1
|
Mutluay D, Tenekeci GY, Monsef YA. Bortezomib-Induced Ovarian Toxicity in Mice. Toxicol Pathol 2022; 50:381-389. [DOI: 10.1177/01926233221083527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer survivors may experience long-term adverse effects of cancer treatments such as premature ovarian failure and infertility. We aimed to investigate the potential effects and toxicity of bortezomib (BTZ) as an effective anticancer drug on ovaries, raise awareness to the negative consequences of the treatment, and help increase the quality of life after treatment. Mice were distributed into bortezomib (BTZ1, BTZ2) and saline-injected control groups (C1, C2) at a dose of 1 mg/kg twice per week for 6 weeks. We sacrificed C1, BTZ1 groups at day 1 and C2, BTZ2 groups at 4 weeks after the last injection. Ovary samples were examined using histopathological and immunohistochemical methods. Ovarian follicle impairment was detected on BTZ-treated mice and was associated with a statistically significant decreased population of primordial and antral follicles compared with control groups. In experimental groups, Caspase-3 and Ki67 expressions were increased, whereas estrogen receptor alpha (ERα) and progesterone receptor (PR) expressions were decreased in various developmental stages of follicles. BTZ specifically targets granulosa cells by inducing granulosa cell apoptosis and may have long-term effects on follicles. Bortezomib treatment may adversely affect ovarian function by accelerating ovarian reserve depletion and changing ERα and PR hormone levels that can cause fertility problems in the long term.
Collapse
Affiliation(s)
- Duygu Mutluay
- Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Burdur, Turkey
| | | | | |
Collapse
|
2
|
Dhasmana A, Dhasmana S, Kotnala S, A A, Kashyap VK, Shaji PD, Laskar P, Khan S, Pellicano R, Fagoonee S, Haque S, Yallapu MM, Chauhan SC, Jaggi M. A topography of immunotherapies against gastrointestinal malignancies. Panminerva Med 2021; 64:56-71. [PMID: 34664484 DOI: 10.23736/s0031-0808.21.04541-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gastrointestinal (GI) cancers are one of the leading causes of death worldwide. Although various approaches are implemented to improve the health condition of GI patients, none of the treatment protocols promise for eradicating cancer. However, a treatment mechanism against any kind of disease condition is already existing executing inside the human body. The 'immune system' is highly efficient to detect and destroy the unfavourable events of the body including tumor cells. The immune system can restrict the growth and proliferation of cancer. Cancer cells behave much smarter and adopt new mechanisms for hiding from the immune cells. Thus, cancer immunotherapy might play a decisive role to train the immune system against cancer. In this review, we have discussed the immunotherapy permitted for the treatment of GI cancers. We have discussed various methods and mechanisms, periodic development of cancer immunotherapies, approved biologicals, completed and ongoing clinical trials, role of various biopharmaceuticals, and epigenetic factors involved in GI cancer immunotherapies (graphical abstract Figure 1).
Collapse
Affiliation(s)
- Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.,Department of Biosciences and Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Swati Dhasmana
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Sudhir Kotnala
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Anukriti A
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University, Lakshamgarh, Rajasthan, India
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Poornima D Shaji
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | | | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.,Bursa Uludağ University Faculty of Medicine, Görükle Campus, Nilüfer, Bursa, Turkey
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX, USA - meena.jaggi @utrgv.edu.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| |
Collapse
|
3
|
Zhang Y, Liu Q, Wei W, Zhang G, Yan S, Dai R, Sun Y, Su D, Lv S, Xia Y, Li J, Li C. Bortezomib potentiates antitumor activity of mitoxantrone through dampening Wnt/β-catenin signal pathway in prostate cancer cells. BMC Cancer 2021; 21:1101. [PMID: 34645397 PMCID: PMC8515742 DOI: 10.1186/s12885-021-08841-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Bortezomib (BZM), alone or in combination with other chemotherapies, has displayed strong anticancer effects in several cancers. The efficacy of the combination of BZM and mitoxantrone (MTX) in treating prostate cancer remains unknown. METHODS Anticancer effects of combination of BZM and MTX were determined by apoptosis and proliferation assay in vivo and in vitro. Expression of β-Catenin and its target genes were characterized by western blot and Real-time PCR. RESULTS BZM significantly enhanced MTX-induced antiproliferation in vivo and in vitro. Mice administered a combination of BZM and MTX displayed attenuated tumor growth and prolonged survival. BZM significantly attenuated MTX-induced apoptosis. Moreover, the combination of BZM and MTX contributed to inhibition of the Wnt/β-Catenin signaling pathway compared to monotherapy. CONCLUSIONS This study demonstrates that BZM enhances MTX-induced anti-tumor effects by inhibiting the Wnt/β-Catenin signaling pathway in prostate cancer cells.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Qiuzi Liu
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Wei Wei
- Center for Experimental Medicine, School of Public Health, Jining Medical University, Jining, 272067, China
| | - Guoan Zhang
- Institute of Cancer Pathology Research, Jining Medical University, Jining, 272067, China
| | - Siyuan Yan
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Rongrong Dai
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Ying Sun
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Dubo Su
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Shun Lv
- Laboratory animal center, Jining Medical University, Jining, 272067, China
| | - Yong Xia
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Jing Li
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Changlin Li
- Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
4
|
Zhao L, Zhao J, Zhang Y, Wang L, Zuo L, Niu A, Zhang W, Xue X, Zhao S, Sun C, Li K, Wang J, Bian Z, Zhao X, Saur D, Seidler B, Wang C, Qi T. Generation and identification of a conditional knockout allele for the PSMD11 gene in mice. BMC DEVELOPMENTAL BIOLOGY 2021; 21:4. [PMID: 33517884 PMCID: PMC7849139 DOI: 10.1186/s12861-020-00233-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Our previous study have shown that the PSMD11 protein was an important survival factor for cancer cells except for its key role in regulation of assembly and activity of the 26S proteasome. To further investigate the role of PSMD11 in carcinogenesis, we constructed a conditional exon 5 floxed allele of PSMD11 (PSMD11flx) in mice. RESULTS It was found that homozygous PSMD11 flx/flx mice showed normal and exhibited a normal life span and fertility, and showed roughly equivalent expression of PSMD11 in various tissues, suggesting that the floxed allele maintained the wild-type function. Cre recombinase could induce efficient knockout of the floxed PSMD11 allele both in vitro and in vivo. Mice with constitutive single allele deletion of PSMD11 derived from intercrossing between PSMD11flx/flx and CMV-Cre mice were all viable and fertile, and showed apparent growth retardation, suggesting that PSMD11 played a significant role in the development of mice pre- or postnatally. No whole-body PSMD11 deficient embryos (PSMD11-/-) were identified in E7.5-8.5 embryos in uteros, indicating that double allele knockout of PSMD11 leads to early embryonic lethality. To avoid embryonic lethality produced by whole-body PSMD11 deletion, we further developed conditional PSMD11 global knockout mice with genotype Flp;FSF-R26CAG - CreERT2/+; PSMD11 flx/flx, and demonstrated that PSMD11 could be depleted in a temporal and tissue-specific manner. Meanwhile, it was found that depletion of PSMD11 could induce massive apoptosis in MEFs. CONCLUSIONS In summary, our data demonstrated that we have successfully generated a conditional knockout allele of PSMD11 in mice, and found that PSMD11 played a key role in early and postnatal development in mice, the PSMD11 flx/flx mice will be an invaluable tool to explore the functions of PSMD11 in development and diseases.
Collapse
Affiliation(s)
- Linlin Zhao
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Jinming Zhao
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Yingying Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Lele Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Longyan Zuo
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Airu Niu
- Department of Clinical Laboratory, Sanhe Yanjiao No.23 Hospital, Beijing, 065201, China
| | - Wei Zhang
- Department of Medical Imaging, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Suhong Zhao
- Department of Medical Imaging, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Chao Sun
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Kailin Li
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Jue Wang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Zhimin Bian
- Comprehensive Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery/Key Laboratory of Thoracic Cancer in Universities of Shandong, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Dieter Saur
- The II. Medizinische Klinik und Poliklinik der Technischen Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| | - Barbara Seidler
- The II. Medizinische Klinik und Poliklinik der Technischen Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Tonggang Qi
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
5
|
PSMA5 promotes the tumorigenic process of prostate cancer and is related to bortezomib resistance. Anticancer Drugs 2020; 30:e0773. [PMID: 30807553 DOI: 10.1097/cad.0000000000000773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteasome α5 subunit (PSMA5) is related to poor prognosis in various cancers. The first therapeutic proteasome inhibitor, bortezomib, induces apoptosis, suppressing cell growth in many tumor types. However, the effects of PSMA5 and bortezomib in prostate cancer (PCa) are still unknown. In this study, we investigated whether PSMA5 is associated with the tumorigenic progression and the interaction of PSMA5 with bortezomib in PCa. We knocked down PSMA5 with siRNA and studied the changes in cell viability and motility with Cell Counting Kit-8, quantitative PCR, fluorescence-activated cell sorting, scratch, and invasion assays. We also investigated the effect of PSMA5 in PCa cells treated with bortezomib and in those that are resistant to bortezomib. We found that silencing PSMA5 inhibited cell proliferation, induced apoptosis, restricted cell migration and invasion, and demonstrated a coordinated effect with bortezomib. Cells resistant to bortezomib gained sensitivity to bortezomib after PSMA5 was knocked down. Our results show, for the first time, that PSMA5 promotes the tumorigenic process of PCa and is linked to bortezomib resistance.
