1
|
Kostecki G, Chuang K, Buxton A, Dakshanamurthy S. Dose-Dependent PFESA-BP2 Exposure Increases Risk of Liver Toxicity and Hepatocellular Carcinoma. Curr Issues Mol Biol 2025; 47:98. [PMID: 39996819 PMCID: PMC11854358 DOI: 10.3390/cimb47020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent and highly bioaccumulative emerging environmental contaminants of concern that display significant toxic and carcinogenic effects. An emerging PFAS is PFESA-BP2, a polyfluoroalkyl ether sulfonic acid found in drinking water and the serum of humans and animals. While PFESA-BP2-induced liver and intestinal toxicity has been demonstrated, the toxicological mechanisms and carcinogenic potential of PFESA-BP2 have remained relatively understudied. Here, we studied how different doses of PFESA-BP2 affect gene activity related to liver toxicity and the risk of liver cancer such as hepatocellular carcinoma (HCC) in mice exposed to PFESA-BP2 once daily through oral gavage for seven days. An analysis of key hepatic pathways suggested increased risk of hepatotoxicity as a result of PFESA-BP2 exposure. Increased oxidative stress response was associated with all concentrations of exposure. Liver toxicity pathways, including PXR/RXR activation and hepatic fibrosis, showed dose-dependent alteration with activation primarily at low doses, suggesting an increased risk of hepatic inflammation and injury. Additionally, an analysis of carcinogenic and HCC-specific pathways suggested PFESA-BP2-induced risk of liver cancer, particularly at low doses. Low-dose PFESA-BP2 exposure (0.03 and 0.3 mg/kg-day) was associated with an increased risk of HCC carcinogenesis, as indicated by the activation of tumor-related and HCC-associated pathways. In contrast, these pathways were inhibited at high doses (3.0 and 6.0 mg/kg-day), accompanied by the activation of HCC-suppressive pathways. The increased risk of HCC development at low doses was mechanistically linked to the activation of signaling pathways such as HIF, EGF, NOTCH4, HGF, and VEGF. Biomarkers linked to liver cancer risk, prognoses, and diagnoses were also identified as a result of exposure. Overall, our findings on liver carcinogenic and hepatotoxic pathway activation patterns suggest that PFESA-BP2 increases the risk of liver toxicity and HCC development, particularly at low doses.
Collapse
Affiliation(s)
| | - Kiara Chuang
- College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Amelia Buxton
- Department of Biomedical Engineering, College of Engineering, University of Maine, Orono, ME 04469, USA
| | - Sivanesan Dakshanamurthy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
2
|
Dai H, Yan C, Huang W, Pan Y, Pan F, Liu Y, Wang S, Wang H, Ye R, Li Y. A Nomogram Based on MRI Visual Decision Tree to Evaluate Vascular Endothelial Growth Factor in Hepatocellular Carcinoma. J Magn Reson Imaging 2025; 61:970-982. [PMID: 39777758 PMCID: PMC11706310 DOI: 10.1002/jmri.29491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUNDS Anti-vascular endothelial growth factor (VEGF) therapy has been developed and recognized as an effective treatment for hepatocellular carcinoma (HCC). However, there remains a lack of noninvasive methods in precisely evaluating VEGF expression in HCC. PURPOSE To establish a visual noninvasive model based on clinical indicators and MRI features to evaluate VEGF expression in HCC. STUDY TYPE Retrospective. POPULATION One hundred forty HCC patients were randomly divided into a training (N = 98) and a test cohort (N = 42). FIELD STRENGTH/SEQUENCE 3.0 T, T2WI, T1WI including pre-contrast, dynamic, and hepatobiliary phases. ASSESSMENT The fusion model constructed by history of smoking, albumin-to-globulin ratio (AGR) and the Radio-Tree model was visualized by a nomogram. STATISTICAL TESTS Performances of models were assessed by receiver operating characteristic (ROC) curves. Student's t-test, Mann-Whitney U-test, chi-square test, Fisher's exact test, univariable and multivariable logistic regression analysis, DeLong's test, integrated discrimination improvement (IDI), Hosmer-Lemeshow test, and decision curve analysis were performed. P < 0.05 was considered statistically significant. RESULTS History of smoking and AGR ≤1.5 were clinical independent risk factors of the VEGF expression. In training cohorts, values of area under the curve (AUCs) of Radio-Tree model, Clinical-Radiological (C-R) model, fusion model which combined history of smoking and AGR with Radio-Tree model were 0.821, 0.748, and 0.871. In test cohort, the fusion model showed highest AUC (0.844) than Radio-Tree and C-R models (0.819, 0.616, respectively). DeLong's test indicated that the fusion model significantly differed in performance from the C-R model in training cohort (P = 0.015) and test cohort (P = 0.007). DATA CONCLUSION The fusion model combining history of smoking, AGR and Radio-Tree model established with ML algorithm showed the highest AUC value than others. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Hanting Dai
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of RadiologyNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Chuan Yan
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of RadiologyNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouFujianChina
| | - Wanrong Huang
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Yifan Pan
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Feng Pan
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Yamei Liu
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Shunli Wang
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Huifang Wang
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Rongping Ye
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Yueming Li
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
- Department of RadiologyNational Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical UniversityFuzhouFujianChina
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated HospitalFujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
3
|
Marsh-Wakefield F, Santhakumar C, Ferguson AL, Ashhurst TM, Shin JS, Guan FH, Shields NJ, Platt BJ, Putri GH, Gupta R, Crawford M, Pulitano C, Sandroussi C, Laurence JM, Liu K, McCaughan GW, Palendira U. Spatial mapping of the HCC landscape identifies unique intratumoral perivascular-immune neighborhoods. Hepatol Commun 2024; 8:e0540. [PMID: 39761010 PMCID: PMC11495755 DOI: 10.1097/hc9.0000000000000540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/11/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND HCC develops in the context of chronic inflammation; however, the opposing roles the immune system plays in both the development and control of tumors are not fully understood. Mapping immune cell interactions across the distinct tissue regions could provide greater insight into the role individual immune populations have within tumors. METHODS A 39-parameter imaging mass cytometry panel was optimized with markers targeting immune cells, stromal cells, endothelial cells, hepatocytes, and tumor cells. We mapped the immune landscape of tumor, invasive margin, and adjacent nontumor regions across 16 resected tumors comprising 144 regions of interest. X-shift clustering and manual gating were used to characterize cell subsets, and Spectre quantified the spatial environment to identify cellular neighborhoods. Ligand-receptor communication was quantified on 2 single-cell RNA-sequencing data sets and 1 spatial transcriptomic data set. RESULTS We show immune cell densities remain largely consistent across these 3 regions, except for subsets of monocyte-derived macrophages, which are enriched within the tumors. Mapping cellular interactions across these regions in an unbiased manner identifies immune neighborhoods comprised of tissue-resident T cells, dendritic cells, and various macrophage populations around perivascular spaces. Importantly, we identify multiple immune cells within these neighborhoods interacting with VEGFA+ perivascular macrophages. VEGFA was further identified as a ligand for communication between perivascular macrophages and CD34+ endothelial cells. CONCLUSIONS Immune cell neighborhood interactions, but not cell densities, differ between intratumoral and adjacent nontumor regions in HCC. Unique intratumoral immune neighborhoods around the perivascular space point to an altered landscape within tumors. Enrichment of VEGFA+ perivascular macrophages within these tumors could play a key role in angiogenesis and vascular permeability.
Collapse
Affiliation(s)
- Felix Marsh-Wakefield
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Cositha Santhakumar
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Angela L. Ferguson
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Thomas M. Ashhurst
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Cytometry Core Research Facility, The University of Sydney, Camperdown, New South Wales, Australia
| | - Joo-Shik Shin
- Central Clinical School, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW Health Pathology, Camperdown, New South Wales, Australia
| | - Fiona H.X. Guan
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Nicholas J. Shields
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Barry J. Platt
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Givanna H. Putri
- The Walter and Eliza Hall Institute of Medical Research and The Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ruta Gupta
- Central Clinical School, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW Health Pathology, Camperdown, New South Wales, Australia
| | - Michael Crawford
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Carlo Pulitano
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Institute of Academic Surgery, University of Sydney, Camperdown, New South Wales, Australia
| | - Charbel Sandroussi
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Institute of Academic Surgery, University of Sydney, Camperdown, New South Wales, Australia
| | - Jerome M. Laurence
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Institute of Academic Surgery, University of Sydney, Camperdown, New South Wales, Australia
| | - Ken Liu
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Geoffrey W. McCaughan
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Umaimainthan Palendira
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
4
|
Chen K, Shuen TWH, Chow PKH. The association between tumour heterogeneity and immune evasion mechanisms in hepatocellular carcinoma and its clinical implications. Br J Cancer 2024; 131:420-429. [PMID: 38760445 PMCID: PMC11300599 DOI: 10.1038/s41416-024-02684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. The emergence of combination therapy, atezolizumab (anti-PDL1, immune checkpoint inhibitor) and bevacizumab (anti-VEGF) has revolutionised the management of HCC. Despite this breakthrough, the best overall response rate with first-line systemic therapy is only about 30%, owing to intra-tumoural heterogeneity, complex tumour microenvironment and the lack of predictive biomarkers. Many groups have attempted to classify HCC based on the immune microenvironment and have consistently observed better outcomes in immunologically "hot" HCC. We summarised possible mechanisms of tumour immune evasion based on the latest literature and the rationale for combination/sequential therapy to improve treatment response. Lastly, we proposed future strategies and therapies to overcome HCC immune evasion to further improve treatment outcomes of HCC.
Collapse
Affiliation(s)
- Kaina Chen
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Timothy W H Shuen
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Pierce K H Chow
- Duke-NUS Medical School, Singapore, Singapore.
- Department of Hepato-pancreato-biliary and Transplant Surgery, National Cancer Centre Singapore and Singapore General Hospital, Singapore, Singapore.
- Program in Translational and Clinical Liver Cancer Research, National Cancer Centre Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Ruff SM, Pawlik TM. Emerging therapies targeting growth factors in hepatocellular carcinoma. Expert Opin Pharmacother 2024; 25:255-262. [PMID: 38591252 DOI: 10.1080/14656566.2024.2340714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/01/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a primary liver cancer that commonly arises in the background of chronic liver inflammation and/or cirrhosis. Chronic liver inflammation results in the production of different growth factors, remodeling of the microenvironment architecture into fibrosis, and eventually carcinogenesis. Overexpression of some growth factors has been associated with worse prognosis in patients with HCC. Targeted therapies against growth factors may disrupt cell signaling and the mechanisms that allow for cell survival (e.g. angiogenesis, proliferation, metastases). AREAS COVERED We herein review potential growth factor targets of HCC and the limited research that exists regarding targeted therapy of these ligands and their receptors. We performed an extensive literature search to investigate preclinical studies, clinical research, and clinical trials. EXPERT OPINION Systemic therapy for patients with HCC is continuing to evolve. Anti-angiogenic therapy holds the most promise among targeted therapy for growth factors among patients with HCC. Improving our understanding of growth factors in HCC will hopefully lead to the development of new targeted therapies and strategies for combination therapies with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Samantha M Ruff
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
6
|
Gao R, Jiang Z, Wu X, Cai Z, Sang N. Metabolic regulation of tumor cells exposed to different oxygenated polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167833. [PMID: 37839476 DOI: 10.1016/j.scitotenv.2023.167833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are a class of polycyclic aromatic derivatives with oxygen-containing functional groups that induce oxidative stress and mutations. However, studies of the carcinogenic and metabolic effects of OPAHs are limited. In this study, we analyzed the carcinogenic effects of four different OPAHs and found that 9-fluorenone (FLO), 9,10-anthraquinone (AQ), and 7,12-benz(a)anthraquinone (BAQ) promoted cell invasion and metastasis via epithelial-mesenchymal transition (EMT) and induced endothelial cell angiogenesis by affecting the expression of vascular endothelial growth factor (VEGF), angiopoietin (ANG), and platelet-derived growth factor (PDGF), whereas 1,8-naphthalic anhydride (NAD) did not show significant carcinogenic effects. In addition, combined with metabolomic analysis, we found that the tumor-promoting effects of different OPAHs were related to their effects on the metabolome, especially the metabolism of glutathione related to oxidative stress. These results provide an experimental basis for studying the carcinogenic and metabolic effects of OPAHs, and an important reference for comprehensively assessing the ecological and health risks of this compounds.
