1
|
Zumsteg ZS, Sheth S, Jabbour SK, Patel KR, Kimple RJ, Williams TM, Xu-Welliver M, Torres-Saavedra PA, Monjazeb AM, Mayadev J, Finkelstein SE, Buatti JM, Patel SP, Lin SH. Challenges and opportunities for early phase clinical trials of novel drug-radiotherapy combinations: recommendations from NRG Oncology, the American Society for Radiation Oncology (ASTRO), the American College of Radiology (ACR), the Sarah Cannon Research Institute, and the American College of Radiation Oncology (ACRO). Lancet Oncol 2024; 25:e489-e500. [PMID: 39362260 DOI: 10.1016/s1470-2045(24)00264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 10/05/2024]
Abstract
NRG Oncology's Developmental Therapeutics and Radiation Therapy Subcommittee assembled an interdisciplinary group of investigators to address barriers to successful early phase clinical trials of novel combination therapies involving radiation. This Policy Review elucidates some of the many challenges associated with study design for early phase trials combining radiotherapy with novel systemic agents, which are distinct from drug-drug combination development and are often overlooked. We also advocate for potential solutions that could mitigate or eliminate some of these barriers, providing examples of specific clinical trial designs that could help facilitate efficient and effective evaluation of novel drug-radiotherapy combinations.
Collapse
Affiliation(s)
- Zachary S Zumsteg
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Siddharth Sheth
- Division of Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Krishnan R Patel
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Randall J Kimple
- Department of Human Oncology, Univeristy of Wisconsin, Madison, WI, USA
| | | | - Meng Xu-Welliver
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Pedro A Torres-Saavedra
- Division of Cancer Treatment and Diagnosis, Biometric Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, University of California, San Diego, CA, USA
| | - Jyoti Mayadev
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, CA, USA
| | - Steven E Finkelstein
- The US Oncology Network, Florida Cancer Affiliates, Panama City, FL, USA; Sarah Cannon Research Institute, Nashville, TN, USA; Associated Medical Professional of NY, US Urology Partners, Syracuse, NY, USA
| | - John M Buatti
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Sandip P Patel
- Division of Medical Oncology, University of California, San Diego, CA, USA
| | - Steven H Lin
- Department of Thoracic Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Dunne VL, Ghita-Pettigrew M, Redmond KM, Small DM, Weldon S, Taggart CC, Prise KM, Hanna GG, Butterworth KT. PTEN Depletion Increases Radiosensitivity in Response to Ataxia Telangiectasia-Related-3 (ATR) Inhibition in Non-Small Cell Lung Cancer (NSCLC). Int J Mol Sci 2024; 25:7817. [PMID: 39063060 PMCID: PMC11277409 DOI: 10.3390/ijms25147817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Radiotherapy (RT) treatment is an important strategy for the management of non-small cell lung cancer (NSCLC). Local recurrence amongst patients with late-stage NSCLC remains a challenge. The loss of PTEN has been associated with radio-resistance. This study aimed to examine the efficacy of RT combined with ataxia telangiectasia-mutated Rad3-related (ATR) inhibition using Ceralasertib in phosphatase and tensin homolog (PTEN)-depleted NSCLC cells and to assess early inflammatory responses indicative of radiation pneumonitis (RP) after combined-modality treatment. Small hairpin RNA (shRNA) transfections were used to generate H460 and A549 PTEN-depleted models. Ceralasertib was evaluated as a single agent and in combination with RT in vitro and in vivo. Histological staining was used to assess immune cell infiltration in pneumonitis-prone C3H/NeJ mice. Here, we report that the inhibition of ATR in combination with RT caused a significant reduction in PTEN-depleted NSCLC cells, with delayed DNA repair and reduced cell viability, as shown by an increase in cells in Sub G1. Combination treatment in vivo significantly inhibited H460 PTEN-depleted tumour growth in comparison to H460 non-targeting PTEN-expressing (NT) cell-line-derived xenografts (CDXs). Additionally, there was no significant increase in infiltrating macrophages or neutrophils except at 4 weeks, whereby combination treatment significantly increased macrophage levels relative to RT alone. Overall, our study demonstrates that ceralasertib and RT combined preferentially sensitises PTEN-depleted NSCLC models in vitro and in vivo, with no impact on early inflammatory response indicative of RP. These findings provide a rationale for evaluating ATR inhibition in combination with RT in NSCLC patients with PTEN mutations.
Collapse
Affiliation(s)
- Victoria L. Dunne
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK; (M.G.-P.); (K.M.R.); (D.M.S.); (K.M.P.); (K.T.B.)
| | - Mihaela Ghita-Pettigrew
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK; (M.G.-P.); (K.M.R.); (D.M.S.); (K.M.P.); (K.T.B.)
| | - Kelly M. Redmond
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK; (M.G.-P.); (K.M.R.); (D.M.S.); (K.M.P.); (K.T.B.)
| | - Donna M. Small
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK; (M.G.-P.); (K.M.R.); (D.M.S.); (K.M.P.); (K.T.B.)
| | - Sinéad Weldon
- Airway Innate Immunity Research Group (AiiR), Wellcome Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (S.W.); (C.C.T.)
| | - Clifford C. Taggart
- Airway Innate Immunity Research Group (AiiR), Wellcome Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (S.W.); (C.C.T.)
| | - Kevin M. Prise
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK; (M.G.-P.); (K.M.R.); (D.M.S.); (K.M.P.); (K.T.B.)
| | - Gerard G. Hanna
- Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast BT9 7AB, UK;
| | - Karl T. Butterworth
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK; (M.G.-P.); (K.M.R.); (D.M.S.); (K.M.P.); (K.T.B.)