Collapse
|
6
|
Zheng RP, Wang W, Wei CD. Bortezomib inhibits cell proliferation in prostate cancer. Exp Ther Med 2015; 10:1219-1223. [PMID: 26622468 DOI: 10.3892/etm.2015.2617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 06/08/2015] [Indexed: 11/06/2022] Open
Abstract
Despite the improvement in chemotherapeutic agents, the outcome of patients with prostate cancer remains poor. It is therefore imperative that new anticancer drugs are explored. The aim of the present study was to investigate the inhibitory effect of bortezomib on DU145 prostate cancer cells. The DU145 cell proliferation rate was detected via MTT assay prior to and following exposure to various concentrations of bortezomib, and the level of cell apoptosis and the cell cycle distribution were tested using flow cytometry. In addition, western blotting was used to measure the expression of Bcl-2-interacting killer (Bik) and active-caspase-3. The results showed that bortezomib inhibited the proliferation of DU145 cells in a time- and dose-dependent manner. Following treatment with 1.6 µmol/l bortezomib, the DU145 cells showed marked nuclear condensation, chromatin condensation and fragmentation. Analysis of the cell cycle revealed a significantly increased percentage of cells in the G0/G1 phase and a decreased percentage in the S and G2/M phases. The rate of DU145 cell apoptosis was significantly higher in the bortezomib group than that in the control group, and this was accompanied by an enhanced expression of Bik and active-caspase-3. It can be concluded that bortezomib inhibits the proliferation of DU145 cells by inducing apoptosis. The underlying mechanism may involve the upregulation of Bik and active-caspase-3 expression.
Collapse
Affiliation(s)
- Ren-Ping Zheng
- Department of Urology, First People's Hospital of Jiujiang, Jiujiang, Jiangxi 332000, P.R. China ; Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Wang
- Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chuan-Dong Wei
- Department of Clinical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| |
Collapse
|
7
|
Tanaka S. Molecular Pathogenesis and Targeted Therapy of Pancreatic Cancer. Ann Surg Oncol 2015; 23 Suppl 2:S197-205. [PMID: 25749932 DOI: 10.1245/s10434-015-4463-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Indexed: 12/18/2022]
Abstract
Accumulation of multiple genetic and/or epigenetic abnormalities is required for generation and progression of cancers, and the survival of cancer cells might depend on addiction to these abnormalities. Because disruption of such dependency on the abnormal molecules should cause the cancer cell death, so-called oncogene addiction is the rationale for molecular targeted therapy. Pancreatic cancer, especially pancreatic ductal adenocarcinoma, is one of the most lethal malignancies in humans, and remains a challenging problem in targeted therapy compared to other malignancies such as pancreatic neuroendocrine tumor. This review summarizes the molecular pathogenesis of pancreatic cancer on the basis of the recent studies of driver mutations including chromatin remodeling factors, and promising concepts "cancer stemness" and "stromal niche" for the strategy of novel targeted therapy.
Collapse
Affiliation(s)
- Shinji Tanaka
- Department of Molecular Oncology, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
8
|
Uwagawa T, Yanaga K. Effect of NF-κB inhibition on chemoresistance in biliary-pancreatic cancer. Surg Today 2015; 45:1481-8. [PMID: 25673034 DOI: 10.1007/s00595-015-1129-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/26/2015] [Indexed: 12/13/2022]
Abstract
Biliary cancer and pancreatic cancer are considered to be difficult diseases to cure. Although complete resection provides the only means of curing these cancers, the rate of resectability is not high. Therefore, chemotherapy is often selected in patients with advanced unresectable biliary-pancreatic cancer. Many combination chemotherapy regimens have been applied in clinical trials. However, the survival time is not satisfactory. On the other hand, most chemotherapeutic agents induce anti-apoptotic transcriptional factor nuclear factor kappa b (NF-κB) activation, and agent-induced NF-κB activation is deeply involved in the onset of chemoresistance. Recently, novel approaches to potentiating chemosensitivity in cases of biliary-pancreatic cancer using NF-κB inhibitors with cytotoxic agents have been reported, most of which comprise translational research, although some clinical trials have also been conducted. Nevertheless, to date, there is no breakthrough chemotherapy regimen for these diseases. As some reports show promising data, combination chemotherapy consisting of a NF-κB inhibitor with chemotherapeutic agents seems to improve chemosensitivity and prolong the survival time of biliary-pancreatic cancer patients.
Collapse
Affiliation(s)
- Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
| | - Katsuhiko Yanaga
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Abstract
The ubiquitin-mediated degradation of proteins in numerous cellular processes, such as turnover and quality control of proteins, cell cycle and apoptosis, transcription and cell signaling, immune response and antigen presentation, and inflammation and development makes the ubiquitin-proteosome systems a very interesting target for various therapeutic interventions. Proteosome inhibitors were first synthesized as tools to probe the function and specificity of this particle's proteolytic activities. Most synthetic inhibitors rely on a peptide base, which mimics a protein substrate, attached at a COOH terminal "warhead." Notable warheads include boronic acids, such as bortezomib and epoxy ketones, such as carfilzomib. A variety of natural products also inhibit the proteosome that are not peptide-based, most notably lactacystin, that is related to NPI-0052, or salinosporamide A, another inhibitor in clinical trials. The possibility that proteosome inhibitors could be drug candidates was considered after studies showed that they induced apoptosis in leukemic cell lines. The first proteasome inhibitor in clinical application, bortezomib showed activity in non-small-cell lung and androgen-independent prostate carcinoma, as well as MM and mantle cell and follicular non-Hodgkin's lymphoma. It is now licensed for the treatment of newly diagnosed as well as relapsed/progressive MM and has had a major impact on the improvement in the treatment of MM in the last few years.
Collapse
Affiliation(s)
- Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Josef-Schneider Straße 2, 97080, Wurzburg, Germany,
| |
Collapse
|
10
|
Dou QP, Zonder JA. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr Cancer Drug Targets 2014; 14:517-36. [PMID: 25092212 PMCID: PMC4279864 DOI: 10.2174/1568009614666140804154511] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/16/2014] [Accepted: 07/11/2014] [Indexed: 02/07/2023]
Abstract
Over the past ten years, proteasome inhibition has emerged as an effective therapeutic strategy for treating multiple myeloma (MM) and some lymphomas. In 2003, Bortezomib (BTZ) became the first proteasome inhibitor approved by the U.S. Food and Drug Administration (FDA). BTZ-based therapies have become a staple for the treatment of MM at all stages of the disease. The survival rate of MM patients has improved significantly since clinical introduction of BTZ and other immunomodulatory drugs. However, BTZ has several limitations. Not all patients respond to BTZ based therapies and relapse occurs in many patients who initially responded. Solid tumors, in particular, are often resistant to BTZ. Furthermore, BTZ can induce dose-limiting peripheral neuropathy (PN). The second generation proteasome inhibitor Carfizomib (CFZ; U.S. FDA approved in August 2012) induces responses in a minority of MM patients relapsed from or refractory to BTZ. There is less PN compared to BTZ. Four other second-generation proteasome inhibitors (Ixazomib, Delanzomib, Oprozomib and Marizomib) with different pharmacologic properties and broader anticancer activities, have also shown some clinical activity in bortezomib-resistant cancers. While the mechanism of resistance to bortezomib in human cancers still remains to be fully understood, targeting the immunoproteasome, ubiquitin E3 ligases, the 19S proteasome and deubiquitinases in pre-clinical studies represents possible directions for future generation inhibitors of ubiquitin-proteasome system in the treatment of MM and other cancers.
Collapse
Affiliation(s)
| | - Jeffrey A Zonder
- Barbara Ann Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, 540.1 HWCRC, 4100 John R Road, Detroit, MI 48201.
| |
Collapse
|
11
|
Phase II study of gemcitabine in combination with regional arterial infusion of nafamostat mesilate for advanced pancreatic cancer. Am J Clin Oncol 2013; 36:44-8. [PMID: 22157216 DOI: 10.1097/coc.0b013e31823a53b2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To evaluate the efficacy of regional arterial infusion of the synthetic serine protease inhibitor nafamostat mesilate combined with gemcitabine for the treatment of patients with unresectable locally advanced or metastatic pancreatic cancer. MATERIALS AND METHODS A single-arm, single center, institutional review board-approved phase II trial was conducted. Thirty-five of 38 consecutive patients were included in the study. Patients received nafamostat mesilate (4.8 mg/kg continuous regional arterial infusion) with gemcitabine (1000 mg/m intravenously) on days 1, 8, and 15. This treatment was repeated at 28-day intervals. The primary endpoints were to evaluate overall survival and 1-year survival rate. The secondary endpoints were to assess therapeutic response and clinical benefit response. Overall survival times were estimated by the Kaplan-Meier survival analysis. RESULTS The median survival time was 10.0 months, and the 1-year survival rate was 40.0%. The response rate and disease control rate were 17.1% and 88.6%, respectively. A fraction of 25% of the patients who required opioids for cancer-related pain could reduce their opioid intake, and 37.1% of the patients showed healthy weight gain. Among the patients with metastatic pancreatic cancer, the median survival time was 9.0 months, and the 1-year survival rate was 32.0%. The proposed regimen offers an economic advantage compared with recent therapy regimens that have shown significant improvements in median survival over standard chemotherapy with gemcitabine. CONCLUSIONS An alternative regimen for unresectable pancreatic cancer, especially for metastatic pancreatic cancer, is proposed based on acceptable survival time, clinical benefit, and cost advantage.