Collapse
Affiliation(s)
- Rui Gao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, PR China; College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zihao Jiang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, PR China
| | - Xiuyu Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zhihong Cai
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
7
|
Okamura K, Sato M, Suzuki T, Nohara K. Arsenite exposure induces premature senescence and senescence-associated secretory phenotype (SASP) in human hepatocyte-derived cell line Huh-7. Environ Health Prev Med 2024; 29:74. [PMID: 39756915 DOI: 10.1265/ehpm.24-00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Chronic arsenite exposure has been known to induce cancer in various organs; however, the underlying mechanisms remain elusive. The characteristic feature of carcinogenesis due to arsenic exposure is that the disease develops after a prolonged latent period, even after cessation of exposure. Our previous study revealed that arsenite exposure induces premature senescence in hepatic stellate cells and suggests that the senescence-associated secretory phenotype (SASP) factors from the senescent cells promote hepatic carcinogenesis. However, arsenite exposure in the liver occurs not only in hepatic stellate cells, but also in hepatocytes. Therefore, we examined whether arsenite exposure in hepatocytes also causes premature senescence and the enhancement of SASP factors. We also assessed whether those effects remained after cessation of arsenite exposure. METHODS Human hepatocyte-derived cell line Huh-7 was exposed to sodium arsenite for 72 hours to determine the concentration at which cell proliferation was inhibited. In the 5 µM of exposure, various cellular senescence markers and SASP factors were analyzed and compared with unexposed cells. We also examined whether those senescence markers and SASP factors were maintained after cessation of arsenite exposure. Finally, we explored whether the increased expression of SASP factor, which was upregulated in hepatocytes by arsenic exposure in this study, is related to the prognosis of human hepatocellular carcinoma. RESULTS After exposure to 5 µM of sodium arsenite for 72 hours, various senescent features, such as the induction of P21 mRNA, the reduction of LAMINB1 mRNA, morphological changes, phosphorylation of P53, and the presence of SA-β-gal positive cells were observed. Those changes were maintained after cessation of arsenite exposure. In addition, mRNA levels of SASP factors (MMP1, MMP3, MMP10, GDF15, PAI-1, and IL-6) were increased after arsenite exposure, and their high expression levels were maintained after cessation of arsenite exposure. Furthermore, by analyzing the TCGA database, we found that the increased expression levels of many SASP factors negatively correlated with prognosis. CONCLUSIONS Arsenite exposure induces premature senescence in hepatocyte-derived cells and increases SASP factors that are related to hepatic tumorigenesis. Once arsenite exposure induces premature senescence, the senescent cells remain even after cessation of exposure.
Collapse
Affiliation(s)
- Kazuyuki Okamura
- Health and Environmental Risk Division, National Institute for Environmental Studies
| | - Miyuki Sato
- Health and Environmental Risk Division, National Institute for Environmental Studies
| | - Takehiro Suzuki
- Health and Environmental Risk Division, National Institute for Environmental Studies
| | - Keiko Nohara
- Health and Environmental Risk Division, National Institute for Environmental Studies
| |
Collapse
|
8
|
Fanoodi A, Maharati A, Akhlaghipour I, Rahimi HR, Moghbeli M. MicroRNAs as the critical regulators of tumor angiogenesis in liver cancer. Pathol Res Pract 2023; 251:154913. [PMID: 37931431 DOI: 10.1016/j.prp.2023.154913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Liver cancer is one of the most common malignancies in human digestive system. Despite the recent therapeutic methods, there is a high rate of mortality among liver cancer patients. Late diagnosis in the advanced tumor stages can be one of the main reasons for the poor prognosis in these patients. Therefore, investigating the molecular mechanisms of liver cancer can be helpful for the early stage tumor detection and treatment. Vascular expansion in liver tumors can be one of the important reasons for poor prognosis and aggressiveness. Therefore, anti-angiogenic drugs are widely used in liver cancer patients. MicroRNAs (miRNAs) have key roles in the regulation of angiogenesis in liver tumors. Due to the high stability of miRNAs in body fluids, these factors are widely used as the non-invasive diagnostic and prognostic markers in cancer patients. Regarding, the importance of angiogenesis during liver tumor growth and invasion, in the present review, we discussed the role of miRNAs in regulation of angiogenesis in these tumors. It has been reported that miRNAs mainly exert an anti-angiogenic function by regulation of tumor microenvironment, transcription factors, and signaling pathways in liver tumors. This review can be an effective step to suggest the miRNAs for the non-invasive early detection of malignant and invasive liver tumors.
Collapse
Affiliation(s)
- Ali Fanoodi
- Student Research Committee, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Oh N, Rhu J, Kim JM, Han S, Jo SJ, An S, Park S, Yoon SO, Lim M, Yang J, Kwon J, Choi GS, Joh JW. Improved recurrence-free survival in patients with HCC with post-transplant plasma exchange. Liver Transpl 2023; 29:804-812. [PMID: 37029084 DOI: 10.1097/lvt.0000000000000147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
Total plasma exchange (TPE) can play a role in cancer treatment by eliminating immune checkpoint inhibitors. This study investigated whether TPE improved oncological outcomes in patients with HCC who underwent ABO-incompatible living donor liver transplantation (LT). The study included 152 patients who underwent ABO-incompatible living donor LT for HCC between 2010 and 2021 at Samsung Medical Center. Overall survival was analyzed using the Kaplan-Meier curve, whereas HCC-specific recurrence-free survival (RFS) was analyzed using the cumulative incidence curve after propensity score matching. Cox regression and competing risks subdistribution hazard models were used to identify the risk factors associated with overall survival and HCC-specific RFS, respectively. The propensity score matching resulted in 54 matched pairs, grouped according to whether they underwent postoperative TPE [post-transplant TPE(+)] or not [post-transplant TPE(-)]. The 5-year HCC-specific RFS cumulative incidence was superior in the post-transplant TPE (+) group [12.5% (95% CI: 3.1%-21.9%)] compared with the post-transplant TPE(-) group [38.1% (95% CI: 24.4%-51.8%), p = 0.005]. In subgroup analysis for patients with microvascular invasion and those beyond the Milan criteria, the post-transplant TPE(+) group showed significantly superior HCC-specific survival. The multivariable analysis also showed that postoperative TPE had a protective effect on HCC-specific RFS (HR = 0.26, 95% CI: 0.10-0.64, p = 0.004) and that the more post-transplant TPE was performed, the better RFS was observed (HR = 0.71, 95% CI: 0.55-0.93, p = 0.012). Post-transplant TPE was found to improve RFS after ABO-incompatible living donor LT for HCC, particularly in advanced cases with microvascular invasion and beyond Milan criteria. These findings suggest that TPE may have a potential role in improving oncological outcomes in patients with HCC undergoing LT.
Collapse
Affiliation(s)
- Namkee Oh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Omar MA, Omran MM, Farid K, Tabll AA, Shahein YE, Emran TM, Petrovic A, Lucic NR, Smolic R, Kovac T, Smolic M. Biomarkers for Hepatocellular Carcinoma: From Origin to Clinical Diagnosis. Biomedicines 2023; 11:1852. [PMID: 37509493 PMCID: PMC10377276 DOI: 10.3390/biomedicines11071852] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) and HCC-related deaths has increased over the last few decades. There are several risk factors of HCC such as viral hepatitis (B, C), cirrhosis, tobacco and alcohol use, aflatoxin-contaminated food, pesticides, diabetes, obesity, nonalcoholic fatty liver disease (NAFLD), and metabolic and genetic diseases. Diagnosis of HCC is based on different methods such as imaging ultrasonography (US), multiphasic enhanced computed tomography (CT), magnetic resonance imaging (MRI), and several diagnostic biomarkers. In this review, we examine the epidemiology of HCC worldwide and in Egypt as well as risk factors associated with the development of HCC and, finally, provide the updated diagnostic biomarkers for the diagnosis of HCC, particularly in the early stages of HCC. Several biomarkers are considered to diagnose HCC, including downregulated or upregulated protein markers secreted during HCC development, circulating nucleic acids or cells, metabolites, and the promising, recently identified biomarkers based on quantitative proteomics through the isobaric tags for relative and absolute quantitation (iTRAQ). In addition, a diagnostic model used to improve the sensitivity of combined biomarkers for the diagnosis of early HCC is discussed.
Collapse
Affiliation(s)
- Mona A. Omar
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt;
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt;
| | - Khaled Farid
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura 35524, Egypt;
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, National Research Centre, Cairo 12622, Egypt
- Immunology Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Yasser E. Shahein
- Molecular Biology Department, National Research Centre, Cairo 12622, Egypt
| | - Tarek M. Emran
- Clinical Pathology Department, Faculty of Medicine, Al-Azhar University, New Damietta 34517, Egypt;
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Nikola R. Lucic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Tanja Kovac
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (N.R.L.); (R.S.); (T.K.)
| |
Collapse
|
11
|
Pinto E, Pelizzaro F, Farinati F, Russo FP. Angiogenesis and Hepatocellular Carcinoma: From Molecular Mechanisms to Systemic Therapies. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1115. [PMID: 37374319 DOI: 10.3390/medicina59061115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. The hypervascular nature of the majority of HCCs and the peculiar vascular derangement occurring during liver carcinogenesis underscore the importance of angiogenesis in the development and progression of these tumors. Indeed, several angiogenic molecular pathways have been identified as deregulated in HCC. The hypervascular nature and the peculiar vascularization of HCC, as well as deregulated angiogenic pathways, represent major therapeutic targets. To a large extent, intra-arterial locoregional treatments (transarterial-(chemo)embolization) rely on tumor ischemia caused by embolization of tumor feeding arteries, even though this may represent the "primum movens" of tumor recurrence through the activation of neoangiogenesis. Considering systemic therapies, the currently available tyrosine kinase inhibitors (sorafenib, regorafenib, cabozantinib and lenvatinib) and monoclonal antibodies (ramucirumab and bevacizumab, in combination with the anti-PD-L1, atezolizumab) primarily target, among others, angiogenic pathways. Considering the importance of angiogenesis in the pathogenesis and treatment of liver cancer, in this paper, we aim to review the role of angiogenesis in HCC, addressing the molecular mechanisms, available antiangiogenic therapies and prognostic biomarkers in patients receiving these treatments.
