1
|
Kowalska AA, Nowicka AB, Szymborski T, Cywiński P, Kamińska A. Determination of L-selectin in blood plasma using DNA aptamer-based surface-enhanced Raman spectroscopy assay. Anal Bioanal Chem 2024; 416:1189-1197. [PMID: 38191826 DOI: 10.1007/s00216-023-05110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
In the human body, tumor cell occurrence can be indirectly monitored using the L-selectin concentration in the blood, since selectin ligands are present on the surface of tumor cells, and with tumor progression, a decrease in L-selectin levels can be expected and observed. In this study, we present a selective DNA-based surface-enhanced Raman spectroscopy (SERS) assay for the detection and determination of L-selectin in biological samples. Two calibration curves (linear in the 40-190 ng mL-1 region and exponential in the 40-500 ng mL-1 region) are fitted to the obtained SERS experimental data, i.e., the ratio of I732/I1334 band intensities (LOQ = 46 ng mL-1). Calculated determination coefficients are found to be R2 = 0.997 for the linear region of the calibration curve and R2 = 0.977 for the exponential region. Moreover, we demonstrate very good selectivity of the assay even in the presence of P- and E-selectin in a sample containing L-selectin. With our SERS assay, the L-selectin concentration in biological samples can be estimated directly from the calibration curves.
Collapse
Affiliation(s)
- Aneta Aniela Kowalska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Ariadna B Nowicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965, Poznan, Poland
| | - Tomasz Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Piotr Cywiński
- Lukasiewicz Institute of Microelectronics and Photonics, al. Lotnikow 32/46, 02-668, Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
2
|
Sahan AZ, Baday M, Patel CB. Biomimetic Hydrogels in the Study of Cancer Mechanobiology: Overview, Biomedical Applications, and Future Perspectives. Gels 2022; 8:gels8080496. [PMID: 36005097 PMCID: PMC9407355 DOI: 10.3390/gels8080496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022] Open
Abstract
Hydrogels are biocompatible polymers that are tunable to the system under study, allowing them to be widely used in medicine, bioprinting, tissue engineering, and biomechanics. Hydrogels are used to mimic the three-dimensional microenvironment of tissues, which is essential to understanding cell–cell interactions and intracellular signaling pathways (e.g., proliferation, apoptosis, growth, and survival). Emerging evidence suggests that the malignant properties of cancer cells depend on mechanical cues that arise from changes in their microenvironment. These mechanobiological cues include stiffness, shear stress, and pressure, and have an impact on cancer proliferation and invasion. The hydrogels can be tuned to simulate these mechanobiological tissue properties. Although interest in and research on the biomedical applications of hydrogels has increased in the past 25 years, there is still much to learn about the development of biomimetic hydrogels and their potential applications in biomedical and clinical settings. This review highlights the application of hydrogels in developing pre-clinical cancer models and their potential for translation to human disease with a focus on reviewing the utility of such models in studying glioblastoma progression.
Collapse
Affiliation(s)
- Ayse Z. Sahan
- Biomedical Sciences Graduate Program, Department of Pharmacology, School of Medicine, University California at San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Murat Baday
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Precision Health and Integrated Diagnostics Center, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Correspondence: (M.B.); (C.B.P.)
| | - Chirag B. Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Correspondence: (M.B.); (C.B.P.)
| |
Collapse
|
3
|
Li J, Yuan Y, Gan H, Dong C, Cao B, Ni JL, Li X, Gu W, Song C, Wang L. Double-Tetrahedral DNA Probe Functionalized Ag Nanorod Biointerface for Effective Capture, Highly Sensitive Detection, and Nondestructive Release of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32869-32879. [PMID: 35839122 DOI: 10.1021/acsami.2c06005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Circulating tumor cells (CTCs) are indicative of tumorigenesis, metastasis, and recurrence; however, it is still a great challenge to efficiently analyze the extremely rare CTCs in peripheral blood. Herein, a novel nanobiointerface integrating high affinities of arrayed silver nanorods (Ag NRs) and double-tetrahedral DNA (DTDN) probes by a clever strategy is proposed for the efficient capture, highly sensitive detection, and nondestructive release of CTCs. Under the optimal conditions, the DTDN-probe-functionalized Ag NRs nanobiointerface can capture 90.2% of SGC-7901 cells in PBS, and the capture efficiency is 2.8 times and 50 times those of a DTDN-probe-functionalized Ag film and unfunctionalized Ag NRs, respectively, benefiting from the nanorough interface of the Ag NRs array and multivalent recognition of the DTDN probe. In addition, 93.4% of cells was released via Zn2+-assisted DNAzyme cleavage, and the viability of the postreleased CTCs is about 98.0%. The potential practicality of the nanobiointerface for testing CTCs in blood was further characterized by spiking SGC-7901 cells in leukocytes collected from human blood, and the results show that 83.8% capture efficiency, 91.2% release efficiency, and single-cell detection limit were achieved, which indicates that the nanobiointerface has great potential in clinical applications for reliable CTC analyses.
Collapse
Affiliation(s)
- Jinxiang Li
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Yugang Yuan
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Hongyu Gan
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Chen Dong
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Bin Cao
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Jin-Liang Ni
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Xueliang Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Wenjie Gu
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| |
Collapse
|
4
|
Kundu B, Caballero D, Abreu CM, Reis RL, Kundu SC. The Tumor Microenvironment: An Introduction to the Development of Microfluidic Devices. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:115-138. [DOI: 10.1007/978-3-031-04039-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Lu Y, Ye L, Jian X, Yang D, Zhang H, Tong Z, Wu Z, Shi N, Han Y, Mao H. Integrated microfluidic system for isolating exosome and analyzing protein marker PD-L1. Biosens Bioelectron 2021; 204:113879. [PMID: 35180692 DOI: 10.1016/j.bios.2021.113879] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Exosomes are lipid-bilayered nanovesicles secreted by cells to mediate intercellular communication. Various kinds of biomolecules involved in exosomes offer non-invasive approaches for detecting or monitoring disease and developing targeted therapeutics. Here, we present an integrated microfluidic exosome isolation and detection system (EXID system) to analyze the abundance of the exosomal PD-L1 protein marker, which is a transmembrane protein expressed by tumors to suppress immune activation of T cells. By incorporating exosome isolation and biomarker labelling and quantification within a single microfluidic chip, our system reduced the total analysis time below 2 h. Using the EXID system, 7 categories of cell lines including cancer cell lines and control samples were profiled, where significant differences in the fluorescence intensity were observed with the limit of detection (LOD) down to 10.76 per microliter. Such noticeable variations in PD-L1 abundance among cancer cell lines highlighted the need of personalized treatments. Furthermore, 16 clinical samples from 7 post-treated cancer patients, 3 prior-treatment patients and 6 healthy controls, are tested, among which differences in sensitivity toward immune response were subsistent. Because the abundance of PD-L1 reflects the sensibility for immune response, our results provide useful guides to design immunotherapy strategies for different types of tumors.
Collapse
Affiliation(s)
- Yunxing Lu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Ye
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoyu Jian
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Dawei Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hongwei Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhaoduo Tong
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Nan Shi
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Kopylov AM, Fab LV, Antipova O, Savchenko EA, Revishchin AV, Parshina VV, Pavlova SV, Kireev II, Golovin AV, Usachev DY, Pavlova GV. RNA Aptamers for Theranostics of Glioblastoma of Human Brain. BIOCHEMISTRY (MOSCOW) 2021; 86:1012-1024. [PMID: 34488577 DOI: 10.1134/s0006297921080113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conventional approaches for studying and molecular typing of tumors include PCR, blotting, omics, immunocytochemistry, and immunohistochemistry. The last two methods are the most used, as they enable detecting both tumor protein markers and their localizations within the cells. In this study, we have investigated a possibility of using RNA aptamers, in particular, 2'-F-pyrimidyl-RNA aptamer ME07 (48 nucleotides long), specific to the receptor of epidermal growth factor (EGFR, ErbB1, Her1), as an alternative to monoclonal antibodies for aptacytochemistry and aptahistochemistry for human glioblastoma multiforme (GBM). A specificity of binding of FAM-ME07 to the receptor on the tumor cells has been demonstrated by flow cytometry; an apparent dissociation constant for the complex of aptamer - EGFR on the cell has been determined; a number of EGFR molecules has been semi-quantitatively estimated for the tumor cell lines having different amount of EGFR: A431 (106 copies per cell), U87 (104 copies per cell), MCF7 (103 copies per cell), and ROZH, primary GBM cell culture derived from patient (104 copies per cell). According to fluorescence microscopy, FAM-ME07 interacts directly with the receptors on A431 cells, followed by its internalization into the cytoplasm and translocation to the nucleolus; this finding opens a possibility of ME07 application as an escort aptamer for a delivery of therapeutic agents into tumor cells. FAM-ME07 efficiently stains sections of GBM clinical specimens, which enables an identification of EGFR-positive clones within a heterogeneous tumor; and providing a potential for further studying animal models of GBM.
Collapse
Affiliation(s)
- Alexey M Kopylov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Lika V Fab
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Olga Antipova
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ekaterina A Savchenko
- Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, 125047, Russia
| | - Alexander V Revishchin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Viktoriya V Parshina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Svetlana V Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Igor I Kireev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Andrey V Golovin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia.,Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Dmitry Y Usachev
- Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, 125047, Russia
| | - Galina V Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.,Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, 125047, Russia.,Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| |
Collapse
|
7
|
Guo S, Huang H, Zeng W, Jiang Z, Wang X, Huang W, Wang X. Facile cell patterning induced by combined surface topography and chemistry on polydopamine-defined nanosubstrates. NANOTECHNOLOGY 2021; 32:145303. [PMID: 33361576 DOI: 10.1088/1361-6528/abd6d2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cell patterning holds significant implications for cell-based analysis and high-throughput screening. The challenge and key factor for formation of cell patterns is to precisely modulate the interaction between cells and substrate surfaces. Many nanosubstrates have been developed to control cell adhesion and patterning, however, requirements of complicated fabrication procedures, harsh reaction conditions, and delicate manipulation are not routinely feasible. Here, we developed a hierarchical polydimethylsiloxane nanosubstrate (HPNS) coated with mussel-inspired polydopamine (PDA) micropatterns for effective cell patterning, depending on both surface topography and chemistry. HPNSs obtained by facile template-assisted replication brought enhanced topographic interaction between cells and substrates, but they were innately hydrophobic and cell-repellent. The hydrophobic nanosubstrates were converted to be hydrophilic after PDA coatings formed via spontaneous self-polymerization, which greatly facilitated cell adhesion. As such, without resorting to any external forces or physical constraints, cells selectively adhered and spread on spatially defined PDA regions with high efficiency, and well-defined cell microarrays could be formed within 20 min. Therefore, this easy-to-fabricate nanosubstrate with no complex chemical modification will afford a facile yet effective platform for rapid cell patterning.