Collapse
|
12
|
Derijks-Engwegen JY, Cats A, Smits ME, Schellens JH, Beijnen JH. Improving colorectal cancer management: the potential of proteomics. Biomark Med 2012; 2:253-89. [PMID: 20477414 DOI: 10.2217/17520363.2.3.253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Successful treatment is heavily dependent on tumor stage at the time of detection, but unfortunately CRC is often only detected in advanced stages. New biomarkers in the form of genes or proteins that can be used for diagnosis, prognostication, follow-up, and treatment selection and monitoring could be of great benefit for the management of CRC. Furthermore, proteins could prove valuable new targets for therapy. Therefore, clinical proteomics has gained a lot of scientific interest in this regard. To get an overall insight into the extent to which this research has contributed to a better management of CRC, we give a comprehensive overview of the results of proteomics research on CRC, focusing on expression proteomics, in other words, protein profiling studies. Furthermore, we evaluate the potential of the discriminating proteins identified in this research for clinical use as biomarkers for (early) diagnosis, prognosis and follow-up of CRC or as targets for new therapeutic regimens.
Collapse
|
13
|
Kubicek GJ, Axelrod RS, Machtay M, Ahn PH, Anne PR, Fogh S, Cognetti D, Myers TJ, Curran WJ, Dicker AP. Phase I trial using the proteasome inhibitor bortezomib and concurrent chemoradiotherapy for head-and-neck malignancies. Int J Radiat Oncol Biol Phys 2012; 83:1192-7. [PMID: 22245208 DOI: 10.1016/j.ijrobp.2011.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/11/2011] [Accepted: 09/11/2011] [Indexed: 11/25/2022]
Abstract
PURPOSE Advanced head-and-neck cancer (HNC) remains a difficult disease to cure. Proteasome inhibitors such as bortezomib have the potential to improve survival over chemoradiotherapy alone. This Phase I dose-escalation study examined the potential of bortezomib in combination with cisplatin chemotherapy and concurrent radiation in the treatment of locally advanced and recurrent HNC. METHODS AND MATERIALS Eligible patients received cisplatin once weekly at 30 mg/m(2) per week and bortezomib along with concurrent radiation. Bortezomib was given on Days 1, 4, 8, and 11 every 3 weeks, with an initial starting dose of 0.7 mg/m(2) and escalation levels of 1.0 and 1.3 mg/m(2). Dose escalation was performed only after assessment to rule out any dose-limiting toxicity. RESULTS We enrolled 27 patients with HNC, including 17 patients with recurrent disease who had received prior irradiation. Patients received bortezomib dose levels of 0.7 mg/m(2) (7 patients), 1.0 mg/m(2) (10 patients), and 1.3 mg/m(2) (10 patients). No Grade 5 toxicities, 3 Grade 4 toxicities (all hematologic and considered dose-limiting toxicities), and 39 Grade 3 toxicities (in 20 patients) were observed. With a median follow-up of 7.4 months, the overall median survival was 24.7 months (48.4 months for advanced HNC patients and 15.4 months for recurrent HNC patients). CONCLUSION Bortezomib in combination with radiation therapy and cisplatin chemotherapy is safe in the treatment of HNC with a bortezomib maximum tolerated dose of 1.0 mg/m(2) in patients previously treated for HNC and 1.3 mg/m(2) in radiation-naive patients.
Collapse
Affiliation(s)
- Gregory J Kubicek
- Department of Radiation Oncology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
In May 2003, the US Food and Drug Administration (FDA) granted accelerated approval for the use of the first-in-class proteasome inhibitor bortezomib as a third-line therapy in multiple myeloma, and the European Union followed suit a year later. Bortezomib has subsequently been approved for multiple myeloma as a second-line treatment on its own and as a first-line therapy in combination with an alkylating agent and a corticosteroid. Furthermore, bortezomib has also been approved as a second-line therapy for mantle cell lymphoma. In this chapter, the focus is on the current clinical research on bortezomib, its adverse effects, and the resistance of multiple myeloma patients to bortezomib-based therapy. The various applications of bortezomib in different diseases and recent advances in the development of a new generation of inhibitors that target the proteasome or other parts of the ubiquitin-proteasome system are also reviewed.
Collapse
Affiliation(s)
- Boris Cvek
- Department of Cell Biology & Genetics, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
15
|
Gilliam LAA, St Clair DK. Chemotherapy-induced weakness and fatigue in skeletal muscle: the role of oxidative stress. Antioxid Redox Signal 2011; 15:2543-63. [PMID: 21457105 PMCID: PMC3176345 DOI: 10.1089/ars.2011.3965] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Fatigue is one of the most common symptoms of cancer and its treatment, manifested in the clinic through weakness and exercise intolerance. These side effects not only compromise patient's quality of life (QOL), but also diminish physical activity, resulting in limited treatment and increased morbidity. RECENT ADVANCES Oxidative stress, mediated by cancer or chemotherapeutic agents, is an underlying mechanism of the drug-induced toxicity. Nontargeted tissues, such as striated muscle, are severely affected by oxidative stress during chemotherapy, leading to toxicity and dysfunction. CRITICAL ISSUES These findings highlight the importance of investigating clinically applicable interventions to alleviate the debilitating side effects. This article discusses the clinically available chemotherapy drugs that cause fatigue and oxidative stress in cancer patients, with an in-depth focus on the anthracycline doxorubicin. Doxorubicin, an effective anticancer drug, is a primary example of how chemotherapeutic agents disrupt striated muscle function through oxidative stress. FUTURE DIRECTIONS Further research investigating antioxidants could provide relief for cancer patients from debilitating muscle weakness, leading to improved quality of life.
Collapse
|
16
|
Portnow J, Frankel P, Koehler S, Twardowski P, Shibata S, Martel C, Morgan R, Cristea M, Chow W, Lim D, Chung V, Reckamp K, Leong L, Synold TW. A phase I study of bortezomib and temozolomide in patients with advanced solid tumors. Cancer Chemother Pharmacol 2011; 69:505-14. [PMID: 21850464 DOI: 10.1007/s00280-011-1721-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
PURPOSE The primary objective was to determine the maximum tolerated doses (MTDs) of the combination of bortezomib and temozolomide in patients with solid tumors. The secondary objective was to evaluate the pharmacokinetics (PK) of bortezomib with and without concurrent hepatic enzyme-inducing anticonvulsants (HEIAs). METHODS Bortezomib was administered on days 2, 5, 9, and 12; temozolomide on days 1-5 of a 28-day cycle. Dose escalation proceeded using a standard 3+3 design. Patients with primary or metastatic brain tumors were eligible and were stratified based on whether they were taking HEIAs or not. RESULTS Of the 25 patients enrolled, 22 were not taking HEIAs. MTDs were only given to patients not receiving HEIAs. Dose-limiting toxicities (DLTs) consisted of grade-3 constipation, hyponatremia, fatigue, elevated hepatic enzymes, and grade-4 neutropenia, thrombocytopenia, constipation, and abdominal pain. Stable disease (>8 weeks) was observed in 5 patients. Bortezomib systemic clearance (CL(sys)) on day 9 was 51% of the CL(sys) on day 2 (P < 0.01) Similarly, the normalized area under the concentration-time curve (norm AUC) on day 9 was 1.9 times the norm AUC on day 2 (P < 0.01). The median bortezomib CL(sys) on days 2 and 9 was significantly higher (P < 0.04) in patients taking HEIAs, and the median norm AUC was correspondingly lower (P < 0.04). CONCLUSIONS The MTDs for the combination of bortezomib and temozolomide in patients not taking HEIAs are 1.3 and 200 mg/m(2), respectively. The rate of bortezomib elimination in patients taking HEIAs was increased twofold. Additional trials are needed to better define the optimal dosing in such patients.
Collapse
Affiliation(s)
- J Portnow
- Department of Medical Oncology, City of Hope, 1500 East Duarte Road, Duarte, CA 91030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Potts BC, Albitar MX, Anderson KC, Baritaki S, Berkers C, Bonavida B, Chandra J, Chauhan D, Cusack JC, Fenical W, Ghobrial IM, Groll M, Jensen PR, Lam KS, Lloyd GK, McBride W, McConkey DJ, Miller CP, Neuteboom STC, Oki Y, Ovaa H, Pajonk F, Richardson PG, Roccaro AM, Sloss CM, Spear MA, Valashi E, Younes A, Palladino MA. Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinical trials. Curr Cancer Drug Targets 2011; 11:254-84. [PMID: 21247382 DOI: 10.2174/156800911794519716] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/11/2011] [Indexed: 12/19/2022]
Abstract
The proteasome has emerged as an important clinically relevant target for the treatment of hematologic malignancies. Since the Food and Drug Administration approved the first-in-class proteasome inhibitor bortezomib (Velcade) for the treatment of relapsed/refractory multiple myeloma (MM) and mantle cell lymphoma, it has become clear that new inhibitors are needed that have a better therapeutic ratio, can overcome inherent and acquired bortezomib resistance and exhibit broader anti-cancer activities. Marizomib (NPI-0052; salinosporamide A) is a structurally and pharmacologically unique β-lactone-γ-lactam proteasome inhibitor that may fulfill these unmet needs. The potent and sustained inhibition of all three proteolytic activities of the proteasome by marizomib has inspired extensive preclinical evaluation in a variety of hematologic and solid tumor models, where it is efficacious as a single agent and in combination with biologics, chemotherapeutics and targeted therapeutic agents. Specifically, marizomib has been evaluated in models for multiple myeloma, mantle cell lymphoma, Waldenstrom's macroglobulinemia, chronic and acute lymphocytic leukemia, as well as glioma, colorectal and pancreatic cancer models, and has exhibited synergistic activities in tumor models in combination with bortezomib, the immunomodulatory agent lenalidomide (Revlimid), and various histone deacetylase inhibitors. These and other studies provided the framework for ongoing clinical trials in patients with MM, lymphomas, leukemias and solid tumors, including those who have failed bortezomib treatment, as well as in patients with diagnoses where other proteasome inhibitors have not demonstrated significant efficacy. This review captures the remarkable translational studies and contributions from many collaborators that have advanced marizomib from seabed to bench to bedside.