Collapse
Affiliation(s)
- Elisa Pinto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Azienda Ospedaliera di Padova, 35128 Padova, Italy
| | - Filippo Pelizzaro
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Azienda Ospedaliera di Padova, 35128 Padova, Italy
| | - Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Azienda Ospedaliera di Padova, 35128 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Azienda Ospedaliera di Padova, 35128 Padova, Italy
| |
Collapse
|
12
|
Huynh KN, Rao S, Roth B, Bryan T, Fernando DM, Dayyani F, Imagawa D, Abi-Jaoudeh N. Targeting Hypoxia-Inducible Factor-1α for the Management of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:2738. [PMID: 37345074 DOI: 10.3390/cancers15102738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Hypoxia-inducible factor 1 alpha (HIF-1α) is a transcription factor that regulates the cellular response to hypoxia and is upregulated in all types of solid tumor, leading to tumor angiogenesis, growth, and resistance to therapy. Hepatocellular carcinoma (HCC) is a highly vascular tumor, as well as a hypoxic tumor, due to the liver being a relatively hypoxic environment compared to other organs. Trans-arterial chemoembolization (TACE) and trans-arterial embolization (TAE) are locoregional therapies that are part of the treatment guidelines for HCC but can also exacerbate hypoxia in tumors, as seen with HIF-1α upregulation post-hepatic embolization. Hypoxia-activated prodrugs (HAPs) are a novel class of anticancer agent that are selectively activated under hypoxic conditions, potentially allowing for the targeted treatment of hypoxic HCC. Early studies targeting hypoxia show promising results; however, further research is needed to understand the effects of HAPs in combination with embolization in the treatment of HCC. This review aims to summarize current knowledge on the role of hypoxia and HIF-1α in HCC, as well as the potential of HAPs and liver-directed embolization.
Collapse
Affiliation(s)
- Kenneth N Huynh
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Sriram Rao
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Bradley Roth
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Theodore Bryan
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Dayantha M Fernando
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Farshid Dayyani
- Division of Hematology and Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Orange, CA 92868, USA
| | - David Imagawa
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Nadine Abi-Jaoudeh
- Division of Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| |
Collapse
|
13
|
Thymoquinone Suppresses Angiogenesis in DEN-Induced Hepatocellular Carcinoma by Targeting miR-1-3p. Int J Mol Sci 2022; 23:ijms232415904. [PMID: 36555545 PMCID: PMC9781440 DOI: 10.3390/ijms232415904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by its high vascularity and metastasis. Thymoquinone (TQ), the main bio-active constituent of Nigella sativa, has shown anticancer and hepatoprotective effects. TQ's anticancer effect is mediated through miRNA regulation. miR-1-3p plays a significant role in various cancers but its role in HCC invasiveness remains poorly understood. Bio-informatics analysis predicted that the 3'-UTR of TIMP3 is a target for miR-1-3p; Rats were equally divided into four groups: Group 1, the negative control; Group 2 received TQ; Group 3 received DEN; and Group 4 received DEN after pretreatment with TQ. The expression of TIMP3, MMP2, MMP9, and VEGF in rats' liver was determined immunohistochemically. RT-qPCR was used to measure the miR-1-3p level in rats' liver, and TIMP3, MMP2, MMP9, and VEGF in the HepG2 cells after being transfected with miR-1-3p mimic or inhibitor; In rats pretreated with TQ, a decreased expression of MMP2, MMP9 and VEGF, and increased expression levels of TIMP3 and miR-1-3p were detected. Treating the HepG2 cells with miR-1-3p mimic led to the upregulation of TIMP3 and downregulation of MMP2, MMP9, and VEGF, and showed a significant delay in wound healing; These results suggested that the anti-angiogenic effect of TQ in HCC may be mediated through the regulation of miR-1-3p.
Collapse
|
14
|
Micronome Revealed miR-205-5p as Key Regulator of VEGFA During Cancer Related Angiogenesis in Hepatocellular Carcinoma. Mol Biotechnol 2022:10.1007/s12033-022-00619-5. [DOI: 10.1007/s12033-022-00619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
|
15
|
Yang J, Guo W, Lu M. Recent Perspectives on the Mechanism of Recurrence After Ablation of Hepatocellular Carcinoma: A Mini-Review. Front Oncol 2022; 12:895678. [PMID: 36081558 PMCID: PMC9445307 DOI: 10.3389/fonc.2022.895678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Hepatectomy, liver transplantation, and ablation are the three radical treatments for early-stage hepatocellular carcinoma (ESHCC), but not all patients are fit for or can tolerate surgery; moreover, liver donors are limited. Therefore, ablation plays an important role in the treatment of ESHCC. However, some studies have shown that ablation has a higher local recurrence (LR) rate than hepatectomy and liver transplantation. The specific mechanism is unknown. The latest perspectives on the mechanism of recurrence after ablation of HCC were described and summarized. In this review, we discussed the possible mechanisms of recurrence after ablation of HCC, including epithelial–mesenchymal transition (EMT), activating autophagy, changes in non-coding RNA, and changes in the tumor microenvironment. A systematic and comprehensive understanding of the mechanism will contribute to the research and development of related treatment, combined with ablation to improve the therapeutic effect in patients with ESHCC.
Collapse
Affiliation(s)
- Jianquan Yang
- The School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wen Guo
- Institute of Materia Medica, North Sichuan Medical College, Nanchong, China
| | - Man Lu
- The School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Man Lu,
| |
Collapse
|
16
|
Li S, Pei W, Yuan W, Yu D, Song H, Zhang H. Multi-omics joint analysis reveals the mechanism of action of the traditional Chinese medicine Marsdenia tenacissima (Roxb.) Moon in the treatment of hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115285. [PMID: 35429621 DOI: 10.1016/j.jep.2022.115285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marsdenia tenacissima (Roxb.) Moon, (M. tenacissima) a traditional herbal medicine, has been used for thousands of years. It is noted in Dian Nan Ben Cao that M. tenacissima is bitter in flavor and cold in property, and extracts possess diverse pharmacological effects, including immunomodulation and anti-tumor activities. AIM OF THE STUDY The anti-tumor effects of M. tenacissima extracts (MTE) have been repeatedly confirmed, and this medicine has also been extensively applied in cancer treatment or prognostic adjuvant therapy, with significant curative effect. This study aims to comprehensively analyze the anti-tumor mechanism of M. tenacissima starting from the key features of traditional Chinese medicine and by studying the main active components individually to identify anti-tumor targets in the context of hepatocellular carcinoma. MATERIALS AND METHODS Molecular network profiling and multi-omic joint analyses were conducted using an H22 mouse model of hepatocellular carcinoma to determine the main active ingredients in MTE and the underlying anti-tumor mechanisms. RESULTS Tenacissosides I, H, and G (TI,TH and TG) were found to be the likely active ingredients of MTE in the treatment of hepatocellular carcinoma. These compounds were shown to promote apoptosis, inhibit angiogenesis and improve immune function through targeting P53, JAK-1 and HIF1α, respectively. CONCLUSIONS For the first time, based on the theory that multiple components and multiple targets synergistically exert the beneficial effects of a traditional Chinese medicine, this paper comprehensively analyzes the mechanisms of action of M. tenacissima and provides a novel strategy for the subsequent development of anti-tumor therapies.
Collapse
Affiliation(s)
- Siyu Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, PR China
| | - Wenhan Pei
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, PR China
| | - Wei Yuan
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, PR China
| | - Dan Yu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, PR China
| | - Huanjie Song
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, PR China
| | - Hui Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, PR China.
| |
Collapse
|
17
|
Bai Y, Hu X, Ren Z, Hisai T, Yusa W, Weng L, Shiba S, Takase T. A phase I pharmacokinetic study of lenvatinib in Chinese patients with unresectable hepatocellular carcinoma. Future Oncol 2022; 18:2413-2424. [PMID: 35674480 DOI: 10.2217/fon-2022-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This phase I study assessed the pharmacokinetic profile, safety and antitumor activity of lenvatinib in Chinese patients with unresectable hepatocellular carcinoma. Materials & methods: Bodyweight-based lenvatinib dosing was administered (patients <60 kg: 8 mg/day, n = 13; patients ≥60 kg: 12 mg/day, n = 12). Pharmacokinetic sampling was performed during the first cycle. Efficacy and safety were assessed. Results: There was considerable overlap between individual exposure values at steady-state in the 8 and 12 mg groups. The most common adverse events were increased blood bilirubin and decreased platelet count (48.0%). Two patients had partial responses, and 16 patients attained stable disease. Conclusion: No significant pharmacokinetic differences between dose groups were detected. Lenvatinib was tolerable, showing promising antitumor activities in Chinese patients with unresectable hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yuxian Bai
- Harbin Medical University Affiliated Cancer Hospital, Harbin, China
| | - Xichun Hu
- Fudan University Affiliated Cancer Hospital, Shanghai, China
| | - Zhenggang Ren
- Fudan University Affiliated Zhongshan Hospital, Shanghai, China
| | | | | | | | | | | |
Collapse
|
18
|
Fan T, Li S, Li K, Xu J, Zhao S, Li J, Zhou X, Jiang H. A Potential Prognostic Marker for Recognizing VEGF-Positive Hepatocellular Carcinoma Based on Magnetic Resonance Radiomics Signature. Front Oncol 2022; 12:857715. [PMID: 35444942 PMCID: PMC9013965 DOI: 10.3389/fonc.2022.857715] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022] Open
Abstract
Objectives The objective of our project is to explore a noninvasive radiomics model based on magnetic resonance imaging (MRI) that could recognize the expression of vascular endothelial growth factor (VEGF) in hepatocellular carcinoma before operation. Methods 202 patients with proven single HCC were enlisted and stochastically distributed into a training set (n = 142) and a test set (n = 60). Arterial phase, portal venous phase, balanced phase, delayed phase, and hepatobiliary phase images were used to radiomics features extraction. We retrieved 1906 radiomic features from each phase of every participant’s MRI images. The F-test was applied to choose the crucial features. A logistic regression model was adopted to generate a radiomics signature. By combining independent risk indicators from the fusion radiomics signature and clinico-radiological features, we developed a multivariable logistic regression model that could predict the VEGF status preoperatively through calculating the area under the curve (AUC). Results The entire group comprised 108 VEGF-positive individuals and 94 VEGF-negative patients. AUCs of 0.892 (95% confidence interval [CI]: 0.839 - 0.945) in the training dataset and 0.800 (95% CI: 0.682 - 0.918) in the test dataset were achieved by utilizing radiomics features from two phase images (8 features from the portal venous phase and 5 features from the hepatobiliary phase). Furthermore, the nomogram relying on a combined model that included the clinical factors α-fetoprotein (AFP), irregular tumor margin, and the fusion radiomics signature performed well in both the training (AUC = 0.936, 95% CI: 0.898-0.974) and test (AUC = 0.836, 95% CI: 0.728-0.944) datasets. Conclusions The combined model acquired from two phase (portal venous and hepatobiliary phase) pictures of gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI could be considered as a credible prognostic marker for the level of VEGF in HCC.
Collapse
Affiliation(s)
- Tingting Fan
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shijie Li
- Department of Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kai Li
- Department of Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingxu Xu
- Department of Research Collaboration, Research and Development (R&D) Center, Beijing Deepwise & League of Doctor of Philosophy (PHD) Technology Co., Ltd, Beijing, China
| | - Sheng Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinping Li
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglu Zhou
- Department of Positron Emission Tomography/Computed Tomography (PET/CT) Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Choi HI, An GY, Yoo E, Baek M, Chai JC, Binas B, Lee YS, Jung KH, Chai YG. Targeting of noncoding RNAs encoded by a novel MYC enhancers inhibits the proliferation of human hepatic carcinoma cells in vitro. Sci Rep 2022; 12:855. [PMID: 35039581 PMCID: PMC8764030 DOI: 10.1038/s41598-022-04869-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
The proto-oncogene MYC is important for development and cell growth, however, its abnormal regulation causes cancer. Recent studies identified distinct enhancers of MYC in various cancers, but any MYC enhancer(s) in hepatocellular carcinoma (HCC) remain(s) elusive. By analyzing H3K27ac enrichment and enhancer RNA (eRNA) expression in cultured HCC cells, we identified six putative MYC enhancer regions. Amongst these, two highly active enhancers, located ~ 800 kb downstream of the MYC gene, were identified by qRT-PCR and reporter assays. We functionally confirmed these enhancers by demonstrating a significantly reduced MYC expression and cell proliferation upon CRISPR/Cas9-based deletion and/or antisense oligonucleotide (ASO)-mediated inhibition. In conclusion, we identified potential MYC enhancers of HCC and propose that the associated eRNAs may be suitable targets for HCC treatment.
