and a cell line from a patient with an abnormal phenotype using a modified polyamine isolation buffer. The stained chromosome suspensions were analyzed on a MoFlo sorter (Beckman Coulter) equipped with two water-cooled lasers (Coherent). A bivariate flow karyotype was obtained from each of the cell lines at various laser power settings and compared to a karyotype generated using laser power settings of 300 mW. The best separation of chromosome peaks was obtained with laser powers of 300 mW. This study demonstrates the requirement for high-laser powers for the accurate detection and purification of chromosomes, particularly from complex karyotypes, using a conventional flow cytometer.
Collapse
Affiliation(s)
- Bee L Ng
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom.
| | | |
Collapse
|
31
|
Yin CC, Medeiros LJ, Bueso-Ramos CE. Recent advances in the diagnosis and classification of myeloid neoplasms--comments on the 2008 WHO classification. Int J Lab Hematol 2010; 32:461-76. [PMID: 20626469 DOI: 10.1111/j.1751-553x.2010.01246.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fourth edition of the World Health Organization (WHO) classification of myeloid neoplasms refined the criteria for some previously described myeloid neoplasms and recognized several new entities based on recent elucidation of molecular pathogenesis, identification of new diagnostic and prognostic markers, and progress in clinical management. Protein tyrosine kinase abnormalities, including translocations or mutations involving ABL1, JAK2, MPL, KIT, PDGFRA, PDGFRB, and FGFR1, have been used as the basis for classifying myeloproliferative neoplasms (MPN). Two new entities - refractory cytopenia with unilineage dysplasia and refractory cytopenia of childhood have been added to the group of myelodysplastic syndromes (MDS), and 'refractory anemia with excess blasts-1' has been redefined to emphasize the prognostic significance of increased blasts in the peripheral blood. A list of cytogenetic abnormalities has been introduced as presumptive evidence of MDS in cases with refractory cytopenia but without morphologic evidence of dysplasia. The subgroup 'acute myeloid leukemia (AML) with recurrent genetic abnormalities' has been expanded to include more molecular genetic aberrations. The entity 'AML with multilineage dysplasia' specified in the 2001 WHO classification has been renamed 'AML with myelodysplasia-related changes' to include not only cases with significant multilineage dysplasia but also patients with a history of MDS or myelodysplasia-related cytogenetic abnormalities. The term 'therapy-related myeloid neoplasms' is used to cover the spectrum of disorders previously known as t-AML, t-MDS, or t-MDS/MPN occurring as complications of cytotoxic chemotherapy and/or radiation therapy. In this review, we summarize many of these important changes and discuss some of the diagnostic challenges that remain.
Collapse
Affiliation(s)
- C C Yin
- The Department of Hematopathology, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
32
|
Valent P, Wieser R. Update on genetic and molecular markers associated with myelodysplastic syndromes. Leuk Lymphoma 2009; 50:341-8. [PMID: 19263296 DOI: 10.1080/10428190902756107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid neoplasms defined by morphologic dysplasia, peripheral cytopenia and clonal instability with enhanced risk of transformation into acute myeloid leukemia. The prognosis and clinical picture in MDS vary depending on patient-related factors (age, gender, comorbidity), the disease variant, cell types affected and genes involved in the malignant process. In fact, more and more data suggest that cytogenetic and molecular defects and gene variants are associated with the clinical course and prognosis in MDS. Although certain molecular defects are indicative of distinct cytogenetic abnormalities, others represent point mutations in critical target genes (RUNX1, N-RAS, JAK2, KIT, others) and sometimes are associated with a particular type of MDS, an overlap disease, a co-existing hematopoietic neoplasm or disease progression. Although most are somatic mutations, germ line mutations and gene polymorphisms have also been described in MDS. Some of these mutations may influence the natural course of disease, iron accumulation or disease progression. The present article provides a summary of our current knowledge about molecular and genetic markers in MDS, with special reference to their potential prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Peter Valent
