1
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Pérez-Gómez JM, Montero-Hidalgo AJ, Luque RM. GHRH and reproductive systems: Mechanisms, functions, and clinical implications. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09931-8. [PMID: 39612161 DOI: 10.1007/s11154-024-09931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Growth hormone-releasing hormone (GHRH) has classically been considered a regulatory neuropeptide of the hypothalamic-pituitary system, which mediates its anabolic effects through hepatic GH/IGF-I axis. However, during the last decades it has been demonstrated that this key regulatory hormone may be produced in numerous peripheral tissues outside the central nervous system, participating in fundamental physiological functions through a complex balance between its purely endocrine action, and the recently local (autocrine/paracrine) discovered role. Among peripheral sites, its presence in the male and female reproductive systems stands out. In this review, we will first explore the role of the GHRH/GHRH-R hormone axis as a central player in the gonadal function; then, we will discuss available information regarding the presence of GHRH/GHRH-R and the potential physiological roles in reproductive systems of various species; and finally, we will address how reproductive system-related disorders-such as infertility problems, endometriosis, or tumor pathologies (including prostate, or ovarian cancer)-could benefit from hormonal interventions related to the manipulation of the GHRH axis.
Collapse
Affiliation(s)
- Jesús M Pérez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), IMIBIC Building. Av. Menéndez Pidal S/N. 14004, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), IMIBIC Building. Av. Menéndez Pidal S/N. 14004, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), IMIBIC Building. Av. Menéndez Pidal S/N. 14004, Cordoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
3
|
Yu H, Peng H. Effects of GHRH and its analogues on the Vascular System. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09932-7. [PMID: 39570567 DOI: 10.1007/s11154-024-09932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Growth hormone-releasing hormone (GHRH) is a crucial endocrine hormone that exerts its biological effects by binding to specific receptors on the cell surface, known as GHRH receptors (GHRH-R). This binding activates downstream signaling pathways. In addition to promoting growth hormone secretion by the pituitary gland, GHRH also functions to maintain multisystem homeostasis by interacting with peripheral tissues that express GHRH-R. Due to the multiple roles of GHRH in body development and tissue repair, a variety of GHRH analogue peptides have been synthesized. Based on their effects on GHRH-R, these GHRH analogues can be classified as GHRH-R agonists and antagonists. Recently, the interaction of GHRH and its analogues with blood vessels, such as promoting angiogenesis and inhibiting vascular calcification (VC), has gained significant attention. This article reviews the effects of GHRH and its analogues on blood vessels.
Collapse
Affiliation(s)
- Hong Yu
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China.
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| | - Huan Peng
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
4
|
Gesmundo I, Pedrolli F, Cai R, Sha W, Schally AV, Granata R. Growth hormone-releasing hormone and cancer. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09919-4. [PMID: 39422787 DOI: 10.1007/s11154-024-09919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The hypothalamic hormone growth hormone-releasing hormone (GHRH), in addition to promoting the synthesis and release of growth hormone (GH), stimulates the proliferation of human normal and malignant cells by binding to GHRH-receptor (GHRH-R) and its main splice variant, SV1. Both GHRH and GHRH-Rs are expressed in various cancers, forming a stimulatory pathway for cancer cell growth; additionally, SV1 possesses ligand independent proliferative effects. Therefore, targeting GHRH-Rs pharmacologically has been proposed for the treatment of cancer. Various classes of synthetic GHRH antagonists have been developed, endowed with strong anticancer activity in vitro and in vivo, in addition to displaying anti-inflammatory, antioxidant and immune-modulatory functions. GHRH antagonists exert indirect effects by blocking the pituitary GH/hepatic insulin-like growth factor I (IGF-I) axis, or directly inhibiting the binding of GHRH on tumor GHRH-Rs. Additionally, GHRH antagonists block the mitogenic functions of SV1 in tumor cells. This review illustrates the main findings on the antitumor effects of GHRH antagonists in experimental human cancers, along with their underlying mechanisms. The development of GHRH antagonists, with reduced toxicity and high stability, could lead to novel therapeutic agents for the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Iacopo Gesmundo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Renzhi Cai
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wei Sha
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, School of Medicine and Sylvester Comprehensive Cancer Center, University of Miami Miller, Miami, FL, USA
| | - Andrew V Schally
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, School of Medicine and Sylvester Comprehensive Cancer Center, University of Miami Miller, Miami, FL, USA
| | - Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
5
|
Akhter MS, Kubra KT, Barabutis N. Protective effects of GHRH antagonists against hydrogen peroxide-induced lung endothelial barrier disruption. Endocrine 2023; 79:587-592. [PMID: 36261700 PMCID: PMC9581763 DOI: 10.1007/s12020-022-03226-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE Growth hormone-releasing hormone (GHRH) is a hypothalamic hormone, which regulates growth hormone release from the anterior pituitary gland. GHRH antagonists (GHRHAnt) are anticancer agents, which also exert robust anti-inflammatory activities in malignancies. GHRHAnt exhibit anti-oxidative and anti-inflammatory effects in vascular endothelial cells, indicating their potential use against disorders related to barrier dysfunction (e.g. sepsis). Herein, we aim to investigate the effects of GHRHAnt against lung endothelial hyperpermeability. METHODS The in vitro effects of GHRHAnt in H2O2-induced endothelial barrier dysfunction were investigated in bovine pulmonary artery endothelial cells (BPAEC). Electric cell-substrate impedance sensing (ECIS) was utilized to measure transendothelial resistance, an indicator of barrier function. RESULTS Our results demonstrate that GHRHAnt protect against H2O2-induced endothelial barrier disruption via P53 and cofilin modulation. Both proteins are crucial modulators of vascular integrity. Moreover, GHRHAnt prevent H2O2 - induced decrease in transendothelial resistance. CONCLUSIONS GHRHAnt represent a promising therapeutic intervention towards diseases related to lung endothelial hyperpermeability, such as acute respiratory distress syndrome - related or not to COVID-19 - and sepsis. Targeted medicine for those potentially lethal disorders does not exist.
Collapse
Affiliation(s)
- Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.
| |
Collapse
|
6
|
Barabutis N, Akhter MS, Kubra KT, Jackson K. Growth Hormone-Releasing Hormone in Endothelial Inflammation. Endocrinology 2022; 164:6887354. [PMID: 36503995 PMCID: PMC9923806 DOI: 10.1210/endocr/bqac209] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The discovery of hypothalamic hormones propelled exciting advances in pharmacotherapy and improved life quality worldwide. Growth hormone-releasing hormone (GHRH) is a crucial element in homeostasis maintenance, and regulates the release of growth hormone from the anterior pituitary gland. Accumulating evidence suggests that this neuropeptide can also promote malignancies, as well as inflammation. Our review is focused on the role of that 44 - amino acid peptide (GHRH) and its antagonists in inflammation and vascular function, summarizing recent findings in the corresponding field. Preclinical studies demonstrate the protective role of GHRH antagonists against endothelial barrier dysfunction, suggesting that the development of those peptides may lead to new therapies against pathologies related to vascular remodeling (eg, sepsis, acute respiratory distress syndrome). Targeted therapies for those diseases do not exist.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Correspondence: Nektarios Barabutis, MSc, PhD, School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Dr, Monroe, LA 71201, USA.
| | | | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Keith Jackson
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
7
|
Cai R, Zhang X, Wang H, Cui T, Halmos G, Sha W, He J, Popovics P, Vidaurre I, Zhang C, Mirsaeidi M, Schally AV. Synthesis of potent antagonists of receptors for growth hormone-releasing hormone with antitumor and anti-inflammatory activity. Peptides 2022; 150:170716. [PMID: 34952135 DOI: 10.1016/j.peptides.2021.170716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022]
Abstract
The syntheses and biological evaluation of GHRH antagonists of AVR series with high anticancer and anti-inflammatory activities are described. Compared to our previously reported GHRH antagonist 602 of MIAMI series, AVR analogs contain additional modifications at positions 0, 6, 8, 10, 11, 12, 20, 21, 29 and 30, which induce greater antitumor activities. Five of nineteen tested AVR analogs presented binding affinities to the membrane GHRH receptors on human pituitary, 2-4-fold better than MIA-602. The antineoplastic properties of these analogs were evaluated in vitro using proliferation assays and in vivo in nude mice xenografted with various human cancer cell lines including lung (NSCLC-ADC HCC827 and NSCLC H460), gastric (NCI-N87), pancreatic (PANC-1 and CFPAC-1), colorectal (HT-29), breast (MX-1), glioblastoma (U87), ovarian (SK-OV-3 and OVCAR-3) and prostatic (PC3) cancers. In vitro AVR analogs showed inhibition of cell viability equal to or greater than MIA-602. After subcutaneous administration at 5 μg/day doses, some AVR antagonists demonstrated better inhibition of tumor growth in nude mice bearing various human cancers, with analog AVR-353 inducing stronger suppression than MIA-602 in lung, gastric, pancreatic and colorectal cancers and AVR-352 in ovarian cancers and glioblastoma. Both antagonists induced greater inhibition of GH release than MIA-602 in vitro in cultured rat pituitary cells and in vivo in rats. AVR-352 also demonstrated stronger anti-inflammatory effects in lung granulomas from mice with lung inflammation. Our studies demonstrate the merit of further investigation of AVR GHRH antagonists and support their potential use for clinical therapy of human cancers and other diseases.