Collapse
Affiliation(s)
- B C Potts
- Nereus Pharmaceuticals, Inc., 10480 Wateridge Circle, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets 2011; 11:239-53. [PMID: 21247388 DOI: 10.2174/156800911794519752] [Citation(s) in RCA: 593] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/31/2010] [Indexed: 11/22/2022]
Abstract
Targeting the ubiquitin-proteasome pathway has emerged as a rational approach in the treatment of human cancer. Based on positive preclinical and clinical studies, bortezomib was subsequently approved for the clinical use as a front-line treatment for newly diagnosed multiple myeloma patients and for the treatment of relapsed/refractory multiple myeloma and mantle cell lymphoma, for which this drug has become the staple of treatment. The approval of bortezomib by the US Food and Drug Administration (FDA) represented a significant milestone as the first proteasome inhibitor to be implemented in the treatment of malignant disease. Bortezomib has shown a positive clinical benefit either alone or as a part of combination therapy to induce chemo-/radio-sensitization or overcome drug resistance. One of the major mechanisms of bortezomib associated with its anticancer activity is through upregulation of NOXA, which is a proapoptotic protein, and NOXA may interact with the anti-apoptotic proteins of Bcl-2 subfamily Bcl-X(L) and Bcl-2, and result in apoptotic cell death in malignant cells. Another important mechanism of bortezomib is through suppression of the NF-κB signaling pathway resulting in the down-regulation of its anti-apoptotic target genes. Although the majority of success achieved with bortezomib has been in hematological malignancies, its effect toward solid tumors has been less than encouraging. Additionally, the widespread clinical use of bortezomib continues to be hampered by the appearance of dose-limiting toxicities, drug-resistance and interference by some natural compounds. These findings could help guide physicians in refining the clinical use of bortezomib, and encourage basic scientists to generate next generation proteasome inhibitors that broaden the spectrum of efficacy and produce a more durable clinical response in cancer patients. Other desirable applications for the use of proteasome inhibitors include the development of inhibitors against specific E3 ligases, which act at an early step in the ubiquitin-proteasome pathway, and the discovery of less toxic and novel proteasome inhibitors from natural products and traditional medicines, which may provide more viable drug candidates for cancer chemoprevention and the treatment of cancer patients in the future.
Collapse
Affiliation(s)
- D Chen
- The Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, and Department of Oncology, School of Medicine, Wayne State University, Detroit, Michigan, USA.
| | | | | | | | | |
Collapse
|
19
|
Kaur B, Lesinski GB, Chaudhury AR. From Concept to the Clinics: Development of Novel Large Molecule Cancer Therapeutics. PHARMACEUTICAL SCIENCES ENCYCLOPEDIA 2010. [DOI: 10.1002/9780470571224.pse402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
20
|
Simvastatin enhances irinotecan-induced apoptosis in human non-small cell lung cancer cells by inhibition of proteasome activity. Invest New Drugs 2010; 29:883-90. [PMID: 20467885 DOI: 10.1007/s10637-010-9439-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 04/20/2010] [Indexed: 02/02/2023]
Abstract
Simvastatin, a potent inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA) is known to stimulate apoptotic cell death and induce cell cycle arrest through inhibition of proteasome. The purpose of this study is to investigate whether simvastatin would be synergistic with irinotecan against human non-small cell lung cancer (NSCLC) cells. Antitumor effect was measured by growth inhibition of cells and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The cytotoxic interaction between irinotecan and simvastatin was assessed using the combination index. Effects on cell cycle distribution and apoptosis were determined by flow cytometry and DNA fragmentation. Proteasome activity was measured by ELISA quantification of 20S proteasome. NF-κB activation was determined using TransAM™ NF-κB p65 Transcription Factor Assay Kit. IκB-α was measured by immunoblot. A combination of irinotecan with simvastatin showed significantly enhanced cell growth inhibition compared with irinotecan alone, which resulted in a synergistic cytotoxicity. Irinotecan and simvastatin combination treatment of A549 and H460 cells increased G(1) phase arrest, which was associated with up-regulation of p21(WAF1/CIP) and p53 compared with irinotecan alone. In addition, simvastatin combination treatment increased irinotecan-related apoptosis as determined by fluorescence microscopy and flow cytometric analysis. We also found that combination therapy showed superior proteasome inhibitory activity leading to effectively suppress NF-κB transcription factor activation. Consistently, this effect was associated with up-regulation of IκB-α. These findings suggest that simvastatin enhances irinotecan-induced apoptosis in human NSCLC cells through inhibition of proteasome activity.
Collapse
|
21
|
Jani TS, DeVecchio J, Mazumdar T, Agyeman A, Houghton JA. Inhibition of NF-kappaB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or oxaliplatin. J Biol Chem 2010; 285:19162-72. [PMID: 20424169 DOI: 10.1074/jbc.m109.091645] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer is the third most common malignancy in the United States. Modest advances with therapeutic approaches that include oxaliplatin (L-OHP) have brought the median survival rate to 22 months, with drug resistance remaining a significant barrier. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is undergoing clinical evaluation. Although human colon carcinomas express TRAIL receptors, they can also demonstrate TRAIL resistance. Constitutive NF-kappaB activation has been implicated in resistance to TRAIL and to cytotoxic agents. We have demonstrated constitutive NF-kappaB activation in five of six human colon carcinoma cell lines; this activation is inhibited by quinacrine. Quinacrine induced apoptosis in colon carcinomas and potentiated the cytotoxic activity of TRAIL in RKO and HT29 cells and that of L-OHP in HT29 cells. Similarly, overexpression of IkappaBalpha mutant (IkappaBalphaM) or treatment with the IKK inhibitor, BMS-345541, also sensitized these cells to TRAIL and L-OHP. Importantly, 2 h of quinacrine pretreatment resulted in decreased expression of c-FLIP and Mcl-1, which were determined to be transcriptional targets of NF-kappaB. Extended exposure for 24 h to quinacrine did not further sensitize these cells to TRAIL- or L-OHP-induced cell death; however, exposure caused the down-regulation of additional NF-kappaB-dependent survival factors. Short hairpin RNA-mediated knockdown of c-FLIP or Mcl-1 significantly sensitized these cells to TRAIL and L-OHP. Taken together, data demonstrate that NF-kappaB is constitutively active in colon cancer cell lines and NF-kappaB, and its downstream targets may constitute an important target for the development of therapeutic approaches against this disease.
Collapse
Affiliation(s)
- Tanvi S Jani
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
22
|
Effect of the CYP3A inhibitor ketoconazole on the pharmacokinetics and pharmacodynamics of bortezomib in patients with advanced solid tumors: a prospective, multicenter, open-label, randomized, two-way crossover drug-drug interaction study. Clin Ther 2010; 31 Pt 2:2444-58. [PMID: 20110052 DOI: 10.1016/j.clinthera.2009.11.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2009] [Indexed: 11/20/2022]
Abstract
BACKGROUND The proteasome inhibitor bortezomib undergoes oxidative biotransformation via multiple cytochrome P450 (CYP) enzymes, with CYP3A4 identified as a partial, yet potentially important, contributor based on in vitro drug metabolism studies. OBJECTIVE The aim of this study was to assess the effect of concomitant administration of ketoconazole on the pharmacokinetics (PK) and pharmacodynamics (PD) of bortezomib. METHODS This was a prospective, multicenter, open-label, randomized, multiple-dose, 2-way crossover study in patients with advanced solid tumors. All patients received bortezomib 1.0 mg/m(2) IV (on days 1, 4, 8, and 11 of two 21-day cycles) and were randomized to receive concomitant ketoconazole 400 mg on days 6, 7, 8, and 9 of cycle 1 or 2. Serial blood samples were collected over the day-8 dosing interval (immediately prior to bortezomib administration, and from 5 minutes to 72 hours after administration) in cycles 1 and 2 for measurement of plasma bortezomib concentrations for noncompartmental PK analysis and blood 20S proteasome inhibition for PD analysis. All adverse events (AEs) were recorded during each cycle including serious AEs and all neurotoxicity events for up to 30 days after the last dose of bortezomib. RESULTS Twenty-one patients (median age, 57 years; sex, 67% male; race, 86% white; median body surface area, 2.01 m(2)) were randomized to treatment. Twelve patients completed the protocol-specified dosing and PK sampling in both cycles 1 and 2. Assessment of the effect of ketoconazole on bortezomib PK and PD was based on data in these 12 PK-evaluable patients. The ratio of geometric mean bortezomib AUC(0-tlast)(AUC from time 0 to last quantifiable concentration) for bortezomib plus ketoconazole versus bortezomib alone was 1.352 (90% CI, 1.032-1.772). Consistent with this observed mean increase in bortezomib exposure, concomitant administration of ketoconazole was associated with a corresponding increase (24%-46%) in the blood proteasome inhibitory effect. CONCLUSION Concomitant administration of the CYP3A inhibitor ketoconazole with bortezomib resulted in a mean increase of 35% in bortezomib exposure. ClinicalTrials.gov identifier: NCT00129207.