| |
Collapse
|
3
|
Liu F, Farris MK, Ververs JD, Hughes RT, Munley MT. Histology-driven hypofractionated radiation therapy schemes for early-stage lung adenocarcinoma and squamous cell carcinoma. Radiother Oncol 2024; 195:110257. [PMID: 38548113 PMCID: PMC11098686 DOI: 10.1016/j.radonc.2024.110257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND AND PURPOSE Histology was found to be an important prognostic factor for local tumor control probability (TCP) after stereotactic body radiotherapy (SBRT) of early-stage non-small-cell lung cancer (NSCLC). A histology-driven SBRT approach has not been explored in routine clinical practice and histology-dependent fractionation schemes remain unknown. Here, we analyzed pooled histologic TCP data as a function of biologically effective dose (BED) to determine histology-driven fractionation schemes for SBRT and hypofractionated radiotherapy of two predominant early-stage NSCLC histologic subtypes adenocarcinoma (ADC) and squamous cell carcinoma (SCC). MATERIAL AND METHODS The least-χ2 method was used to fit the collected histologic TCP data of 8510 early-stage NSCLC patients to determine parameters for a well-developed radiobiological model per the Hypofractionated Treatment Effects in the Clinic (HyTEC) initiative. RESULTS A fit to the histologic TCP data yielded independent radiobiological parameter sets for radiotherapy of early-stage lung ADC and SCC. TCP increases steeply with BED and reaches an asymptotic maximal plateau, allowing us to determine model-independent optimal fractionation schemes of least doses in 1-30 fractions to achieve maximal tumor control for early-stage lung ADC and SCC, e.g., 30, 44, 48, and 51 Gy for ADC, and 32, 48, 54, and 58 Gy for SCC in 1, 3, 4, and 5 fractions, respectively. CONCLUSION We presented the first determination of histology-dependent radiobiological parameters and model-independent histology-driven optimal SBRT and hypofractionated radiation therapy schemes for early-stage lung ADC and SCC. SCC requires substantially higher radiation doses to maximize tumor control than ADC, plausibly attributed to tumor genetic diversity and microenvironment. The determined optimal SBRT schemes agree well with clinical practice for early-stage lung ADC. These proposed optimal fractionation schemes provide first insights for histology-based personalized radiotherapy of two predominant early-stage NSCLC subtypes ADC and SCC, which require further validation with large-scale histologic TCP data.
Collapse
Affiliation(s)
- Feng Liu
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA.
| | - Michael K Farris
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - James D Ververs
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Ryan T Hughes
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Michael T Munley
- Department of Radiation Oncology, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
4
|
Wu Y, Kang Y, Hu Y, Lan K, Yen S, Lai T, Lan T, Chen Y, Chiu C, Luo Y, Chao H, Chiang C, Shiao T, Yang C, Hsu W, Wu Y, Hsu H, Hung J, Huang C, Hsu P, Chen Y. Old age and EGFR mutation status in inoperable early-stage non-small cell lung cancer patients receiving stereotactic ablative radiotherapy: A single institute experience of 71 patients in Taiwan. Thorac Cancer 2023; 14:654-661. [PMID: 36653333 PMCID: PMC9981314 DOI: 10.1111/1759-7714.14786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Stereotactic ablative radiotherapy (SABR) is now the standard of care for patients with inoperable early-stage lung cancer. Many of these patients are elderly. EGFR (epidermal growth factor receptor) mutation is also common in the Asian population. METHODS To evaluate the effects of old age and EGFR mutation on treatment outcomes and toxicity, we reviewed the medical records of 71 consecutive patients with inoperable early-stage non-small cell lung cancer (NSCLC) who received SABR at Taipei Veterans General Hospital between 2015 and 2021. RESULTS The study revealed that median age, follow-up, Charlson comorbidity index, and ECOG score were 80 years, 2.48 years, 3, and 1, respectively. Of these patients, 37 (52.1%) were 80 years or older, and 50 (70.4%) and 21 (29.6%) had T1 and T2 diseases, respectively. EGFR mutation status was available for 33 (46.5%) patients, of whom 16 (51.5%) had a mutation. The overall survival rates at 1, 3, and 5 years were 97.2, 74.9, and 58.3%, respectively. The local control rate at 1, 3, and 5 years was 97.1, 92.5, and 92.5%, respectively. Using Cox proportional hazards regression we found that male sex was a risk factor for overall survival (p = 0.036, 95% CI: 1.118-26.188). Two patients had grade 2 pneumonitis, but no other grade 2 or higher toxicity was observed. We did not find any significant differences in treatment outcomes or toxicity between patients aged 80 or older and those with EGFR mutations in this cohort. CONCLUSION These findings indicate that age and EGFR mutation status do not significantly affect the effectiveness or toxicity of SABR for patients with inoperable early-stage NSCLC.
Collapse
Affiliation(s)
- Yuan‐Hung Wu
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan,School of MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan,Department of Biomedical Imaging and Radiological SciencesNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan
| | - Yu‐Mei Kang
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan,School of MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan
| | - Yu‐Wen Hu
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan,School of MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan
| | - Keng‐Li Lan
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan,Institute of Traditional MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan
| | - Sang‐Hue Yen
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan,Department of Biomedical Imaging and Radiological SciencesNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan,Department of Radiation OncologyTaipei Municipal Wan‐Fang HospitalTaipeiTaiwan
| | - Tzu‐Yu Lai
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan,School of MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan
| | - Tien‐Li Lan
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Yuh‐Min Chen
- School of MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan,Department of Chest MedicineTaipei Veterans General HospitalTaipeiTaiwan
| | - Chao‐Hua Chiu
- Taipei Cancer Center and Taipei Medical University HospitalTaipei Medical UniversityTaipeiTaiwan
| | - Yung‐Hung Luo
- School of MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan,Department of Chest MedicineTaipei Veterans General HospitalTaipeiTaiwan
| | - Heng‐sheng Chao
- School of MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan,Department of Chest MedicineTaipei Veterans General HospitalTaipeiTaiwan
| | - Chi‐Lu Chiang
- School of MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan,Department of Chest MedicineTaipei Veterans General HospitalTaipeiTaiwan
| | - Tsu‐Hui Shiao
- School of MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan,Department of Chest MedicineTaipei Veterans General HospitalTaipeiTaiwan
| | - Chao‐Neng Yang
- School of MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan,Department of Chest MedicineTaipei Veterans General HospitalTaipeiTaiwan
| | - Wen‐Hu Hsu
- School of MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan,Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan
| | - Yu‐Chung Wu
- School of MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan,Taipei Cancer Center and Taipei Medical University HospitalTaipei Medical UniversityTaipeiTaiwan,Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan
| | - Han‐Shui Hsu
- Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan,Institute of Emergency and Critical Care MedicineNational Yang‐Ming Chiao‐Tung UniversityHsinchuTaiwan
| | - Jung‐Jyh Hung
- School of MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan,Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan
| | - Chien‐Sheng Huang
- School of MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan,Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan
| | - Po‐Kuei Hsu
- School of MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan,Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan
| | - Yi‐Wei Chen
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan,School of MedicineNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan
| |
Collapse
|
5
|
Dhawan A, Pifer PM, Sandulache VC, Skinner HD. Metabolic targeting, immunotherapy and radiation in locally advanced non-small cell lung cancer: Where do we go from here? Front Oncol 2022; 12:1016217. [PMID: 36591457 PMCID: PMC9794617 DOI: 10.3389/fonc.2022.1016217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
In the US, there are ~250,000 new lung cancer diagnoses and ~130,000 deaths per year, and worldwide there are an estimated 1.6 million deaths per year from this deadly disease. Lung cancer is the most common cause of cancer death worldwide, and it accounts for roughly a quarter of all cancer deaths in the US. Non-small cell lung cancer (NSCLC) represents 80-85% of these cases. Due to an enormous tobacco cessation effort, NSCLC rates in the US are decreasing, and the implementation of lung cancer screening guidelines and other programs have resulted in a higher percentage of patients presenting with potentially curable locoregional disease, instead of distant disease. Exciting developments in molecular targeted therapy and immunotherapy have resulted in dramatic improvement in patients' survival, in combination with new surgical, pathological, radiographical, and radiation techniques. Concurrent platinum-based doublet chemoradiation therapy followed by immunotherapy has set the benchmark for survival in these patients. However, despite these advances, ~50% of patients diagnosed with locally advanced NSCLC (LA-NSCLC) survive long-term. In patients with local and/or locoregional disease, chemoradiation is a critical component of curative therapy. However, there remains a significant clinical gap in improving the efficacy of this combined therapy, and the development of non-overlapping treatment approaches to improve treatment outcomes is needed. One potential promising avenue of research is targeting cancer metabolism. In this review, we will initially provide a brief general overview of tumor metabolism as it relates to therapeutic targeting. We will then focus on the intersection of metabolism on both oxidative stress and anti-tumor immunity. This will be followed by discussion of both tumor- and patient-specific opportunities for metabolic targeting in NSCLC. We will then conclude with a discussion of additional agents currently in development that may be advantageous to combine with chemo-immuno-radiation in NSCLC.