Collapse
Affiliation(s)
- Renzhi Cai
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States; South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center Miami, FL 33125, United States
| | - Xianyang Zhang
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States; Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Haibo Wang
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States; Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Tengjiao Cui
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States; South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center Miami, FL 33125, United States; Department of Medicine, Divisions of Medical/Oncology and Endocrinology, and the Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Gabor Halmos
- Department of Biopharmacy, School of Pharmacy, University of Debrecen, Hungary
| | - Wei Sha
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States; Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Jinlin He
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States; South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center Miami, FL 33125, United States
| | - Petra Popovics
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States
| | - Irving Vidaurre
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States; South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center Miami, FL 33125, United States
| | - Chongxu Zhang
- Section of Pulmonary Veterans Affairs Medical Center Miami, FL 33125, United States
| | - Mehdi Mirsaeidi
- Section of Pulmonary Veterans Affairs Medical Center Miami, FL 33125, United States; Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center Miami, FL 33125, United States; South Florida VA Foundation for Research and Education, Veterans Affairs Medical Center Miami, FL 33125, United States; Department of Medicine, Divisions of Medical/Oncology and Endocrinology, and the Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
8
|
Constitutive signal bias mediated by the human GHRHR splice variant 1. Proc Natl Acad Sci U S A 2021; 118:2106606118. [PMID: 34599099 PMCID: PMC8501799 DOI: 10.1073/pnas.2106606118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
The mechanism of functional changes induced by alternative splicing of GHRHR is largely unknown. Here, we demonstrate that GHRH-elicited signal bias toward β-arrestin recruitment is constitutively mediated by SV1. The cryogenic electron microscopy structures of SV1 and molecular dynamics simulations reveal the different functionalities between GHRHR and SV1 at the near-atomic level (i.e., the N termini of GHRHR and SV1 differentiate the downstream signaling pathways, Gs versus β-arrestins). Our findings provide valuable insights into the functional diversity of class B1 GPCRs that may aid in the design of better therapeutic agents against certain cancers. Alternative splicing of G protein–coupled receptors has been observed, but their functions are largely unknown. Here, we report that a splice variant (SV1) of the human growth hormone–releasing hormone receptor (GHRHR) is capable of transducing biased signal. Differing only at the receptor N terminus, GHRHR predominantly activates Gs while SV1 selectively couples to β-arrestins. Based on the cryogenic electron microscopy structures of SV1 in the apo state or GHRH-bound state in complex with the Gs protein, molecular dynamics simulations reveal that the N termini of GHRHR and SV1 differentiate the downstream signaling pathways, Gs versus β-arrestins. As suggested by mutagenesis and functional studies, it appears that GHRH-elicited signal bias toward β-arrestin recruitment is constitutively mediated by SV1. The level of SV1 expression in prostate cancer cells is also positively correlated with ERK1/2 phosphorylation but negatively correlated with cAMP response. Our findings imply that constitutive signal bias may be a mechanism that ensures cancer cell proliferation.
Collapse
|
9
|
Ha JH, Jayaraman M, Yan M, Dhanasekaran P, Isidoro C, Song YS, Dhanasekaran DN. Identification of GNA12-driven gene signatures and key signaling networks in ovarian cancer. Oncol Lett 2021; 22:719. [PMID: 34429759 PMCID: PMC8371953 DOI: 10.3892/ol.2021.12980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
With the focus on defining the oncogenic network stimulated by lysophosphatidic acid (LPA) in ovarian cancer, the present study sought to interrogate the oncotranscriptome regulated by the LPA-mediated signaling pathway. LPA, LPA-receptor (LPAR) and LPAR-activated G protein 12 α-subunit, encoded by G protein subunit α 12 (GNA12), all serve an important role in ovarian cancer progression. While the general signaling mechanism regulated by LPA/LPAR/GNA12 has previously been characterized, the global transcriptomic network regulated by GNA12 in ovarian cancer pathophysiology remains largely unknown. To define the LPA/LPAR/GNA12-orchestrated oncogenic networks in ovarian cancer, transcriptomic and bioinformatical analyses were conducted using SKOV3 cells, in which the expression of GNA12 was silenced. Array analysis was performed in Agilent SurePrint G3 Human Comparative Genomic Hybridization 8×60 microarray platform. The array results were validated using Kuramochi cells. Gene and functional enrichment analyses were performed using Database for Annotation, Visualization and Integrated Discovery, Search Tool for Retrieval of Interacting Genes and Cytoscape algorithms. The results indicated a paradigm in which GNA12 drove ovarian cancer progression by upregulating a pro-tumorigenic network with AKT1, VEGFA, TGFB1, BCL2L1, STAT3, insulin-like growth factor 1 and growth hormone releasing hormone as critical hub and/or bottleneck nodes. Moreover, GNA12 downregulated a growth-suppressive network involving proteasome 20S subunit (PSM) β6, PSM α6, PSM ATPase 5, ubiquitin conjugating enzyme E2 E1, PSM non-ATPase 10, NDUFA4 mitochondrial complex-associated, NADH:ubiquinone oxidoreductase subunit B8 and anaphase promoting complex subunit 1 as hub or bottleneck nodes. In addition to providing novel insights into the LPA/LPAR/GNA12-regulated oncogenic networks in ovarian cancer, the present study identified several potential nodes in this network that could be assessed for targeted therapy.
Collapse
Affiliation(s)
- Ji-Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Mingda Yan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Padmaja Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, University of Eastern Piedmont, I-17-28100 Novara, Italy
| | - Yong-Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Republic of Korea
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| |
Collapse
|
10
|
Gesmundo I, Granato G, Fuentes-Fayos AC, Alvarez CV, Dieguez C, Zatelli MC, Congiusta N, Banfi D, Prencipe N, Leone S, Brunetti L, Castaño JP, Luque RM, Cai R, Sha W, Ghigo E, Schally AV, Granata R. Antagonists of Growth Hormone-Releasing Hormone Inhibit the Growth of Pituitary Adenoma Cells by Hampering Oncogenic Pathways and Promoting Apoptotic Signaling. Cancers (Basel) 2021; 13:cancers13163950. [PMID: 34439107 PMCID: PMC8393969 DOI: 10.3390/cancers13163950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Many studies have demonstrated that the antagonists of growth hormone-releasing hormone (GHRH) exert inhibitory activities in a variety of experimental cancers; however, their potential antitumor role in pituitary adenomas (PAs) remains largely unknown. Here, we show that GHRH antagonists of Miami (MIA) class, MIA-602 and MIA-690, are able to reduce the growth and promote cell death in hormone-secreting PA cell lines, through the inhibition of mechanisms implicated in tumorigenesis and cancer progression. MIA-602 and MIA-690 also decreased the viability of tumor cells derived from human pituitary tumors. Overall, these findings suggest that GHRH antagonists may represent new therapeutic tools for the treatment of PAs, both alone or in combination with standard pharmacological treatments. Abstract Pituitary adenomas (PAs) are intracranial tumors, often associated with excessive hormonal secretion and severe comorbidities. Some patients are resistant to medical therapies; therefore, novel treatment options are needed. Antagonists of growth hormone-releasing hormone (GHRH) exert potent anticancer effects, and early GHRH antagonists were found to inhibit GHRH-induced secretion of pituitary GH in vitro and in vivo. However, the antitumor role of GHRH antagonists in PAs is largely unknown. Here, we show that the GHRH antagonists of MIAMI class, MIA-602 and MIA-690, inhibited cell viability and growth and promoted apoptosis in GH/prolactin-secreting GH3 PA cells transfected with human GHRH receptor (GH3-GHRHR), and in adrenocorticotropic hormone ACTH-secreting AtT20 PA cells. GHRH antagonists also reduced the expression of proteins involved in tumorigenesis and cancer progression, upregulated proapoptotic molecules, and lowered GHRH receptor levels. The combination of MIA-690 with temozolomide synergistically blunted the viability of GH3-GHRHR and AtT20 cells. Moreover, MIA-690 reduced both basal and GHRH-induced secretion of GH and intracellular cAMP levels. Finally, GHRH antagonists inhibited cell viability in human primary GH- and ACTH-PA cell cultures. Overall, our results suggest that GHRH antagonists, either alone or in combination with pharmacological treatments, may be considered for further development as therapy for PAs.
Collapse
Affiliation(s)
- Iacopo Gesmundo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Giuseppina Granato
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Antonio C. Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Córdoba and Reina Sofia University Hospital, 14004 Córdoba, Spain; (A.C.F.-F.); (J.P.C.); (R.M.L.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 28029 Madrid, Spain
| | - Clara V. Alvarez
- Centro de Investigaciones Médicas (CIMUS) e Instituto de Investigaciones Sanitarias, University of Santiago de Compostela and Complexo Hospitalario Universitario of Santiago de Compostela, 14004 Santiago de Compostela, Spain; (C.V.A.); (C.D.)
| | - Carlos Dieguez
- Centro de Investigaciones Médicas (CIMUS) e Instituto de Investigaciones Sanitarias, University of Santiago de Compostela and Complexo Hospitalario Universitario of Santiago de Compostela, 14004 Santiago de Compostela, Spain; (C.V.A.); (C.D.)