Collapse
Affiliation(s)
- Shan Guo
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Haiyan Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Weiwu Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhuoran Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xin Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Weihua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xinghuan Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| |
Collapse
|
8
|
Ding P, Wang Z, Wu Z, Zhu W, Liu L, Sun N, Pei R. Aptamer-based nanostructured interfaces for the detection and release of circulating tumor cells. J Mater Chem B 2021; 8:3408-3422. [PMID: 32022083 DOI: 10.1039/c9tb02457c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Analysis of circulating tumor cells (CTCs) can provide significant clinical information for tumors, which has proven to be helpful for cancer diagnosis, prognosis monitoring, treatment efficacy, and personalized therapy. However, CTCs are an extremely rare cell population, which challenges the isolation of CTCs from patient blood. Over the last few decades, many strategies for CTC detection have been developed based on the physical and biological properties of CTCs. Among them, nanostructured interfaces have been widely applied as CTC detection platforms to overcome the current limitations associated with CTC capture. Furthermore, aptamers have attracted significant attention in the detection of CTCs due to their advantages, including good affinity, low cost, easy modification, excellent stability, and low immunogenicity. In addition, effective and nondestructive release of CTCs can be achieved by aptamer-mediated methods that are used under mild conditions. Herein, we review some progress in the detection and release of CTCs through aptamer-functionalized nanostructured interfaces.
Collapse
Affiliation(s)
- Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C, Tan W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem Rev 2021; 121:12035-12105. [PMID: 33667075 DOI: 10.1021/acs.chemrev.0c01140] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed ongoing progress in precision medicine to improve human health. As an emerging diagnostic technique, liquid biopsy can provide real-time, comprehensive, dynamic physiological and pathological information in a noninvasive manner, opening a new window for precision medicine. Liquid biopsy depends on the sensitive and reliable detection of circulating targets (e.g., cells, extracellular vesicles, proteins, microRNAs) from body fluids, the performance of which is largely governed by recognition ligands. Aptamers are single-stranded functional oligonucleotides, capable of folding into unique tertiary structures to bind to their targets with superior specificity and affinity. Their mature evolution procedure, facile modification, and affinity regulation, as well as versatile structural design and engineering, make aptamers ideal recognition ligands for liquid biopsy. In this review, we present a broad overview of aptamer-based liquid biopsy techniques for precision medicine. We begin with recent advances in aptamer selection, followed by a summary of state-of-the-art strategies for multivalent aptamer assembly and aptamer interface modification. We will further describe aptamer-based micro-/nanoisolation platforms, aptamer-enabled release methods, and aptamer-assisted signal amplification and detection strategies. Finally, we present our perspectives regarding the opportunities and challenges of aptamer-based liquid biopsy for precision medicine.
Collapse
Affiliation(s)
- Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yidi Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bingqian Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingxia Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jialu Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuang Wan
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
10
|
Aptamer-Based In Vivo Therapeutic Targeting of Glioblastoma. Molecules 2020; 25:molecules25184267. [PMID: 32957732 PMCID: PMC7570863 DOI: 10.3390/molecules25184267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive, infiltrative, and lethal brain tumor in humans. Despite the extensive advancement in the knowledge about tumor progression and treatment over the last few years, the prognosis of GBM is still very poor due to the difficulty of targeting drugs or anticancer molecules to GBM cells. The major challenge in improving GBM treatment implicates the development of a targeted drug delivery system, capable of crossing the blood–brain barrier (BBB) and specifically targeting GBM cells. Aptamers possess many characteristics that make them ideal novel therapeutic agents for the treatment of GBM. They are short single-stranded nucleic acids (RNA or ssDNA) able to bind to a molecular target with high affinity and specificity. Several GBM-targeting aptamers have been developed for imaging, tumor cell isolation from biopsies, and drug/anticancer molecule delivery to the tumor cells. Due to their properties (low immunogenicity, long stability, and toxicity), a large number of aptamers have been selected against GBM biomarkers and tested in GBM cell lines, while only a few of them have also been tested in in vivo models of GBM. Herein, we specifically focus on aptamers tested in GBM in vivo models that can be considered as new diagnostic and/or therapeutic tools for GBM patients’ treatment.
Collapse
|
11
|
Chen H, Li Y, Zhang Z, Wang S. Immunomagnetic separation of circulating tumor cells with microfluidic chips and their clinical applications. BIOMICROFLUIDICS 2020; 14:041502. [PMID: 32849973 PMCID: PMC7440929 DOI: 10.1063/5.0005373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Circulating tumor cells (CTCs) are tumor cells detached from the original lesion and getting into the blood and lymphatic circulation systems. They potentially establish new tumors in remote areas, namely, metastasis. Isolation of CTCs and following biological molecular analysis facilitate investigating cancer and coming out treatment. Since CTCs carry important information on the primary tumor, they are vital in exploring the mechanism of cancer, metastasis, and diagnosis. However, CTCs are very difficult to separate due to their extreme heterogeneity and rarity in blood. Recently, advanced technologies, such as nanosurfaces, quantum dots, and Raman spectroscopy, have been integrated with microfluidic chips. These achievements enable the next generation isolation technologies and subsequent biological analysis of CTCs. In this review, we summarize CTCs' separation with microfluidic chips based on the principle of immunomagnetic isolation of CTCs. Fundamental insights, clinical applications, and potential future directions are discussed.
Collapse
Affiliation(s)
- Hongmei Chen
- School of Mathematics and Physics of Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Yong Li
- School of Mathematics and Physics of Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Zhifeng Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, State College, Pennsylvania 16802, USA
| | - Shuangshou Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| |
Collapse
|
12
|
Gray BP, Requena MD, Nichols MD, Sullenger BA. Aptamers as Reversible Sorting Ligands for Preparation of Cells in Their Native State. Cell Chem Biol 2019; 27:232-244.e7. [PMID: 31879266 DOI: 10.1016/j.chembiol.2019.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/01/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Although antibodies are routinely used to label and isolate a desired cell type from a more complex mixture of cells, via either fluorescence-activated cell sorting (FACS) or magnetic-activated cell sorting (MACS), such antibody labeling is not easily reversible. We describe an FACS and MACS compatible method to reversibly label and purify cells using aptamers. Magnetic beads loaded with the epidermal growth factor receptor (EGFR)-binding antagonistic aptamer E07 specifically isolated EGFR-expressing cells, and pure, label-free cells were recovered via treatment with an "antidote" oligonucleotide complementary to the aptamer. Additionally, while FACS sorting cells with E07 or EGFR antibody yielded EGFR(+) cells with impeded EGFR signaling, stripping off the aptamer via antidote treatment restored receptor function, returning cells to their native state, which was not possible with the antibody. The ability to reversibly label or isolate cells without compromising their function is a valuable, versatile tool with important implications for both the laboratory and clinic.
Collapse
Affiliation(s)
- Bethany Powell Gray
- Department of Surgery, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710, USA
| | - Martin D Requena
- Department of Surgery, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710, USA
| | - Michael D Nichols
- Department of Biomedical Engineering, Duke University, 101 Science Dr, Durham, NC 27710, USA
| | - Bruce A Sullenger
- Department of Surgery, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, 101 Science Dr, Durham, NC 27710, USA.
| |
Collapse
|
13
|
Wang X, Gu Y, Zhang S, Li G, Liu T, Wang T, Qin H, Jiang B, Zhu L, Li Y, Lei H, Li M, Zhang Q, Yang R, Fang F, Guo H. Unbiased enrichment of urine exfoliated cells on nanostructured substrates for sensitive detection of urothelial tumor cells. Cancer Med 2019; 9:290-301. [PMID: 31709750 PMCID: PMC6943141 DOI: 10.1002/cam4.2655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
Background Early detection of urothelial carcinoma (UC) by noninvasive diagnostic methods with high accuracy is still underscored. This study aimed to develop a noninvasive assay incorporating both enrichment of urine exfoliated cells and immunoassays for UC detection. Methods Polystyrene dishes were exposed to oxygen plasma and modified with 3‐aminopropyltriethoxysilane to prepare amine‐functionalized nanostructured substrates (NS). Performance characterization of NS was evaluated by atomic force microscope and X‐ray photoelectron spectroscopy. Urine exfoliated cells were captured by NS and then immunostained to detect urinary tumor cells (UTCs), which was called UTC assay. The receiver operating characteristic (ROC) curve, area under ROC curve (AUC), and Youden index were used to find the cutoff value of UTC assay. ROC analysis and McNemar test were used to compare the diagnostic accuracy of UTC assay with cytology. Kappa test was used to analyze the agreement of UTC assay and cytology with pathological diagnosis. Results Nanostructured substrates had good cell binding yields of nucleated cells and tumor cells. CK20+CD45−CD11b− cells were considered as UTCs. UTC number ≥ 1 per sample could be considered as a positive result. By AUC and Kappa analysis, UTC assay showed good performance in UC detection. McNemar test demonstrated that UTC assay had a superior sensitivity even in low‐grade subgroup and a similar specificity compared to cytology in UC diagnosis. Conclusions Nanostructured substrates could be used to enrich the exfoliated cells from urine samples. UTC assay with NS has the potential to play a role in UC detection. The value of this assay still needs additional validation by large, multi‐center studies.