Collapse
Affiliation(s)
- Hae In Choi
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Ga Yeong An
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Eunyoung Yoo
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Mina Baek
- Department of Molecular & Life Science, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
- Institute of Natural Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jin Choul Chai
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bert Binas
- Department of Molecular & Life Science, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Young Seek Lee
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung Hwa Jung
- Convergence Technology Campus of Korea Polytechnic II, Incheon, 21417, Republic of Korea.
- Department of Biopharmaceutical Systems, Gwangmyeong Convergence Technology Campus of Korea Polytechnic II, Gwangmyeong-si, Gyeonggi-do, 14222, Republic of Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea.
- Department of Molecular & Life Science, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
20
|
Li H, Chen P, Wang M, Wang W, Li F, Han X, Ren J, Duan X. Liposome quercetin enhances the ablation effects of microwave ablation in treating the rabbit VX2 liver tumor model. Int J Hyperthermia 2022; 39:162-172. [PMID: 35000534 DOI: 10.1080/02656736.2021.2023767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE This study aimed to investigate whether liposomal quercetin (LQ) could enhance the effects of microwave ablation (MVA) in treating the rabbit VX2 liver tumor model. METHODS Rabbits with VX2 liver tumors were randomly divided into three groups: intravenous LQ group (LQ group), MWA group and LQ combined with MWA (LQ + MWA) group. Five rabbits were randomly selected and sacrificed from each group at 12 h and on days 3, 7 and 14 of the operation. The tumor samples were detected and quantified by immunohistochemistry, Western blot, and reverse transcription polymerase chain reaction (RT-PCR). RESULTS For up to 7 days, the coagulation necrosis volume (CV) of the LQ + MWA group was larger than that of MWA and LQ groups (p < 0.05). Fourteen days after the operation, the total tumor volume of the LQ + MWA group was smaller than that of the LQ group and the MWA group (p < 0.05). The survival time of the LQ + MWA group was significantly longer than that of the MWA and LQ groups (p < 0.01). Heat shock protein 70 (HSP70), hypoxia inducible factor-1 α (HIF-1 α), vascular endothelial growth factor (VEGF), tumor microvessel density (MVD) were lower in the LQ + MWA group than the MWA and LQ groups at 12 h, on days 3 and 7. At hour 12 and on days 3 and 7, HSP70 mRNA and HIF-1α mRNA expression of MWA group were significantly higher than that of the LQ and LQ + MWA groups (p < 0.001). At 12 h, and on days 3 and 7, apoptotic rate of tumor cells in LQ + MWA group was higher than that of the MWA and LQ groups (p < 0.05). At 12 h and on days 3, 7 and 14, the proliferation index of tumor cells in residual tumor in LQ + MWA group was lower than that in the MWA and LQ groups (p < 0.05). CONCLUSION Preoperative infusion of LQ can significantly enhance the MWA effects of liver VX2 tumor, inhibit the excessive proliferation of residual tumor and angiogenesis, and decrease metastasis and prolong the survival period of experimental animals.
Collapse
Affiliation(s)
- Hao Li
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Pengfei Chen
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Manzhou Wang
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wenhui Wang
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Fangzheng Li
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xuhua Duan
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
21
|
Roles of Therapeutic Bioactive Compounds in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9068850. [PMID: 34754365 PMCID: PMC8572616 DOI: 10.1155/2021/9068850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is due to poor prognosis and lack of availability of effective treatment. Novel therapeutic strategies will be the fine tuning of intracellular ROS signaling to effectively deprive cells of ROS-induced tumor-promoting events. This review discusses the generation of ROS, the major signaling their modulation in therapeutics. We explore some of the major pathways involved in HCC, which include the VEGF, MAPK/ERK, mTOR, FGF, and Ser/Thr kinase pathways. In this review, we study cornerstone on natural bioactive compounds with their effect on hepatocarcinomas. Furthermore, we focus on oxidative stress and FDA-approved signaling pathway inhibitors, along with chemotherapy and radiotherapy enhancers which with early evidence of success. While more in vivo testing is required to confirm the findings presented here, our findings will aid future nonclinical, preclinical, and clinical studies with these compounds, as well as inspire medicinal chemistry scientists to conduct appropriate research on this promising natural compound and their derivatives.
Collapse
|
22
|
Rico Montanari N, Anugwom CM, Boonstra A, Debes JD. The Role of Cytokines in the Different Stages of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13194876. [PMID: 34638361 PMCID: PMC8508513 DOI: 10.3390/cancers13194876] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Non-homeostatic cytokine expression during hepatocellular carcinogenesis, together with simple and inexpensive cytokine detection techniques, has opened up its use as potential biomarkers, from cancer detection to prognosis. However, carcinogenic programs during cancer progression are not linear. Therefore, cytokines with prognostic potential in one stage may not be relevant in another. Here, we reviewed cytokines with clinical potential in different settings during hepatocellular carcinoma progression. Abstract Hepatocellular carcinoma (HCC) is the primary form of liver cancer and a leading cause of cancer-related death worldwide. Early detection remains the most effective strategy in HCC management. However, the spectrum of underlying liver diseases preceding HCC, its genetic complexity, and the lack of symptomatology in early stages challenge early detection. Regardless of underlying etiology, unresolved chronic inflammation is a common denominator in HCC. Hence, many inflammatory molecules, including cytokines, have been investigated as potential biomarkers to predict different stages of HCC. Soluble cytokines carry cell-signaling functions and are easy to detect in the bloodstream. However, its biomarkers’ role remains limited due to the dysregulation of immune parameters related to the primary liver process and their ability to differentiate carcinogenesis from the underlying disease. In this review, we discuss and provide insight on cytokines with clinical relevance for HCC differentiating those implicated in tumor formation, early detection, advanced disease, and response to therapy.
Collapse
Affiliation(s)
- Noe Rico Montanari
- Department of Medicine, Division of Gastroenterology & Division of Infectious Disease, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.M.); (C.M.A.)
- Department of Gastroenterology and Hepatology, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Chimaobi M. Anugwom
- Department of Medicine, Division of Gastroenterology & Division of Infectious Disease, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.M.); (C.M.A.)
- Health Partners Digestive Care, Saint Paul, MN 55130, USA
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Jose D. Debes
- Department of Medicine, Division of Gastroenterology & Division of Infectious Disease, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.M.); (C.M.A.)
- Department of Gastroenterology and Hepatology, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
23
|
Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev Gastroenterol Hepatol 2021; 15:217-233. [PMID: 33131349 DOI: 10.1080/17474124.2021.1842732] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Persistent inflammation and hypoxia are strong stimulus for pathological angiogenesis and vascular remodeling, and are also the most important elements resulting in liver fibrosis. Sustained inflammatory process stimulates fibrosis to the end-point of cirrhosis and sinusoidal portal hypertension is an important feature of cirrhosis. Neovascularization plays a pivotal role in collateral circulation formation of portal vein, mesenteric congestion, and high perfusion. Imbalance of hepatic artery and portal vein blood flow leads to the increase of hepatic artery inflow, which is beneficial to the formation of nodules. Angiogenesis contributes to progression from liver fibrosis to cirrhosis and hepatocellular carcinoma (HCC) and anti-angiogenesis therapy can improve liver fibrosis, reduce portal pressure, and prolong overall survival of patients with HCC. Areas covers: This paper will try to address the difference of the morphological characteristics and mechanisms of neovascularization in the process from liver fibrosis to cirrhosis and HCC and further compare the different efficacy of anti-angiogenesis therapy in these three stages. Expert opinion: More in-depth understanding of the role of angiogenesis factors and the relationship between angiogenesis and other aspects of the pathogenesis and transformation may be the key to enabling future progress in the treatment of patients with liver fibrosis, cirrhosis, and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
24
|
Williams PT. Quantile-specific heritability of serum growth factor concentrations. Growth Factors 2021; 39:45-58. [PMID: 35312415 PMCID: PMC10101221 DOI: 10.1080/08977194.2022.2049261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND "Quantile-dependent expressivity" occurs when the effect size of a genetic variant depends upon whether the phenotype (e.g. growth factor concentration) is high or low relative to its distribution. METHODS Quantile-regression analysis was applied to family sets from the Framingham Heart Study to determine whether the heritability (h2) of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), angiopoietin-2, and angiopoietin-2 (sTie-2) and VEGFR1 (sFlt-1) receptor concentrations were quantile-specific. RESULTS Quantile-specific h2 (±SE) increased with increasing percentiles of the age- and sex-adjusted VEGF (Ptrend<10-16), HGF (Ptrend=0.0004), angiopoietin-2 (Ptrend=0.0002), sTie-2 (Ptrend=1.2 × 10-5), and sFlt-1 distributions (Ptrend=0.04). CONCLUSION Heritabilities of VEGF, HGF, angiopoitein-2, sTie-2 and sFlt-1 concentrations are quantile dependent. This may explain reported interactions of genetic loci (rs10738760, rs9472159, rs833061, rs3025039, rs2280789, rs1570360, rs2010963) with metabolic syndrome, diet, recurrent miscarriage, hepatocellular carcinoma, erysipelas, diabetic retinopathy, and bevacizumab treatment in their effect on VEGF concentrations.
Collapse
Affiliation(s)
- Paul T Williams
- Lawrence Berkeley National Laboratory, Molecular Biophysics & Integrated Bioimaging Division, Berkeley, CA, USA
| |
Collapse
|
25
|
Liu CA, Lee IC, Lee RC, Chen JL, Chao Y, Hou MC, Huang YH. Prediction of survival according to kinetic changes of cytokines and hepatitis status following radioembolization with yttrium-90 microspheres. J Formos Med Assoc 2020; 120:1127-1136. [PMID: 32978044 DOI: 10.1016/j.jfma.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/30/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/PURPOSE Yttrium-90 radioembolization (Y90-RE) may exert an immunomodulatory effect on the tumor microenvironment of hepatocellular carcinoma (HCC). Whether the host immune alterations after Y90-RE correlated with outcomes and whether Y90-RE affects viral hepatitis reactivation remains unclear. METHODS Between July 2014 and July 2015, 18 patients undergoing Y90-RE for HCC were prospectively enrolled. Serum levels of virological markers, cytokines and chemokines were measured at baseline, 2, 4, and 12 weeks after Y90-RE. Factors associated with the clinical outcomes were evaluated. RESULTS The disease control rate of Y90-RE was 44.4% (8 of 18) at 12 weeks, including 1 case with complete response, 4 cases with partial response, and 3 cases with stable disease. Significant elevation from baseline to week 2 and week 4 were noted in IL-10 level (8.4 ± 33.8, 15.7 ± 31.6, and 16.0 ± 41.7 pg/mL, P = 0.041 and 0.013, respectively) and IP-10 level (113.5 ± 97.8, 189.1 ± 164.4, and 168.6 ± 150.5 pg/mL, P = 0.027 and 0.026, respectively). After Y90-RE, transient HBV reactivation occurred in 2 patients, and 1 out of 3 HCV-infected patients exhibited HCV reactivation. Univariate analysis revealed that lower baseline IP-10 (≤200 pg/mL) and alanine aminotransferase (ALT) (≤50 U/L) levels were associated with better overall survival. Multivariate analysis identified an IP-10 level of 200 pg/mL (HR = 4.374, P = 0.045) as a predictor of overall survival. CONCLUSION Baseline serum IP-10 level is a predictor of survival for HCC patients undergoing Y90-RE. HBV and HCV reactivation may develop after Y90-RE treatment.