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
33
|
Yin CC, Abruzzo LV, Qiu X, Apostolidou E, Cortes JE, Medeiros LJ, Lu G. del(15q) is a recurrent minor-route cytogenetic abnormality in the clonal evolution of chronic myelogenous leukemia. ACTA ACUST UNITED AC 2009; 192:18-23. [PMID: 19480932 DOI: 10.1016/j.cancergencyto.2009.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/11/2009] [Accepted: 02/18/2009] [Indexed: 10/20/2022]
Abstract
The del(15q) chromosomal abnormality is known to occur in acute leukemias, but has rarely been described in chronic myelogenous leukemia (CML). Described here are five cases of CML associated with del(15q): four men and one woman. Bone marrow aspirate smears showed increased blasts in all cases at the time of del(15q) detection, in accelerated phase in two cases and myeloid blast phase in three. Conventional cytogenetic analysis showed t(9;22) and del(15q), as well as other inconsistent clonal abnormalities. All patients received imatinib mesylate; four received additional chemotherapy, and two had allogeneic stem cell transplantation (ASCT). Of the three patients who did not receive ASCT, one died, one was in persistent blast phase, and one was in clinical remission with molecular evidence of residual disease at 16, 6, and 34 months, respectively, after identification of the del(15q). Of the two patients who had ASCT, one died and one was in clinical remission with molecular evidence of disease at 15 and 64 months, respectively, after identification of the del(15q). These findings indicate that del(15q) is a recurrent cytogenetic abnormality that may be seen at initial presentation of advanced disease or may emerge during disease progression. Del(15q) appears to be associated with a poor prognosis in CML.
Collapse
Affiliation(s)
- C Cameron Yin
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Kuila N, Sahoo DP, Kumari M, Biswas S, Patnaik RS, Pattnayak NC, Biswas G, Chakraborty S. EVI1, BAALC and AME: Prevalence of the secondary mutations in chronic and accelerated phases of chronic myeloid leukemia patients from eastern India. Leuk Res 2009; 33:594-6. [DOI: 10.1016/j.leukres.2008.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 11/27/2022]
|
35
|
Senyuk V, Rinaldi CR, Li D, Cattaneo F, Stojanovic A, Pane F, Du X, Mahmud N, Dickstein J, Nucifora G. Consistent up-regulation of Stat3 Independently of Jak2 mutations in a new murine model of essential thrombocythemia. Cancer Res 2009; 69:262-71. [PMID: 19118011 DOI: 10.1158/0008-5472.can-08-2534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Janus-activated kinase 2 (JAK2) mutations are common in myeloproliferative disorders; however, although they are detected in virtually all polycythemia vera patients, they are found in approximately 50% of essential thrombocythemia (ET) patients, suggesting that converging pathways/abnormalities underlie the onset of ET. Recently, the chromosomal translocation 3;21, leading to the fusion gene AML1/MDS1/EVI1 (AME), was observed in an ET patient. After we forced the expression of AME in the bone marrow (BM) of C57BL/6J mice, all the reconstituted mice died of a disease with symptoms similar to ET with a latency of 8 to 16 months. Peripheral blood smears consistently showed an elevated number of dysplastic platelets with anisocytosis, degranulation, and giant size. Although the AME-positive mice did not harbor Jak2 mutations, the BM of most of them had significantly higher levels of activated Stat3 than the controls. With combined biochemical and biological assays we found that AME binds to the Stat3 promoter leading to its up-regulation. Signal transducers and activators of transcription 3 (STAT3) analysis of a small group of ET patients shows that in about half of the patients, there is STAT3 hyperactivation independently of JAK2 mutations, suggesting that the hyperactivation of STAT3 by JAK2 mutations or promoter activation may be a critical step in development of ET.