Collapse
Affiliation(s)
- Xin Wang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Yuanyuan Gu
- PerMed Biomedicine Institute, Shanghai, China
| | - Shiwei Zhang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Gangqiang Li
- Department of Pathology, Naval Characteristic Medical Center, Shanghai, China
| | - Tianyao Liu
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Tianwei Wang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Haixiang Qin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Bo Jiang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Lin Zhu
- PerMed Biomedicine Institute, Shanghai, China
| | - Yajun Li
- PerMed Biomedicine Institute, Shanghai, China
| | - Haozhi Lei
- PerMed Biomedicine Institute, Shanghai, China
| | - Ming Li
- Department of Pathology, The Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, China
| | - Qun Zhang
- PerMed Biomedicine Institute, Shanghai, China
| | - Rong Yang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Feng Fang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Tian X, Sha X, Feng Y, Duan Y, Dong M, Liu L, Pan G. A Magnetic Dynamic Microbiointerface with Biofeedback Mechanism for Cancer Cell Capture and Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41019-41029. [PMID: 31609107 DOI: 10.1021/acsami.9b13140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dynamic biointerfaces with reversible surface bioactivities enable dynamic modulation of cell-material interactions, thus attracting great attention in biomedical science. Herein, we demonstrated a paradigm shift of dynamic biointerfaces from macroscopical substrates to micron-sized particles by reversible engineering of a phenylboronic acid (PBA)-functionalized magnetic microbead with mussel-inspired cancer cell-targeting peptide. Due to reversible catechol-boronate interactions between the peptides and microbeads, the micron-sized dynamic biointerface exhibited sugar-responsive cancer-targeting activity, showing the potential as a microplatform for magnetic and noninvasive isolation of cancer cells through natural biofeedback mechanism (e.g., human glycemic volatility). Our results demonstrated that the dynamic magnetic platform was capable of selective cancer cell capture (∼85%) and sugar-triggered release of them (>93%) in cell culture medium with high efficiency. More importantly, by using this platform, a decent number of target cells (∼23 on average) could be magnetically isolated and identified from artificial CTC blood samples (1 mL) spiked with 100 cancer cells. In view of the biomimetic nature, high capture efficiency, excellent selectivity, and superiority in cell separation and purification processes, the dynamic magnetic microplatform reported here would be a promising and general tool for rare cell detection and separation and cell-based disease diagnosis.
Collapse
Affiliation(s)
| | | | | | | | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , DK-8000 Aarhus , Denmark
| | | | | |
Collapse
|
15
|
Li W, Wang H, Zhao Z, Gao H, Liu C, Zhu L, Wang C, Yang Y. Emerging Nanotechnologies for Liquid Biopsy: The Detection of Circulating Tumor Cells and Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805344. [PMID: 30589111 DOI: 10.1002/adma.201805344] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/29/2018] [Indexed: 05/18/2023]
Abstract
Liquid biopsy enables noninvasive and dynamic analysis of molecular or cellular biomarkers, and therefore holds great potential for the diagnosis, prognosis, monitoring of disease progress and treatment efficacy, understanding of disease mechanisms, and identification of therapeutic targets for drug development. In this review, the recent progress in nanomaterials, nanostructures, nanodevices, and nanosensors for liquid biopsy is summarized, with a focus on the detection and molecular characterization of circulating tumor cells (CTCs) and extracellular vesicles (EVs). The developments and advances of nanomaterials and nanostructures in enhancing the sensitivity, specificity, and purity for the detection of CTCs and EVs are discussed. Sensing techniques for signal transduction and amplification as well as visualization strategies are also discussed. New technologies for the reversible release of the isolated CTCs and EVs and for single-CTC/EV analysis are summarized. Emerging microfluidic platforms for the integral on-chip isolation, detection, and molecular analysis are also included. The opportunities, challenges, and prospects of these innovative materials and technologies, especially with regard to their feasibility in clinical applications, are discussed. The applications of nanotechnology-based liquid biopsy will bring new insight into the clinical practice in monitoring and treatment of tumor and other significant diseases.
Collapse
Affiliation(s)
- Wenzhe Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zijian Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Houqian Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Changliang Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Abdallah MG, Almugaiteeb TI, Raza MU, Battiste JD, Kim YT, Iqbal SM. Glioblastoma Multiforme heterogeneity profiling with solid-state micropores. Biomed Microdevices 2019; 21:79. [PMID: 31414186 DOI: 10.1007/s10544-019-0416-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal type of brain cancer. It is characterized by widespread heterogeneity at the cellular and molecular levels. The detection of this heterogeneity is valuable for accurate diagnosis. Herein, solid-state 20 μm diameter micropore made in thin suspended silicon dioxide membrane is used as cell sensor device. The device relies on a cell's mechano-physical properties as an indicator to differentiate between the subtypes of GBM. A library of GBM cell lines (U251, U87, D54 EGFRviii, and G55) was created by measuring the differences in cell's micropore translocation properties from their distinct electrical profiles. Each GBM subtype has distinct phenotype and this was delineated in their cell translocation behaviors. The library was used to distinguish cells from samples of brain tumor patients. The micropore device accurately profiled GBM patient samples for cell subtypes by comparing data with the GBM library. The micropore approach is simple, can be implemented at low cost and can be used in the clinical setups and operation theaters to detect and identify GBM subtypes from patient samples.
Collapse
Affiliation(s)
- Mohammad G Abdallah
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX, 76019, USA.,Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, 76019, USA.,Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Turki I Almugaiteeb
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA.,Research Product Development Company Innovations (RPDC), Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Usman Raza
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX, 76019, USA.,Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, 76019, USA.,Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX, 76019, USA.,Intel Corporation, Santa Clara, CA, 95054, USA
| | - James D Battiste
- University of Oklahoma Health Science Center, Oklahoma City, OK, 73104, USA
| | - Young-Tae Kim
- Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX, 76019, USA.,Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA.,Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Samir M Iqbal
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX, 76019, USA. .,ST Engineering Matters, Arlington, TX, 76010, USA.
| |
Collapse
|
17
|
Wan Y, Maurer M, He HZ, Xia YQ, Hao SJ, Zhang WL, Yee NS, Zheng SY. Enrichment of extracellular vesicles with lipid nanoprobe functionalized nanostructured silica. LAB ON A CHIP 2019; 19:2346-2355. [PMID: 31232418 PMCID: PMC6669184 DOI: 10.1039/c8lc01359d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoscale extracellular vesicles (nEVs) have recently demonstrated potential value in cancer diagnostics and treatment monitoring, but translation has been limited by technical challenges in nEV isolation. Thus, we have developed a one-step nEV isolation platform that utilizes nEV size-matched silica nanostructures and a surface-conjugated lipid nanoprobe with an integrated microfluidic mixer. The reported platform has 28.8% capture efficiency from pancreatic cancer plasma and can sufficiently enrich nEVs for simpler positive identification of point mutations, particularly KRAS, in nEV DNA from the plasma of pancreatic cancer patients.
Collapse
Affiliation(s)
- Yuan Wan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mackenzie Maurer
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Zhang He
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yi-Qiu Xia
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Si-Jie Hao
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wen-Long Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nelson S. Yee
- Department of Medicine, Hematology/Oncology, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - Si-Yang Zheng
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, Univeristy Park, PA 16802, USA
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
18
|
Iliescu FS, Poenar DP, Yu F, Ni M, Chan KH, Cima I, Taylor HK, Cima I, Iliescu C. Recent advances in microfluidic methods in cancer liquid biopsy. BIOMICROFLUIDICS 2019; 13:041503. [PMID: 31431816 PMCID: PMC6697033 DOI: 10.1063/1.5087690] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 05/04/2023]
Abstract
Early cancer detection, its monitoring, and therapeutical prediction are highly valuable, though extremely challenging targets in oncology. Significant progress has been made recently, resulting in a group of devices and techniques that are now capable of successfully detecting, interpreting, and monitoring cancer biomarkers in body fluids. Precise information about malignancies can be obtained from liquid biopsies by isolating and analyzing circulating tumor cells (CTCs) or nucleic acids, tumor-derived vesicles or proteins, and metabolites. The current work provides a general overview of the latest on-chip technological developments for cancer liquid biopsy. Current challenges for their translation and their application in various clinical settings are discussed. Microfluidic solutions for each set of biomarkers are compared, and a global overview of the major trends and ongoing research challenges is given. A detailed analysis of the microfluidic isolation of CTCs with recent efforts that aimed at increasing purity and capture efficiency is provided as well. Although CTCs have been the focus of a vast microfluidic research effort as the key element for obtaining relevant information, important clinical insights can also be achieved from alternative biomarkers, such as classical protein biomarkers, exosomes, or circulating-free nucleic acids. Finally, while most work has been devoted to the analysis of blood-based biomarkers, we highlight the less explored potential of urine as an ideal source of molecular cancer biomarkers for point-of-care lab-on-chip devices.
Collapse
Affiliation(s)
- Florina S. Iliescu
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Daniel P. Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, School of EEE, Nanyang Technological University, Singapore 639798, Singapore
| | - Fang Yu
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634, Singapore
| | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Technological University, San Miguel de Urcuquí 100105, Ecuador
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | - Hayden K. Taylor
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Igor Cima
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg and University Hospital Essen, Essen 45147, Germany
| | | |
Collapse
|
19
|
Cho H, Kim J, Song H, Sohn KY, Jeon M, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst 2019; 143:2936-2970. [PMID: 29796523 DOI: 10.1039/c7an01979c] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metastasis is the main cause of tumor-related death, and the dispersal of tumor cells through the circulatory system is a critical step in the metastatic process. Early detection and analysis of circulating tumor cells (CTCs) is therefore important for early diagnosis, prognosis, and effective treatment of cancer, enabling favorable clinical outcomes in cancer patients. Accurate and reliable methods for isolating and detecting CTCs are necessary to obtain this clinical information. Over the past two decades, microfluidic technologies have demonstrated great potential for isolating and detecting CTCs from blood. The present paper reviews current advanced microfluidic technologies for isolating CTCs based on various biological and physical principles, and discusses their fundamental advantages and drawbacks for subsequent cellular and molecular assays. Owing to significant genetic heterogeneity among CTCs, microfluidic technologies for isolating individual CTCs have recently been developed. We discuss these single-cell isolation methods, as well as approaches to overcoming the limitations of current microfluidic CTC isolation technologies. Finally, we provide an overview of future innovative microfluidic platforms.