Collapse
Affiliation(s)
- Annika Dhawan
- Department of Radiation Oncology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, United States
| | - Phillip M. Pifer
- Department of Radiation Oncology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, United States
| | - Vlad C. Sandulache
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Heath D. Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Heath D. Skinner,
| |
Collapse
|
6
|
Chen W, Wang L, Hou Y, Li L, Chang L, Li Y, Xie K, Qiu L, Mao D, Li W, Xia Y. Combined Radiomics-Clinical Model to Predict Radiotherapy Response in Inoperable Stage III and IV Non-Small-Cell Lung Cancer. Technol Cancer Res Treat 2022; 21:15330338221142400. [PMID: 36476110 PMCID: PMC9742722 DOI: 10.1177/15330338221142400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose: Radiotherapy is a promising treatment option for lung cancer, but patients' responses vary. The purpose of the study was to investigate the potential of radiomics and clinical signature for predicting the radiotherapy sensitivity and overall survival of inoperable stage III and IV non-small-cell lung cancer (NSCLC) patients. Materials: This retrospective study collected 104 inoperable stage III and IV NSCLC patients at the Yunnan Cancer Hospital from October 2016 to September 2020. They were divided into radiation-sensitive and non-sensitive groups. We used analysis of variance (ANOVA) to select features and support vector machine (SVM) to build the radiomic model. Furthermore, the logistic regression method was used to screen out clinically relevant predictive factors and construct the combined model of radiomics-clinical features. Finally, survival was estimated using the Kaplan-Meier method. Results: There were 40 patients in the radiation-sensitive group and 64 in the non-sensitive group. These patients were divided into training set (73 cases) and testing set (31 cases) according to the ratio of 7:3. Nine radiomics features and one clinical feature were significantly associated with radiotherapy sensitivity. Both the radiomics model and combined model have good predictive performance (the areas under the curve (AUC) values of the testing set were 0.864 (95% confidence interval [CI]: 0.683-0.996) and 0.868 (95% CI: 0.689-1.000), respectively). Only platelet level status was associated with overall survival. Conclusion: The combined model constructed based on radiomics and clinical features can effectively identify the radiation-sensitive population and provide valuable clinical information. Patients with higher platelet levels may have a poor prognosis.
Collapse
Affiliation(s)
- Wenrui Chen
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Li Wang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Yu Hou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Lan Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Li Chang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Yunfen Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Kun Xie
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Linbo Qiu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Dan Mao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Wenhui Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China,Wenhui Li, PhD, Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, 519 Kunzhou Rd., Kunming, Yunnan 650118, China.
| | - Yaoxiong Xia
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| |
Collapse
|
7
|
Shishido K, Reinders A, Asuthkar S. Epigenetic regulation of radioresistance: insights from preclinical and clinical studies. Expert Opin Investig Drugs 2022; 31:1359-1375. [PMID: 36524403 DOI: 10.1080/13543784.2022.2158810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Oftentimes, radiation therapy (RT) is ineffective due to the development of radioresistance (RR). However, studies have shown that targeting epigenetic modifiers to enhance radiosensitivity represents a promising direction of clinical investigation. AREAS COVERED This review discusses the mechanisms by which epigenetic modifiers alter radiosensitivity through dysregulation of MAPK-ERK and AKT-mTOR signaling. Finally, we discuss the clinical directions for targeting epigenetic modifiers and current radiology techniques used in the clinic. METHODOLOGY We searched PubMed and ScienceDirect databases from April 4th, 2022 to October 18th, 2022. We examined 226 papers related to radioresistance, epigenetics, MAPK, and PI3K/AKT/mTOR signaling. 194 papers were selected for this review. Keywords used for this search include, 'radioresistance,' 'radiosensitivity,' 'radiation,' 'radiotherapy,' 'particle radiation,' 'photon radiation,' 'epigenetic modifiers,' 'MAPK,' 'AKT,' 'mTOR,' 'cancer,' and 'PI3K.' We examined 41 papers related to clinical trials on the aforementioned topics. Outcomes of interest were safety, overall survival (OS), dose-limiting toxicities (DLT), progression-free survival (PFS), and maximum tolerated dose (MTD). EXPERT OPINION Current studies focusing on epigenetic mechanisms of RR strongly support the use of targeting epigenetic modifiers as adjuvants to standard cancer therapies. To further the success of such treatments and their clinical benefit , both preclinical and clinical studies are needed to broaden the scope of known radioresistant mechanisms.