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, 15706 Ferrara, Italy;
| | - Noemi Congiusta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Dana Banfi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Nunzia Prencipe
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Sheila Leone
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.L.); (L.B.)
| | - Luigi Brunetti
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.L.); (L.B.)
| | - Justo P. Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Córdoba and Reina Sofia University Hospital, 14004 Córdoba, Spain; (A.C.F.-F.); (J.P.C.); (R.M.L.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 28029 Madrid, Spain
| | - Raúl M. Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Córdoba and Reina Sofia University Hospital, 14004 Córdoba, Spain; (A.C.F.-F.); (J.P.C.); (R.M.L.)
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 28029 Madrid, Spain
| | - Renzhi Cai
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.C.); (W.S.); (A.V.S.)
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125, USA
| | - Wei Sha
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.C.); (W.S.); (A.V.S.)
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125, USA
| | - Ezio Ghigo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
| | - Andrew V. Schally
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (R.C.); (W.S.); (A.V.S.)
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125, USA
- Comprehensive Cancer Center, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Riccarda Granata
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Science, University of Turin, 10126 Turin, Italy; (I.G.); (G.G.); (N.C.); (D.B.); (N.P.); (E.G.)
- Correspondence:
| |
Collapse
|
11
|
Dlamini Z, Hull R, Mbatha SZ, Alaouna M, Qiao YL, Yu H, Chatziioannou A. Prognostic Alternative Splicing Signatures in Esophageal Carcinoma. Cancer Manag Res 2021; 13:4509-4527. [PMID: 34113176 PMCID: PMC8186946 DOI: 10.2147/cmar.s305464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/06/2021] [Indexed: 01/10/2023] Open
Abstract
Alternative splicing (AS) is a method of increasing the number of proteins that the genome is capable of coding for, by altering the pre-mRNA during its maturation. This process provides the ability of a broad range of proteins to arise from a single gene. AS events are known to occur in up to 94% of human genes. Cumulative data have shown that aberrant AS functionality is a major factor in human diseases. This review focuses on the contribution made by aberrant AS functionality in the development and progression of esophageal cancer. The changes in the pattern of expression of alternately spliced isoforms in esophageal cancer can be used as diagnostic or prognostic biomarkers. Additionally, these can be used as targets for the development of new treatments for esophageal cancer.
Collapse
Affiliation(s)
- Zodwa Dlamini
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| | - Rodney Hull
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| | - Sikhumbuzo Z Mbatha
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Mohammed Alaouna
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - You-Lin Qiao
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Cancer Institute/Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Herbert Yu
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Aristotelis Chatziioannou
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Center of Systems Biology, Biomedical Research Foundation Academy of Athens, Athens, Greece.,e-NIOS Applications PC, Kallithea, Athens, 17676, Greece
| |
Collapse
|
12
|
Xiong X, Ke X, Wang L, Yao Z, Guo Y, Zhang X, Chen Y, Pang CP, Schally AV, Zhang H. Splice variant of growth hormone-releasing hormone receptor drives esophageal squamous cell carcinoma conferring a therapeutic target. Proc Natl Acad Sci U S A 2020; 117:6726-6732. [PMID: 32156725 PMCID: PMC7104313 DOI: 10.1073/pnas.1913433117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extrahypothalamic growth hormone-releasing hormone (GHRH) and its cognate receptors (GHRH-Rs) and splice variants are expressed in a variety of cancers. It has been shown that the pituitary type of GHRH-R (pGHRH-R) mediates the inhibition of tumor growth induced by GHRH-R antagonists. However, GHRH-R antagonists can also suppress some cancers that do not express pGHRH-R, yet the underlying mechanisms have not been determined. Here, using human esophageal squamous cell carcinoma (ESCC) as a model, we were able to reveal that SV1, a known splice variant of GHRH-R, is responsible for the inhibition induced by GHRH-R antagonist MIA-602. We demonstrated that GHRH-R splice variant 1 (SV1) is a hypoxia-driven promoter of tumor progression. Hypoxia-elevated SV1 activates a key glycolytic enzyme, muscle-type phosphofructokinase (PFKM), through the nuclear factor kappa B (NF-κB) pathway, which enhances glycolytic metabolism and promotes progression of ESCC. The malignant actions induced by the SV1-NF-κB-PFKM pathway could be reversed by MIA-602. Altogether, our studies demonstrate a mechanism by which GHRH-R antagonists target SV1. Our findings suggest that SV1 is a hypoxia-induced oncogenic promoter which can be an alternative target of GHRH-R antagonists.
Collapse
Affiliation(s)
- Xiao Xiong
- Department of General Surgery, First Affiliated Hospital of Jinan University, 510632 Guangzhou, Guangdong, China
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, 510632 Guangzhou, Guangdong, China
| | - Xiurong Ke
- Department of Immunotherapy and Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
- Department of Surgery, Translational Surgical Oncology, University Medical Center Groningen, University of Groningen, GZ 9713 Groningen, The Netherlands
| | - Lu Wang
- Department of General Surgery, First Affiliated Hospital of Jinan University, 510632 Guangzhou, Guangdong, China
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, 510632 Guangzhou, Guangdong, China
| | - Zhimeng Yao
- Department of General Surgery, First Affiliated Hospital of Jinan University, 510632 Guangzhou, Guangdong, China
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, 510632 Guangzhou, Guangdong, China
- Department of Immunotherapy and Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Yi Guo
- Endoscopy Center, Affiliated Cancer Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Xianyang Zhang
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33136
- South Florida Veterans Affairs Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL 33136
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Yuping Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, 999077 Hong Kong, China
- Joint Shantou International Eye Center, Shantou University/Chinese University of Hong Kong, 515041 Shantou, China
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33136;
- South Florida Veterans Affairs Foundation for Research and Education, Veterans Affairs Medical Center, Miami, FL 33136
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Medical Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Hao Zhang
- Department of General Surgery, First Affiliated Hospital of Jinan University, 510632 Guangzhou, Guangdong, China;
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, 510632 Guangzhou, Guangdong, China
- Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
- Department of Oncology, First Affiliated Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, China
| |
Collapse
|
13
|
Wei R, Mao L, Xu P, Zheng X, Hackman RM, Mackenzie GG, Wang Y. Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models. Food Funct 2019; 9:5682-5696. [PMID: 30310905 DOI: 10.1039/c8fo01397g] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Numerous studies propose that epigallocatechin-3-gallate (EGCG), an abundant polyphenol in green tea, has anti-cancer properties. However, its mechanism of action in breast cancer remains unclear. This study investigated the capacity of EGCG to suppress breast cancer cell growth in vitro and in vivo, characterizing the underlying mechanisms, focusing on the effect of EGCG on glucose metabolism. EGCG reduced breast cancer 4T1 cell growth in a concentration- (10-320 μM) and time- (12-48 h) dependent manner. EGCG induced breast cancer apoptotic cell death at 24 h, as evidenced by annexin V/PI, caspase 3, caspase 8 and caspase 9 activation. Furthermore, EGCG affected the expression of 16 apoptosis-related genes, and promoted mitochondrial depolarization. EGCG induced autophagy concentration-dependently in 4T1 cells by modulating the levels of the autophagy-related proteins Beclin1, ATG5 and LC3B. Moreover, EGCG affected glucose, lactate and ATP levels. Mechanistically, EGCG significantly inhibited the activities and mRNA levels of the glycolytic enzymes hexokinase (HK), phosphofructokinase (PFK), and lactic dehydrogenase (LDH), and to a lesser extent the activity of pyruvate kinase (PK). In addition, EGCG decreased the expression of hypoxia-inducible factor 1α (HIF1α) and glucose transporter 1 (GLUT1), critical players in regulating glycolysis. In vivo, EGCG reduced breast tumor weight in a dose-dependent manner, reduced glucose and lactic acid levels and reduced the expression of the vascular endothelial growth factor (VEGF). In conclusion, EGCG exerts an anti-tumor effect through the inhibition of key enzymes that participate in the glycolytic pathway and the suppression of glucose metabolism.