Collapse
Affiliation(s)
- Vitalyi Senyuk
- Department of Medicine, College of Medicine, University of Illinois at Chicago, 909 Wolcott Avenue, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Park TS, Choi JR, Yoon SH, Song J, Kim J, Kim SJ, Kwon O, Min YH. Acute promyelocytic leukemia relapsing as secondary acute myelogenous leukemia with translocation t(3;21)(q26;q22) and RUNX1–MDS1–EVI1 fusion transcript. ACTA ACUST UNITED AC 2008; 187:61-73. [DOI: 10.1016/j.cancergencyto.2008.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/22/2008] [Accepted: 06/30/2008] [Indexed: 11/30/2022]
|
37
|
Haas K, Kundi M, Sperr WR, Esterbauer H, Ludwig WD, Ratei R, Koller E, Gruener H, Sauerland C, Fonatsch C, Valent P, Wieser R. Expression and prognostic significance of different mRNA 5'-end variants of the oncogene EVI1 in 266 patients with de novo AML: EVI1 and MDS1/EVI1 overexpression both predict short remission duration. Genes Chromosomes Cancer 2008; 47:288-98. [PMID: 18181178 DOI: 10.1002/gcc.20532] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rearrangements of chromosome band 3q26.2 lead to overexpression of the EVI1 gene and are associated with a poor prognosis in myeloid malignancies. EVI1 is also overexpressed in some cases without 3q26 rearrangements. To uncover its prognostic significance in this patient group, however, it may be necessary to distinguish among several known 5'-end variants of its mRNA. According to a recent report, overexpression of the transcript variant EVI1_1d was associated with shortened survival in acute myeloid leukemia (AML), but overexpression of MDS1/EVI1, whose protein product differs structurally and functionally from that of all other known EVI1 5'-end variants, was not. The aim of the present study was to determine, for the first time, the expression and prognostic significance of all known EVI1 5'-end variants in AML. Quantitative RT-PCR was used to measure the expression of EVI1_1a, EVI1_1b, EVI1_1d, EVI1_3L, and MDS1/EVI1 in 266 samples from patients with de novo AML. To correlate expression of the EVI1 5'-end variants with survival parameters, regression analyses were performed. 41/266 patients (15.4%) overexpressed at least one, but more often several or all, EVI1 transcript type(s). High expression of each of the EVI1 mRNA variants, including MDS1/EVI1, was significantly associated with shortened continuous complete remission in the total patient population as well as in the subgroups of patients with intermediate risk or normal cytogenetics. The present study therefore shows that high levels of each of the known EVI1 mRNA 5'-end variants represents an adverse prognostic factor in de novo AML without 3q26 rearrangements. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.
Collapse
Affiliation(s)
- Katja Haas
- Department of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
De Braekeleer É, Douet-Guilbert N, Le Bris MJ, Morel F, De Braekeleer M. Translocation 3;21, trisomy 8, and duplication of the Philadelphia chromosome: a rare but recurrent cytogenetic pathway in the blastic phase of chronic myeloid leukemia. ACTA ACUST UNITED AC 2007; 179:159-61. [DOI: 10.1016/j.cancergencyto.2007.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
|
39
|
Affiliation(s)
- Gunnar Birgegård
- Department of Haematology, University Hospital, Uppsala, Sweden.
| |
Collapse
|
40
|
Senyuk V, Sinha KK, Li D, Rinaldi CR, Yanamandra S, Nucifora G. Repression of RUNX1 activity by EVI1: a new role of EVI1 in leukemogenesis. Cancer Res 2007; 67:5658-66. [PMID: 17575132 DOI: 10.1158/0008-5472.can-06-3962] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recurring chromosomal translocations observed in human leukemia often result in the expression of fusion proteins that are DNA-binding transcription factors. These altered proteins acquire new dimerization properties that result in the assembly of inappropriate multimeric transcription complexes that deregulate hematopoietic programs and induce leukemogenesis. Recently, we reported that the fusion protein AML1/MDS1/EVI1 (AME), a product of a t(3;21)(q26;q22) associated with chronic myelogenous leukemia and acute myelogenous leukemia, displays a complex pattern of self-interaction. Here, we show that the 8th zinc finger motif of MDS1/EVI1 is an oligomerization domain involved not only in interaction of AME with itself but also in interactions with the parental proteins, RUNX1 and MDS1/EVI1, from which AME is generated. Because the 8th zinc finger motif is also present in the oncoprotein EVI1, we have evaluated the effects of the interaction between RUNX1 and EVI1 in vitro and in vivo. We found that in vitro, this interaction alters the ability of RUNX1 to bind to DNA and to regulate a reporter gene, whereas in vivo, the expression of the isolated 8th zinc finger motif of EVI1 is sufficient to block the granulocyte colony-stimulating factor-induced differentiation of 32Dcl3 cells, leading to cell death. As EVI1 is not detected in normal bone marrow cells, these data suggest that its inappropriate expression could contribute to hematopoietic transformation in part by a new mechanism that involves EVI1 association with key hematopoietic regulators, leading to their functional impairment.