Collapse
Affiliation(s)
- Hyungseok Cho
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
20
|
Tang W, Jiang D, Li Z, Zhu L, Shi J, Yang J, Xiang N. Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles. Electrophoresis 2018; 40:930-954. [DOI: 10.1002/elps.201800361] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Wenlai Tang
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
- Nanjing Institute of Intelligent High-end Equipment Industry Co., Ltd.; P. R. China
| | - Di Jiang
- School of Mechanical and Electronic Engineering; Nanjing Forestry University; P. R. China
| | - Zongan Li
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Liya Zhu
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Jianping Shi
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
| | - Jiquan Yang
- School of Electrical and Automation Engineering; Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing; Nanjing Normal University; P. R. China
- Nanjing Institute of Intelligent High-end Equipment Industry Co., Ltd.; P. R. China
| | - Nan Xiang
- School of Mechanical Engineering; Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; P. R. China
| |
Collapse
|
21
|
Khetani S, Mohammadi M, Nezhad AS. Filter-based isolation, enrichment, and characterization of circulating tumor cells. Biotechnol Bioeng 2018; 115:2504-2529. [DOI: 10.1002/bit.26787] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Sultan Khetani
- Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory; University of Calgary; Calgary Canada
- Center for BioEngineering Research and Education, University of Calgary; Calgary Canada
| | - Mehdi Mohammadi
- Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory; University of Calgary; Calgary Canada
- Center for BioEngineering Research and Education, University of Calgary; Calgary Canada
- Department of Biological Sciences; University of Calgary; Calgary Canada
| | - Amir Sanati Nezhad
- Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory; University of Calgary; Calgary Canada
- Center for BioEngineering Research and Education, University of Calgary; Calgary Canada
| |
Collapse
|
22
|
Cheng S, Jacobson O, Zhu G, Chen Z, Liang SH, Tian R, Yang Z, Niu G, Zhu X, Chen X. PET imaging of EGFR expression using an 18F-labeled RNA aptamer. Eur J Nucl Med Mol Imaging 2018; 46:948-956. [PMID: 30069577 DOI: 10.1007/s00259-018-4105-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/18/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Epidermal growth factor receptor (EGFR) is a theranostic biomarker for a variety of cancer types. The aim of the present study was to develop an 18F radiolabeled EGFR targeting RNA aptamer, and to investigate its ability to visualize and quantify EGFR in xenograft models. METHODS Biolayer interferometry binding assay was used to detect the binding affinity of the alkyne-modified EGFR aptamer MinE07 (denoted as ME07) with recombinant human wild-type EGFR protein and the mutant EGFRvIII protein. Cy5-conjugated ME07 was used for flow cytometry and immunofluorescence staining, and an Alexa Fluor 488-labeled EGFR antibody (ab193244) was used as a control. 18F-Fluorobenzoyl (FB) azide was employed as a synthon to produce 18F-FB-ME07 via click chemistry, and the cellular uptake and internalization characteristics of 18F-FB-ME07 were investigated. Static PET scans, 60-min dynamic scans, and biodistribution study of 18F-FB-ME07 were performed in three types of tumor models. RESULTS The Kd values of ME07 to wtEGFR and EGFRvIII proteins were 0.3 nM and 271 nM respectively. The A431, U87MG, and HCT-116 cells showed strong, weak, and negative binding with Cy5-ME07, which is consistent with EGFR expression level in these cells. Peak cell uptake values of 18F-FB-ME07 in A431, U87MG and HCT-116 cells were 2.86%, 2.19% and 0.88% of the added dose respectively. The mean internalization of 18F-FB-ME07 in these cells were 60.02%, 53.1%, and 52.8% of the total accumulated radioactivity. In static PET imaging, despite high uptake in the liver and kidneys, 18F-FB-ME07 showed reasonable accumulation in A431 tumors (1.02 ± 0.13 %ID/g at 30 min after injection). Of note, the uptake of 18F-FB-ME07 in A431 xenografts was significantly higher than that in U87MG and HCT-116 xenografts. In A431 xenografted mice, the tumor/blood ratio was 3.89 and the tumor/muscle ratio reached 8.65. CONCLUSIONS We for the first time generated an aptamer-derived EGFR targeting PET tracer 18F-FB-ME07, which showed highly selective targeting ability in mouse tumor models expressing different levels of EGFR. Our results suggest that 18F-FB-ME07 is a potential EGFR targeting molecular imaging probe for future clinical translation.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430000, Hubei, People's Republic of China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), 35A Convent Drive Rm GD959, Bethesda, MD, 20892, USA
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), 35A Convent Drive Rm GD959, Bethesda, MD, 20892, USA
| | - Guizhi Zhu
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 North 12th Street Rm 454D, Richmond, VA, 23298, USA.
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Steve H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), 35A Convent Drive Rm GD959, Bethesda, MD, 20892, USA
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), 35A Convent Drive Rm GD959, Bethesda, MD, 20892, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), 35A Convent Drive Rm GD959, Bethesda, MD, 20892, USA.
| | - Xiaohua Zhu
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430000, Hubei, People's Republic of China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), 35A Convent Drive Rm GD959, Bethesda, MD, 20892, USA.
| |
Collapse
|
23
|
Boyadzhieva S, Fischer SCL, Lösch S, Rutz A, Arzt E, Kruttwig K. Thin Film Composite Silicon Elastomers for Cell Culture and Skin Applications: Manufacturing and Characterization. J Vis Exp 2018. [PMID: 30035765 PMCID: PMC6102035 DOI: 10.3791/57573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this protocol, we present methods to fabricate thin elastomer composite films for advanced cell culture applications and for the development of skin adhesives. Two different poly-(dimethyl siloxanes) (PDMS and soft skin adhesive (SSA)), have been used for in depth investigation of biological effects and adhesive characteristics. The composite films consist of a flexible backing layer and an adhesive top coating. Both layers have been manufactured by doctor blade application technique. In the present investigation, the adhesive behavior of the composite films has been investigated as a function of the layer thickness or a variation of the Young's modulus of the top layer. The Young's modulus of PDMS has been changed by varying the base to crosslinker mixing ratio. In addition, the thickness of SSA films has been varied from approx. 16 µm to approx. 320 µm. Scanning electron microscopy (SEM) and optical microscopy have been used for thickness measurements. The adhesive properties of elastomer films depend strongly on the film thickness, the Young's modulus of the polymers and surface characteristics. Therefore, normal adhesion of these films on glass substrates exhibiting smooth and rough surfaces has been investigated. Pull-off stress and work of separation are dependent on the mixing ratio of silicone elastomers. Additionally, the thickness of the soft skin adhesive placed on top of a supportive backing layer has been varied in order to produce patches for skin applications. Cytotoxicity, proliferation and cellular adhesion of L929 murine fibroblasts on PDMS films (mixing ratio 10:1) and SSA films (mixing ratio 50:50) have been conducted. We have shown here, for the first time, the side by side comparison of thin composite films manufactured of both polymers and present the investigation of their biological- and adhesive properties.
Collapse
Affiliation(s)
- Silviya Boyadzhieva
- INM - Leibniz Institute for New Materials; Department of Materials Science and Engineering, Saarland University
| | - Sarah C L Fischer
- INM - Leibniz Institute for New Materials; Department of Materials Science and Engineering, Saarland University
| | - Svenja Lösch
- INM - Leibniz Institute for New Materials; University of Applied Sciences Kaiserslautern
| | | | - Eduard Arzt
- INM - Leibniz Institute for New Materials; Department of Materials Science and Engineering, Saarland University
| | | |
Collapse
|
24
|
Oligonucleotide aptamers against tyrosine kinase receptors: Prospect for anticancer applications. Biochim Biophys Acta Rev Cancer 2018; 1869:263-277. [PMID: 29574128 DOI: 10.1016/j.bbcan.2018.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
Transmembrane receptor tyrosine kinases (RTKs) play crucial roles in cancer cell proliferation, survival, migration and differentiation. Area of intense research is searching for effective anticancer therapies targeting these receptors and, to date, several monoclonal antibodies and small-molecule tyrosine kinase inhibitors have entered the clinic. However, some of these drugs show limited efficacy and give rise to acquired resistance. Emerging highly selective compounds for anticancer therapy are oligonucleotide aptamers that interact with their targets by recognizing a specific three-dimensional structure. Because of their nucleic acid nature, the rational design of advanced strategies to manipulate aptamers for both diagnostic and therapeutic applications is greatly simplified over antibodies. In this manuscript, we will provide a comprehensive overview of oligonucleotide aptamers as next generation strategies to efficiently target RTKs in human cancers.
Collapse
|
25
|
Hao S, Ha L, Cheng G, Wan Y, Xia Y, Sosnoski DM, Mastro AM, Zheng SY. A Spontaneous 3D Bone-On-a-Chip for Bone Metastasis Study of Breast Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1702787. [PMID: 29399951 DOI: 10.1002/smll.201702787] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/27/2017] [Indexed: 05/10/2023]
Abstract
Bone metastasis occurs at ≈70% frequency in metastatic breast cancer. The mechanisms used by tumors to hijack the skeleton, promote bone metastases, and confer therapeutic resistance are poorly understood. This has led to the development of various bone models to investigate the interactions between cancer cells and host bone marrow cells and related physiological changes. However, it is challenging to perform bone studies due to the difficulty in periodic sampling. Herein, a bone-on-a-chip (BC) is reported for spontaneous growth of a 3D, mineralized, collagenous bone tissue. Mature osteoblastic tissue of up to 85 µm thickness containing heavily mineralized collagen fibers naturally formed in 720 h without the aid of differentiation agents. Moreover, co-culture of metastatic breast cancer cells is examined with osteoblastic tissues. The new bone-on-a-chip design not only increases experimental throughput by miniaturization, but also maximizes the chances of cancer cell interaction with bone matrix of a concentrated surface area and facilitates easy, frequent observation. As a result, unique hallmarks of breast cancer bone colonization, previously confirmed only in vivo, are observed. The spontaneous 3D BC keeps the promise as a physiologically relevant model for the in vitro study of breast cancer bone metastasis.