Collapse
Affiliation(s)
- Katherine Shishido
- Department of Cancer Biology and Pharmacology and Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL, United States of America
| | - Alexis Reinders
- Department of Cancer Biology and Pharmacology and Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL, United States of America
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology and Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL, United States of America
| |
Collapse
|
8
|
Videtic GMM, Reddy CA, Woody NM, Stephans KL. Local Control With Single-Fraction Lung Stereotactic Body Radiotherapy is not influenced by Non-Small Cell Lung Cancer Histologic Subtype. Clin Lung Cancer 2022; 23:e428-e434. [PMID: 35750570 DOI: 10.1016/j.cllc.2022.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION/BACKGROUND For early stage medically inoperable lung cancer treated with fractionated stereotactic body radiotherapy (SBRT), higher local failure is associated with squamous carcinoma (SqC) compared to adenocarcinoma (AC). This study explored whether histology influences single-fraction SBRT local control. MATERIALS AND METHODS We surveyed our prospective data registry from 12/2009 to 12/2019 for SF-SBRT cases with biopsy-proven AC or SqC only. Outcomes of interest included local (LF), nodal (NF), distant (DF) failure rates and overall survival (OS), as well as treatment-related toxicity. RESULTS For the 10-year interval surveyed, 113 patients met study criteria. There was no association between histology and dose received (34 Gy or 30 Gy). Median follow up was 22.9 months. Patient characteristics were balanced between histologic cohorts. Median tumor size was 1.9 cm. Comparing total AC vs. SqC cohorts, 2-year LF rates (%) were 7.3 vs. 9.6, respectively (P = .9805). In %, 2-year LF, NF, DF and OS rates for AC for 30 Gy and 34 Gy, respectively, were 10.8 vs. 6.4; 10.5 vs. 16.2; 15.8 vs. 13.0; 77.9 vs.71.2 (all P = non-significant). In %, 2-year LF, NF, DF, and OS rates for SqC for 30 Gy and 34 Gy, respectively, were 11.8 vs. 8.1; 5.9 vs. 18.0; 23.5 vs. 9.7; 70.6 vs. 77.1 (all P = non-significant). When considering toxicities, there were no grade 4/5 toxicities and no significant differences in any other toxicity rate by histology or dose. CONCLUSION SF-SBRT local control was not associated with histology, unlike fractionated schedules. This novel finding adds to the evolving understanding of this treatment schedule.
Collapse
Affiliation(s)
- Gregory M M Videtic
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| | - Chandana A Reddy
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Neil M Woody
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Kevin L Stephans
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
9
|
Gong T, Zheng C, Ou X, Zheng J, Yu J, Chen S, Duan Y, Liu W. Glutamine metabolism in cancers: Targeting the oxidative homeostasis. Front Oncol 2022; 12:994672. [PMID: 36324588 PMCID: PMC9621616 DOI: 10.3389/fonc.2022.994672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Glutamine is the most abundant amino acid in blood and tissues, and the most important nutrient except for glucose in cancer cells. Over the past years, most studies have focused on the role of Gln metabolism in supporting energy metabolism rather than maintaining oxidative homeostasis. In fact, Gln is an important factor in maintaining oxidative homeostasis of cancer cells, especially in “Glutamine addicted” cancer cells. Here, this paper will review the recent scientific literature about the link between Gln metabolism and oxidative homeostasis, with an emphasis on the potential role of Gln metabolism in different cancers. Given that oxidative homeostasis is of critical importance in cancer, understanding the impacts of a Gln metabolism on oxidative homeostasis, gaining great insights into underlying molecular mechanisms, and developing effective therapeutic strategies are of great importance.
Collapse
Affiliation(s)
- Tengfang Gong
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Changbing Zheng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xidan Ou
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayi Yu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyu Chen
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yehui Duan, ; Wei Liu,
| | - Wei Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- *Correspondence: Yehui Duan, ; Wei Liu,
| |
Collapse
|
10
|
Passaro A, Leighl N, Blackhall F, Popat S, Kerr K, Ahn MJ, Arcila ME, Arrieta O, Planchard D, de Marinis F, Dingemans AM, Dziadziuszko R, Faivre-Finn C, Feldman J, Felip E, Curigliano G, Herbst R, Jänne PA, John T, Mitsudomi T, Mok T, Normanno N, Paz-Ares L, Ramalingam S, Sequist L, Vansteenkiste J, Wistuba II, Wolf J, Wu YL, Yang SR, Yang JCH, Yatabe Y, Pentheroudakis G, Peters S. ESMO expert consensus statements on the management of EGFR mutant non-small-cell lung cancer. Ann Oncol 2022; 33:466-487. [PMID: 35176458 DOI: 10.1016/j.annonc.2022.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 02/06/2022] [Indexed: 12/14/2022] Open
Abstract
The European Society for Medical Oncology (ESMO) held a virtual consensus-building process on epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer in 2021. The consensus included a multidisciplinary panel of 34 leading experts in the management of lung cancer. The aim of the consensus was to develop recommendations on topics that are not covered in detail in the current ESMO Clinical Practice Guideline and where the available evidence is either limited or conflicting. The main topics identified for discussion were: (i) tissue and biomarkers analyses; (ii) early and locally advanced disease; (iii) metastatic disease and (iv) clinical trial design, patient's perspective and miscellaneous. The expert panel was divided into four working groups to address questions relating to one of the four topics outlined above. Relevant scientific literature was reviewed in advance. Recommendations were developed by the working groups and then presented to the entire panel for further discussion and amendment before voting. This manuscript presents the recommendations developed, including findings from the expert panel discussions, consensus recommendations and a summary of evidence supporting each recommendation.
Collapse
Affiliation(s)
- A Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| | - N Leighl
- Division of Medical Oncology/Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Canada
| | - F Blackhall
- Division of Cancer Sciences, The University of Manchester, Manchester, UK; Department of Medical Oncology, The Christie National Health Service (NHS) Foundation Trust, Manchester, UK
| | - S Popat
- National Heart and Lung Institute, Imperial College, London, UK; Lung Unit, Royal Marsden Hospital, London, UK; The Institute of Cancer Research, London, UK
| | - K Kerr
- Aberdeen Royal Infirmary, Aberdeen University Medical School, Aberdeen, UK
| | - M J Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - M E Arcila
- Department of Pathology, Molecular Diagnostics Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - O Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - D Planchard
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - F de Marinis
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - A M Dingemans
- Department of Respiratory Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - R Dziadziuszko
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdansk, Poland
| | - C Faivre-Finn
- The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - J Feldman
- Lung Cancer Patient and Advocate, Co-Founder of EGFR Resisters Patient Group
| | - E Felip
- Department of Medical Oncology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - G Curigliano
- Department of Oncology and Hemato-Oncology, University of Milano, European Institute of Oncology IRCCS, Milan, Italy
| | - R Herbst
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, USA
| | - P A Jänne
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - T John
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - T Mitsudomi
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - T Mok
- State Key Laboratory of Translational Oncology, Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, Hong Kong, China
| | - N Normanno
- Cell Biology and Biotherapy and Scientific Directorate, Istituto Nazionale Tumori, "Fondazione G.Pascale" IRCCS, Naples, Italy
| | - L Paz-Ares
- Lung Cancer Clinical Research Unit, and Complutense University, Madrid, Spain
| | - S Ramalingam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Atlanta, Georgia
| | - L Sequist
- Department of Medicine, Massachusetts General Hospital, Boston, USA
| | - J Vansteenkiste
- Department of Respiratory Oncology, University Hospital KU Leuven, Leuven, Belgium
| | - I I Wistuba
- Department of Translational Molecular Pathology, Unit 951, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - J Wolf
- Lung Cancer Group Cologne, Department I for Internal Medicine and Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany
| | - Y L Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangdong, China
| | - S R Yang
- The Institute of Cancer Research, London, UK
| | - J C H Yang
- Department of Oncology, National Taiwan University Hospital and National Taiwan University Cancer Center, Taipei, Republic of China
| | - Y Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - G Pentheroudakis
- Department of Medical Oncology, University of Ioannina, Ioannina, Epirus, Greece
| | - S Peters
- Oncology Department - CHUV, Lausanne University, Lausanne, Switzerland
| |
Collapse
|
11
|
Scarborough JA, Scott JG. Translation of Precision Medicine Research Into Biomarker-Informed Care in Radiation Oncology. Semin Radiat Oncol 2022; 32:42-53. [PMID: 34861995 PMCID: PMC8667861 DOI: 10.1016/j.semradonc.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The reach of personalized medicine in radiation oncology has expanded greatly over the past few decades as technical precision has improved the delivery of radiation to each patient's unique anatomy. Yet, the consideration of biological heterogeneity between patients has largely not been translated to clinical care. There are innumerable promising advancements in the discovery and validation of biomarkers, which could be used to alter radiation therapy directly or indirectly. Directly, biomarker-informed care may alter treatment dose or identify patients who would benefit most from radiation therapy and who could safely avoid more aggressive care. Indirectly, a variety of biomarkers could assist with choosing the best radiosensitizing chemotherapies. The translation of these advancements into clinical practice will bring radiation oncology even further into the era of precision medicine, treating patients according to their unique anatomical and biological differences.