Collapse
|
23
|
Pugh TJ, Chen C, Rabinovitch R, Eckhardt SG, Rusthoven KE, Swing R, Raben D. Phase I trial of bortezomib and concurrent external beam radiation in patients with advanced solid malignancies. Int J Radiat Oncol Biol Phys 2010; 78:521-6. [PMID: 20133082 DOI: 10.1016/j.ijrobp.2009.07.1715] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/24/2009] [Accepted: 07/29/2009] [Indexed: 10/19/2022]
Abstract
PURPOSE To determine the maximal tolerated dose of bortezomib with concurrent external beam radiation therapy in patients with incurable solid malignant tumors requiring palliative therapy. METHODS AND MATERIALS An open label, dose escalation, phase I clinical trial evaluated the safety of three dose levels of bortezomib administered intravenously (1.0 mg/m(2), 1.3 mg/m(2), and 1.6 mg/m(2)/ dose) once weekly with concurrent radiation in patients with histologically confirmed solid tumors and a radiographically appreciable lesion suitable for palliative radiation therapy. All patients received 40 Gy in 16 fractions to the target lesion. Dose-limiting toxicity was the primary endpoint, defined as any grade 4 hematologic toxicity, any grade ≥3 nonhematologic toxicity, or any toxicity requiring treatment to be delayed for ≥2 weeks. RESULTS A total of 12 patients were enrolled. Primary sites included prostate (3 patients), head and neck (3 patients), uterus (1 patient), abdomen (1 patient), breast (1 patient), kidney (1 patient), lung (1 patient), and colon (1 patient). The maximum tolerated dose was not realized with a maximum dose of 1.6 mg/m(2). One case of dose-limiting toxicity was appreciated (grade 3 urosepsis) and felt to be unrelated to bortezomib. The most common grade 3 toxicity was lymphopenia (10 patients). Common grade 1 to 2 events included nausea (7 patients), infection without neutropenia (6 patients), diarrhea (5 patients), and fatigue (5 patients). CONCLUSIONS The combination of palliative external beam radiation with concurrent weekly bortezomib therapy at a dose of 1.6 mg/m(2) is well tolerated in patients with metastatic solid tumors. The maximum tolerated dose of once weekly bortezomib delivered concurrently with radiation therapy is greater than 1.6 mg/m(2).
Collapse
Affiliation(s)
- Thomas J Pugh
- Department of Radiation Oncology, University of Colorado Denver and Health Science Center, Aurora, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The ubiquitin-mediated degradation of proteins in numerous cellular processes, such as turnover and quality control of proteins, cell cycle and apoptosis, transcription and cell signaling, immune response and antigen presentation, and inflammation and development makes the ubiquitin-proteosome systems a very interesting target for various therapeutic interventions. Proteosome inhibitors were first synthesized as tools to probe the function and specificity of this particle's proteolytic activities. Most synthetic inhibitors rely on a peptide base, which mimics a protein substrate, attached at a COOH terminal "warhead". Notable warheads include boronic acids, such as Bortezomib and epoxyketones, such as carfilzomib. A variety of natural products also inhibit the proteosome that are not peptide-based, most notably lactacystin, that is related to NPI-0052, or salinosporamide A, another inhibitor in clinical trials. The possibility that proteosome inhibitors could be drug candidates was considered after studies showed that they induced apoptosis in leukemic cell lines. The first proteasome inhibitor in clinical application, Bortezomib showed activity in non small cell lung and androgen-independent prostate carcinoma, as well as MM and mantle cell and follicular non-Hodgkin's lymphoma. It is now lincensed for the treatment of newly diagnosed as well as relapsed/progressive MM and has had a major impact on the improvement in the treatment of MM in the last few years.
Collapse
Affiliation(s)
- Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Josef-Schneider Strasse 2, Würzburg, 97080, Germany.
| |
Collapse
|
25
|
Ruggeri B, Miknyoczki S, Dorsey B, Hui AM. The development and pharmacology of proteasome inhibitors for the management and treatment of cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2009; 57:91-135. [PMID: 20230760 DOI: 10.1016/s1054-3589(08)57003-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ubiquitin-proteasome complex is an important molecular target for the design of novel chemotherapeutics. This complex plays a critical role in signal transduction pathways important for tumor cell growth and survival, cell-cycle control, transcriptional regulation, and the modulation of cellular stress responses to endogenous and exogenous stimuli. The sensitivity of transformed cells to proteasome inhibitors and the successful design of treatment protocols with tolerable, albeit narrow, therapeutic indices have made proteasome inhibition a viable strategy for cancer treatment. Clinical validation of the proteasome as a molecular target was achieved with the approval of bortezomib, a boronic acid proteasome inhibitor, for the treatment of multiple myeloma and mantle cell lymphoma. Several "next-generation" proteasome inhibitors (carfilzomib and PR-047, NPI-0052, and CEP-18770) representing distinct structural classes (peptidyl epoxyketones, beta-lactones, and peptidyl boronic acids, respectively), mechanisms of action, pharmacological and pharmacodynamic activity profiles, and therapeutic indices have now entered clinical development. These agents may expand the clinical utility of proteasome inhibitors for the treatment of solid tumors and for specific non-oncological, i.e., inflammatory disease, indications as well. This chapter addresses the biology of the proteasome, the medicinal chemistry and mechanisms of action of proteasome inhibitors currently in clinical development, the preclinical and clinical pharmacological and safety profiles of bortezomib and the newer compounds against hematological and solid tumors. Future directions for research and other applications for this novel class of therapeutics agents are considered in this chapter.
Collapse
Affiliation(s)
- Bruce Ruggeri
- Discovery Research, Cephalon, Inc., West Chester, Pennsylvania 19380, USA
| | | | | | | |
Collapse
|
26
|
Quinn DI, Nemunaitis J, Fuloria J, Britten CD, Gabrail N, Yee L, Acharya M, Chan K, Cohen N, Dudov A. Effect of the cytochrome P450 2C19 inhibitor omeprazole on the pharmacokinetics and safety profile of bortezomib in patients with advanced solid tumours, non-Hodgkin's lymphoma or multiple myeloma. Clin Pharmacokinet 2009; 48:199-209. [PMID: 19385713 DOI: 10.2165/00003088-200948030-00006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Bortezomib, an antineoplastic for the treatment of relapsed multiple myeloma and mantle cell lymphoma, undergoes metabolism through oxidative deboronation by cytochrome P450 (CYP) enzymes, primarily CYP3A4 and CYP2C19. Omeprazole, a proton-pump inhibitor, is primarily metabolized by and demonstrates high affinity for CYP2C19. This study investigated whether coadministration of omeprazole affected the pharmacokinetics, pharmacodynamics and safety profile of bortezomib in patients with advanced cancer. The variability of bortezomib pharmacokinetics with CYP enzyme polymorphism was also investigated. PATIENTS AND METHODS This open-label, crossover, pharmacokinetic drug-drug interaction study was conducted at seven institutions in the US and Europe between January 2005 and August 2006. Patients who had advanced solid tumours, non-Hodgkin's lymphoma or multiple myeloma, were aged >/=18 years, weighed >/=50 kg and had a life expectancy of >/=3 months were eligible. Patients received bortezomib 1.3 mg/m2 on days 1, 4, 8 and 11 for two 21-day cycles, plus omeprazole 40 mg in the morning of days 6-10 and in the evening of day 8 in either cycle 1 (sequence 1) or cycle 2 (sequence 2). On day 21 of cycle 2, patients benefiting from therapy could continue to receive bortezomib for six additional cycles. Blood samples for pharmacokinetic/pharmacodynamic evaluation were collected prior to and at various timepoints after bortezomib administration on day 8 of cycles 1 and 2. Blood samples for pharmacogenomics were also collected. Pharmacokinetic parameters were calculated by noncompartmental analysis of plasma concentration-time data for bortezomib administration on day 8 of cycles 1 and 2, using WinNonlin version 4.0.1.a software. The pharmacodynamic profile was assessed using a whole-blood 20S proteasome inhibition assay. RESULTS Twenty-seven patients (median age 64 years) were enrolled, 12 in sequence 1 and 15 in sequence 2, including eight and nine pharmacokinetic-evaluable patients, respectively. Bortezomib pharmacokinetic parameters were similar when bortezomib was administered alone or with omeprazole (maximum plasma concentration 120 vs 123 ng/mL; area under the plasma concentration-time curve from 0 to 72 hours 129 vs 135 ng . h/mL). The pharmacodynamic parameters were also similar (maximum effect 85.8% vs 93.7%; area under the percent inhibition-time curve over 72 hours 4052 vs 3910 % x h); the differences were not statistically significant. Pharmacogenomic analysis revealed no meaningful relationships between CYP enzyme polymorphisms and pharmacokinetic/pharmacodynamic parameters. Toxicities were generally similar between patients in sequence 1 and sequence 2, and between cycle 1 and cycle 2 in both treatment sequences. Among 26 evaluable patients, 13 (50%) were assessed as benefiting from bortezomib at the end of cycle 2 and continued to receive treatment. CONCLUSION No impact on the pharmacokinetics, pharmacodynamics and safety profile of bortezomib was seen with coadministration of omeprazole. Concomitant administration of bortezomib and omeprazole is unlikely to cause clinically significant drug-drug interactions and is unlikely to have an impact on the efficacy or safety of bortezomib.