Collapse
Affiliation(s)
- Sijie Hao
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Laura Ha
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gong Cheng
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yuan Wan
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yiqiu Xia
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donna M Sosnoski
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrea M Mastro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Si-Yang Zheng
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
26
|
Wan Y, Wang L, Zhu C, Zheng Q, Wang G, Tong J, Fang Y, Xia Y, Cheng G, He X, Zheng SY. Aptamer-Conjugated Extracellular Nanovesicles for Targeted Drug Delivery. Cancer Res 2018; 78:798-808. [PMID: 29217761 PMCID: PMC5811376 DOI: 10.1158/0008-5472.can-17-2880] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/26/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
Abstract
Extracellular nanovesicles (ENV) released by many cells contain lipids, proteins, and nucleic acids that contribute to intercellular communication. ENVs have emerged as biomarkers and therapeutic targets but they have also been explored as drug delivery vehicles. However, for the latter application, clinical translation has been limited by low yield and inadequate targeting effects. ENV vectors with desired targeting properties can be produced from parental cells engineered to express membrane-bound targeting ligands, or they can be generated by fusion with targeting liposomes; however, neither approach has met clinical requirements. In this study, we demonstrate that mechanical extrusion of approximately 107 cells grafted with lipidated ligands can generate cancer cell-targeting ENV and can be prepared in approximately 1 hour. This rapid and economic approach could pave the way for clinical implementation in the future.Significance: A new and rapid method for production of drug-targeting nanovesicles has implications for cancer treatment by chimeric antigen receptor T cells and other therapies. Cancer Res; 78(3); 798-808. ©2017 AACR.
Collapse
Affiliation(s)
- Yuan Wan
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, Pennsylvania.
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania
| | - Lixue Wang
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Chuandong Zhu
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Qin Zheng
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
| | | | - Jinlong Tong
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Yuan Fang
- The Second Affiliated Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Yiqiu Xia
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, Pennsylvania
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania
| | - Gong Cheng
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, Pennsylvania
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania
| | - Xia He
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.
| | - Si-Yang Zheng
- Department of Biomedical Engineering, Micro and Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, Pennsylvania.
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
27
|
Hasan MR, Peri SSS, Sabane VP, Mansur N, Gao JX, Nguyen KT, Weidanz JA, Iqbal SM, Abhyankar VV. One-step fabrication of flexible nanotextured PDMS as a substrate for selective cell capture. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aa89a6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Aptamers and Glioblastoma: Their Potential Use for Imaging and Therapeutic Applications. Int J Mol Sci 2017; 18:ijms18122576. [PMID: 29189740 PMCID: PMC5751179 DOI: 10.3390/ijms18122576] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is a highly aggressive primary brain tumour, renowned for its infiltrative growth and varied genetic profiles. The current treatment options are insufficient, and their off-target effects greatly reduce patient quality of life. The major challenge in improving glioblastoma diagnosis and treatment involves the development of a targeted imaging and drug delivery platform, capable of circumventing the blood brain barrier and specifically targeting glioblastoma tumours. The unique properties of aptamers demonstrate their capability of bridging the gap to the development of successful diagnosis and treatment options, where antibodies have previously failed. Aptamers possess many characteristics that make them an ideal novel imaging and therapeutic agent for the treatment of glioblastoma and other brain malignancies, and are likely to provide patients with a better standard of care and improved quality of life. Their target sensitivity, selective nature, ease of modification and low immunogenicity make them an ideal drug-delivery platform. This review article summarises the aptamers previously generated against glioblastoma cells or its identified biomarkers, and their potential application in diagnosis and therapeutic targeting of glioblastoma tumours.
Collapse
|
29
|
Zhai TT, Ye D, Zhang QW, Wu ZQ, Xia XH. Highly Efficient Capture and Electrochemical Release of Circulating Tumor Cells by Using Aptamers Modified Gold Nanowire Arrays. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34706-34714. [PMID: 28925689 DOI: 10.1021/acsami.7b11107] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effective capture and release of circulating tumor cells (CTCs) is of significant importance in cancer prognose and treatment. Here we report a highly efficient method to capture and release human leukemic lymphoblasts (CCRF-CEM) using aptamers modified gold nanowire arrays (AuNWs). The gold nanowires, showing tunable morphologies from relatively random pillar deposit to relatively uniform arrays, were fabricated by electrochemical deposition using anodic aluminum oxide (AAO) as template. Upon simply being modified with aptamers by Au-S chemistry, the AuNWs exhibit higher specificity to target cells. Also compared to flat gold substrate, the AuNWs with nanostructure can capture target cells with much higher capture yield. Moreover, the captured CCRF-CEM cells can be released from AuNWs efficiently with little damage through an electrochemical desorption process. We predict that our strategy has great potential in providing a simple and economical platform for CTCs isolation, cancer diagnosis, and therapy.
Collapse
Affiliation(s)
- Ting-Ting Zhai
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Dekai Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Qian-Wen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Zeng-Qiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| |
Collapse
|
30
|
Mansur N, Raziul Hasan M, Kim YT, Iqbal SM. Functionalization of nanotextured substrates for enhanced identification of metastatic breast cancer cells. NANOTECHNOLOGY 2017; 28:385101. [PMID: 28703710 DOI: 10.1088/1361-6528/aa7f84] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metastasis is the major cause of low survival rates among cancer patients. Once cancer cells metastasize, it is extremely difficult to contain the disease. We report on a nanotextured platform for enhanced detection of metastatic cells. We captured metastatic (MDA-MDB-231) and non-metastatic (MCF-7) breast cancer cells on anti-EGFR aptamer modified plane and nanotextured substrates. Metastatic cells were seen to change their morphology at higher rates when captured on nanotextured substrates than on plane substrates. Analysis showed statistically different morphological behaviors of metastatic cells that were very pronounced on the nanotextured substrates. Several distance matrices were calculated to quantify the dissimilarity of cell shape change. Nanotexturing increased the dissimilarity of the metastatic cells and as a result the contrast between metastatic and non-metastatic cells increased. Jaccard distance measurements found that the shape change ratio of the non-metastatic and metastatic cells was enhanced from 1:1.01 to 1:1.81, going from plane to nanotextured substrates. The shape change ratio of the non-metastatic to metastatic cells improved from 1:1.48 to 1:2.19 for the Hausdorff distance and from 1:1.87 to 1:4.69 for the Mahalanobis distance after introducing nanotexture. Distance matrix analysis showed that nanotexture increased the shape change ratios of non-metastatic and metastatic cells. Hence, the detectability of metastatic cells increased. These calculated matrices provided clear and explicit measures to discriminate single cells for their metastatic state on functional nanotextured substrates.
Collapse
Affiliation(s)
- Nuzhat Mansur
- Nano-Bio Lab, University of Texas at Arlington, Arlington, Texas 76019, United States of America. Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States of America. Nanotechnology Research Center, University of Texas at Arlington, Arlington, Texas 76019, United States of America
| | | | | | | |
Collapse
|
31
|
Xu Y, Liu B, Ding F, Zhou X, Tu P, Yu B, He Y, Huang P. Circulating tumor cell detection: A direct comparison between negative and unbiased enrichment in lung cancer. Oncol Lett 2017; 13:4882-4886. [PMID: 28599490 DOI: 10.3892/ol.2017.6046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/03/2017] [Indexed: 11/06/2022] Open
Abstract
Circulating tumor cells (CTCs), isolated as a 'liquid biopsy', may provide important diagnostic and prognostic information. Therefore, rapid, reliable and unbiased detection of CTCs are required for routine clinical analyses. It was demonstrated that negative enrichment, an epithelial marker-independent technique for isolating CTCs, exhibits a better efficiency in the detection of CTCs compared with positive enrichment techniques that only use specific anti-epithelial cell adhesion molecules. However, negative enrichment techniques incur significant cell loss during the isolation procedure, and as it is a method that uses only one type of antibody, it is inherently biased. The detection procedure and identification of cell types also relies on skilled and experienced technicians. In the present study, the detection sensitivity of using negative enrichment and a previously described unbiased detection method was compared. The results revealed that unbiased detection methods may efficiently detect >90% of cancer cells in blood samples containing CTCs. By contrast, only 40-60% of CTCs were detected by negative enrichment. Additionally, CTCs were identified in >65% of patients with stage I/II lung cancer. This simple yet efficient approach may achieve a high level of sensitivity. It demonstrates a potential for the large-scale clinical implementation of CTC-based diagnostic and prognostic strategies.
Collapse
Affiliation(s)
- Yan Xu
- Department of Internal Medicine, Affiliated Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210009, P.R. China
| | - Biao Liu
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, P.R. China
| | - Fengan Ding
- Department of Internal Medicine, Affiliated Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaodie Zhou
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, P.R. China
| | - Pin Tu
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, P.R. China
| | - Bo Yu
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, P.R. China
| | - Yan He
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, P.R. China
| | - Peilin Huang
- Department of Internal Medicine, Affiliated Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
32
|
Wan Y, Cheng G, Liu X, Hao SJ, Nisic M, Zhu CD, Xia YQ, Li WQ, Wang ZG, Zhang WL, Rice SJ, Sebastian A, Albert I, Belani CP, Zheng SY. Rapid magnetic isolation of extracellular vesicles via lipid-based nanoprobes. Nat Biomed Eng 2017; 1. [PMID: 28966872 PMCID: PMC5618714 DOI: 10.1038/s41551-017-0058] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) can mediate intercellular communication by transferring cargo proteins and nucleic acids between cells. The pathophysiological roles and clinical value of EVs are under intense investigation, yet most studies are limited by technical challenges in the isolation of nanoscale EVs (nEVs). Here, we report a lipid nanoprobe that enables spontaneous labelling and magnetic enrichment of nEVs in 15 minutes, with isolation efficiency and cargo composition similar to what can be achieved by the much slower and bulkier method of ultracentrifugation. We also show that the lipid nanoprobes, which allow for downstream analyses of nucleic acids and proteins, enabled the identification of EGFR and KRAS mutations following nEV isolation from blood plasma from non-small-cell lung-cancer patients. The efficiency and versatility of the lipid nanoprobe opens up opportunities in point-of-care cancer diagnostics.