Collapse
Affiliation(s)
- Ran Wei
- Institute of Tea Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of human malignant pleural mesothelioma. Proc Natl Acad Sci U S A 2019; 116:2226-2231. [PMID: 30659154 PMCID: PMC6369772 DOI: 10.1073/pnas.1818865116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with poor prognosis and limited treatment options. MPM remains a serious public health problem, and novel therapeutic strategies are urgently needed. The antitumor properties of growth hormone-releasing hormone (GHRH) antagonists have been demonstrated in different cancers; however, their influence in MPM remains unexplored. Our work shows that GHRH antagonists MIA-602 and MIA-690 reduce survival, proliferation, and migration of human MPM cell lines and primary MPM cells in vitro by modulating apoptotic and oncogenic pathways. In vivo, GHRH antagonists inhibited the growth of MPM xenografts and blunted the production of growth factors in tumors. Overall, the inhibitory activities described in this study suggest that GHRH antagonists may be considered for development of therapies for MPM. Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated with exposure to asbestos, with poor prognosis and no effective therapies. The strong inhibitory activities of growth hormone-releasing hormone (GHRH) antagonists have been demonstrated in different experimental human cancers, including lung cancer; however, their role in MPM remains unknown. We assessed the effects of the GHRH antagonists MIA-602 and MIA-690 in vitro in MPM cell lines and in primary MPM cells, and in vivo in MPM xenografts. GHRH, GHRH receptor, and its main splice variant SV1 were found in all the MPM cell types examined. In vitro, MIA-602 and MIA-690 reduced survival and proliferation in both MPM cell lines and primary cells and showed synergistic inhibitory activity with the chemotherapy drug pemetrexed. In MPM cells, GHRH antagonists also regulated activity and expression of apoptotic molecules, inhibited cell migration, and reduced the expression of matrix metalloproteinases. These effects were accompanied by impairment of mitochondrial activity and increased production of reactive oxygen species. In vivo, s.c. administration of MIA-602 and MIA-690 at the dose of 5 μg/d for 4 wk strongly inhibited the growth of MPM xenografts in mice, along with reduction of tumor insulin-like growth factor-I and vascular endothelial growth factor. Overall, these results suggest that treatment with GHRH antagonists, alone or in association with chemotherapy, may offer an approach for the treatment of MPM.
Collapse
|
15
|
Cui T, Schally AV. Growth hormone-releasing hormone (GHRH) and its agonists inhibit hepatic and tumoral secretion of IGF-1. Oncotarget 2018; 9:28745-28756. [PMID: 29983893 PMCID: PMC6033336 DOI: 10.18632/oncotarget.25676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
The role of hypothalamic growth hormone-releasing hormone (GHRH) in the release of growth hormone (GH) from the pituitary is well established. However, direct effects of GHRH and its agonistic analogs on extra-pituitary cells and tissues have not been completely elucidated. In the present study, we first demonstrated that human and rat hepatocytes express receptors for GHRH. We then showed that GHRH(1-29)NH 2 and GHRH agonist, MR-409, downregulated mRNA levels for IGF-1 in human cancer cell lines and inhibited IGF-1 secretion in vitro when these cancer lines were exposed to rhGH. Another GHRH agonist, MR-356, lowered serum IGF-l and inhibited tumor growth in nude mice bearing xenografted NCI-N87 human stomach cancers. GHRH(1-29)NH 2 and MR-409 also suppressed the expression of mRNA for IGF-1 and IGF-2 in rat and human hepatocytes, decreased the secretion of IGF-1 in vitro from rat hepatocytes stimulated with rhGH, and lowered serum IGF-l levels in hypophysectomized rats injected with rhGH. Vasoactive intestinal peptide had no effect on the release of IGF-1 from the hepatocytes. Treatment of C57BL/6 mice with MR-409 reduced serum levels of IGF-l from days 1 to 5. These results show that GHRH and its agonists can, by a direct action, inhibit the secretion of IGF-1 from the liver and from tumors. The inhibitory effect of GHRH appears to be mediated by the GHRH receptor (GHRH-R) and GH receptor (GHR), with the involvement of JAK2/STAT5 pathways. Further studies are required to investigate the possible physiopathological role of GHRH in the control of secretion of IGF-1.
Collapse
Affiliation(s)
- Tengjiao Cui
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA
- Department of Medicine, Divisions of Hematology, Oncology and Endocrinology, University of Miami, Miami, FL, USA
| | - Andrew V. Schally
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA
- Department of Medicine, Divisions of Hematology, Oncology and Endocrinology, University of Miami, Miami, FL, USA
- Department of Pathology, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
16
|
Gasparri ML, Bardhi E, Ruscito I, Papadia A, Farooqi AA, Marchetti C, Bogani G, Ceccacci I, Mueller MD, Benedetti Panici P. PI3K/AKT/mTOR Pathway in Ovarian Cancer Treatment: Are We on the Right Track? Geburtshilfe Frauenheilkd 2017. [PMID: 29093603 DOI: 10.1055/s-0043-118907]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Abstract
The high recurrence rate and the low overall survival in ovarian cancer suggest that a more specific therapeutic approach in addition to conventional treatment is required. Translational and clinical research is investigating new molecular targets in order to find an alternative way to affect tumor growth and to minimize the overlap of toxicity of antiblastic agents. Given its implication in many cellular activities including regulation of cell growth, motility, survival, proliferation, protein synthesis, autophagy, transcription, as well as angiogenesis, PI3K/AKT/mTOR is one of the most investigated intracellular signaling pathways. A dis-regulation of this pathway has been shown in several tumors, including ovarian cancer. In this setting, mTor proteins represent a potential target for inhibitors, which could ultimately play a pivotal role in counteracting cellular proliferation. Recently, mTor inhibitors have been approved in the treatment of pancreatic neuroendocrine tumors, mantle cell lymphoma and renal cancer. Clinical trials have assessed the safety of these drugs in ovarian cancer patients. Ongoing phase I and II studies are evaluating the oncologic outcome of mTor inhibitor treatment and its effect in combination with conventional chemotherapy and target agents.
Collapse
Affiliation(s)
- Maria Luisa Gasparri
- Department of Gynecology, Obstetrics and Urology, "Sapienza" University of Rome, Rome, Italy.,Department of Obstetrics and Gynecology, University of Berne, Berne, Switzerland
| | - Erlisa Bardhi
- Department of Gynecology, Obstetrics and Urology, "Sapienza" University of Rome, Rome, Italy
| | - Ilary Ruscito
- Department of Gynecology, Obstetrics and Urology, "Sapienza" University of Rome, Rome, Italy
| | - Andrea Papadia
- Department of Obstetrics and Gynecology, University of Berne, Berne, Switzerland
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Claudia Marchetti
- Department of Gynecology, Obstetrics and Urology, "Sapienza" University of Rome, Rome, Italy
| | - Giorgio Bogani
- Department of Gynecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | - Irene Ceccacci
- Department of Gynecology, Obstetrics and Urology, "Sapienza" University of Rome, Rome, Italy
| | - Michael D Mueller
- Department of Obstetrics and Gynecology, University of Berne, Berne, Switzerland
| | | |
Collapse
|
17
|
Gasparri ML, Bardhi E, Ruscito I, Papadia A, Farooqi AA, Marchetti C, Bogani G, Ceccacci I, Mueller MD, Benedetti Panici P. PI3K/AKT/mTOR Pathway in Ovarian Cancer Treatment: Are We on the Right Track? Geburtshilfe Frauenheilkd 2017. [PMID: 29093603 DOI: 10.1055/s-0043-118907] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
The high recurrence rate and the low overall survival in ovarian cancer suggest that a more specific therapeutic approach in addition to conventional treatment is required. Translational and clinical research is investigating new molecular targets in order to find an alternative way to affect tumor growth and to minimize the overlap of toxicity of antiblastic agents. Given its implication in many cellular activities including regulation of cell growth, motility, survival, proliferation, protein synthesis, autophagy, transcription, as well as angiogenesis, PI3K/AKT/mTOR is one of the most investigated intracellular signaling pathways. A dis-regulation of this pathway has been shown in several tumors, including ovarian cancer. In this setting, mTor proteins represent a potential target for inhibitors, which could ultimately play a pivotal role in counteracting cellular proliferation. Recently, mTor inhibitors have been approved in the treatment of pancreatic neuroendocrine tumors, mantle cell lymphoma and renal cancer. Clinical trials have assessed the safety of these drugs in ovarian cancer patients. Ongoing phase I and II studies are evaluating the oncologic outcome of mTor inhibitor treatment and its effect in combination with conventional chemotherapy and target agents.
Collapse
Affiliation(s)
- Maria Luisa Gasparri
- Department of Gynecology, Obstetrics and Urology, "Sapienza" University of Rome, Rome, Italy.,Department of Obstetrics and Gynecology, University of Berne, Berne, Switzerland
| | - Erlisa Bardhi
- Department of Gynecology, Obstetrics and Urology, "Sapienza" University of Rome, Rome, Italy
| | - Ilary Ruscito
- Department of Gynecology, Obstetrics and Urology, "Sapienza" University of Rome, Rome, Italy
| | - Andrea Papadia
- Department of Obstetrics and Gynecology, University of Berne, Berne, Switzerland
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Claudia Marchetti
- Department of Gynecology, Obstetrics and Urology, "Sapienza" University of Rome, Rome, Italy
| | - Giorgio Bogani
- Department of Gynecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | - Irene Ceccacci
- Department of Gynecology, Obstetrics and Urology, "Sapienza" University of Rome, Rome, Italy
| | - Michael D Mueller
- Department of Obstetrics and Gynecology, University of Berne, Berne, Switzerland
| | | |
Collapse
|
18
|
Gasparri ML, Bardhi E, Ruscito I, Papadia A, Farooqi AA, Marchetti C, Bogani G, Ceccacci I, Mueller MD, Benedetti Panici P. PI3K/AKT/mTOR Pathway in Ovarian Cancer Treatment: Are We on the Right Track? Geburtshilfe Frauenheilkd 2017; 77:1095-1103. [PMID: 29093603 PMCID: PMC5658232 DOI: 10.1055/s-0043-118907] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/02/2017] [Accepted: 08/25/2017] [Indexed: 01/15/2023] Open
Abstract
The high recurrence rate and the low overall survival in ovarian cancer suggest that a more specific therapeutic approach in addition to conventional treatment is required. Translational and clinical research is investigating new molecular targets in order to find an alternative way to affect tumor growth and to minimize the overlap of toxicity of antiblastic agents. Given its implication in many cellular activities including regulation of cell growth, motility, survival, proliferation, protein synthesis, autophagy, transcription, as well as angiogenesis, PI3K/AKT/mTOR is one of the most investigated intracellular signaling pathways. A dis-regulation of this pathway has been shown in several tumors, including ovarian cancer. In this setting, mTor proteins represent a potential target for inhibitors, which could ultimately play a pivotal role in counteracting cellular proliferation. Recently, mTor inhibitors have been approved in the treatment of pancreatic neuroendocrine tumors, mantle cell lymphoma and renal cancer. Clinical trials have assessed the safety of these drugs in ovarian cancer patients. Ongoing phase I and II studies are evaluating the oncologic outcome of mTor inhibitor treatment and its effect in combination with conventional chemotherapy and target agents.