Collapse
Affiliation(s)
- Chien-An Liu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - I-Cheng Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Rheun-Chuan Lee
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jian-Ling Chen
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee Chao
- Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
26
|
Li X, Wu N, Zhang W, Liu Y, Ming Y. Differential diagnostic value of 18F-FDG PET/CT in osteolytic lesions. J Bone Oncol 2020; 24:100302. [PMID: 32760643 PMCID: PMC7393436 DOI: 10.1016/j.jbo.2020.100302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
Background Both bone metastases and multiple myeloma (MM) are malignant diseases that can appear osteolytic on imaging and are difficult to differentiate. While positron emission tomography/computed tomography (PET/CT) has been demonstrated useful for the diagnosis of various bone lesions, correlations between PET/CT and histopathology and these diseases are unclear. This retrospective study investigated the optimal cutoff standardized uptake value (SUV) to differentiate MM and bone metastasis. Methods Patients with newly diagnosed osteolytic lesions (n = 344) and suspected malignancy underwent both fluorodeoxyglucose (FDG) PET/CT and biopsy/surgery. FDG uptake and morphologic changes (e.g., soft tissue mass formation) were compared with pathological results. Results A total of 8896 osteolytic lesions were evaluated. The SUVmax of MM osteolytic lesions (1.6 ± 0.7) was significantly lower than that of bone metastases (5.5 ± 2.7; p = 0.000). The best cutoff SUVmax for differentiating MM and bone metastasis was 2.65 (sensitivity 86.1%, specificity 94.7%; p = 0.000). The SUVmax of bone lesions of soft tissue mass was higher than that for pure osteolytic lesions (p = 0.000). A greater percentage of patients with bone metastasis had a soft tissue mass (7%) than did patients with MM (2%). The mean SUVmax of bone metastases was 5.5 ± 2.7 (0.4-30.4); that of primary tumors was 7.5 ± 4.2 (1.0-28.5). The SUVmax of bone metastases significantly correlated with the SUVmax of primary tumors (r = 0.532; p = 0.000). Conclusions FDG PET/CT is a valuable tool to differentiate osteolytic lesions. The best cutoff value of SUVmax for differentiating MM from bone metastasis is 2.65. The significant correlation between the SUVmax of bone metastasis and that of primary tumors is helpful for detecting primary tumors.
Collapse
Affiliation(s)
- Xiaomeng Li
- Department of PET/CT, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Wu
- Department of PET/CT, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjie Zhang
- Department of PET/CT, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Liu
- Department of PET/CT, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Ming
- Department of PET/CT, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Moawad AW, Szklaruk J, Lall C, Blair KJ, Kaseb AO, Kamath A, Rohren SA, Elsayes KM. Angiogenesis in Hepatocellular Carcinoma; Pathophysiology, Targeted Therapy, and Role of Imaging. J Hepatocell Carcinoma 2020; 7:77-89. [PMID: 32426302 PMCID: PMC7188073 DOI: 10.2147/jhc.s224471] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide, usually occurring on a background of liver cirrhosis. HCC is a highly vascular tumor in which angiogenesis plays a major role in tumor growth and spread. Tumor-induced angiogenesis is usually related to a complex interplay between multiple factors and pathways, with vascular endothelial growth factor being a major player in angiogenesis. In the past decade, understanding of tumor-induced angiogenesis has led to the emergence of novel anti-angiogenic therapies, which act by reducing neo-angiogenesis, and improving patient survival. Currently, Sorafenib and Lenvatinib are being used as the first-line treatment for advanced unresectable HCC. However, a disadvantage of these agents is the presence of numerous side effects. A major challenge in the management of HCC patients being treated with anti-angiogenic therapy is effective monitoring of treatment response, which decides whether to continue treatment or to seek second-line treatment. Several criteria can be used to assess response to treatment, such as quantitative perfusion on cross-sectional imaging and novel/emerging MRI techniques, including a host of known and emerging biomarkers and radiogenomics. This review addresses the pathophysiology of angiogenesis in HCC, accurate imaging assessment of angiogenesis, monitoring effects of anti-angiogenic therapy to guide future treatment and assessing prognosis.
Collapse
Affiliation(s)
- Ahmed W Moawad
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Janio Szklaruk
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Chandana Lall
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Katherine J Blair
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Ahmed O Kaseb
- Department of Gastrointestinal Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Amita Kamath
- Department of Radiology, Icahn School of Medicine at Mount Sinai West, New York, NY, USA
| | - Scott A Rohren
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Khaled M Elsayes
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
28
|
Gai X, Zhou P, Xu M, Liu Z, Zheng X, Liu Q. Hyperactivation of IL-6/STAT3 pathway leaded to the poor prognosis of post-TACE HCCs by HIF-1α/SNAI1 axis-induced epithelial to mesenchymal transition. J Cancer 2020; 11:570-582. [PMID: 31942180 PMCID: PMC6959052 DOI: 10.7150/jca.35631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023] Open
Abstract
Transarterial chemoembolization (TACE) has been considered the standard treatment for intermediate-stage hepatocellular carcinoma according to BCLC algorithm. However, it has been unclear about the TACE-related predictive bio-markers and underlying molecular mechanisms. This investigation revealed that HCCs with higher HIF-1α suffered from unfavorable OS after TACE. mRNA expression microarray revealed that HIF-1α was potential target of p-STAT3 which was verified by ChIP and immunoblotting assay. Activation of IL-6/STAT3/HIF-1α signaling was found to promote EMT and chemoresistance to Doxorubicin in vitro and in vivo by regulating SNAI1. Hypoxia did not enhance HIF-1α expression and influence cell growth and chemoresistence to Doxorubicin in HCC cells when STAT3 expression was abolished. Taken together, HIF-1α overexpression in HCC tissues predicted the unfavorable outcome of HCCs after TACE and IL-6/STAT3 pathway resulted in EMT induced-metastases and chemoresistance of HCC after TACE through HIF-1α/SNAI1 axis.
Collapse
Affiliation(s)
- Xiaohong Gai
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Peng Zhou
- Department of General Surgery, Xian NO.3 Hospital, Xi'an, Shaanxi 710001, China
| | - Meng Xu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Zheng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
29
|
Madabhavi I, KS S, Dharmarajan Lethika R, Tumbal S, Miskin AT, Sarkar M, Modi M. Intraconal Metastasis Leading to Diagnosis of Hepatocellular Carcinoma. Middle East J Dig Dis 2020; 12:48-51. [PMID: 32082522 PMCID: PMC7023650 DOI: 10.15171/mejdd.2020.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the commontumor of the liver and the third most common cause of cancer-related mortality worldwide. Patients with HCC may have metastasis to different sites. Intrahepatic and extrahepatic metastases are found in (~50-75%). Lung and regional lymph nodes are the most commonly involved sites. Metastasis to bone, skin, and adrenal glands are rare. Orbit metastasis and intracranial invasion are extremely rare. We are presenting a case of HCC that metastasized to the orbital cavity. The patient presented with progressive proptosis of the eyeball with retrobulbar and intracranial invasion and involvement of the sub-scalp region. Based on the imaging findings, it was initially misdiagnosed as meningioma; however, histopathological examination of the biopsy specimen resulted in a definitive diagnosis of HCC metastasis. The present case reveals that the alternative diagnosis of metastasis must be considered when diagnosing retrobulbar lesions in patients with HCC.
Collapse
Affiliation(s)
- Irappa Madabhavi
- Department of Medical and Pediatric Oncology and Hematology, Kerudi Cancer Hospital, Bagalkot, Karnataka, India
| | - Sandeep KS
- Department of Radiation Oncology, Kerudi Cancer Hospital, Bagalkot, Karnataka, India
| | | | - Satish Tumbal
- Department of Radiology, Kerudi Cancer Hospital, Bagalkot, Karnataka, India
| | - Arun T Miskin
- Department of Pathology, SNMCMedical College, Bagalkot, Karnataka, India
| | - Malay Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Mitul Modi
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Dai Q, Zhang C, Yuan Z, Sun Q, Jiang Y. Current discovery strategies for hepatocellular carcinoma therapeutics. Expert Opin Drug Discov 2019; 15:243-258. [PMID: 31809618 DOI: 10.1080/17460441.2020.1696769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qiuzi Dai
- Department of Chemistry, Tsinghua University, Beijing, PR China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
- Shenzhen Bay Laboratory, Shenzhen, PR China
| | - Cunlong Zhang
- Shenzhen Bay Laboratory, Shenzhen, PR China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Zigao Yuan
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
- Shenzhen Bay Laboratory, Shenzhen, PR China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Qinsheng Sun
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
- Shenzhen Bay Laboratory, Shenzhen, PR China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Yuyang Jiang
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
- Shenzhen Bay Laboratory, Shenzhen, PR China
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
31
|
Lin JT, Chang YY, Chen YC, Liao PL, Yang DJ. Litchi (Litchi chinensis Sonn.) flower proanthocyanidin fraction exhibited protective efficacy to suppress nickel-induced expression for vascular endothelial growth factor in HepG2 cells. J Food Biochem 2019; 43:e12882. [PMID: 31353727 DOI: 10.1111/jfbc.12882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022]
Abstract
The protective efficacy of litchi (Litchi chinensis Sonn.) flower proanthocyanidin fraction (LFPF) composed of (-)-epicatechin and proanthocyanidin A2 against vascular endothelial growth factor (VEGF) generation induced by nickel (Ni) in hepatocellular carcinoma (Hep G2) cells was studied. VEGF is an angiogenic inducer, which promotes tumor angiogenesis, leading to rapid tumor growth and metastasis. VEGF could be substantially induced in the Ni-mediated Hep G2 cells. Through LFPF treatment, the Ni-induced VEGF generation could be suppressed significantly. The inhibition of HIF-1α expression by blocking phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways, and the suppression of Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT 3), and Raf-1 proto-oncogene, serine/threonine kinase (RAF1)/mitogen-activated protein kinase (MEK1/2)/extracellular-signal-regulated kinase (ERK1/2) pathways are important molecular mechanisms for the LFPF action. LFPF should probably reduce the risk of liver cancer in Ni-contaminated environments by inhibiting VEGF expression. PRACTICAL APPLICATIONS: LFPF mainly contained (-)-epicatechin and proanthocyanidin A2. Our results demonstrated that LFPF considerably suppressed the Ni-induced VEGF expression through inhibition of JAK2/STAT 3 and RAF1/MEK1/2/ERK1/2 pathways and prohibited HIF-1α expression through blocking PI3K/AKT/mTOR pathway. Litchi flowers might have the potential to diminish the liver cancer risk in a Ni-contaminated environment through suitable treatment.
Collapse
Affiliation(s)
- Jau-Tien Lin
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, Taichung, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Po-Lin Liao
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan
| | - Deng-Jye Yang
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan.,Department of Nutrition and Master Program for Food and Drug Safety, China Medical University, Taichung, Taiwan.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
32
|
Adachi Y, Matsuki M, Watanabe H, Takase K, Kodama K, Matsui J, Funahashi Y, Nomoto K. Antitumor and Antiangiogenic Activities of Lenvatinib in Mouse Xenograft Models of Vascular Endothelial Growth Factor-Induced Hypervascular Human Hepatocellular Carcinoma. Cancer Invest 2019; 37:185-198. [PMID: 31006280 DOI: 10.1080/07357907.2019.1601209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
High expression of vascular endothelial growth factor (VEGF) in patients with hepatocellular carcinoma (HCC) is associated with poor prognosis. Here, we investigated the antitumor activity of lenvatinib, a multiple receptor tyrosine kinase inhibitor, in VEGF-overexpressing HCC models. In human umbilical vein endothelial cells, lenvatinib showed potent inhibitory activities against VEGF-induced proliferation and VEGF/basic fibroblast growth factor-induced tube formation. In VEGF-overexpressing HCC xenograft models, characterized by aggressive tumor growth and hypervascularity, lenvatinib had significant antitumor and antiangiogenic activities. These results suggest that potent activity of lenvatinib against VEGF signaling underlies its antitumor and antiangiogenic activities in the hypervascular HCC models.