Collapse
Affiliation(s)
- David I Quinn
- University of Southern California, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yang H, Zonder JA, Dou QP. Clinical development of novel proteasome inhibitors for cancer treatment. Expert Opin Investig Drugs 2009; 18:957-71. [PMID: 19505187 PMCID: PMC3758888 DOI: 10.1517/13543780903002074] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Emerging evidence demonstrates that targeting the tumor proteasome is a promising strategy for cancer therapy. OBJECTIVE This review summarizes recent results from cancer clinical trials using specific proteasome inhibitors or some natural compounds that have proteasome-inhibitory effects. METHODS A literature search was carried out using PubMed. Results about the clinical application of specific proteasome inhibitors and natural products with proteasome-inhibitory activity for cancer prevention or therapy were reviewed. RESULTS/CONCLUSION Bortezomib, the reversible proteasome inhibitor that first entered clinical trials, has been studied extensively as a single agent and in combination with glucocorticoids, cytotoxic agents, immunomodulatory drugs and radiation as treatment for multiple myeloma and other hematological malignancies. The results in some cases have been impressive. There is less evidence of bortezomib's efficacy in solid tumors. Novel irreversible proteasome inhibitors, NPI-0052 and carfilzomib, have also been developed and clinical trials are underway. Natural products with proteasome-inhibitory effects, such as green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG), soy isoflavone genistein, and the spice turmeric compound curcumin, have been studied alone and in combination with traditional chemotherapy and radiotherapy against various cancers. There is also interest in developing these natural compounds as potential chemopreventive agents.
Collapse
Affiliation(s)
- Huanjie Yang
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and the Department of Pathology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R. Road, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
28
|
Pascal L, Gay J, Willekens C, Wemeau M, Balkaran S, Robu D, Roccaro A, Morel P, Ghobrial I, Leleu X. Bortezomib and Waldenstrom's macroglobulinemia. Expert Opin Pharmacother 2009; 10:909-16. [DOI: 10.1517/14656560902800160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Ames E, Hallett WHD, Murphy WJ. Sensitization of human breast cancer cells to natural killer cell-mediated cytotoxicity by proteasome inhibition. Clin Exp Immunol 2009; 155:504-13. [PMID: 19220837 DOI: 10.1111/j.1365-2249.2008.03818.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The proteasome inhibitor, bortezomib, has direct anti-tumour effects and has been demonstrated to sensitize tumour cells to tumour necrosis factor-related apoptosis-inducing ligand-mediated apoptosis. Natural killer (NK) cells are effective mediators of anti-tumour responses, both through cytotoxic granule killing and apoptosis-inducing pathways. We therefore investigated if bortezomib sensitized human breast cancer cells to killing by the human NK cell line, NK-92. Bortezomib was unable to sensitize MDA-231 breast cancer cells to NK cell-mediated killing in short-term in vitro assays. However, bortezomib did cause these cells to up-regulate apoptosis-related mRNA as well as death receptors on the cell surface. In a long-term in vitro tumour outgrowth assay that allows NK cells to use their full repertoire of killing pathways, bortezomib sensitized three breast cancer cell lines to NK cell-mediated killing, which led to greater anti-tumour effects than either treatment alone. We then used a xenogeneic mouse model in which CB-17 SCID mice were injected with human breast cancer cells. This model displayed the effectiveness of NK-92 cells, but the addition of bortezomib did not increase the survival further or reduce the number of lung metastases in tumour-bearing mice. However, while bortezomib was highly cytotoxic to NK-92 cells in vitro, bortezomib treatment in vivo did not decrease NK-92 function, suggesting that through alternative dosing or timing of bortezomib, greater efficacy may occur from combined therapy. These data demonstrate that combined treatment of human breast cancer with bortezomib and NK cells has the potential to generate superior anti-tumour responses than either therapy alone.
Collapse
Affiliation(s)
- E Ames
- Department of Microbiology and Immunology, University of Nevada School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | | | | |
Collapse
|
30
|
Abstract
Human pancreatic cancer is a malignant disease with almost equal incidence and mortality. Effective diagnostic and therapeutic strategies are still urgently needed to improve its survival rate. With advances in structural and functional genomics, recent work has focused on targeted molecular therapy using monoclonal antibodies. This review summarizes the target molecules on the tumor cell surface and normal tissue stroma, which are related to pancreatic cancer oncogenesis, tumor growth or resistance to chemotherapy, as well as molecules involved in regulating inflammation and host immunoresponses. Targeted molecules include cell-surface receptors, such as the EGF receptor, HER2, death receptor 5 and IGF-1 receptor. Effects of monoclonal antibodies against these target molecules alone or in combination with chemotherapy, small-molecule signal transduction inhibitors, or radiation therapy are also discussed. Also discussed are the use of toxin or radioisotope conjugates, and information relating to the use of these targeting agents in pancreatic cancer clinical trials. Although targeted molecular therapy with monoclonal antibodies has made some progress in pancreatic cancer treatment, especially in preclinical studies, its clinical application to improve the survival rate of pancreatic cancer patients requires further investigation.
Collapse
Affiliation(s)
| | - Donald J Buchsbaum
- Author for correspondence: Department of Radiation Oncology, Division of Radiation Biology, 1530 3rd Avenue South, WTI 674 Birmingham, AL 35294-6832, USA, Tel.: +1 205 934 7077, Fax: +1 205 975 7060
| |
Collapse
|
31
|
Milano A, Perri F, Caponigro F. The ubiquitin-proteasome system as a molecular target in solid tumors: an update on bortezomib. Onco Targets Ther 2009; 2:171-8. [PMID: 20616904 PMCID: PMC2886336 DOI: 10.2147/ott.s4503] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Indexed: 11/23/2022] Open
Abstract
The ubiquitin-proteasome system has become a promising molecular target in cancer therapy due to its critical role in cellular protein degradation, interaction with cell cycle and apoptosis regulation, and unique mechanism of action. Bortezomib (PS-341) is a potent and specific reversible proteasome inhibitor, which has shown strong in vitro antitumor activity as single agent and in combination with other cytotoxic drugs in a broad spectrum of hematological and solid malignancies. In preclinical studies, bortezomib induced apoptosis of malignant cells through the inhibition of NF-|B and stabilization of pro-apoptotic proteins. Bortezomib also promotes chemo- and radiosensitization of malignant cells in vitro and inhibits tumor growth in murine xenograft models. The proteasome has been established as a relevant target in hematologic malignancies and bortezomib has been approved for the treatment of multiple myeloma. This review summarizes recent data from clinical trials in solid tumors.
Collapse
Affiliation(s)
- A Milano
- Sandro Pitigliani Medical Oncology Unit, Department of Oncology, Hospital of Prato, Istituto Toscano Tumori, Prato, Italy
| | - F Perri
- Head and Neck Medical Oncology Unit, National Tumour Institute of Naples, Naples, Italy
| | - F Caponigro
- Head and Neck Medical Oncology Unit, National Tumour Institute of Naples, Naples, Italy
| |
Collapse
|
32
|
Tao HY, Li K, Fan QX. Effects of bortezomib on the proliferation, apoptosis and adhesive ability of HCT8 cells. Shijie Huaren Xiaohua Zazhi 2009; 17:190-193. [DOI: 10.11569/wcjd.v17.i2.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of bortezomib on growth arrest, proliferation and adhesive ability of HCT8 cells in vitro.
METHODS: The growth arrest by bortezomib at different concentration was determined using MTT. After exposure of HCT8 cells to a lower concentration of bortezomib (25 nmol/L) for 48 h, cell cycle and the apoptosis were assessed by FCM; and the expressions of E-cadherin, β-catenin, cyclinD1 and NF-κB were detected using Western blot.
RESULTS: The inhibitory effect of bortezomib on the proliferation of HCT8 cells showed a time- and dose-dependent relationship. Compared with control group, bortezomib induced apoptosis significantly after 48 h treatment at the concentration of 25 nmol/L, and the apoptotic rate was 12.3% (P < 0.05); the expressions of E-cadherin and β-Catenin were increased, whereas the expressions of NF-κВ and cyclinD1 were down-regulated.
CONCLUSION: Bortezomib inhibits the proliferation of HCT8 cells, induces cell apoptosis, and increases cell-to-cell adhesion. The mechanism may be related to its inhibition on the NF-κB pathway.