Collapse
Affiliation(s)
- Yuan Wan
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA 16802, U.S.A.,Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Gong Cheng
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA 16802, U.S.A.,Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Xin Liu
- Penn State Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17033, U.S.A.,Penn State Hershey Cancer Institute, The Pennsylvania State University, 500 University Drive, Hershey, PA 17033, U.S.A
| | - Si-Jie Hao
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA 16802, U.S.A.,Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Merisa Nisic
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA 16802, U.S.A.,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Chuan-Dong Zhu
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA 16802, U.S.A.,The Second Hospital of Nanjing, Affiliated to Medical School of Southeast University, Nanjing, China, 210003
| | - Yi-Qiu Xia
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA 16802, U.S.A.,Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Wen-Qing Li
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA 16802, U.S.A.,Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Zhi-Gang Wang
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA 16802, U.S.A.,Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Wen-Long Zhang
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA 16802, U.S.A.,Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Shawn J Rice
- Penn State Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17033, U.S.A.,Penn State Hershey Cancer Institute, The Pennsylvania State University, 500 University Drive, Hershey, PA 17033, U.S.A
| | - Aswathy Sebastian
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Istvan Albert
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, U.S.A.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Chandra P Belani
- Penn State Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17033, U.S.A.,Penn State Hershey Cancer Institute, The Pennsylvania State University, 500 University Drive, Hershey, PA 17033, U.S.A
| | - Si-Yang Zheng
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA 16802, U.S.A.,Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, U.S.A.,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, U.S.A.,Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
33
|
Park MH, Reátegui E, Li W, Tessier SN, Wong KHK, Jensen AE, Thapar V, Ting D, Toner M, Stott SL, Hammond PT. Enhanced Isolation and Release of Circulating Tumor Cells Using Nanoparticle Binding and Ligand Exchange in a Microfluidic Chip. J Am Chem Soc 2017; 139:2741-2749. [PMID: 28133963 DOI: 10.1021/jacs.6b12236] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The detection of rare circulating tumor cells (CTCs) in the blood of cancer patients has the potential to be a powerful and noninvasive method for examining metastasis, evaluating prognosis, assessing tumor sensitivity to drugs, and monitoring therapeutic outcomes. In this study, we have developed an efficient strategy to isolate CTCs from the blood of breast cancer patients using a microfluidic immune-affinity approach. Additionally, to gain further access to these rare cells for downstream characterization, our strategy allows for easy detachment of the captured CTCs from the substrate without compromising cell viability or the ability to employ next generation RNA sequencing for the identification of specific breast cancer genes. To achieve this, a chemical ligand-exchange reaction was engineered to release cells attached to a gold nanoparticle coating bound to the surface of a herringbone microfluidic chip (NP-HBCTC-Chip). Compared to the use of the unmodified HBCTC-Chip, our approach provides several advantages, including enhanced capture efficiency and recovery of isolated CTCs.
Collapse
Affiliation(s)
- Myoung-Hwan Park
- Department of Chemistry, Sahmyook University , Seoul, 01795, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhao Y, Xu D, Tan W. Aptamer-functionalized nano/micro-materials for clinical diagnosis: isolation, release and bioanalysis of circulating tumor cells. Integr Biol (Camb) 2017; 9:188-205. [PMID: 28144664 DOI: 10.1039/c6ib00239k] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Detection of rare circulating tumor cells (CTCs) in peripheral blood is a challenging, but necessary, task in order to diagnose early onset of metastatic cancer and to monitor treatment efficacy. Over the last decade, step-up produced aptamers have attracted great attention in clinical diagnosis. They have offered great promise for a broader range of cell-specific recognition and isolation. In particular, aptamer-functionalized magnetic particles for selective extraction of target CTCs have shown reduced damage to cells and relatively simple operation. Also, efforts to develop aptamer-functionalized microchannel/microstructures able to efficiently isolate target CTCs are continuing, and these efforts have brought more advanced geometrically designed substrates. Various aptamer-mediated cell release techniques are being developed to enable subsequent biological studies. This article reviews some of these advances in aptamer-functionalized nano/micro-materials for CTCs isolation and methods for releasing captured CTCs from aptamer-functionalized surfaces. Biological studies of CTCs after release are also discussed.
Collapse
Affiliation(s)
- Yaju Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | |
Collapse
|
35
|
Urmann K, Modrejewski J, Scheper T, Walter JG. Aptamer-modified nanomaterials: principles and applications. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/bnm-2016-0012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractAptamers are promising alternative binders that can substitute antibodies in various applications. Due to the advantages of aptamers, namely their high affinity, specificity and stability, along with the benefits originating from the chemical synthesis of aptamers, they have attracted attention in various applications including their use on nanostructured material. This necessitates the immobilization of aptamers on a solid support. Since aptamer immobilization may interfere with its binding properties, the immobilization of aptamers has to be investigated and optimized. Within this review, we give general insights into the principles and factors controlling the binding affinity of immobilized aptamers. Specific features of aptamer immobilization on nanostructured surfaces and nanoparticles are highlighted and a brief overview of applications of aptamer-modified nanostructured materials is given.
Collapse
|
36
|
Chaudhuri PK, Ebrahimi Warkiani M, Jing T, Kenry, Lim CT. Microfluidics for research and applications in oncology. Analyst 2017; 141:504-24. [PMID: 26010996 DOI: 10.1039/c5an00382b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cancer is currently one of the top non-communicable human diseases, and continual research and developmental efforts are being made to better understand and manage this disease. More recently, with the improved understanding in cancer biology as well as the advancements made in microtechnology and rapid prototyping, microfluidics is increasingly being explored and even validated for use in the detection, diagnosis and treatment of cancer. With inherent advantages such as small sample volume, high sensitivity and fast processing time, microfluidics is well-positioned to serve as a promising platform for applications in oncology. In this review, we look at the recent advances in the use of microfluidics, from basic research such as understanding cancer cell phenotypes as well as metastatic behaviors to applications such as the detection, diagnosis, prognosis and drug screening. We then conclude with a future outlook on this promising technology.
Collapse
Affiliation(s)
| | - Majid Ebrahimi Warkiani
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602 and School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Tengyang Jing
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602 and Department of Biomedical Engineering, National University of Singapore, Singapore 117575.
| | - Kenry
- Department of Biomedical Engineering, National University of Singapore, Singapore 117575. and NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411 and BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602
| |
Collapse
|
37
|
Islam M, Atmaramani R, Mukherjee S, Ghosh S, Iqbal SM. Enhanced proliferation of PC12 neural cells on untreated, nanotextured glass coverslips. NANOTECHNOLOGY 2016; 27:415501. [PMID: 27587351 DOI: 10.1088/0957-4484/27/41/415501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Traumatic injury to the central nervous system is a significant health problem. There is no effective treatment available partly because of the complexity of the system. Implementation of multifunctional micro- and nano-device based combinatorial therapeutics can provide biocompatible and tunable approaches to perform on-demand release of specific drugs. This can help the damaged cells to improve neuronal survival, regeneration of axons, and their reconnection to appropriate targets. Nano-topological features induced rapid cell growth is especially important towards the design of effective platforms to facilitate damaged neural circuit reconstruction. In this study, for the first time, feasibility of neuron-like PC12 cell growth on untreated and easy to prepare nanotextured surfaces has been carried out. The PC12 neuron-like cells were cultured on micro reactive ion etched nanotextured glass coverslips. The effect of nanotextured topology as physical cue for the growth of PC12 cells was observed exclusively, eliminating the possible influence(s) of the enhanced concentration of coated materials on the surface. The cell density was observed to increase by almost 200% on nanotextured coverslips compared to plain coverslips. The morphology study indicated that PC12 cell attachment and growth on the nanotextured substrates did not launch any apoptotic machinery of the cell. Less than 5% cells deformed and depicted condensed nuclei with apoptotic bodies on nanotextured surfaces which is typical for the normal cell handling and culture. Enhanced PC12 cell proliferation by such novel and easy to prepare substrates is not only attractive for neurite outgrowth and guidance, but may be used to increase the affinity of similar cancerous cells (ex: B35 neuroblastoma) and rapid proliferation thereafter-towards the development of combinatorial theranostics to diagnose and treat aggressive cancers like neuroblastoma.
Collapse
Affiliation(s)
- Muhymin Islam
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019, USA. Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76011, USA. Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | |
Collapse
|
38
|
Jeong JT, Choi MK, Sim Y, Lim JT, Kim GS, Seong MJ, Hyung JH, Kim KS, Umar A, Lee SK. Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate. Sci Rep 2016; 6:33835. [PMID: 27652886 PMCID: PMC5031981 DOI: 10.1038/srep33835] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/05/2016] [Indexed: 01/06/2023] Open
Abstract
Control of living cells on biocompatible materials or on modified substrates is important for the development of bio-applications, including biosensors and implant biomaterials. The topography and hydrophobicity of substrates highly affect cell adhesion, growth, and cell growth kinetics, which is of great importance in bio-applications. Herein, we investigate the adhesion, growth, and morphology of cultured breast cancer cells on a silicon substrate, on which graphene oxides (GO) was partially formed. By minimizing the size and amount of the GO-containing solution and the further annealing process, GO-coated Si samples were prepared which partially covered the Si substrates. The coverage of GO on Si samples decreases upon annealing. The behaviors of cells cultured on two samples have been observed, i.e. partially GO-coated Si (P-GO) and annealed partially GO-coated Si (Annealed p-GO), with a different coverage of GO. Indeed, the spreading area covered by the cells and the number of cells for a given culture period in the incubator were highly dependent on the hydrophobicity and the presence of oxygenated groups on GO and Si substrates, suggesting hydrophobicity-driven cell growth. Thus, the presented method can be used to control the cell growth via an appropriate surface modification.