Collapse
Affiliation(s)
- Vitalyi Senyuk
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
41
|
Shapiro S, Hughes G, Al-Obaidi MJ, O'Reilly E, Ramesh S, Smith J, Ahmad R, Dawson C, Riddle P, Sekhar M. Acute myeloid leukaemia secondary to treatment with capecitabine for metastatic colorectal cancer. Eur J Haematol 2007; 78:543-4. [PMID: 17509107 DOI: 10.1111/j.1600-0609.2007.00864.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A 63-year-old woman was diagnosed with acute myelo-monocytic leukaemia, associated with MLL gene rearrangement, 16 months after completion of oral capecitabine for metastatic colon cancer. Capecitabine, recommended for use in metastatic breast and colon cancer and more recently as adjuvant treatment of colon cancer, has not previously been reported to be associated with secondary cancer.
Collapse
Affiliation(s)
- Susan Shapiro
- Department of Haematology, West Middlesex University Hospital, Middlesex, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bobadilla D, Enriquez EL, Alvarez G, Gaytan P, Smith D, Slovak ML. An interphase fluorescence in situ hybridisation assay for the detection of 3q26.2/EVI1 rearrangements in myeloid malignancies. Br J Haematol 2007; 136:806-13. [PMID: 17341266 DOI: 10.1111/j.1365-2141.2007.06505.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromosome rearrangements involving band 3q26.2 are associated with myeloid malignancies, aberrant expression of the human ecotropic virus integration site-1 (EVI1) gene, an unfavourable prognosis and an aggressive clinical course. The 3q26.2 rearrangements are characteristically heterogeneous and typically difficult to detect in poor quality metaphases. To develop a dual-colour fluorescence in situ hybridisation (FISH) assay for the detection of 3q26.2/EVI1 aberrations, a series of 10 BAC clones corresponding to the EVI1 gene region were systematically evaluated and narrowed down to two probe sets; one probe set encompassed the EVI1 gene extending centromeric, while the second probe set covered the EVI1 gene and extends telomeric. Both probe sets were evaluated on 35 patient samples with cytogenetically defined 3q26.2 rearrangements collected at various treatment time points, the inv(3)(q21q26.2) Kasumi-4 cell line, and 10 known negative samples. The two-probe set strategy identified all samples, despite the vast breakpoint heterogeneity observed. In samples from acute myeloid leukaemia and myelodysplastic syndrome cases, the majority of inversion breakpoints were 3' to EVI1 whereas 3q26.2 translocation breakpoints frequently mapped 5' to EVI1. However, two 3q26.2 translocation samples had breakpoints 3' to EVI1. Most inv(3q) chronic myeloid leukaemia samples showed breakpoints within the EVI1 gene. This study demonstrated that, despite the extensive breakpoint heterogeneity observed with 3q26.2 aberrations, this FISH strategy is effective for the detection of 3q26.2 abnormalities in myeloid malignancies.
Collapse
Affiliation(s)
- Dolores Bobadilla
- Department of Cytogenetics, City of Hope national Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
43
|
Wieser R. The oncogene and developmental regulator EVI1: expression, biochemical properties, and biological functions. Gene 2007; 396:346-57. [PMID: 17507183 DOI: 10.1016/j.gene.2007.04.012] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/14/2007] [Accepted: 04/09/2007] [Indexed: 01/16/2023]
Abstract
The EVI1 gene codes for a zinc finger transcription factor with important roles both in normal development and in leukemogenesis. Transcriptional activation of this gene through chromosome rearrangements or other, yet to be identified mechanisms leads to particularly aggressive forms of human myeloid leukemia. In vitro as well as in animal model systems, EVI1 affected cellular proliferation, differentiation, and apoptosis in cell type specific ways. Retroviral integrations into the EVI1 locus provided cells with increased abilities to engraft, survive, and proliferate in bone marrow transplantation experiments. Experimental overexpression of EVI1 by itself was insufficient to cause leukemia in animal model systems, but it cooperated with other genes in this process. This review summarizes the currently available experimental evidence for the proposed biochemical and biological functions of this important oncogene.
Collapse
Affiliation(s)
- Rotraud Wieser
- Department of Medical Genetics, Medical University of Vienna, Währingerstr, 10, A-1090 Wien, Austria.
| |
Collapse
|