Collapse
Affiliation(s)
- Yusuke Adachi
- a Tsukuba Research Laboratories , Eisai Co., Ltd , Ibaraki , Japan
| | - Masahiro Matsuki
- a Tsukuba Research Laboratories , Eisai Co., Ltd , Ibaraki , Japan
| | - Hideki Watanabe
- a Tsukuba Research Laboratories , Eisai Co., Ltd , Ibaraki , Japan
| | - Kazuma Takase
- a Tsukuba Research Laboratories , Eisai Co., Ltd , Ibaraki , Japan
| | - Kotaro Kodama
- a Tsukuba Research Laboratories , Eisai Co., Ltd , Ibaraki , Japan
| | | | | | | |
Collapse
|
33
|
Lin JT, Chang YY, Chen YC, Kuo LC, Yang DJ. Protective effect and mechanism of Muntingia calabura Linn. fruit ethanolic extract against vascular endothelial growth factor production in nickel-stimulated hepatocellular carcinoma cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
34
|
Li Z, Zhang H, Han J, Chen Y, Lin H, Yang T. Surface Nanopore Engineering of 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706981. [PMID: 29663543 DOI: 10.1002/adma.201706981] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/25/2018] [Indexed: 05/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly gastrointestinal malignancies. Given its insensitivity to traditional systematic chemotherapy, new therapeutic strategies for efficient HCCs treatment are urgently needed. Here, the development of a novel 2D MXene-based composite nanoplatform for highly efficient and synergistic chemotherapy and photothermal hyperthermia against HCC is reported. A surface-nanopore engineering strategy is developed for the MXenes' surface functionalization, which achieves the uniform coating of a thin mesoporous-silica layer onto the surface of 2D Ti3 C2 MXene (Ti3 C2 @mMSNs). This strategy endows MXenes with well-defined mesopores for on-demand drug release/delivery, enhanced hydrophilicity/dispersity, and abundant surface chemistry for targeting engineering. Systematic in vitro and in vivo evaluations have demonstrated the high active-targeting capability of arginine-glycine-aspartic acid (RGD)-targeting Ti3 C2 @mMSNs into tumor, and the synergistic chemotherapy (contributed by the mesoporous shell) and photothermal hyperthermia (contributed by the Ti3 C2 MXene core) completely eradicate the tumor without obvious reoccurrence. This work not only provides a novel strategy for efficiently combating HCC by developing MXene-based composite nanoplatforms, but also paves a new way for extending the biomedical applications of MXenes by surface-nanopore engineering.
Collapse
Affiliation(s)
- Zhenli Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, P. R. China
| | - Han Zhang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, P. R. China
| | - Jun Han
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, P. R. China
| |
Collapse
|
35
|
Li N, Chen B, Lin R, Liu N, Dai HT, Tang KY, Yang JY, Huang YH. The earlier, the better: the effects of different administration timepoints of sorafenib in suppressing the carcinogenesis of VEGF in rats. Cancer Chemother Pharmacol 2018; 81:207-216. [PMID: 29196964 PMCID: PMC5754402 DOI: 10.1007/s00280-017-3493-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/27/2017] [Indexed: 02/05/2023]
Abstract
PURPOSE To investigate the optimal starting time point of sorafenib therapy in suppressing the tumor-promoting effects of VEGF up-regulation, which is frequently found after local therapy in clinical practice. METHODS VEGF was intravenously injected to imitate the evaluated expression after local tumor therapy, such as TACE. A total of 40 SD rats bearing hepatic tumors were randomly divided into four groups and sorafenib was administered at different timepoints: (A) control group: VEGF injection only; (B) initiating sorafenib 72 h prior to VEGF injection; (C) initiating sorafenib simultaneously with VEGF injection; (D) initiating sorafenib 72 h post-VEGF injection. The rate of tumor growth, median survival time, expression of VEGF, and microvessel density (MVD), as determined by immunohistochemical (IHC) examination, were compared. RESULTS The results revealed that the tumor size and median survival time were significantly different between the three sorafenib groups compared to the control group (p < 0.05). Median survival times were 19.6 ± 1.78, 31.2 ± 6.99, 27.4 ± 4.9, and 26.5 ± 4.6 days in group A, B, C, and D, respectively. Furthermore, there was a difference in statistical significance between the two sorafenib groups B and D (p = 0.04). Tumors were collected for HE staining and IHC examination. The expression levels of VEGF in B, C, and D were 42.8 ± 7.96, 71.9 ± 15.73, and 73.6 ± 13.73, and all of them were significantly lower than that in the control group (88.3 ± 13.61). Furthermore, the level of MVD was 109.2 ± 8.98 in the control group, which was significantly higher than in the three sorafenib groups (45.7 ± 16.92, 77.1 ± 16.29, and 93.6 ± 12.87, all p < 0.05). CONCLUSIONS According to our results, the most suitable regimen for the administration of sorafenib is before the increased expression of VEGF, which showed a potential advantage for controlling the tumor growth and prolonging the survival time of test animal via inhibiting VEGF-receptor expression through the bifunction of VEGF, and the reduction of tumor angiogenesis.
Collapse
Affiliation(s)
- Nan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, 58th Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Bin Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, 58th Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Run Lin
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, 58th Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Ni Liu
- The Central Hospital of Wuhan, Wuhan, People's Republic of China
| | - Hai-Tao Dai
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, 58th Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Ke-Yu Tang
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, 58th Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Jian-Yong Yang
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, 58th Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Yong-Hui Huang
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, 58th Zhongshan Road II, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
36
|
Choi SB, Han HJ, Kim WB, Song TJ, Choi SY. VEGF Overexpression Predicts Poor Survival in Hepatocellular Carcinoma. Open Med (Wars) 2017; 12:430-439. [PMID: 29318189 PMCID: PMC5757349 DOI: 10.1515/med-2017-0061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 10/22/2017] [Indexed: 02/07/2023] Open
Abstract
Objective The aim of this study was to investigate the clinicopathological and immunohistochemical (including VEGF, Akt, HSP70, and HSP20 expression) factors that affect the overall and disease-free survival of HCC patients following surgical resection. Methods 234 patients with HCC following surgical resection were enrolled. Clinicopathological and survival data were analyzed, and immunohistochemical staining was performed on tissue microarray sections using the anti-VEGF, anti-Akt, anti-HSP70, and anti-HSP27 antibodies. Results The 3- and 5-year overall survival rates were 86.5 and 81.54%, respectively. Multivariate analysis revealed that VEGF expression (P = 0.017, HR = 2.573) and T stage (P < 0.001, HR = 4.953) were independent prognostic factors for overall survival. Immunohistochemical staining showed that the expression of Akt, HSP70, and HSP27 did not affect the overall survival rate. The 3- and 5-year disease-free survival rates were 58.2 and 49.4%, respectively. Compared to the VEGF(−)/(+) group, the VEGF(++)/(+++) group demonstrated significantly higher proportion of patients with AFP levels > 400 ng/mL, capsule invasion, and microvascular invasion. Conclusion VEGF overexpression was associated with capsule invasion, microvascular invasion, and a poor overall survival rate.
Collapse
Affiliation(s)
- Sae Byeol Choi
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hyung Joon Han
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Wan Bae Kim
- Department of Surgery, Korea University Guro Hospital, 80, Guro-dong, Guro-gu, Seoul152-703, Korea, Tel: +82-2-2626-3076
| | - Tae Jin Song
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Sang Yong Choi
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Niu J, Wang Y, Wang J, Bin L, Hu X. Delivery of sFIT-1 engineered MSCs in combination with a continuous low-dose doxorubicin treatment prevents growth of liver cancer. Aging (Albany NY) 2017; 8:3520-3534. [PMID: 28039440 PMCID: PMC5270684 DOI: 10.18632/aging.101146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
Abstract
One important process in liver cancer growth and progression is angiogenesis. Vascular endothelial growth factor (VEGF) has the significant role in liver cancer angiogenesis. sFlt1 (soluble Fms-like tyrosine kinase-1) is the promising inhibitor of VEGF and can be used as the new method of inhibiting angiogenesis. MSCs (Mesenchymal stem cells) can infiltrate into tumor tissue and function as the efficient transgene delivery mediator. Here, we engineered murine MSCs to express sFlt1 and examined the anti-tumor effect of MSC- sFlt1 in combination with continues low-dose doxorubicin treatment. We found that this combination therapy significantly inhibited liver cancer cells proliferation. Above all, HepG2 xenografts treated with this combination therapy went into remission. It is of note that this inhibition effect was not p53 binding and by increasing caspase8. This study suggests that this combination treatment has novel therapeutic potential for liver cancer because of significantly inhibiting cancer cells growth and anti-angiogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Jian Niu
- General Surgery of the Hospital Affiliated Hospital of Xuzhou Medical University, Digestive Disease Research Laboratory of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yue Wang
- General Surgery of the Hospital Affiliated Hospital of Xuzhou Medical University, Digestive Disease Research Laboratory of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Ji Wang
- General Surgery of the Hospital Affiliated Hospital of Xuzhou Medical University, Digestive Disease Research Laboratory of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Liu Bin
- General Surgery of the Hospital Affiliated Hospital of Xuzhou Medical University, Digestive Disease Research Laboratory of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Xin Hu
- The University of Texas Graduate School of Biomedical Sciences at Houston, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
38
|
Zhai X, Xue Q, Liu Q, Guo Y, Chen Z. Classifier of cross talk genes predicts the prognosis of hepatocellular carcinoma. Mol Med Rep 2017; 16:3253-3261. [PMID: 28713927 PMCID: PMC5547992 DOI: 10.3892/mmr.2017.7003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 05/05/2017] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to establish a prediction model for hepatocellular carcinoma (HCC) based on the cross talk genes from important biological pathways involved in HCC. Differentially expressed genes (DEGs) for HCC were identified from mRNA profiles of GSE36376, which were mapped to protein-protein interaction (PPI) networks from BioGrid and the human protein reference database. Then critical genes based on the deviation score and the degree of node were selected from the novel PPI network. Cross talk genes were screened from the network established based on the associations of gene-gene, gene-pathway and pathway-pathway. A classifier based on specific cross talk genes was constructed for prediction of HCC using the random forest algorithm. Finally, the diagnostic performance of this prediction model was verified by predicting survival time of patients with HCC from the genome cancer atlas (TCGA) and other independent gene expression omnibus (GEO) databases. From the novel PPI network, a total of 200 critical genes were screened out and they were significantly enriched in 23 pathways, which have been reported to be significantly associated with the development of HCC. Based on these identified pathways, cross talk genes were identified including AKT1, SOS1, EGF, MYC, IGF1, ERBB2, CDKN1B, SHC2, VEGFA and INS. The prediction model has a relative average classification accuracy of 0.94 for HCC, which has a stable predicting efficacy for survival time of HCC patients validated in the TCGA database and two other independent GEO datasets. In conclusion, a total of 39 cross talk genes in HCC were identified and a classifier based on the cross talk genes was constructed, which indicates a high prognosis prediction efficacy in several independent datasets. The results provide a novel perspective to develop a multiple gene diagnostic tool for HCC prognosis, which also provided potential biomarkers or therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xiaofeng Zhai
- Department of Integrative Oncology, Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Qingfeng Xue
- Department of Anesthesiology, Chinese People's Liberation Army 264 Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Qun Liu
- Department of Integrative Oncology, Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yuyu Guo
- Department of Integrative Oncology, Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Zhe Chen
- Department of Integrative Oncology, Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
39
|
Hassoun SM, Abdel-Rahman N, Eladl EI, El-Shishtawy MM. Antiangiogenic activity of vitexicarpine in experimentally induced hepatocellular carcinoma: Impact on vascular endothelial growth factor pathway. Tumour Biol 2017; 39:1010428317707376. [PMID: 28651490 DOI: 10.1177/1010428317707376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
Angiogenesis plays important roles in progression of hepatocellular carcinoma. The antiangiogenic mechanisms of vitexicarpine are not fully defined. Therefore, we conducted the following study to evaluate the antiangiogenic mechanism and antitumor activity of vitexicarpine in vivo model of hepatocellular carcinoma through modulation of vascular endothelial growth factor signaling pathway. Hepatocellular carcinoma was induced in Sprague Dawley rats by thioacetamide. Hepatocellular carcinoma was assessed by measuring serum alpha-fetoprotein and investigating liver sections stained with hematoxylin/eosin. Hepatocellular carcinoma rats were injected with vitexicarpine (150 mg/kg) for 2 weeks. Hepatic vascular endothelial growth factor was measured by enzyme-linked immunosorbent assay. Protein and expression of hepatic phospho-Ser473-AKT (p-AKT) and phospho-Tyr419-Src (p-Src) were determined. The apoptotic pathway was evaluated by assessment of protein expression of caspase-3. Vitexicarpine increased rats' survival time and decreased serum alpha-fetoprotein as well as it ameliorated fibrosis and massive hepatic tissue breakdown. It attenuated hepatocellular carcinoma-induced protein and gene expression of vascular endothelial growth factor, p-AKT, p-Src, and caspase-3. In conclusion, this study suggests that vitexicarpine possesses both antiangiogenic and antitumor activities through inhibition of vascular endothelial growth factor, p-AKT/AKT, and p-Src with subsequent inhibition of apoptotic pathway.