Collapse
Affiliation(s)
- Maria Luisa Gasparri
- Department of Gynecology, Obstetrics and Urology, “Sapienza” University of Rome, Rome, Italy
- Department of Obstetrics and Gynecology, University of Berne, Berne, Switzerland
| | - Erlisa Bardhi
- Department of Gynecology, Obstetrics and Urology, “Sapienza” University of Rome, Rome, Italy
| | - Ilary Ruscito
- Department of Gynecology, Obstetrics and Urology, “Sapienza” University of Rome, Rome, Italy
| | - Andrea Papadia
- Department of Obstetrics and Gynecology, University of Berne, Berne, Switzerland
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Claudia Marchetti
- Department of Gynecology, Obstetrics and Urology, “Sapienza” University of Rome, Rome, Italy
| | - Giorgio Bogani
- Department of Gynecologic Oncology, IRCCS National Cancer Institute, Milan, Italy
| | - Irene Ceccacci
- Department of Gynecology, Obstetrics and Urology, “Sapienza” University of Rome, Rome, Italy
| | - Michael D. Mueller
- Department of Obstetrics and Gynecology, University of Berne, Berne, Switzerland
| | | |
Collapse
|
19
|
Pópulo H, Nunes B, Sampaio C, Batista R, Pinto MT, Gaspar TB, Miranda-Alves L, Cai RZ, Zhang XY, Schally AV, Sobrinho-Simões M, Soares P. Inhibitory Effects of Antagonists of Growth Hormone-Releasing Hormone (GHRH) in Thyroid Cancer. Discov Oncol 2017; 8:314-324. [PMID: 28924876 DOI: 10.1007/s12672-017-0307-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/04/2017] [Indexed: 01/28/2023] Open
Abstract
Growth hormone-releasing hormone (GHRH) is a peptide hormone secreted by the hypothalamus that regulates the synthesis and secretion of growth hormone (GH) in the pituitary. The extra-hypothalamic GHRH and its cognate receptors (GHRHR and splice variants) play a mitogenic role by stimulating cell proliferation and preventing apoptotic cell death. It is well established that GHRH antagonists inhibit the growth, tumorigenicity, and metastasis of various human malignancies. In this work, we studied the effect of two new GHRH antagonists, MIA602 and MIA690, on thyroid cancer. We studied the effect of MIA602 and MIA690 on thyroid cancer in vitro, using human thyroid cancer cell lines, and in vivo, using chicken embryo chorioallantoic membrane (CAM) assays. We found that mRNA for GHRH and GHRH receptor is expressed in thyroid cell lines and in samples of thyroid tumors. Immunohistochemistry confirmed the expression of GHRHR protein in specimens of thyroid tumor. We observed that GHRH antagonists inhibited the growth and increased apoptosis of thyroid cancer cells. In vivo, the antagonists inhibited growth and angiogenesis of engrafted thyroid tumors. Our results suggest that GHRH expression may play a role in growth of thyroid cancer and that GHRH antagonists can be a therapeutic option for thyroid cancer patients.
Collapse
Affiliation(s)
- Helena Pópulo
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal
| | - Bruno Nunes
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal
- Experimental Endocrinology-GPEEx Group, Institute of Biomedical Sciences and Postgraduate Endocrinology, Medical Faculty, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristina Sampaio
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal
| | - Rui Batista
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
| | - Marta Teixeira Pinto
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal
| | - Tiago B Gaspar
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal
| | - Leandro Miranda-Alves
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal
- Experimental Endocrinology-GPEEx Group, Institute of Biomedical Sciences and Postgraduate Endocrinology, Medical Faculty, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ren-Zhi Cai
- Veterans Affairs Medical Center Miami, Miami, FL, USA
- Department of Medicine, Divisions of Endocrinology and Hematology-Oncology, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami, School of Medicine, Miami, FL, USA
| | - Xian Yang Zhang
- Veterans Affairs Medical Center Miami, Miami, FL, USA
- Department of Medicine, Divisions of Endocrinology and Hematology-Oncology, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami, School of Medicine, Miami, FL, USA
| | - Andrew V Schally
- Veterans Affairs Medical Center Miami, Miami, FL, USA
- Department of Medicine, Divisions of Endocrinology and Hematology-Oncology, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami, School of Medicine, Miami, FL, USA
- Department of Pathology, Divisions of Endocrinology and Hematology-Oncology, Sylvester Comprehensive Cancer Center and Interdisciplinary Stem Cell Institute, University of Miami, School of Medicine, Miami, FL, USA
| | - Manuel Sobrinho-Simões
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal
- Department of Pathology and Oncology, Medical Faculty, University of Porto, Porto, Portugal
- Department of Pathology, Hospital S. João, Porto, Portugal
| | - Paula Soares
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.
- Institute for Research and Innovation in Health (I3S), University of Porto, Porto, Portugal.
- Department of Pathology and Oncology, Medical Faculty, University of Porto, Porto, Portugal.
| |
Collapse
|
20
|
Gasparri ML, Casorelli A, Bardhi E, Besharat AR, Savone D, Ruscito I, Farooqi AA, Papadia A, Mueller MD, Ferretti E, Benedetti Panici P. Beyond circulating microRNA biomarkers: Urinary microRNAs in ovarian and breast cancer. Tumour Biol 2017; 39:1010428317695525. [PMID: 28459207 DOI: 10.1177/1010428317695525] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide, and ovarian cancer is the most lethal gynecological malignancy. Women carrying a BRCA1/2 mutation have a very high lifetime risk of developing breast and ovarian cancer. The only effective risk-reducing strategy in BRCA-mutated women is a prophylactic surgery with bilateral mastectomy and bilateral salpingo-oophorectomy. However, many women are reluctant to undergo these prophylactic surgeries due to a consequent mutilated body perception, unfulfilled family planning, and precocious menopause. In these patients, an effective screening strategy is available only for breast cancer, but it only consists in close radiological exams with a significant burden for the health system and a significant distress to the patients. No biomarkers have been shown to effectively detect breast and ovarian cancer at an early stage. MicroRNAs (miRNAs) are key regulatory molecules operating in a post-transcriptional regulation of gene expression. Aberrant expression of miRNAs has been documented in several pathological conditions, including solid tumors, suggesting their involvement in tumorigenesis. miRNAs can be detected in blood and urine and could be used as biomarkers in solid tumors. Encouraging results are emerging in gynecological malignancy as well, and suggest a different pattern of expression of miRNAs in biological fluids of breast and ovarian cancer patients as compared to healthy control. Aim of this study is to highlight the role of the urinary miRNAs which are specifically associated with cancer and to investigate their role in early diagnosis and in determining the prognosis in breast and ovarian cancer.