Collapse
Affiliation(s)
- Jessica A Scarborough
- Translational Hematology and Oncology Research Department, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland,OH; Systems Biology and Bioinformatics Program, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Jacob G Scott
- Translational Hematology and Oncology Research Department, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland,OH; Radiation Oncology Department, Taussig Cancer Institute, Cleveland Clinic Foundation, 10201 Carnegie Ave, Cleveland, OH.
| |
Collapse
|
12
|
de Mey S, Dufait I, De Ridder M. Radioresistance of Human Cancers: Clinical Implications of Genetic Expression Signatures. Front Oncol 2021; 11:761901. [PMID: 34778082 PMCID: PMC8579106 DOI: 10.3389/fonc.2021.761901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Although radiotherapy is given to more than 50% of cancer patients, little progress has been made in identifying optimal radiotherapy - drug combinations to improve treatment efficacy. Using molecular data from The Cancer Genome Atlas (TCGA), we extracted a total of 1016 cancer patients that received radiotherapy. The patients were diagnosed with head-and-neck (HNSC - 294 patients), cervical (CESC - 166 patients) and breast (BRCA - 549 patients) cancer. We analyzed mRNA expression patterns of 50 hallmark gene sets of the MSigDB collection, which we divided in eight categories based on a shared biological or functional process. Tumor samples were split into upregulated, neutral or downregulated mRNA expression for all gene sets using a gene set analysis (GSEA) pre-ranked analysis and assessed for their clinical relevance. We found a prognostic association between three of the eight gene set categories (Radiobiological, Metabolism and Proliferation) and overall survival in all three cancer types. Furthermore, multiple single associations were revealed in the other categories considered. To the best of our knowledge, our study is the first report suggesting clinical relevance of molecular characterization based on hallmark gene sets to refine radiation strategies.
Collapse
Affiliation(s)
- Sven de Mey
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
13
|
Blomain ES, Moding EJ. Liquid Biopsies for Molecular Biology-Based Radiotherapy. Int J Mol Sci 2021; 22:11267. [PMID: 34681925 PMCID: PMC8538046 DOI: 10.3390/ijms222011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
Molecular alterations drive cancer initiation and evolution during development and in response to therapy. Radiotherapy is one of the most commonly employed cancer treatment modalities, but radiobiologic approaches for personalizing therapy based on tumor biology and individual risks remain to be defined. In recent years, analysis of circulating nucleic acids has emerged as a non-invasive approach to leverage tumor molecular abnormalities as biomarkers of prognosis and treatment response. Here, we evaluate the roles of circulating tumor DNA and related analyses as powerful tools for precision radiotherapy. We highlight emerging work advancing liquid biopsies beyond biomarker studies into translational research investigating tumor clonal evolution and acquired resistance.
Collapse
Affiliation(s)
- Erik S. Blomain
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Everett J. Moding
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Genomic Analyses for Predictors of Response to Chemoradiation in Stage III Non-Small Cell Lung Cancer. Adv Radiat Oncol 2021; 6:100615. [PMID: 33665490 PMCID: PMC7897765 DOI: 10.1016/j.adro.2020.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background Radiation with platinum-based chemotherapy is the standard of care for unresectable stage III non-small cell lung cancer (NSCLC). Despite aggressive treatment, progression-free survival and overall survival remain poor. It is unclear whether any tumor genetic mutations are associated with response to chemoradiation therapy. Methods We retrospectively reviewed clinical outcomes of patients with stage III NSCLC treated with definitive radiation who had undergone tumor molecular profiling through a next-generation DNA sequencing platform. Cox proportional hazards model was used to investigate associations between clinical outcomes and genetic mutations detected by next-generation sequencing. Results 110 patients were identified with stage III NSCLC and underwent definitive radiation between 2013 and 2017 and tumor molecular profiling. Concurrent or sequential chemotherapy was given in 104 patients (95%). Unbiased genomic analyses revealed a significant association between AKT2 mutations and decreased local-regional tumor control and overall survival (hazard ratios [HR] 12.5 and 13.7, P = .003 and P = .003, respectively). Analyses restricted to loss-of-function mutations identified KMT2C and KMT2D deleterious mutations as negative prognostic factors for overall survival (HR 13.4 and 7.0, P < .001 and P < .001, respectively). Deleterious mutations in a panel of 38 DNA damage response and repair pathway genes were associated with improved local-regional control (HR 0.32, P = .049). Conclusions This study coupled multiplexed targeted sequencing with clinical outcome and identified mutations in AKT2, KMT2C, and KMT2D as negative predictors of local-regional control and survival, and deleterious mutations in damage response and repair pathway genes were associated with improved local-regional disease control after chemoradiation therapy. These findings will require validation in a larger cohort of patients with prospectively collected and detailed clinical information.