Collapse
MESH Headings
- Angiogenesis Inhibitors/administration & dosage
- Animals
- Apigenin/administration & dosage
- Apoptosis/drug effects
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Liver Neoplasms/chemically induced
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neovascularization, Pathologic/chemically induced
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Rats
- Signal Transduction/drug effects
- Thioacetamide/toxicity
- Vascular Endothelial Growth Factor A/genetics
- Xenograft Model Antitumor Assays
- alpha-Fetoproteins/metabolism
Collapse
Affiliation(s)
- Shimaa M Hassoun
- 1 Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Noha Abdel-Rahman
- 1 Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Entsar I Eladl
- 2 Department of Pathology, Oncology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
40
|
Desai JR, Ochoa S, Prins PA, He AR. Systemic therapy for advanced hepatocellular carcinoma: an update. J Gastrointest Oncol 2017; 8:243-255. [PMID: 28480064 PMCID: PMC5401854 DOI: 10.21037/jgo.2017.02.01] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022] Open
Abstract
Advanced hepatocellular carcinoma (HCC) is a deadly disease with few systemic therapeutic options. Sorafenib is the only agent to be FDA approved for the first-line treatment of patients with HCC. This drug increases overall survival (OS) by 3 months compared with placebo (10.7 months with sorafenib vs. 7.7 months with placebo). More recently, the RESORCE trial demonstrated efficacy of regorafenib in the second-line treatment of HCC: OS was increased from 7.8 months with placebo to 10.6 months with regorafenib after patients experienced disease progression on sorafenib. However, there is still an unmet need for effective systemic therapy of patients with advanced HCC. Numerous genetic pathways have been studied along with drugs to target these pathways but, thus far, drugs targeting cell proliferation, metastasis, angiogenesis, and metabolite use have been studied with minimal success. HCC can be divided into two subclasses: proliferative and non-proliferative, each dependent on separate pathways. HCC can be caused by alcoholic cirrhosis, hepatitis C virus (HCV), and hepatitis B virus (HBV); however no etiology-specific therapies have been demonstrated. Immunotherapy is currently being assessed in clinical trials and is demonstrating some efficacy. More research is needed to determine the most essential pathways to target in the war against this deadly cancer.
Collapse
Affiliation(s)
- Jasmin Radhika Desai
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Sebastian Ochoa
- Internal Medicine Department, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Petra Alexandra Prins
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Aiwu Ruth He
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
41
|
Liver fatty acid-binding protein (L-FABP) promotes cellular angiogenesis and migration in hepatocellular carcinoma. Oncotarget 2017; 7:18229-46. [PMID: 26919097 PMCID: PMC4951284 DOI: 10.18632/oncotarget.7571] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/29/2016] [Indexed: 01/18/2023] Open
Abstract
Liver fatty acid-binding protein (L-FABP) is abundant in hepatocytes and known to be involved in lipid metabolism. Overexpression of L-FABP has been reported in various cancers; however, its role in hepatocellular carcinoma (HCC) remains unclear. In this study, we investigated L-FABP and its association with vascular endothelial growth factors (VEGFs) in 90 HCC patients. We found that L-FABP was highly expressed in their HCC tissues, and that this expression was positively correlated with that of VEGF-A. Additionally, L-FABP significantly promoted tumor growth and metastasis in a xenograft mouse model. We also assessed the mechanisms of L-FABP activity in tumorigenesis; L-FABP was found to associate with VEGFR2 on membrane rafts and subsequently activate the Akt/mTOR/P70S6K/4EBP1 and Src/FAK/cdc42 pathways, which resulted in up-regulation of VEGF-A accompanied by an increase in both angiogenic potential and migration activity. Our results thus suggest that L-FABP could be a potential target for HCC chemotherapy.
Collapse
|
42
|
Decreased expression of PBLD correlates with poor prognosis and functions as a tumor suppressor in human hepatocellular carcinoma. Oncotarget 2016; 7:524-37. [PMID: 26594798 PMCID: PMC4808015 DOI: 10.18632/oncotarget.6358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 11/14/2015] [Indexed: 12/11/2022] Open
Abstract
Recent accumulating genomic and proteomic data suggested that decreased expression of phenazine biosynthesis-like domain-containing protein (PBLD) was frequently involved in hepatocellular carcinoma (HCC). However, there is lack of systematical investigation focusing on its expression pattern, clinical relevance, and biological function. Here, we found that PBLD was frequently decreased in HCC tissues relative to adjacent non-tumorigenic liver tissues. This decreased expression was significantly associated with poor tumor differentiation and advanced tumor stage. Kaplan–Meier analysis further showed that recurrence-free survival and overall survival were significantly worse among patients with low PBLD expression. Moreover, multivariate analyses revealed that PBLD was an independent predictor of OS and RFS. This prognostic value of PBLD was further validated in another independent cohort. We also found PBLD inhibited HCC cell growth and invasion in vitro and tumor growth in vivo. Furthermore, forced expression of PBLD influenced multiple downstream genes related to MAPK, NF-κB, EMT, and angiogenesis signaling pathways. PBLD deletion was an independent predictor of poor prognosis in patients with HCC. Elevated PBLD expression may reduce HCC cell growth and invasion via inactivation of several tumorigenesis-related signaling pathways.
Collapse
|
43
|
Choi SH, Park JY, Kang W, Kim SU, Kim DY, Ahn SH, Ro SW, Han KH. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells. Apoptosis 2016; 21:85-95. [PMID: 26467924 DOI: 10.1007/s10495-015-1185-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea. .,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea. .,Yonsei Liver Center, Yonsei University Health System, Seoul, Korea.
| | - Wonseok Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Liver Center, Yonsei University Health System, Seoul, Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Liver Center, Yonsei University Health System, Seoul, Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Liver Center, Yonsei University Health System, Seoul, Korea
| | - Simon Wonsang Ro
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang-Hyub Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Liver Center, Yonsei University Health System, Seoul, Korea
| |
Collapse
|
44
|
Park J, Park J, Pei Y, Xu J, Yeo Y. Pharmacokinetics and biodistribution of recently-developed siRNA nanomedicines. Adv Drug Deliv Rev 2016; 104:93-109. [PMID: 26686832 DOI: 10.1016/j.addr.2015.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/26/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023]
Abstract
Small interfering RNA (siRNA) is a promising drug candidate, expected to have broad therapeutic potentials toward various diseases including viral infections and cancer. With recent advances in bioconjugate chemistry and carrier technology, several siRNA-based drugs have advanced to clinical trials. However, most cases address local applications or diseases in the filtering organs, reflecting remaining challenges in systemic delivery of siRNA. The difficulty in siRNA delivery is in large part due to poor circulation stability and unfavorable pharmacokinetics and biodistribution profiles of siRNA. This review describes the pharmacokinetics and biodistribution of siRNA nanomedicines, focusing on those reported in the past 5years, and their pharmacological effects in selected disease models such as hepatocellular carcinoma, liver infections, and respiratory diseases. The examples discussed here will provide an insight into the current status of the art and unmet needs in siRNA delivery.
Collapse
|
45
|
Mitchell J, Tinkey PT, Avritscher R, Van Pelt C, Eskandari G, George SK, Xiao L, Cressman E, Morris JS, Rashid A, Kaseb AO, Amin HM, Uthamanthil R. Validation of a Preclinical Model of Diethylnitrosamine-Induced Hepatic Neoplasia in Yucatan Miniature Pigs. Oncology 2016; 91:90-100. [PMID: 27305144 PMCID: PMC5432216 DOI: 10.1159/000446074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The purpose of this study was to reduce the time to tumor onset in a diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) swine model via partial liver embolization (PLE) and to characterize the model for use in translational research. METHODS Eight Yucatan miniature pigs were injected intraperitoneally with either saline (n = 2) or DEN (n = 6) solution weekly for 12 weeks. Three of the DEN-treated pigs underwent PLE. The animals underwent periodic radiological evaluation, liver biopsy, and blood sampling, and full necropsy was performed at study termination (∼29 months). RESULTS All DEN-treated pigs developed hepatic adenoma and HCC. PLE accelerated the time to adenoma development but not to HCC development. Biomarker analysis results showed that IGF1 levels decreased in all DEN-treated pigs as functional liver capacity decreased with progression of HCC. VEGF and IL-6 levels were positively correlated with disease progression. Immunohistochemical probing of HCC tissues demonstrated the expression of several important survival-promoting proteins. CONCLUSION To our knowledge, we are the first to demonstrate an accelerated development of hepatic neoplasia in Yucatan miniature pigs. Our HCC swine model closely mimics the human condition (i.e., progressive disease stages and expression of relevant molecular markers) and is a viable translational model.