Collapse
Affiliation(s)
- Jin-Tak Jeong
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Mun-Ki Choi
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Yumin Sim
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Jung-Taek Lim
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Gil-Sung Kim
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Maeng-Je Seong
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Jung-Hwan Hyung
- Department of Semiconductor Science and Technology, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Keun Soo Kim
- Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, South Korea
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, Najran University, Najran-11001, Kingdom of Saudi Arabia.,Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia
| | - Sang-Kwon Lee
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| |
Collapse
|
39
|
Li J, Zhang K, Ma W, Wu F, Yang P, He Z, Huang N. Investigation of enhanced hemocompatibility and tissue compatibility associated with multi-functional coating based on hyaluronic acid and Type IV collagen. Regen Biomater 2016; 3:149-57. [PMID: 27252884 PMCID: PMC4881613 DOI: 10.1093/rb/rbv030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 12/29/2022] Open
Abstract
The biocompatibility of cardiovascular devices has always been considered crucial for their clinical efficacy. Therefore, a biofunctional coating composed of Type IV collagen (CoIV) and hyaluronan (HA) was previously fabricated onto the titanium (Ti) substrate for the application of promoting vascular smooth muscle cell contractile phenotype and improving surface endothelialization. However, the anti-inflammation property, blood compatibility and in vivo tissue compatibility of the HA/CoIV coating, as paramount consideration of cardiovascular materials surface coating, have not been investigated. Thus, in this study, the three crucial properties of the HA/CoIV coating were tested. The platelet adhesion/activation test and the dynamic whole blood experiment implied that the HA/CoIV coating had better blood compatibility compared with Ti substrate and pure CoIV coating. The macrophage adhesion/activation and inflammatory cytokine release (tumor necrosis factor-alpha and interleukin-1) results indicated that the HA/CoIV coating could significantly improve the anti-inflammation property of the Ti substrate. The in vivo implantation of SD rats for 3 weeks' results demonstrated that the HA/CoIV coating caused milder tissue response. All these results suggested that the multi-functional HA/CoIV coating possessed good biocompatibility. This research is anticipated to be potentially applied for the surface modification of cardiovascular stents.
Collapse
Affiliation(s)
- Jingan Li
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
| | - Kun Zhang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People’s Republic of China
- Center of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Zhengzhou University, 40 University Road, Zhengzhou 450052, People’s Republic of China
| | - Wenyong Ma
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
| | - Feng Wu
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
| | - Ping Yang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
| | - Zikun He
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
| | - Nan Huang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
| |
Collapse
|
40
|
Yaşayan G, Xue X, Collier P, Clarke P, Alexander MR, Marlow M. The influence of nanotexturing of poly(lactic-co-glycolic acid) films upon human ovarian cancer cell attachment. NANOTECHNOLOGY 2016; 27:255102. [PMID: 27184195 DOI: 10.1088/0957-4484/27/25/255102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, we have produced nanotextured poly(lactic-co-glycolic acid) (PLGA) films by using polystyrene (PS) particles as a template to make a polydimethylsiloxane mould against which PLGA is solvent cast. Biocompatible, biodegradable and nanotextured PLGA films were prepared with PS particles of diameter of 57, 99, 210, and 280 nm that produced domes of the same dimension in the PLGA surface. The effect of the particulate monolayer templating method was investigated to enable preparation of the films with uniformly ordered surface nanodomes. Cell attachment of a human ovarian cancer cell line (OVCAR3) alone and co-cultured with mesenchymal stem cells (MSCs) was evaluated on flat and topographically nano-patterned surfaces. Cell numbers were observed to increase on the nanotextured surfaces compared to non-textured surfaces both with OVCAR3 cultures and OVCAR3-MSC co-cultures at 24 and 48 h time points.
Collapse
Affiliation(s)
- Gökçen Yaşayan
- University of Nottingham, School of Pharmacy, Division of Drug Delivery and Tissue Engineering, Boots Science Building, University Park, Nottingham, NG7 2RD, UK. Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Technology İstanbul, 34668, Turkey
| | | | | | | | | | | |
Collapse
|
41
|
Bui L, Hendricks A, Wright J, Chuong CJ, Davé D, Bachoo R, Kim YT. Brain Tumor Genetic Modification Yields Increased Resistance to Paclitaxel in Physical Confinement. Sci Rep 2016; 6:26134. [PMID: 27184621 PMCID: PMC4869028 DOI: 10.1038/srep26134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 04/27/2016] [Indexed: 01/13/2023] Open
Abstract
Brain tumor cells remain highly resistant to radiation and chemotherapy, particularly malignant and secondary cancers. In this study, we utilized microchannel devices to examine the effect of a confined environment on the viability and drug resistance of the following brain cancer cell lines: primary cancers (glioblastoma multiforme and neuroblastoma), human brain cancer cell lines (D54 and D54-EGFRvIII), and genetically modified mouse astrocytes (wild type, p53-/-, p53-/- PTEN-/-, p53-/- Braf, and p53-/- PTEN-/- Braf). We found that loss of PTEN combined with Braf activation resulted in higher viability in narrow microchannels. In addition, Braf conferred increased resistance to the microtubule-stabilizing drug Taxol in narrow confinement. Similarly, survival of D54-EGFRvIII cells was unaffected following treatment with Taxol, whereas the viability of D54 cells was reduced by 75% under these conditions. Taken together, our data suggests key targets for anticancer drugs based on cellular genotypes and their specific survival phenotypes during confined migration.
Collapse
Affiliation(s)
- Loan Bui
- Department of Bioengineering, University of Texas at Arlington, TX, USA
| | - Alissa Hendricks
- Department of Bioengineering, University of Texas at Arlington, TX, USA
| | - Jamie Wright
- Department of Bioengineering, University of Texas at Arlington, TX, USA
| | - Cheng-Jen Chuong
- Department of Bioengineering, University of Texas at Arlington, TX, USA
| | - Digant Davé
- Department of Bioengineering, University of Texas at Arlington, TX, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, TX, USA
| | - Robert Bachoo
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, TX, USA
| | - Young-Tae Kim
- Department of Bioengineering, University of Texas at Arlington, TX, USA.,Department of Urology, UT Southwestern Medical Center, TX, USA
| |
Collapse
|
42
|
Bhana S, Wang Y, Huang X. Nanotechnology for enrichment and detection of circulating tumor cells. Nanomedicine (Lond) 2016; 10:1973-90. [PMID: 26139129 DOI: 10.2217/nnm.15.32] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Circulating tumor cells (CTCs) are a hallmark of invasive behavior of cancer, responsible for the development of metastasis. Their detection and analysis have significant impacts in cancer biology and clinical practice. However, CTCs are rare events and contain heterogeneous subpopulations, requiring highly sensitive and specific techniques to identify and capture CTCs with high efficiency. Nanotechnology shows strong promises for CTC enrichment and detection owning to the unique structural and functional properties of nanoscale materials. In this review, we discuss the CTC enrichment and detection technologies based on a variety of functional nanosystems and nanostructured substrates, with the goal to highlight the role of nanotechnology in the advancement of basic and clinical CTC research.
Collapse
Affiliation(s)
- Saheel Bhana
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
43
|
Tang M, Wen CY, Wu LL, Hong SL, Hu J, Xu CM, Pang DW, Zhang ZL. A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells. LAB ON A CHIP 2016; 16:1214-23. [PMID: 26928405 DOI: 10.1039/c5lc01555c] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The detection of circulating tumor cells (CTCs), a kind of "liquid biopsy", represents a potential alternative to noninvasive detection, characterization and monitoring of carcinoma. Many previous studies have shown that the number of CTCs has a significant relationship with the stage of cancer. However, CTC enrichment and detection remain notoriously difficult because they are extremely rare in the bloodstream. Herein, aided by a microfluidic device, an immunomagnetic separation system was applied to efficiently capture and in situ identify circulating tumor cells. Magnetic nanospheres (MNs) were modified with an anti-epithelial-cell-adhesion-molecule (anti-EpCAM) antibody to fabricate immunomagnetic nanospheres (IMNs). IMNs were then loaded into the magnetic field controllable microfluidic chip to form uniform IMN patterns. The IMN patterns maintained good stability during the whole processes including enrichment, washing and identification. Apart from its simple manufacture process, the obtained microfluidic device was capable of capturing CTCs from the bloodstream with an efficiency higher than 94%. The captured cells could be directly visualized with an inverted fluorescence microscope in situ by immunocytochemistry (ICC) identification, which decreased cell loss effectively. Besides that, the CTCs could be recovered completely just by PBS washing after removal of the permanent magnets. It was observed that all the processes showed negligible influence on cell viability (viability up to 93%) and that the captured cells could be re-cultured for more than 5 passages after release without disassociating IMNs. In addition, the device was applied to clinical samples and almost all the samples from patients showed positive results, which suggests it could serve as a valuable tool for CTC enrichment and detection in the clinic.
Collapse
Affiliation(s)
- Man Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China.
| | - Cong-Ying Wen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China.
| | - Ling-Ling Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China.
| | - Shao-Li Hong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China.
| | - Jiao Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China.
| | - Chun-Miao Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China.
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China.
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
44
|
Pappas D. Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems. Analyst 2016; 141:525-35. [DOI: 10.1039/c5an01778e] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Among the growing number of tools available for cancer studies, microfluidic systems have emerged as a promising analytical tool to elucidate cancer cell and tumor function.
Collapse
Affiliation(s)
- Dimitri Pappas
- Department of Chemistry and Biochemistry
- Texas Tech University
- USA
| |
Collapse
|
45
|
Mahmood MAI, Hasan MR, Khan UJM, Allen PB, Kim YT, Ellington AD, Iqbal SM. One-step tumor detection from dynamic morphology tracking on aptamer-grafted surfaces. TECHNOLOGY 2015; 3:194-200. [PMID: 26753172 PMCID: PMC4703374 DOI: 10.1142/s2339547815500089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, we report a one-step tumor cell detection approach based on the dynamic morphological behavior tracking of cancer cells on a ligand modified surface. Every cell on the surface was tracked in real time for several minutes immediately after seeding until these were finally attached. Cancer cells were found to be very active in the aptamer microenvironment, changing their shapes rapidly from spherical to semi-elliptical, with much flatter spread and extending pseudopods at regular intervals. When incubated on a functionalized surface, the balancing forces between cell surface molecules and the surface-bound aptamers, together with the flexibility of the membranes, caused cells to show these distinct dynamic activities and variations in their morphologies. On the other hand, healthy cells remained distinguishingly inactive on the surface over the same period. The quantitative image analysis of cell morphologies provided feature vectors that were statistically distinct between normal and cancer cells.