Collapse
|
15
|
Lee IH, Chen GY, Chien CR, Cheng JCH, Chen JLY, Yang WC, Chen JS, Hsu FM. A retrospective study of clinicopathologic and molecular features of inoperable early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy. J Formos Med Assoc 2021; 120:2176-2185. [PMID: 33451864 DOI: 10.1016/j.jfma.2020.12.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/04/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/PURPOSE Stereotactic ablative radiotherapy (SABR) is the treatment of choice for medically inoperable, early-stage non-small cell lung cancer (ES-NSCLC). The influence of oncogenic driver alterations and comorbidities are not well known. Here we present treatment outcomes based on clinicopathologic features and molecular profiles. METHODS We retrospectively analyzed patients treated with SABR for inoperable ES-NSCLC. Molecular features of oncogenic driver alterations included EGFR, ALK, and ROS1. Comorbidities were assessed using the age-adjusted Charlson Comorbidity Index (ACCI). Survival was calculated using the Kaplan-Meier method. The Cox regression model was performed for univariate and multivariate analyses of prognostic factors. Competing risk analysis was used to evaluate the cumulative incidence of disease progression. RESULTS From 2008 to 2020, 100 patients (median age: 82 years) were enrolled. The majority of patients were male (64%), ever-smokers (60%), and had adenocarcinoma (65%). With a median follow-up of 21.5 months, the median overall survival (OS) and real-world progression-free survival were 37.7 and 25.1 months, respectively. The competing-risk-adjusted 3-year cumulative incidences of local, regional, and disseminated failure were 8.2%, 14.5%, and 31.2%, respectively. An ACCI ≥7 was independently associated with inferior OS (hazard ratio [HR] 2.45, p = 0.03). Tumor size ≥4 cm (HR 4.16, p < 0.001) was the most important independent prognostic factor predicting real-world progression. EGFR mutation status had no impact on the outcomes. CONCLUSION SABR provides excellent local control in ES-NSCLC, although disseminated failures remains a major concern. ACCI is the best indicator for OS, while tumor sizes ≥4 cm predicts poor disease control.
Collapse
Affiliation(s)
- I-Han Lee
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Guann-Yiing Chen
- Department of Medical Imaging, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Chun-Ru Chien
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Department of Radiation Oncology, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Jason Chia-Hsien Cheng
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jenny Ling-Yu Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chi Yang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Shing Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
16
|
Sitthideatphaiboon P, Galan-Cobo A, Negrao MV, Qu X, Poteete A, Zhang F, Liu DD, Lewis WE, Kemp HN, Lewis J, Rinsurongkawong W, Giri U, Lee JJ, Zhang J, Roth JA, Swisher S, Heymach JV. STK11/LKB1 Mutations in NSCLC Are Associated with KEAP1/NRF2-Dependent Radiotherapy Resistance Targetable by Glutaminase Inhibition. Clin Cancer Res 2020; 27:1720-1733. [PMID: 33323404 DOI: 10.1158/1078-0432.ccr-20-2859] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Radiotherapy with or without chemotherapy is a mainstay of treatment for locally advanced non-small cell lung cancer (NSCLC), but no predictive markers are currently available to select patients who will benefit from these therapies. In this study, we investigated the association between alterations in STK11/LKB1, the second most common tumor suppressor in NSCLC, and response to radiotherapy as well as potential therapeutic approaches to improve outcomes. EXPERIMENTAL DESIGN We conducted a retrospective analysis of 194 patients with stage I-III NSCLC, including 164 stage III patients bearing mutant or wild-type STK11/LKB1 treated with radiotherapy, and assessed locoregional recurrence (LRR), distant metastasis rates, disease-free survival (DFS), and overall survival (OS), and we investigated the causal role of LKB1 in mediating radiotherapy resistance using isogenic pairs of NSCLC cell lines with LKB1 loss or gain. RESULTS In stage III patients, with 4 years median follow-up, STK11/LKB1 mutations were associated with higher LRR (P = 0.0108), and shorter DFS (HR 2.530, P = 0.0029) and OS (HR 2.198, P = 0.0263). LKB1 loss promoted relative resistance to radiotherapy, which was dependent on the KEAP1/NRF2 pathway for redox homeostasis. Suppression of the KEAP1/NRF2 pathway via KEAP1 expression, or pharmacologic blockade of glutaminase (GLS) 1 sensitized LKB1-deficient tumors to radiotherapy. CONCLUSIONS These data provide evidence that LKB1 loss is associated with LRR and poor clinical outcomes in patients with NSCLC treated with radiotherapy and that targeting the KEAP1/NRF2 pathway or GLS inhibition are potential approaches to radiosensitize LKB1-deficient tumors.
Collapse
Affiliation(s)
- Piyada Sitthideatphaiboon
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University/King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Ana Galan-Cobo
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marcelo V Negrao
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiao Qu
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Institute of Oncology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R. China
| | - Alissa Poteete
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fahao Zhang
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Diane D Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Whitney E Lewis
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haley N Kemp
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeff Lewis
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Waree Rinsurongkawong
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Uma Giri
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianjun Zhang
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
17
|
Huang YW, Lin CW, Pan P, Shan T, Echeveste CE, Mo YY, Wang HT, Aldakkak M, Tsai S, Oshima K, Yearsley M, Xiao J, Cao H, Sun C, Du M, Bai W, Yu J, Wang LS. Black Raspberries Suppress Colorectal Cancer by Enhancing Smad4 Expression in Colonic Epithelium and Natural Killer Cells. Front Immunol 2020; 11:570683. [PMID: 33424832 PMCID: PMC7793748 DOI: 10.3389/fimmu.2020.570683] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023] Open
Abstract
Innate immune cells in the tumor microenvironment have been proposed to control the transition from benign to malignant stages. In many cancers, increased infiltration of natural killer (NK) cells associates with good prognosis. Although the mechanisms that enable NK cells to restrain colorectal cancer (CRC) are unclear, the current study suggests the involvement of Smad4. We found suppressed Smad4 expression in circulating NK cells of untreated metastatic CRC patients. Moreover, NK cell-specific Smad4 deletion promoted colon adenomas in DSS-treated ApcMin/+ mice and adenocarcinomas in AOM/DSS-treated mice. Other studies have shown that Smad4 loss or weak expression in colonic epithelium associates with poor survival in CRC patients. Therefore, targeting Smad4 in both colonic epithelium and NK cells could provide an excellent opportunity to manage CRC. Toward this end, we showed that dietary intervention with black raspberries (BRBs) increased Smad4 expression in colonic epithelium in patients with FAP or CRC and in the two CRC mouse models. Also, benzoate metabolites of BRBs, such as hippurate, upregulated Smad4 and Gzmb expression that might enhance the cytotoxicity of primary human NK cells. Of note, increased levels of hippurate is a metabolomic marker of a healthy gut microbiota in humans, and hippurate also has antitumor effects. In conclusion, our study suggests a new mechanism for the action of benzoate metabolites derived from plant-based foods. This mechanism could be exploited clinically to upregulate Smad4 in colonic epithelium and NK cells, thereby delaying CRC progression.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Department of Obstetrics & Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pan Pan