Collapse
Affiliation(s)
- Jennifer Mitchell
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Peggy T. Tinkey
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rony Avritscher
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Carolyn Van Pelt
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ghazaleh Eskandari
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Suraj Konnath George
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lianchun Xiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Erik Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeffrey S. Morris
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ahmed O. Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hesham M. Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX
| | - Rajesh Uthamanthil
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
46
|
Atta MMESA, Atta HM, Gad MAM, Rashed LA, Said EM, Hassanien SESA, Kaseb AO. Clinical significance of vascular endothelial growth factor in hepatitis C related hepatocellular carcinoma in Egyptian patients. J Hepatocell Carcinoma 2016; 3:19-24. [PMID: 27574588 PMCID: PMC4994801 DOI: 10.2147/jhc.s86708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background and aims Several angiogenic factors are involved in the development and progression of hepatocellular carcinoma (HCC), a hypervascular tumor. Vascular endothelial growth factor (VEGF) is a primary driving force for angiogenesis, and its overexpression has been reported in HCC. However, the significance of plasma and tissue VEGF levels in HCC in Egyptian patients with chronic hepatitis C (CHC) infection is understudied. The aim of this study was to evaluate the role of VEGF (measured in plasma and liver tissue) in patients with hepatitis C virus-related HCC and to assess its significance in the diagnosis and prognosis of HCC. Materials and methods A total of 90 subjects were studied. Among 90 subjects, 60 with CHC were examined and were subdivided into two groups: 30 patients with CHC-related HCC (HCC group) and 30 patients with CHC without HCC (non-HCC group). Thirty apparently healthy subjects served as the control group. VEGF was estimated in plasma by enzyme-linked immunosorbent assay and its expression in liver tissue was evaluated by real-time polymerase chain reaction. VEGF expression level and its relationship to tumor parameters, patients’ liver function profile, and patients’ clinical parameters were also investigated. Results Plasma VEGF levels in the HCC group were significantly higher than those of the non-HCC group, and both groups had significantly higher plasma VEGF levels than did the control group. Liver tissue VEGF expression was significantly higher in the HCC group than in the non-HCC group and positively correlated with plasma VEGF in the HCC group. The plasma VEGF levels were positively correlated with patients’ age, aspartate aminotransferase levels, serum alpha-fetoprotein levels, the presence of portal vein thrombosis, and the number of hepatic focal lesions in the HCC group. However, plasma VEGF levels were not significantly correlated with the Child-Pugh score, alanine aminotransferase levels, the size of focal lesions, and Okuda stage. Using both the VEGF and alpha-fetoprotein levels to detect HCC maximizes the sensitivity and specificity. Conclusion Plasma levels of VEGF may be a useful diagnostic and prognostic marker for HCC in patients who have been diagnosed with CHC.
Collapse
Affiliation(s)
- Mohamed Magdi El-Sadek Ali Atta
- Department of Medicine, Rabigh Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Department of Hepatology, Gastroenterology and Infectious Diseases, Faculty of Medicine, Benha University, Benha, Egypt
| | - Hazem Mahmoud Atta
- Department of Clinical Biochemistry, Rabigh Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Magdy Abdel-Mawgoud Gad
- Department of Hepatology, Gastroenterology and Infectious Diseases, Faculty of Medicine, Benha University, Benha, Egypt
| | - Laila Ahmad Rashed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ebada M Said
- Department of Hepatology, Gastroenterology and Infectious Diseases, Faculty of Medicine, Benha University, Benha, Egypt
| | - Sharaf El-Sayed Ali Hassanien
- Department of Hepatology, Gastroenterology and Infectious Diseases, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
47
|
VEGF Polymorphisms Related to Higher Serum Levels of Protein Identify Patients with Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2016; 2016:9607054. [PMID: 27660750 PMCID: PMC5021862 DOI: 10.1155/2016/9607054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/10/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary neoplasia of the liver. Major risk factors for hepatocellular carcinoma include chronic liver diseases, carcinogenic agents, and genetic alterations as well as vascular endothelial growth factor (VEGF) involved in angiogenesis process. The aim of this study was to evaluate the association of VEGF-A (C936T and A1154G) with HCC and cirrhosis, in addition to serum levels of VEGF, clinical profile, lifestyle habits, and comorbidities. A total of 346 individuals were studied: 102 with HCC (G1), 117 with cirrhosis (G2), and 127 controls (G3). Polymorphisms were analysed by PCR/RFLP and serum levels of VEGF by ELISA. Alpha error was set at 5%. The wild-type genotype of both polymorphisms prevailed (P > 0.05). In G1, 23% of the patients died, with no relation to genetic profile (P > 0.05). Increased VEGF level was observed in G1 and G3, related to the mutant allele of VEGF-C936T and VEGF-A1154G, respectively, and compared with the wild-type genotype (P = 0.0285; P = 0.0284, resp.) as well as G1 versus G2 and G3 for VEGF-C936T and G1 versus G2 for VEGF-A1154G (P < 0.05 for both). In conclusion, there is a relationship between mutant alleles of VEGF-C936T and VEGF-A1154G polymorphisms and higher VEGF level, making them potential markers for HCC.
Collapse
|
48
|
Chen CS, Zhao Q, Qian S, Li HL, Guo CY, Zhang W, Yan ZP, Liu R, Wang JH. Ultrasound-guided RNA interference targeting HIF-1 alpha improves the effects of transarterial chemoembolization in rat liver tumors. Onco Targets Ther 2015; 8:3539-48. [PMID: 26664137 PMCID: PMC4669929 DOI: 10.2147/ott.s94800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim To investigate whether ultrasound-guided RNA interference (RNAi) targeting hypoxia-inducible factor-1alpha (HIF-1α) can enhance the efficacy of transarterial chemoembolization (TACE) in treating hepatocellular carcinoma. Materials and methods Rats with orthotopic hepatocellular carcinoma were randomized to four groups and treated as follows: 1) control; 2) siHIF-1α; 3) TACE; 4) siHIF-1α+TACE. Lentivirus (4×108 transfection units) with or without small interfering RNA (siRNA) expression in 0.6 mL transduction reagent was injected into tumors using a standard 1 mL syringe under ultrasonic guidance. In the siHIF-1α+TACE and siHIF-1α groups, rats received siRNA-expressing lentivirus; the rats in the TACE and control groups received lentivirus without siRNA. TACE was performed by placing a microcatheter into the gastroduodenal artery. Results The median survival time, body weight, and tumor volume of the siHIF-1α+TACE group were better than those of the TACE, siHIF-1α, and control groups. A comparative analysis of the different treatment groups demonstrated that HIF-1α RNAi could downregulate the levels of HIF-1α and VEGF, inhibit tumor angiogenesis, and lessen metastases; all of these effects were enhanced by TACE. Conclusion HIF-1α RNAi, which was administered in vivo in liver tumors under ultrasound guidance, improved the efficacy of TACE in treating hepatocellular carcinoma in an animal model.
Collapse
Affiliation(s)
- Cheng-Shi Chen
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China ; Department of Radiology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Qing Zhao
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Sheng Qian
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hai-Liang Li
- Department of Radiology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chen-Yang Guo
- Department of Radiology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wei Zhang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhi-Ping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Rong Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jian-Hua Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
49
|
Zhang Z, Zhang H, Peng T, Li D, Xu J. Melittin suppresses cathepsin S-induced invasion and angiogenesis via blocking of the VEGF-A/VEGFR-2/MEK1/ERK1/2 pathway in human hepatocellular carcinoma. Oncol Lett 2015; 11:610-618. [PMID: 26870255 PMCID: PMC4727048 DOI: 10.3892/ol.2015.3957] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 10/12/2015] [Indexed: 12/13/2022] Open
Abstract
Melittin, a significant constituent of Apis mellifera (honeybee) venom, is a water-soluble toxic peptide that has traditionally been used as an antitumor agent. However, the underlying mechanisms by which it inhibits tumor cell growth and angiogenesis remain to be elucidated. In the present study, screening for increased cathepsin S (Cat S) expression levels was performed in MHCC97-H cells and various other hepatocellular carcinoma cell lines by reverse transcription-polymerase chain reaction and western blot analysis. A pcDNA3.1-small hairpin RNA (shRNA)-Cat S vector was stably transfected into MHCC97-H cells (shRNA/MHCC97-H) in order to knockdown the expression of Cat S. The effects resulting from the inhibition of Cat S-induced proliferation, invasion and angiogenesis by melittin were examined using cell proliferation, cell viability, flat plate colony formation, migration, wound healing, Transwell migration and ELISA assays. In order to substantiate the evidence for melittin-mediated inhibition of Cat S-induced angiogenesis, Cat S RNA was transfected into primary human umbilical vein endothelial cells (Cat S-HUVECs) to induce overexpression of the Cat S gene. The effects of melittin on HUVECs were examined using Transwell migration and tube formation assays. The findings demonstrated that melittin was able to significantly suppress MHCC97-H cell (Mock/MHCC97-H) proliferation, invasion and angiogenesis, as well as capillary tube formation of Cat S-HUVECs, in a dose-dependent manner. However, proliferation, invasion and angiogenesis in shRNA/MHCC97-H and in native HUVECs (Mock-HUVECs) were unaffected. In addition, melittin specifically decreased the expression of phosphorylated (activated) Cat S, and components of the vascular endothelial growth factor (VEGF)-A/VEGF receptor 2 (VEGFR-2)/mitogen-activated protein kinase kinase 1 (MEK1)/extracellular signal-regulated kinase (ERK)1/2 signaling pathway in Mock/MHCC97-H cells. In conclusion, the inhibition of tumor cell growth and anti-angiogenic activity exerted by melittin may be associated with anti-Cat S actions, via the inhibition of VEGF-A/VEGFR-2/MEK1/ERK1/2 signaling.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hanguang Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dongdong Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
50
|
Zhu J, Huang S, Wu G, Huang C, Li X, Chen Z, Zhao L, Zhao Y. Lysyl Oxidase Is Predictive of Unfavorable Outcomes and Essential for Regulation of Vascular Endothelial Growth Factor in Hepatocellular Carcinoma. Dig Dis Sci 2015; 60:3019-31. [PMID: 26048020 DOI: 10.1007/s10620-015-3734-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/25/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Lysyl oxidase (LOX) is frequently overexpressed in a variety of malignancies and involved in tumor invasion and metastasis. Furthermore, it has been shown that LOX is closely related to vascular endothelial growth factor (VEGF). AIMS In this study, we aimed to investigate the exact role of LOX and the correlation between LOX and VEGF in hepatocellular carcinoma (HCC). METHODS The expression levels of LOX in HCC tissue and adjacent noncancerous tissue were evaluated by quantitative reverse transcription polymerase chain reaction and immunohistochemical analysis. The effect of LOX knockdown on cell proliferation, migration, and invasion was investigated in vitro. The role of LOX in the regulation of VEGF was further characterized in HCC cells that had been treated with transforming growth factor beta (TGF-β). RESULTS Our study showed that LOX was up-regulated in HCC cell lines and tissue. HCC patients with elevated expression of LOX had relatively shorter disease-free survival and overall survival. Knockdown of LOX reduced the proliferation, migration, and invasion of HCC cells. Additionally, the expression level of LOX positively correlated with that of VEGF. After treatment with TGF-β, the levels of LOX and VEGF were both up-regulated in a dose-dependent manner. In the cells treated with siRNA of LOX, levels of VEGF and phosphorylated p38 were significantly decreased and could not be up-regulated by TGF-β. Inhibition of p38 MAPK signaling abrogated TGF-β-mediated up-regulation of VGEF but did not affect LOX expression. CONCLUSIONS LOX appears to be a predictor of less favorable outcomes and may regulate the expression of VEGF via p38 MAPK signaling.
Collapse
Affiliation(s)
- Jiye Zhu
- Department of Hepatobiliary Surgery, Guangxi Tumor Hospital, Nanning, 530000, People's Republic of China
| | - Shan Huang
- Department of Hepatobiliary Surgery, Guangxi Tumor Hospital, Nanning, 530000, People's Republic of China
| | - Guobin Wu
- Department of Hepatobiliary Surgery, Guangxi Tumor Hospital, Nanning, 530000, People's Republic of China
| | - Chaoyuan Huang
- Department of Hepatobiliary Surgery, Guangxi Tumor Hospital, Nanning, 530000, People's Republic of China
| | - Xianjian Li
- Department of Hepatobiliary Surgery, Guangxi Tumor Hospital, Nanning, 530000, People's Republic of China
| | - Zhigang Chen
- Department of Hepatobiliary Surgery, Guangxi Tumor Hospital, Nanning, 530000, People's Republic of China
| | - Lei Zhao
- Department of Hepatobiliary Surgery, Guangxi Tumor Hospital, Nanning, 530000, People's Republic of China
| | - Yinnong Zhao
- Department of Hepatobiliary Surgery, Guangxi Tumor Hospital, Nanning, 530000, People's Republic of China.
| |
Collapse
|