Collapse
|
33
|
An EORTC phase I study of Bortezomib in combination with oxaliplatin, leucovorin and 5-fluorouracil in patients with advanced colorectal cancer. Eur J Cancer 2009; 45:48-55. [DOI: 10.1016/j.ejca.2008.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/04/2008] [Accepted: 08/06/2008] [Indexed: 11/18/2022]
|
34
|
Kubicek GJ, Werner-Wasik M, Machtay M, Mallon G, Myers T, Ramirez M, Andrews D, Curran WJ, Dicker AP. Phase I trial using proteasome inhibitor bortezomib and concurrent temozolomide and radiotherapy for central nervous system malignancies. Int J Radiat Oncol Biol Phys 2008; 74:433-9. [PMID: 19084346 DOI: 10.1016/j.ijrobp.2008.08.050] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 08/18/2008] [Accepted: 08/20/2008] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate the toxicity and response rate of bortezomib with concurrent radiotherapy and temozolomide in the treatment of patients with central nervous system malignancies. PATIENTS AND METHODS This open-label, dose-escalation, Phase I clinical study evaluated the safety of three dose levels of intravenously administered bortezomib (0.7, 1.0, and 1.3 mg/m(2)/dose) on Days 1, 4, 8, and 11 of a 21-day cycle, in addition to concurrent radiotherapy and temozolomide at a daily dose of 75 mg/m(2) starting on Day 1. The primary endpoint was dose-limiting toxicity, defined as any Grade 4-5 toxicity or Grade 3 toxicity directly attributable to protocol treatment, requiring hospitalization and/or radiotherapy interruption. The secondary endpoints included feasibility, non-dose-limiting toxicity, and treatment response. RESULTS A total of 27 patients were enrolled, 23 of whom had high-grade glioma (10 recurrent and 13 newly diagnosed). No dose-limiting toxicities were noted in any dose group, including the highest (1.3 mg/m(2)/dose). The most frequent toxicities were Grade 1 and 2 stomatitis, erythema, and alopecia. All 27 patients were evaluable for response. At a median follow-up of 15.0 months, 9 patients were still alive, with a median survival of 17.4 months for all patients and 15.0 months for patients with high-grade glioma. CONCLUSION Bortezomib administered at its typical "systemic" dose (1.3 mg/m(2)) is well tolerated and safe combined with temozolomide and radiotherapy when used in the treatment of central nervous system malignancies. A Phase II study to characterize efficacy is warranted.
Collapse
Affiliation(s)
- Gregory J Kubicek
- Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brüning A, Burger P, Vogel M, Rahmeh M, Friese K, Lenhard M, Burges A. Bortezomib treatment of ovarian cancer cells mediates endoplasmic reticulum stress, cell cycle arrest, and apoptosis. Invest New Drugs 2008; 27:543-51. [PMID: 19039521 DOI: 10.1007/s10637-008-9206-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
Abstract
Bortezomib, an approved drug for the treatment of certain haematological neoplasms, is currently being tested in clinical trials as a potential therapeutic agent against several types of solid cancer, including ovarian cancer. We have analyzed the effect of bortezomib on ovarian cancer cells and tissue explants either as a single agent or in combination with carboplatin, taxol, or TRAIL (tumor necrosis factor-related apoptosis-inducing ligand). Bortezomib alone efficiently induced apoptosis in ovarian cancer cells. Apoptosis was preceded by an upregulation of the endoplasmic reticulum stress sensor ATF3, and increased the expression of cytoplasmic heat shock proteins. Bortezomib enhanced the sensitivity of ovarian cancer cells and tissue explants to an apoptosis-inducing TRAIL receptor antibody by upregulating the TRAIL receptor DR5. In contrast to the synergistic effect observed for TRAIL, the efficacy of the taxol treatment was reduced by bortezomib, and bortezomib inhibited the G2/M phase accumulation of ovarian cancer cells treated with taxol. Bortezomib alone or in combination with taxol induced a cell cycle arrest within the S phase, and downregulation of cdk1, a cyclin-dependent kinase that is necessary for the entry into the M phase. Thus, bortezomib can be regarded as a promising agent for the treatment of ovarian cancer and could either be administered as a single agent or in combination with TRAIL. However, a combination treatment with taxanes may not be beneficial and may even be less effective.
Collapse
Affiliation(s)
- Ansgar Brüning
- Department of Obstetrics/Gynecology, University Hospital Munich, Maistrasse 11, 80337, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Wiberg K, Carlson K, Aleskog A, Larsson R, Nygren P, Lindhagen E. In vitro activity of bortezomib in cultures of patient tumour cells--potential utility in haematological malignancies. Med Oncol 2008; 26:193-201. [PMID: 19016012 DOI: 10.1007/s12032-008-9107-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
Bortezomib represents a new class of anti-cancer drugs, the proteasome inhibitors. We evaluated the in vitro activity of bortezomib with regard to tumour-type specificity and possible mechanisms of drug resistance in 115 samples of tumour cells from patients and in a cell-line panel, using the short-term fluorometric microculture cytotoxicity assay. Bortezomib generally showed dose-response curves with a steep slope. In patient cells, bortezomib was more active in haematological than in solid tumour samples. Myeloma and chronic myeloid leukaemia were the most sensitive tumour types although with great variability in drug response between the individual samples. Colorectal and kidney cancer samples were the least sensitive. In the cell-line panel, only small differences in response were seen between the different cell lines, and the proteasome inhibitors, lactacystin and MG 262, showed an activity pattern similar to that of bortezomib. The cell-line data suggest that resistance to bortezomib was not mediated by MRP-, PgP, GSH-; tubulin and topo II-associated MDR. Combination experiments indicated synergy between bortezomib and arsenic trioxide or irinotecan. The data support the current use of bortezomib but also points to its potential utility in other tumour types and in combination with cytotoxic drugs.
Collapse
Affiliation(s)
- Kristina Wiberg
- Division of Clinical Pharmacology, Department of Medical Sciences, Uppsala University Hospital, entr 61, 4th floor, SE-751 85, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
37
|
Middleton G, Ghaneh P, Costello E, Greenhalf W, Neoptolemos JP. New treatment options for advanced pancreatic cancer. Expert Rev Gastroenterol Hepatol 2008; 2:673-96. [PMID: 19072345 DOI: 10.1586/17474124.2.5.673] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer has a very high mortality rate and affects approximately 230,000 individuals worldwide. Gemcitabine has become established as the standard therapy for advanced pancreatic cancer; however, the survival advantage is small. Adjuvant chemotherapy using either 5-fluorouracil or gemcitabine is now established in pancreatic cancer as an alternative therapy. Combinations of gemcitabine with either platin agents or capecitabine may be advantageous. Anti-EGFR and anti-VEGF agents have been unsuccessful but multiple tyrosine kinase inhibitors are under investigation. Of the increasing number of immunological agents, the GV1001 antitelomerase vaccine holds some interest. Targeted agents against important mitogenic pathways, including MEK/ERK, Src, PI3K/Akt, mTOR, Hedgehog and NF-kappaB, as well as agents targeting histone deacetylase, poly(ADP-ribose) polymerase, heat shock protein 90 and other agents such as beta-lapachone, hold considerable interest for further development. However, the probability of individual success is low.
Collapse
Affiliation(s)
- Gary Middleton
- Royal Surrey County Hospital NHS Trust, Egerton Road, Guildford, GU2 7XX, UK.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Pancreatic cancer is a lethal disease and notoriously difficult to treat. Only a small proportion is curative by surgical resection, whilst standard chemotherapy for patients with advanced disease has only modest effect with substantial toxicity. Clearly there is a need for the continual development of novel therapeutic agents to improve the current situation. Improvement of our understanding of the disease has generated a large number of studies on biological approaches targeting the molecular abnormalities of pancreatic cancer, including gene therapy and signal transduction inhibition, antiangiogenic and matrix metalloproteinase inhibition, oncolytic viral therapy and immunotherapy. This article provides a review of these approaches, both investigated in the laboratories and in subsequent clinical trials.
Collapse
Affiliation(s)
- Han Hsi Wong
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, London, UK.
| | | |
Collapse
|
39
|
Voutsadakis IA. The ubiquitin-proteasome system in colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2008; 1782:800-8. [PMID: 18619533 DOI: 10.1016/j.bbadis.2008.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 01/01/2023]
Abstract
The proteasome is a multiprotein complex that regulates the stability of hundreds of cellular proteins and thus, it is implicated in virtually all cellular functions. Most of the time, to be recognized and processed by the proteasome, a protein has to be linked to a chain of ubiquitin molecules. Cell proliferation, apoptosis, angiogenesis and motility, processes with particular importance for carcinogenesis are regulated by the ubiquitin-proteasome system (UPS). In colorectal epithelium, UPS plays a role in the regulation of the Wnt/beta-catenin/APC/TCF4 signaling which regulates proliferation of colorectal epithelial cells in the bottom of the crypts and the inhibition of this proliferation as cells move towards colon villi tips. In most colorectal cancers APC (Adenomatous Polyposis Coli) disabling mutations interfere with the ability of the proteasome to degrade beta-catenin leading to uninhibited cell proliferation. Other key molecules in colorectal carcinogenesis such as p53, Smad4 and components of the k-ras pathways are also regulated by the UPS. In this review I discuss the role of UPS in colorectal carcinogenesis and colorectal cancer prognosis and aspects of its inhibition for therapeutic purposes.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, University Hospital of Larissa, Larissa 41110, Greece.
| |
Collapse
|
40
|
Orlowski RZ, Kuhn DJ. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 2008; 14:1649-57. [PMID: 18347166 DOI: 10.1158/1078-0432.ccr-07-2218] [Citation(s) in RCA: 436] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ubiquitin-proteasome pathway is involved in intracellular protein turnover, and its function is crucial to cellular homeostasis. First synthesized as probes of proteolytic processes, proteasome inhibitors began to be thought of as potential drug candidates when they were found to induce programmed cell death preferentially in transformed cells. They made their first leap into the clinic to be tested as therapeutic agents 10 years ago, and since then, great strides have been made in defining their mechanisms of action, their clinical efficacy and toxicity, and some of their limitations in the form of resistance pathways. Validation of the ubiquitin-proteasome pathway as a target for cancer therapy has come in the form of approvals of the first such inhibitor, bortezomib, for relapsed/refractory multiple myeloma and mantle cell lymphoma, for which this agent has become a standard of care. Lessons learned from this first-in-class agent are now being applied to the development of a new generation of proteasome inhibitors that hold the promise of efficacy in bortezomib-resistant disease and possibly in a broader spectrum of diseases. This saga provides a salient example of the promise of translational medicine and a paradigm by which other agents may be successfully brought from the bench to the bedside.