Collapse
Affiliation(s)
- Mohammed Arif I Mahmood
- Nano-Bio Lab, University of Texas at Arlington, TX 76019, USA; Department of Electrical Engineering, University of Texas at Arlington, TX 76010, USA; Nanotechnology Research Center, University of Texas at Arlington, TX 76019, USA
| | - Mohammad Raziul Hasan
- Nano-Bio Lab, University of Texas at Arlington, TX 76019, USA; Department of Electrical Engineering, University of Texas at Arlington, TX 76010, USA; Nanotechnology Research Center, University of Texas at Arlington, TX 76019, USA
| | - Umair J M Khan
- Nano-Bio Lab, University of Texas at Arlington, TX 76019, USA; Nanotechnology Research Center, University of Texas at Arlington, TX 76019, USA; Department of Biology, University of Texas at Arlington, TX 76019, USA
| | - Peter B Allen
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Now at Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA
| | - Young-Tae Kim
- Nanotechnology Research Center, University of Texas at Arlington, TX 76019, USA; Department of Bioengineering, University of Texas at Arlington, TX 76011, USA; Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Andrew D Ellington
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Samir M Iqbal
- Nano-Bio Lab, University of Texas at Arlington, TX 76019, USA; Department of Electrical Engineering, University of Texas at Arlington, TX 76010, USA; Nanotechnology Research Center, University of Texas at Arlington, TX 76019, USA; Department of Biology, University of Texas at Arlington, TX 76019, USA; Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
46
|
Dickey DD, Giangrande PH. Oligonucleotide aptamers: A next-generation technology for the capture and detection of circulating tumor cells. Methods 2015; 97:94-103. [PMID: 26631715 DOI: 10.1016/j.ymeth.2015.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 01/17/2023] Open
Abstract
A critical challenge for treating cancer is the early identification of those patients who are at greatest risk of developing metastatic disease. The number of circulating tumor cells (CTCs) in cancer patients has recently been shown to be a valuable (and non-invasively accessible) diagnostic indicator of the state of metastatic disease. CTCs are rare cancer cells found in the blood circulation of cancer patients believed to provide a means of diagnosing the likelihood for metastatic spread and assessing response to therapy in advanced, as well as early stage disease settings. Numerous technical efforts have been made to reliably detect and quantify CTCs, but the development of a universal assay has proven quite difficult. Notable challenges for developing a broadly useful CTC-based diagnostic assay are the development of easy-to-operate methods that (1) are sufficiently sensitive to reliably detect the small number of CTCs that are present in the circulation and (2) can capture the molecular heterogeneity of tumor cells. In this review, we describe recent progress towards the application of synthetic oligonucleotide aptamers as promising, novel, robust tools for the isolation and detection of CTCs. Advantages and challenges of the aptamer approach are also discussed.
Collapse
Affiliation(s)
- David D Dickey
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Paloma H Giangrande
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
47
|
Ma H, Liu J, Ali MM, Mahmood MAI, Labanieh L, Lu M, Iqbal SM, Zhang Q, Zhao W, Wan Y. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem Soc Rev 2015; 44:1240-56. [PMID: 25561050 DOI: 10.1039/c4cs00357h] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA oligomers, identified from a random sequence pool, with the ability to form unique and versatile tertiary structures that bind to cognate molecules with superior specificity. Their small size, excellent chemical stability and low immunogenicity enable them to rival antibodies in cancer imaging and therapy applications. Their facile chemical synthesis, versatility in structural design and engineering, and the ability for site-specific modifications with functional moieties make aptamers excellent recognition motifs for cancer biomarker discovery and detection. Moreover, aptamers can be selected or engineered to regulate cancer protein functions, as well as to guide anti-cancer drug design or screening. This review summarizes their applications in cancer, including cancer biomarker discovery and detection, cancer imaging, cancer therapy, and anti-cancer drug discovery. Although relevant applications are relatively new, the significant progress achieved has demonstrated that aptamers can be promising players in cancer research.
Collapse
Affiliation(s)
- Haitao Ma
- The Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vaidyanathan R, Dey S, Carrascosa LG, Shiddiky MJA, Trau M. Alternating current electrohydrodynamics in microsystems: Pushing biomolecules and cells around on surfaces. BIOMICROFLUIDICS 2015; 9:061501. [PMID: 26674299 PMCID: PMC4676781 DOI: 10.1063/1.4936300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/10/2015] [Indexed: 05/08/2023]
Abstract
Electrohydrodynamics (EHD) deals with the fluid motion induced by an electric field. This phenomenon originally developed in physical science, and engineering is currently experiencing a renaissance in microfluidics. Investigations by Taylor on Gilbert's theory proposed in 1600 have evolved to include multiple contributions including the promising effects arising from electric field interactions with cells and particles to influence their behaviour on electrode surfaces. Theoretical modelling of electric fields in microsystems and the ability to determine shear forces have certainly reached an advanced state. The ability to deftly manipulate microscopic fluid flow in bulk fluid and at solid/liquid interfaces has enabled the controlled assembly, coagulation, or removal of microstructures, nanostructures, cells, and molecules on surfaces. Furthermore, the ability of electrohydrodynamics to generate fluid flow using surface shear forces generated within nanometers from the surface and their application in bioassays has led to recent advancements in biomolecule, vesicle and cellular detection across different length scales. With the integration of Alternating Current Electrohydrodynamics (AC-EHD) in cellular and molecular assays proving to be highly fruitful, challenges still remain with respect to understanding the discrepancies between each of the associated ac-induced fluid flow phenomena, extending their utility towards clinical diagnostic development, and utilising them in tandem as a standard tool for disease monitoring. In this regard, this article will review the history of electrohydrodynamics, followed by some of the recent developments in the field including a new dimension of electrohydrodynamics that deals with the utilization of surface shear forces for the manipulation of biological cells or molecules on electrode surfaces. Recent advances and challenges in the use of electrohydrodynamic forces such as dielectrophoresis and ac electrosmosis for the detection of biological analytes are also reviewed. Additionally, the fundamental mechanisms of fluid flow using electrohydrodynamics forces, which are still evolving, are reviewed. Challenges and future directions are discussed from the perspective of both fundamental understanding and potential applications of these nanoscaled shear forces in diagnostics.
Collapse
Affiliation(s)
- Ramanathan Vaidyanathan
- Centre for Personalised NanoMedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland , Brisbane QLD 4072, Australia
| | - Shuvashis Dey
- Centre for Personalised NanoMedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland , Brisbane QLD 4072, Australia
| | - Laura G Carrascosa
- Centre for Personalised NanoMedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland , Brisbane QLD 4072, Australia
| | - Muhammad J A Shiddiky
- Centre for Personalised NanoMedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland , Brisbane QLD 4072, Australia
| | | |
Collapse
|
49
|
Islam M, Motasim Bellah M, Sajid A, Raziul Hasan M, Kim YT, Iqbal SM. Effects of Nanotexture on Electrical Profiling of Single Tumor Cell and Detection of Cancer from Blood in Microfluidic Channels. Sci Rep 2015; 5:13031. [PMID: 26373820 PMCID: PMC4570978 DOI: 10.1038/srep13031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/16/2015] [Indexed: 11/23/2022] Open
Abstract
Microfluidic channels have been implemented to detect cancer cells from blood using electrical measurement of each single cell from the sample. Every cell provided characteristic current profile based on its mechano-physical properties. Cancer cells not only showed higher translocation time and peak amplitude compared to blood cells, their pulse shape was also distinctively different. Prevalent microfluidic channels are plain but we created nanotexture on the channel walls using micro reactive ion etching (micro-RIE). The translocation behaviors of the metastatic renal cancer cells through plain and nanotextured PDMS microchannels showed clear differences. Nanotexture enhanced the cell-surface interactions and more than 50% tumor cells exhibited slower translocation through nanotextured channels compared to plain devices. On the other hand, most of the blood cells had very similar characteristics in both channels. Only 7.63% blood cells had slower translocation in nanotextured microchannels. The tumor cell detection efficiency from whole blood increased by 14% in nanotextured microchannels compared to plain channels. This interesting effect of nanotexture on translocation behavior of tumor cells is important for the early detection of cancer.
Collapse
Affiliation(s)
- Muhymin Islam
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019, USA
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76011, USA
- Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Mohammad Motasim Bellah
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019, USA
- Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019, USA
- Department of Interdisciplinary Studies and Department of Biology, University of Texas at Arlington, Arlington, TX 76011, USA
| | - Adeel Sajid
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019, USA
- Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019, USA
- Department of Interdisciplinary Studies and Department of Biology, University of Texas at Arlington, Arlington, TX 76011, USA
| | - Mohammad Raziul Hasan
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019, USA
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76011, USA
- Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Young-tae Kim
- Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019, USA
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390, USA
| | - Samir M. Iqbal
- Nano-Bio Lab, University of Texas at Arlington, Arlington, TX 76019, USA
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76011, USA
- Nanotechnology Research Center, University of Texas at Arlington, Arlington, TX 76019, USA
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390, USA
| |
Collapse
|
50
|
Qian W, Zhang Y, Chen W. Capturing Cancer: Emerging Microfluidic Technologies for the Capture and Characterization of Circulating Tumor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3850-72. [PMID: 25993898 DOI: 10.1002/smll.201403658] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/13/2015] [Indexed: 05/04/2023]
Abstract
Circulating tumor cells (CTCs) escape from primary or metastatic lesions and enter into circulation, carrying significant information of cancer progression and metastasis. Capture of CTCs from the bloodstream and the characterization of these cells hold great significance for the detection, characterization, and monitoring of cancer. Despite the urgent need from clinics, it remains a major challenge to capture and retain these rare cells from human blood with high specificity and yield. Recent exciting advances in micro/nanotechnology, microfluidics, and materials science have enable versatile, robust, and efficient cell isolation and processing through the development of new micro/nanoengineered devices and biomaterials. This review provides a summary of recent progress along this direction, with a focus on emerging methods for CTC capture and processing, and their application in cancer research. Furthermore, classical as well as emerging cellular characterization methods are reviewed to reveal the role of CTCs in cancer progression and metastasis, and hypotheses are proposed in regard to the potential emerging research directions most desired in CTC-related cancer research.
Collapse
Affiliation(s)
- Weiyi Qian
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Yan Zhang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| |
Collapse
|