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tianjiao Shan
- Department of Obstetrics & Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Carla Elena Echeveste
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yue Yang Mo
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hsin-Tzu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mohammed Aldakkak
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Martha Yearsley
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau
| | - Hui Cao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, Macau
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, United States
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
18
|
Binkley MS, Jeon YJ, Nesselbush M, Moding EJ, Nabet BY, Almanza D, Kunder C, Stehr H, Yoo CH, Rhee S, Xiang M, Chabon JJ, Hamilton E, Kurtz DM, Gojenola L, Owen SG, Ko RB, Shin JH, Maxim PG, Lui NS, Backhus LM, Berry MF, Shrager JB, Ramchandran KJ, Padda SK, Das M, Neal JW, Wakelee HA, Alizadeh AA, Loo BW, Diehn M. KEAP1/NFE2L2 Mutations Predict Lung Cancer Radiation Resistance That Can Be Targeted by Glutaminase Inhibition. Cancer Discov 2020; 10:1826-1841. [PMID: 33071215 PMCID: PMC7710558 DOI: 10.1158/2159-8290.cd-20-0282] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/12/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022]
Abstract
Tumor genotyping is not routinely performed in localized non-small cell lung cancer (NSCLC) due to lack of associations of mutations with outcome. Here, we analyze 232 consecutive patients with localized NSCLC and demonstrate that KEAP1 and NFE2L2 mutations are predictive of high rates of local recurrence (LR) after radiotherapy but not surgery. Half of LRs occurred in tumors with KEAP1/NFE2L2 mutations, indicating that they are major molecular drivers of clinical radioresistance. Next, we functionally evaluate KEAP1/NFE2L2 mutations in our radiotherapy cohort and demonstrate that only pathogenic mutations are associated with radioresistance. Furthermore, expression of NFE2L2 target genes does not predict LR, underscoring the utility of tumor genotyping. Finally, we show that glutaminase inhibition preferentially radiosensitizes KEAP1-mutant cells via depletion of glutathione and increased radiation-induced DNA damage. Our findings suggest that genotyping for KEAP1/NFE2L2 mutations could facilitate treatment personalization and provide a potential strategy for overcoming radioresistance conferred by these mutations. SIGNIFICANCE: This study shows that mutations in KEAP1 and NFE2L2 predict for LR after radiotherapy but not surgery in patients with NSCLC. Approximately half of all LRs are associated with these mutations and glutaminase inhibition may allow personalized radiosensitization of KEAP1/NFE2L2-mutant tumors.This article is highlighted in the In This Issue feature, p. 1775.
Collapse
Affiliation(s)
- Michael S Binkley
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Young-Jun Jeon
- Stanford Cancer Institute, Stanford, California
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | | | - Everett J Moding
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Barzin Y Nabet
- Department of Radiation Oncology, Stanford University, Stanford, California
- Stanford Cancer Institute, Stanford, California
| | - Diego Almanza
- Cancer Biology Program, Stanford University, Stanford, California
| | - Christian Kunder
- Department of Pathology, Stanford University, Stanford, California
| | - Henning Stehr
- Department of Pathology, Stanford University, Stanford, California
| | - Christopher H Yoo
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Siyeon Rhee
- Department of Biology, Stanford University, Stanford, California
| | - Michael Xiang
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California
| | | | - Emily Hamilton
- Cancer Biology Program, Stanford University, Stanford, California
| | - David M Kurtz
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Linda Gojenola
- Department of Pathology, Stanford University, Stanford, California
| | - Susie Grant Owen
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Ryan B Ko
- Department of Radiation Oncology, Stanford University, Stanford, California
| | | | - Peter G Maxim
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Natalie S Lui
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Leah M Backhus
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Mark F Berry
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Joseph B Shrager
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Kavitha J Ramchandran
- Stanford Cancer Institute, Stanford, California
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Sukhmani K Padda
- Stanford Cancer Institute, Stanford, California
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Millie Das
- Stanford Cancer Institute, Stanford, California
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Joel W Neal
- Stanford Cancer Institute, Stanford, California
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Heather A Wakelee
- Stanford Cancer Institute, Stanford, California
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Ash A Alizadeh
- Stanford Cancer Institute, Stanford, California
- Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University, Stanford, California
- Stanford Cancer Institute, Stanford, California
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University, Stanford, California.
- Stanford Cancer Institute, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| |
Collapse
|
19
|
Xu X, Liu D, Wen J, Chen J, Fan M. A case report of exceptional clinical response to chemoradiotherapy and tyrosine kinase inhibitors in a patient with EML4-ALK fusion variant 1 non-small cell lung cancer. Transl Lung Cancer Res 2020; 9:2500-2507. [PMID: 33489810 PMCID: PMC7815360 DOI: 10.21037/tlcr-20-1212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion occurs in approximately 5% of non-small cell lung cancer (NSCLC) cases. Variants 1 and 3a/b are the most common EML4-ALK variants. Emerging evidence indicates that patients with variant 1 and those with variant 3a/b exhibit differential therapeutic responses. However, the National Comprehensive Cancer Network guidelines have not included the EML4-ALK fusion subtype in treatment decision-making to date. Herein, we report the case of a non-smoking 36-year-old female patient who was diagnosed with right lung adenocarcinoma in 2005 (cT1N3M0, IIIB) and received definitive chemoradiotherapy. The patient achieved a partial response, and her disease remained under control for 8 years. However, in May 2013, the patient was diagnosed with brain metastasis and underwent subsequent surgical resection, followed by postoperative brain radiotherapy and chemotherapy. Postoperative pathology confirmed ALK gene rearrangement, and next-generation sequencing performed in 2020 identified the EML4-ALK variant as variant 1. After progression-free survival lasting 4 years, new metastatic lesions were found in the patient’s right lung, and she was administered crizotinib for 20 months. Due to a suspicious recurrence in the intracranial surgical margin area, as well as an unbearable gastrointestinal reaction to crizotinib, alectinib was later adopted. At the 7-month follow-up, positron emission tomography/computed tomography revealed a clinical complete response. This case of an NSCLC patient with EML4-ALK fusion variant 1 who exhibited an exceptional response to chemoradiotherapy and ALK inhibitors might broaden horizons in efforts to reveal the molecular mechanism of radiosensitivity in ALK-positive NSCLC and provide reference for further research regarding the optimal radiotherapy delivery dose and tyrosine kinase inhibitor selection.