Collapse
Affiliation(s)
- Maria Luisa Gasparri
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy.,2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Assunta Casorelli
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Erlisa Bardhi
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Aris Raad Besharat
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Delia Savone
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Ilary Ruscito
- 1 Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Ammad Ahmad Farooqi
- 3 Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Andrea Papadia
- 2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Michael David Mueller
- 2 Department of Obstetrics and Gynecology, University Hospital of Berne, University of Berne, Berne, Switzerland
| | - Elisabetta Ferretti
- 4 Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,5 Neuromed Institute, Pozzilli, Italy
| | | |
Collapse
|
21
|
Zarandi M, Cai R, Kovacs M, Popovics P, Szalontay L, Cui T, Sha W, Jaszberenyi M, Varga J, Zhang X, Block NL, Rick FG, Halmos G, Schally AV. Synthesis and structure-activity studies on novel analogs of human growth hormone releasing hormone (GHRH) with enhanced inhibitory activities on tumor growth. Peptides 2017; 89:60-70. [PMID: 28130121 DOI: 10.1016/j.peptides.2017.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 12/21/2022]
Abstract
The syntheses and biological evaluations of new GHRH analogs of Miami (MIA) series with greatly increased anticancer activity are described. In the design and synthesis of these analogs, the following previous substitutions were conserved: D-Arg2, Har9, Abu15, and Nle27. Most new analogs had Ala at position 8. Since replacements of both Lys12 and Lys21 with Orn increased resistance against enzymatic degradation, these modifications were kept. The substitutions of Arg at both positions 11 and 20 by His were also conserved. We kept D-Arg28, Har29 -NH2 at the C-terminus or inserted Agm or 12-amino dodecanoic acid amide at position 30. We incorporated pentafluoro-Phe (Fpa5), instead of Cpa, at position 6 and Tyr(Me) at position 10 and ω-amino acids at N-terminus of some analogs. These GHRH analogs were prepared by solid-phase methodology and purified by HPLC. The evaluation of the activity of the analogs on GH release was carried out in vitro on rat pituitaries and in vivo in male rats. Receptor binding affinities were measured in vitro by the competitive binding analysis. The inhibitory activity of the analogs on tumor proliferation in vitro was tested in several human cancer cell lines such as HEC-1A endometrial adenocarcinoma, HCT-15 colorectal adenocarcinoma, and LNCaP prostatic carcinoma. For in vivo tests, various cell lines including PC-3 prostate cancer, HEC-1A endometrial adenocarcinoma, HT diffuse mixed β cell lymphoma, and ACHN renal cell carcinoma cell lines were xenografted into nude mice and treated subcutaneously with GHRH antagonists at doses of 1-5μg/day. Analogs MIA-602, MIA-604, MIA-610, and MIA-640 showed the highest binding affinities, 30, 58, 48, and 73 times higher respectively, than GHRH (1-29) NH2. Treatment of LNCaP and HCT-15 cells with 5μM MIA-602 or MIA-690 decreased proliferation by 40%-80%. In accord with previous tests in various human cancer lines, analog MIA-602 showed high inhibitory activity in vivo on growth of PC-3 prostate cancer, HT-mixed β cell lymphoma, HEC-1A endometrial adenocarcinoma and ACHN renal cell carcinoma. Thus, GHRH analogs of the Miami series powerfully suppress tumor growth, but have only a weak endocrine GH inhibitory activity. The suppression of tumor growth could be induced in part by the downregulation of GHRH receptors levels.
Collapse
Affiliation(s)
- Marta Zarandi
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Renzhi Cai
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Division of Endocrinology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Magdolna Kovacs
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Petra Popovics
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Division of Endocrinology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Luca Szalontay
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Tengjiao Cui
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Division of Endocrinology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Wei Sha
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; Division of Endocrinology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Division of Hematology/Oncology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Sylvester Comprehensive Cancer Center, Miami, FL, United States
| | - Miklos Jaszberenyi
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jozsef Varga
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States
| | - XianYang Zhang
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Norman L Block
- South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Sylvester Comprehensive Cancer Center, Miami, FL, United States; Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ferenc G Rick
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Urology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, United States
| | - Gabor Halmos
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Division of Endocrinology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Division of Hematology/Oncology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Sylvester Comprehensive Cancer Center, Miami, FL, United States.
| |
Collapse
|
22
|
Köster F, Jin L, Shen Y, Schally AV, Cai RZ, Block NL, Hornung D, Marschner G, Rody A, Engel JB, Finas D. Effects of an Antagonistic Analog of Growth Hormone-Releasing Hormone on Endometriosis in a Mouse Model and In Vitro. Reprod Sci 2017; 24:1503-1511. [PMID: 28205459 DOI: 10.1177/1933719117691140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Endometriosis is a benign gynecologic disorder causing dysmenorrhea, pelvic pain, and subfertility. Receptors for the growth hormone-releasing hormone (GHRH) were found in endometriotic tissues. Antagonists of GHRH have been used to inhibit the growth of endometriotic endometrial stromal cells. In this study, the GHRH receptor splice variant (SV) 1 was detected in human endometrial tissue samples by Western blots and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The highest messenger RNA (mRNA) and protein levels of SV1 were found in eutopic endometrium from patients with endometriosis compared to ectopic endometriotic tissues and endometrium from normal patients. The highest expression for GHRH mRNA was found by qRT-PCR in ectopic endometriosis lesions. In an in vivo mouse model with human endometrial explants from patients with endometriosis, 10 μg MIA-602 per day resulted in significantly smaller human endometrial xenotransplants after 4 weeks compared to mice treated with vehicle. The endometrial tissues expressed SV1 before and after xenotransplantation. The proliferation of endometrial stromal cells as well as the endometriosis cell lines 12-Z and 49-Z was decreased by exposure to 1 μM MIA-602 after 72 hours. The protein levels of epithelial growth factor receptors in 12-Z and 49-Z cell lines were reduced 48 and 72 hours after the administration of 1 μM MIA-602. MIA-602 decreased the activation of the MAP-kinases ERK-1/2. Our study demonstrates the presence of SV1 receptor as a target for treatment with GHRH antagonist in endometriosis. Endometrial tissues respond to MIA-602 with inhibition of proliferation in vitro and in vivo. The use of MIA-602 could be an effective supplement to the treatment strategies in endometriosis.
Collapse
Affiliation(s)
- Frank Köster
- 1 Department of Gynecology and Obstetrics, University of Lübeck, Lübeck, Germany
| | - Li Jin
- 2 Department of Gynecology and Obstetrics, The International Peace Maternity & Child Health Hospital of China Welfare Institute, China
| | - Yuanming Shen
- 3 Department of Gynecology and Obstetrics, The Women's Hospital, School of Medicine, Zhejiang University, Zhejiang Province, People's Republic of China
| | - Andrew V Schally
- 4 Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA.,5 Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.,6 Divisions of Hematology/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ren-Zhi Cai
- 4 Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA.,5 Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.,6 Divisions of Hematology/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Norman L Block
- 4 Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, USA.,5 Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.,6 Divisions of Hematology/Oncology and Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Daniela Hornung
- 7 Department of Gynecology and Obstetrics, Diakonissenkrankenhaus Karlsruhe Rüppurr, Karlsruhe, Germany
| | - Gabriele Marschner
- 1 Department of Gynecology and Obstetrics, University of Lübeck, Lübeck, Germany
| | - Achim Rody
- 1 Department of Gynecology and Obstetrics, University of Lübeck, Lübeck, Germany
| | - Jörg B Engel
- 8 Department of Gynecology and Obstetrics, Krankenhaus Nordwest, Frankfurt am Main, Germany
| | - Dominique Finas
- 9 Department of Gynecology and Obstetrics, Evangelic Hospital Bielefeld, Bielefeld, Germany
| |
Collapse
|
23
|
Gan J, Ke X, Jiang J, Dong H, Yao Z, Lin Y, Lin W, Wu X, Yan S, Zhuang Y, Chu WK, Cai R, Zhang X, Cheung HS, Block NL, Pang CP, Schally AV, Zhang H. Growth hormone-releasing hormone receptor antagonists inhibit human gastric cancer through downregulation of PAK1-STAT3/NF-κB signaling. Proc Natl Acad Sci U S A 2016; 113:14745-14750. [PMID: 27930339 PMCID: PMC5187693 DOI: 10.1073/pnas.1618582114] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) ranks as the fourth most frequent in incidence and second in mortality among all cancers worldwide. The development of effective treatment approaches is an urgent requirement. Growth hormone-releasing hormone (GHRH) and GHRH receptor (GHRH-R) have been found to be present in a variety of tumoral tissues and cell lines. Therefore the inhibition of GHRH-R was proposed as a promising approach for the treatment of these cancers. However, little is known about GHRH-R and the relevant therapy in human GC. By survival analyses of multiple cohorts of GC patients, we identified that increased GHRH-R in tumor specimens correlates with poor survival and is an independent predictor of patient prognosis. We next showed that MIA-602, a highly potent GHRH-R antagonist, effectively inhibited GC growth in cultured cells. Further, this inhibitory effect was verified in multiple models of human GC cell lines xenografted into nude mice. Mechanistically, GHRH-R antagonists target GHRH-R and down-regulate the p21-activated kinase 1 (PAK1)-mediated signal transducer and activator of transcription 3 (STAT3)/nuclear factor-κB (NF-κB) inflammatory pathway. Overall, our studies establish GHRH-R as a potential molecular target in human GC and suggest treatment with GHRH-R antagonist as a promising therapeutic intervention for this cancer.
Collapse
Affiliation(s)
- Jinfeng Gan
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Xiurong Ke
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Jiali Jiang
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Hongmei Dong
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Zhimeng Yao
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Yusheng Lin
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Wan Lin
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Xiao Wu
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Shumei Yan
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yixuan Zhuang
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Renzhi Cai
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125
- South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Xianyang Zhang
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125
- South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Herman S Cheung
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125
- South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146
| | - Norman L Block
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125;
- South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Hao Zhang
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China;
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Biotherapy, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
24
|
Growth Hormone-Releasing Hormone and Its Analogues: Significance for MSCs-Mediated Angiogenesis. Stem Cells Int 2016; 2016:8737589. [PMID: 27774107 PMCID: PMC5059609 DOI: 10.1155/2016/8737589] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/19/2016] [Accepted: 07/03/2016] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for regenerative medicine because of their multipotency, immune-privilege, and paracrine properties including the potential to promote angiogenesis. Accumulating evidence suggests that the inherent properties of cytoprotection and tissue repair by native MSCs can be enhanced by various preconditioning stimuli implemented prior to cell transplantation. Growth hormone-releasing hormone (GHRH), a stimulator in extrahypothalamus systems including tumors, has attracted great attentions in recent years because GHRH and its agonists could promote angiogenesis in various tissues. GHRH and its agonists are proangiogenic in responsive tissues including tumors, and GHRH antagonists have been tested as antitumor agents through their ability to suppress angiogenesis and cell growth. GHRH-R is expressed by MSCs and evolving work from our laboratory indicates that treatment of MSCs with GHRH agonists prior to cell transplantation markedly enhanced the angiogenic potential and tissue reparative properties of MSCs through a STAT3 signaling pathway. In this review we summarized the possible effects of GHRH analogues on cell growth and development, as well as on the proangiogenic properties of MSCs. We also discussed the relationship between GHRH analogues and MSC-mediated angiogenesis. The analyses provide new insights into molecular pathways of MSCs-based therapies and their augmentation by GHRH analogues.