Collapse
Affiliation(s)
- Robert Z Orlowski
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
41
|
Cohen SJ, Engstrom PF, Lewis NL, Langer CJ, McLaughlin S, Beard M, Weiner LM, Meropol NJ. Phase I study of capecitabine and oxaliplatin in combination with the proteasome inhibitor bortezomib in patients with advanced solid tumors. Am J Clin Oncol 2008; 31:1-5. [PMID: 18376220 DOI: 10.1097/coc.0b013e31805c142f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The combination of capecitabine and oxaliplatin has clinical benefit in a variety of gastrointestinal malignancies. The proteasome inhibitor bortezomib enhances the cytotoxic activity of fluoropyrimidines and platinum agents in vivo, and targeting of NF-kappaB may overcome chemotherapy resistance. Thus, we performed this phase I study to document the safety and obtain preliminary efficacy data for the combination of capecitabine, oxaliplatin, and bortezomib. PATIENTS AND METHODS Patients with advanced solid tumors were treated with oxaliplatin 130 mg/m(2) intravenously on day 1, capecitabine 750-900 mg/m(2) twice daily orally for 14 days, and bortezomib 1.0, 1.3, or 1.6 mg/m(2) intravenously on days 1 and 8 of 21 day cycles. CT scans were repeated every 2 cycles. RESULTS Thirteen patients received 45 cycles of treatment (median, 2; range, 1-8). No dose-limiting toxicities were noted at all bortezomib dose levels when administered with full dose capecitabine and oxaliplatin. The most common grade 3 nonhematologic toxicities during any cycle of therapy included elevated transaminases (3), vomiting, diarrhea, and dehydration (2 each). Only one patient experienced grade 3 peripheral neuropathy in cycle 8. Three objective tumor responses were noted (squamous cell of anus, adenocarcinoma of unknown primary, adenocarcinoma of rectum). CONCLUSIONS Weekly bortezomib can be safely combined with full doses of capecitabine and oxaliplatin. As 1.6 mg/m(2) weekly of bortezomib is the maximum tolerated dose in single-agent studies, no further dose escalation was performed in this study. Preliminary evidence of antitumor activity is demonstrated. The further evaluation of this combination in diseases for which capecitabine and oxaliplatin have efficacy should be considered.
Collapse
Affiliation(s)
- Steven J Cohen
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wehenkel M, Hong JT, Kim KB. Proteasome modulators: essential chemical genetic tools for understanding human diseases. MOLECULAR BIOSYSTEMS 2008; 4:280-6. [DOI: 10.1039/b716221a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Sartore-Bianchi A, Gasparri F, Galvani A, Nici L, Darnowski JW, Barbone D, Fennell DA, Gaudino G, Porta C, Mutti L. Bortezomib inhibits nuclear factor-kappaB dependent survival and has potent in vivo activity in mesothelioma. Clin Cancer Res 2007; 13:5942-51. [PMID: 17908991 DOI: 10.1158/1078-0432.ccr-07-0536] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Purpose of this study has been the assessment of nuclear factor-kappaB (NF-kappaB) as a survival factor in human mesothelial cells (HMC), transformed HMC and malignant mesothelioma (MMe) cells. We aimed at verifying whether the proteasome inhibitor Bortezomib could abrogate NF-kappaB activity in MMe cells, leading to tumor cell death and may be established as a novel treatment for this aggressive neoplasm. EXPERIMENTAL DESIGN In HMC and MMe cells, NF-kappaB nuclear translocation and DNA binding were studied by electrophoretic mobility shift assay, following treatment with tumor necrosis factor-alpha (TNF-alpha). The IKK inhibitor Bay11-7082 was also tested to evaluate its effects on HMC, transformed HMC, and MMe cell viability upon exposure to asbestos fibers. Following Bortezomib treatment, cytotoxicity of MMe cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, whereas apoptosis and cell-cycle blockade were investigated by high-content analysis. Bortezomib was also given to mice bearing i.p. xenografts of MMe cells, and its effects on tumor growth were evaluated. RESULTS Here, we show that NF-kappaB activity is a constitutive survival factor in transformed HMC, MMe cells, and acts as a survival factor in HMC exposed to asbestos fibers. Bortezomib inhibits NF-kappaB activity in MMe cells and induces cell cycle blockade and apoptosis in vitro as well as tumor growth inhibition in vivo. CONCLUSIONS Inhibition of NF-kappaB constitutive activation in MMe cells by Bortezomib resulted in in vitro cytotoxicity along with apoptosis and in vivo tumor regression. Our results support the use of Bortezomib in the treatment of MMe and has led to a phase II clinical trial currently enrolling in Europe.
Collapse
Affiliation(s)
- Andrea Sartore-Bianchi
- Institute of Internal Medicine and Medical Oncology, IRCCS Policlinico San Matteo University Hospital, 1-27100 Pavia [corrected] Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Boonstra JJ, Dinjens WN, Tilanus HW, Koppert LB. Molecular biological challenges in he treatment of esophageal adenocarcinoma. Expert Rev Gastroenterol Hepatol 2007; 1:275-86. [PMID: 19072420 DOI: 10.1586/17474124.1.2.275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite improvements in detection and treatment, patients diagnosed with esophageal cancer continue to have a poor prognosis, with an increase in 5-year survival rates from 6 to 16% over the past 25 years. In the last decade there has been growing support for neoadjuvant therapy in patients with esophageal cancer. However, in approximately 30-60% of the patients no objective response is achieved after neoadjuvant chemotherapy and/or radiotherapy. These patients do not benefit from neoadjuvant therapy but do suffer from toxic side effects, and appropriate surgical treatment is delayed. Advances in molecular biology and new molecular technologies could possibly contribute to improvement of response to neoadjuvant therapy. This review categorizes the genetic and molecular alterations related to esophageal adenocarcinoma and links these changes to targeting therapy and prediction of tumor response to neoadjuvant chemotherapy and/or radiotherapy.
Collapse
Affiliation(s)
- Jurjen J Boonstra
- University Medical Center Rotterdam, Department of Surgery, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
45
|
Yeh JJ, Der CJ. Targeting signal transduction in pancreatic cancer treatment. Expert Opin Ther Targets 2007; 11:673-94. [PMID: 17465725 DOI: 10.1517/14728222.11.5.673] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pancreatic cancer is a lethal disease with a 5-year survival rate of 4%. The only opportunity for improved survival continues to be complete surgical resection for those with localized disease. Although chemotherapeutic options are limited for the few patients with resectable disease, this problem is even more magnified in the majority (85%) of patients with unresectable or metastastic disease. Therefore, there is an urgent need for improved therapeutic options. The recent success of inhibitors of signal transduction for the treatment of other cancers supports the need to identify and validate aberrant signaling pathways important for pancreatic tumor growth. This review focuses on the validation of specific signaling networks and the present status of inhibitors of these pathways as therapeutic approaches for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jen Jen Yeh
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Division of Surgical Oncology, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
46
|
Milano A, Iaffaioli RV, Caponigro F. The proteasome: a worthwhile target for the treatment of solid tumours? Eur J Cancer 2007; 43:1125-33. [PMID: 17379504 DOI: 10.1016/j.ejca.2007.01.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 01/12/2007] [Indexed: 01/12/2023]
Abstract
Proteasomes have a fundamental function since they degrade numerous different proteins, including those involved in the regulation of the cell cycle. Proteasome inhibition is a novel approach to the treatment of solid tumours. PS-341 (bortezomib) is a small, cell-permeable molecule that selectively inhibits the proteasome binding it in a reversible manner. The proteasome has been established as an important target in haematologic malignancies and has been approved for the treatment of multiple myeloma. Bortezomib induces apoptosis of malignant cells through the inhibition of NF-kappaB and stabilisation of proapoptotic proteins. In preclinical studies, bortezomib also promoted chemo and radiosensitisation of malignant cells in vitro and inhibited tumour growth in murine xenografts models. The single-agent and combination studies of bortezomib in solid tumours are detailed.
Collapse
Affiliation(s)
- Amalia Milano
- Medical Oncology B, National Tumour Institute of Naples, Fondazione G Pascale Via M Semmola, Naples, Italy.
| | | | | |
Collapse
|