Collapse
|
25
|
Schock H, Fortner RT, Surcel HM, Grankvist K, Pukkala E, Lehtinen M, Lundin E. Early pregnancy IGF-I and placental GH and risk of epithelial ovarian cancer: A nested case-control study. Int J Cancer 2015; 137:439-47. [PMID: 25516257 PMCID: PMC4428944 DOI: 10.1002/ijc.29387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/27/2014] [Indexed: 12/22/2022]
Abstract
Insulin-like growth factor-I (IGF-I) signaling may promote ovarian tumor development by exerting mitotic, antiapoptotic and proangiogenic effects. During pregnancy, maternal production of IGF-I is regulated by placental growth hormone (GH). Parity is an established protective factor for ovarian cancer, however, no prior study has evaluated placental GH and IGF-I in pregnancy and epithelial ovarian cancer (EOC). Prior prospective studies on the association between IGF-I and EOC in nonpregnant populations were inconclusive and did not address associations in subtypes of EOC. Among members of the Finnish Maternity Cohort and the Northern Sweden Maternity Cohort, we identified 1,045 EOC cases, diagnosed after recruitment (1975-2008) and before March 2011 and 2,658 individually matched controls. Placental GH and IGF-I were measured in serum from the last pregnancy before EOC diagnosis or selection as control. We used conditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for tertiles and a doubling of hormone concentrations. Higher IGF-I was associated with a nonsignificant decrease in risk for invasive [ORT3 vs. T1 : 0.79 (0.62-1.02); ptrend = 0.07] and endometrioid tumors [ORT3 vs. T1 : 0.55 (0.28-1.07); ptrend = 0.07]. The protective association between higher IGF-I levels and risk of invasive EOC was stronger in analyses limited to women aged <55 years at diagnosis [ORT3 vs. T1 : 0.74 (0.57-0.96); ptrend = 0.03]. Our study provides the first data on placental GH and IGF-I in pregnancy and EOC risk overall and by subtype. Our data suggest higher IGF-I levels in pregnancy may be associated with lower risk of invasive and endometrioid EOC.
Collapse
Affiliation(s)
- Helena Schock
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Heljä-Marja Surcel
- Unit of Child and Adolescent Health and Wellbeing, National Institute for Health and Welfare, Oulu, Finland
| | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Eero Pukkala
- Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland
- School of Public Health, University of Tampere, Tampere, Finland
| | - Matti Lehtinen
- School of Public Health, University of Tampere, Tampere, Finland
| | - Eva Lundin
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
- Public Health and Clinical Medicine: Nutritional Research, Umeå University, Umeå, Sweden
| |
Collapse
|
26
|
Preclinical efficacy of growth hormone-releasing hormone antagonists for androgen-dependent and castration-resistant human prostate cancer. Proc Natl Acad Sci U S A 2014; 111:1084-9. [PMID: 24395797 DOI: 10.1073/pnas.1323102111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Advanced hormone-sensitive prostate cancer responds to androgen-deprivation therapy (ADT); however, therapeutic options for recurrent castration-resistant disease are limited. Because growth hormone-releasing hormone (GHRH) and GHRH receptor (GHRH-R) are regulated in an autocrine fashion in prostate cancer, inhibition of GHRH-R represents a compelling approach to treatment. We investigated the effects of the latest series of improved, highly potent GHRH antagonists--MIA-602, MIA-606, and MIA-690--on the growth of androgen-dependent as well as castration-resistant prostate cancer (CRPC) cells in vitro and in vivo. GHRH-R and its splice variant, SV1, were present in 22Rv1, LNCaP, and VCaP human prostate cancer cell lines. Androgen-dependent LNCaP and VCaP cells expressed higher levels of GHRH-R protein compared with castration-resistant 22Rv1 cells; however, 22Rv1 expressed higher levels of SV1. In vitro, MIA-602 decreased cell proliferation of 22Rv1, LNCaP, and VCaP prostate cancer cell lines by 70%, 61%, and 20%, respectively (all P < 0.05), indicating direct effects of MIA-602. In vivo, MIA-602 was more effective than MIA-606 and MIA-690 and decreased 22Rv1 xenograft tumor volumes in mice by 63% after 3 wk (P < 0.05). No noticeable untoward effects or changes in body weight occurred. In vitro, the VCaP cell line was minimally inhibited by MIA-602, but in vivo, this line showed a substantial reduction in growth of xenografts in response to MIA-602, indicating both direct and systemic inhibitory effects. MIA-602 also further inhibited VCaP xenografts when combined with ADT. This study demonstrates the preclinical efficacy of the GHRH antagonist MIA-602 for treatment of both androgen-dependent and CRPC.
Collapse
|
27
|
Szalontay L, Schally AV, Popovics P, Vidaurre I, Krishan A, Zarandi M, Cai RZ, Klukovits A, Block NL, Rick FG. Novel GHRH antagonists suppress the growth of human malignant melanoma by restoring nuclear p27 function. Cell Cycle 2014; 13:2790-7. [PMID: 25486366 PMCID: PMC4615138 DOI: 10.4161/15384101.2015.945879] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 01/21/2023] Open
Abstract
Malignant melanoma is the deadliest form of skin cancer; the treatment of advanced and recurrent forms remains a challenge. It has recently been reported that growth hormone-releasing hormone (GHRH) receptor is involved in the pathogenesis of melanoma. Therefore, we investigated the effects of our new GHRH antagonists on a human melanoma cancer cell line. Antiproliferative effects of GHRH antagonists, MIA-602, MIA-606 and MIA-690, on the human melanoma cell line, A-375, were studied in vitro using the MTS assay. The effect of MIA-690 (5 μg/day 28 d) was further evaluated in vivo in nude mice bearing xenografts of A-375. Subcellular localization of p27 was detected with Western blot and immunofluorescent staining. MIA-690 inhibited the proliferation of A-375 cells in a dose-dependent manner (33% at 10 μM, and 19.2% at 5 μM, P < 0 .05 vs. control), and suppressed the growth of xenografted tumors by 70.45% (P < 0.05). Flow cytometric analysis of cell cycle effects following the administration of MIA-690 revealed a decrease in the number of cells in G2/M phase (from 19.7% to 12.9%, P < 0.001). Additionally, Western blot and immunofluorescent studies showed that exposure of A-375 cells to MIA-690 triggered the nuclear accumulation of p27. MIA-690 inhibited tumor growth in vitro and in vivo, and increased the translocation of p27 into the nucleus thus inhibiting progression of the cell cycle. Our findings indicate that patients with malignant melanoma could benefit from treatment regimens, which combine existing chemotherapy agents and novel GHRH-antagonists.
Collapse
Key Words
- ANOVA, one-way analysis of variance
- Abu, a-aminobutyric acid
- Ac, acetyl
- Ada, 12-aminododecanoyl
- Agm, agmatine
- Amc, 8-aminocaprylyl
- Cpa, parachlorophenylalanine
- FBS, fetal bovine serum
- Fpa5, pentafluoro-phenylalanine
- GH, growth hormone
- GHRH, growth hormone-releasing hormone
- GHRH-R, growth hormone-releasing hormone receptor
- Har, homoarginine
- IGF-I, insulin-like growth factor I
- MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfonphenyl)-2H-tetrazolium
- Nle, norleucine
- Orn, ornithine
- Ph, phenyl
- PhAc, phenylacetyl
- SVs, splice variants
- TBS, tris-buffered saline
- Tyr(Me), O-methyltyrosine
- growth hormone-releasing hormone antagonist
- hGHRH, human growth hormone-releasing hormone
- mTOR, mammalian target of rapamycin
- melanoma
- p27
- pGHRH-R, pituitary type GHRH-receptor
- targeted therapy
- xenografted mouse model
Collapse
Affiliation(s)
- Luca Szalontay
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education; Miami, FL USA
| | - Andrew V Schally
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education; Miami, FL USA
- Department of Pathology; University of Miami; Miller School of Medicine; Miami, FL USA
- Divisions of Hematology/Oncology; University of Miami; Miller School of Medicine; Miami, FL USA
- Department of Endocrinology; University of Miami; Miller School of Medicine; Miami, FL USA
- Sylvester Comprehensive Cancer Center; University of Miami; Miller School of Medicine; Miami, FL USA
| | - Petra Popovics
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education; Miami, FL USA
- Cardiovascular Diseases; Department of Medicine; University of Miami; Miller School of Medicine; Miami, FL USA
| | - Irving Vidaurre
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education; Miami, FL USA
| | - Awtar Krishan
- Department of Pathology; University of Miami; Miller School of Medicine; Miami, FL USA
| | - Marta Zarandi
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education; Miami, FL USA
- Department of Pathology; University of Miami; Miller School of Medicine; Miami, FL USA
| | - Ren-Zhi Cai
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education; Miami, FL USA
- Department of Pathology; University of Miami; Miller School of Medicine; Miami, FL USA
| | - Anna Klukovits
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education; Miami, FL USA
- Department of Pathology; University of Miami; Miller School of Medicine; Miami, FL USA
| | - Norman L Block
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education; Miami, FL USA
- Department of Pathology; University of Miami; Miller School of Medicine; Miami, FL USA
- Divisions of Hematology/Oncology; University of Miami; Miller School of Medicine; Miami, FL USA
| | - Ferenc G Rick
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education; Miami, FL USA
- Department of Urology; Herbert Wertheim College of Medicine; Florida International University; Miami, FL, USA
| |
Collapse
|
28
|
Nair D, Ramesh V, Li RC, Schally AV, Gozal D. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse. J Neurochem 2013; 127:531-40. [PMID: 23815362 DOI: 10.1111/jnc.12360] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/23/2013] [Accepted: 06/25/2013] [Indexed: 11/27/2022]
Abstract
Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea (OSA), leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in adult mice. In both patients and murine models of OSA, the disease is associated with suppression of growth hormone (GH) secretion, which is actively involved in the growth, development, and function of the central nervous system (CNS). Recent work showed that exogenous GH therapy attenuated neurocognitive deficits elicited by IH during sleep in rats. Here, we show that administration of the Growth Hormone Releasing Hormone (GHRH) agonist JI-34 attenuates IH-induced neurocognitive deficits, anxiety, and depression in mice along with reduction in oxidative stress markers such as MDA and 8-hydroxydeoxyguanosine, and increases in hypoxia inducible factor-1α DNA binding and up-regulation of insulin growth factor-1 and erythropoietin expression. In contrast, treatment with a GHRH antagonist (MIA-602) during intermittent hypoxia did not affect any of the IH-induced deleterious effects in mice. Thus, exogenous GHRH administered as the formulation of a GHRH agonist may provide a viable therapeutic intervention to protect IH-vulnerable brain regions from OSA-associated neurocognitive dysfunction. Sleep apnea, characterized by chronic intermittent hypoxia (IH), is associated with substantial cognitive and behavioral deficits. Here, we show that administration of a GHRH agonist (JI-34) reduces oxidative stress, increases both HIF-1α nuclear binding and downstream expression of IGF1 and erythropoietin (EPO) in hippocampus and cortex, and markedly attenuates water maze performance deficits in mice exposed to intermittent hypoxia during sleep.
Collapse
Affiliation(s)
- Deepti Nair
- Department of Pediatrics, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
29
|
Ziegler CG, Ullrich M, Schally AV, Bergmann R, Pietzsch J, Gebauer L, Gondek K, Qin N, Pacak K, Ehrhart-Bornstein M, Eisenhofer G, Bornstein SR. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells. Mol Cell Endocrinol 2013; 371:189-94. [PMID: 23267837 PMCID: PMC3690370 DOI: 10.1016/j.mce.2012.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 01/31/2023]
Abstract
Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPCs) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing.
Collapse
MESH Headings
- 2-Hydroxyphenethylamine/analogs & derivatives
- 2-Hydroxyphenethylamine/pharmacology
- Adrenal Gland Neoplasms/drug therapy
- Aniline Compounds/pharmacology
- Animals
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Doxorubicin/analogs & derivatives
- Doxorubicin/pharmacology
- Gonadotropin-Releasing Hormone/analogs & derivatives
- Gonadotropin-Releasing Hormone/antagonists & inhibitors
- Gonadotropin-Releasing Hormone/pharmacology
- Growth Hormone-Releasing Hormone/antagonists & inhibitors
- Mice
- Pheochromocytoma/drug therapy
- Pyrroles/pharmacology
- Receptors, LHRH/biosynthesis
- Receptors, LHRH/drug effects
- Receptors, LHRH/metabolism
- Receptors, Neuropeptide/biosynthesis
- Receptors, Neuropeptide/drug effects
- Receptors, Neuropeptide/metabolism
- Receptors, Pituitary Hormone-Regulating Hormone/biosynthesis
- Receptors, Pituitary Hormone-Regulating Hormone/drug effects
- Receptors, Pituitary Hormone-Regulating Hormone/metabolism
- Receptors, Somatostatin/biosynthesis
- Receptors, Somatostatin/drug effects
- Receptors, Somatostatin/metabolism
- Sermorelin/analogs & derivatives
- Sermorelin/pharmacology
- Somatostatin/analogs & derivatives
Collapse
Affiliation(s)
- C G Ziegler
- University Hospital Carl Gustav Carus, Department of Medicine III, Dresden, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jaszberenyi M, Schally AV, Block NL, Zarandi M, Cai RZ, Vidaurre I, Szalontay L, Jayakumar AR, Rick FG. Suppression of the proliferation of human U-87 MG glioblastoma cells by new antagonists of growth hormone-releasing hormone in vivo and in vitro. Target Oncol 2013; 8:281-90. [PMID: 23371031 DOI: 10.1007/s11523-013-0264-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/21/2013] [Indexed: 02/06/2023]
Abstract
Five-year survival of patients afflicted with glioblastoma multiforme (GBM) is rare, making this cancer one of the most feared malignancies. Previously, we reported that growth hormone-releasing hormone (GHRH) is a potent growth factor in cancers. The present work evaluated the effects of two antagonistic analogs of GHRH (MIA-604 and MIA-690) on the proliferation of U-87 MG GBM tumors, in vivo as well as in vitro. Both analogs were administered subcutaneously and dose-dependently inhibited the growth of tumors transplanted into nude mice (127 animals in seven groups). The analogs also inhibited cell proliferation in vitro, decreased cell size, and promoted apoptotic and autophagic processes. Both antagonists stimulated contact inhibition, as indicated by the expression of the E-cadherin-β-catenin complex and integrins, and decreased the release of humoral regulators of glial growth such as FGF, PDGFβ, and TGFβ, as revealed by genomic or proteomic detection methods. The GHRH analogs downregulated other tumor markers (Jun-proto-oncogene, mitogen-activated protein kinase-1, and melanoma cell adhesion molecule), upregulated tumor suppressors (p53, metastasis suppressor-1, nexin, TNF receptor 1A, BCL-2-associated agonist of cell death, and ifκBα), and inhibited the expression of the regulators of angiogenesis and invasion (angiopoetin-1, VEGF, matrix metallopeptidase-1, S100 calcium binding protein A4, and synuclein-γ). Our findings indicate that GHRH antagonists inhibit growth of GBMs by multiple mechanisms and decrease both tumor cell size and number.
Collapse
|
31
|
Rick FG, Seitz S, Schally AV, Szalontay L, Krishan A, Datz C, Stadlmayr A, Buchholz S, Block NL, Hohla F. GHRH antagonist when combined with cytotoxic agents induces S-phase arrest and additive growth inhibition of human colon cancer. Cell Cycle 2012; 11:4203-10. [PMID: 23095641 DOI: 10.4161/cc.22498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment of colon cancer with an antagonist of growth hormone-releasing hormone (GHRH), JMR-132, results in a cell cycle arrest in S-phase of the tumor cells. Thus, we investigated the effect of JMR-132 in combination with S-phase-specific cytotoxic agents, 5-FU, irinotecan and cisplatin on the in vitro and in vivo growth of HT-29, HCT-116 and HCT-15 human colon cancer cell lines. In vitro, every compound inhibited proliferation of HCT-116 cells in a dose-dependent manner. Treatment with JMR-132 (5 μM) combined with 5-FU (1.25 μM), irinotecan (1.25 μM) or cisplatin (1.25 μM) resulted in an additive growth inhibition of HCT-116 cells in vitro as shown by MTS assay. Cell cycle analyses revealed that treatment of HCT-116 cells with JMR-132 was accompanied by a cell cycle arrest in S-phase. Combination treatment using JMR-132 plus a cytotoxic drug led to a significant increase of the sub-G 1 fraction, suggesting apoptosis. In vivo, daily treatment with GHRH antagonist JMR-132 decreased the tumor volume by 40-55% (p < 0.001) of HT-29, HCT-116 and HCT-15 tumors xenografted into athymic nude mice. Combined treatment with JMR-132 plus chemotherapeutic agents 5-FU, irinotecan or cisplatin resulted in an additive tumor growth suppression of HT-29, HCT-116 and HCT-15 xenografts to 56-85%. Our observations indicate that JMR-132 enhances the antiproliferative effect of S-phase-specific cytotoxic drugs by causing accumulation of tumor cells in S-phase.
Collapse
Affiliation(s)
- Ferenc G Rick
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Current world literature. Curr Opin Oncol 2012; 24:587-95. [PMID: 22886074 DOI: 10.1097/cco.0b013e32835793f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|