Collapse
Affiliation(s)
- Xinyan Xu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Di Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junmiao Wen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiayan Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min Fan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Han F, Yang S, Wang W, Huang X, Huang D, Chen S. Silencing of lncRNA LINC00857 Enhances BIRC5-Dependent Radio-Sensitivity of Lung Adenocarcinoma Cells by Recruiting NF-κB1. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:981-993. [PMID: 33251047 PMCID: PMC7679245 DOI: 10.1016/j.omtn.2020.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023]
Abstract
Lung adenocarcinoma (LUAD) is a predominant type of lung cancer in never-smoker patients. In this study, we identified a long noncoding RNA (lncRNA) LINC00857 that might regulate radio-sensitivity of LUAD cells. Expression of LINC00857 and baculoviral IAP repeat containing 5 (BIRC5) was determined to be upregulated in LUAD cells and tissues using qRT-PCR and western blot analysis. The correlation between LINC00857 and nuclear factor kappa B subunit 1 (NF-κB1) was verified using RNA immunoprecipitation and chromatin immunoprecipitation assays, while the binding relationship between NF-κB1 and BIRC5 was determined by dual-luciferase reporter assay. It was suggested that LINC00857 could recruit NF-κB1 in BIRC5 promoter region. BIRC5 promoter activity was repressed in response to small interfering-LINC00857 (si-LINC00857) in LUAD cells. Silencing LINC00857 or BIRC5 reduced proliferation and colony formation but enhanced apoptosis and radio-sensitivity of LUAD cells. The experiment in vivo verified the function of silencing LINC00857 on enhancing radio-sensitivity of LUAD cells. Our results reveal a functional regulatory LINC00857-NF-κB1-BIRC5 triplet in LUAD cells, suggesting LINC00857 as a potential target for LUAD treatment.
Collapse
Affiliation(s)
- Fushi Han
- Department of Nuclear Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Shusong Yang
- Department of Radiotherapy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Wei Wang
- Department of Internal Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Xinghong Huang
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Dongdong Huang
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Shuzhen Chen
- Department of Nuclear Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
21
|
Elbanna M, Shiue K, Edwards D, Cerra-Franco A, Agrawal N, Hinton J, Mereniuk T, Huang C, Ryan JL, Smith J, Aaron VD, Burney H, Zang Y, Holmes J, Langer M, Zellars R, Lautenschlaeger T. Impact of Lung Parenchymal-Only Failure on Overall Survival in Early-Stage Lung Cancer Patients Treated With Stereotactic Ablative Radiotherapy. Clin Lung Cancer 2020; 22:e342-e359. [PMID: 32736936 DOI: 10.1016/j.cllc.2020.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/28/2020] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The impact of lung parenchymal-only failure on patient survival after stereotactic ablative body radiotherapy (SABR) for early-stage non-small-cell lung cancer (NSCLC) remains unclear. PATIENTS AND METHODS The study population included 481 patients with early-stage NSCLC who were treated with 3- to 5-fraction SABR between 2000 and 2016. The primary study objective was to assess the impact of out-of-field lung parenchymal-only failure (OLPF) on overall survival (OS). RESULTS At a median follow-up of 5.9 years, the median OS was 2.7 years for all patients. Patients with OLPF did not have a significantly different OS compared to patients without failure (P = .0952, median OS 4.1 years with failure vs. 2.6 years never failure). Analysis in a 1:1 propensity score-matched cohort for Karnofsky performance status, comorbidity score, and smoking status showed no differences in OS between patients without failure and those with OLPF (P = .8). In subgroup analyses exploring the impact of time of failure on OS, patients with OLPF 6 months or more after diagnosis did not have significantly different OS compared to those without failure, when accounting for immortal time bias (P = .3, median OS 4.3 years vs. 3.5 years never failure). Only 7 patients in our data set experienced failure within 6 months of treatment, of which only 4 were confirmed to be true failures; therefore, limited data are available in our cohort on the impact of OLPF for ≤ 6 months on OS. CONCLUSION OLPF after SABR for early-stage NSCLC does not appear to adversely affect OS, especially if occurring at least 6 months after SABR. More studies are needed to understand if OLPF within 6 months of SABR is associated with adverse OS. These data are useful when discussing prognosis of lung parenchymal failures after initial SABR.
Collapse
Affiliation(s)
- May Elbanna
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN
| | - Kevin Shiue
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN
| | - Donna Edwards
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN
| | - Alberto Cerra-Franco
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN
| | - Namita Agrawal
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN
| | - Jason Hinton
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN
| | - Todd Mereniuk
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN
| | - Christina Huang
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN
| | - Joshua L Ryan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | - Jessica Smith
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | - Vasantha D Aaron
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | - Heather Burney
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN
| | - Yong Zang
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN
| | - Jordan Holmes
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN
| | - Mark Langer
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN
| | - Richard Zellars
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN
| | - Tim Lautenschlaeger
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN.
| |
Collapse
|
22
|
Han F, Huang D, Huang X, Wang W, Yang S, Chen S. Exosomal microRNA-26b-5p down-regulates ATF2 to enhance radiosensitivity of lung adenocarcinoma cells. J Cell Mol Med 2020; 24:7730-7742. [PMID: 32476275 PMCID: PMC7348161 DOI: 10.1111/jcmm.15402] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/28/2020] [Accepted: 04/05/2020] [Indexed: 12/28/2022] Open
Abstract
Lung adenocarcinoma (LUAD), as the most common subtype of non‐small cell lung cancer, is responsible for more than 500 000 deaths worldwide annually. In this study, we identify a novel microRNA‐26b‐5p (miR‐26b‐5p) and elucidated its function on LUAD. The survival rate of parent LUAD cells and radiation‐resistant LUAD cells were determined using clonogenic survival assay. We overexpressed or inhibited miR‐26b‐5p in LUAD, and the correlation between activating transcription factor 2 (ATF2) and miR‐26b‐5p was determined using integrated bioinformatics analysis and dual‐luciferase reporter gene assay. Exosomes derived from A549 cell lines were then detected using Western blot assay, followed by co‐transfection with radiation‐resistant A549R cells. LUAD tissues and serum were collected, followed by miR‐26b‐5p relative expression quantification using RT‐qPCR. miR‐26b‐5p was identified as the most differentially expressed miRNA and was down‐regulated in LUAD. Radiation‐resistant cells were more resistant to X‐radiation compared with parent cells. miR‐26b‐5p overexpression and X‐irradiation led to enhanced radiosensitivity of LUAD cells. ATF2 was negatively targeted by miR‐26b‐5p. Exosomal miR‐26b‐5p derived from A549 cells could be transported to irradiation‐resistant LUAD cells and inhibit ATF2 expression to promote DNA damage, apoptosis and radiosensitivity of LUAD cells, which was verified using serum‐based miR‐26b‐5p. Our results show a regulatory network of miR‐26b‐5p on radiosensitivity of LUAD cells, which may serve as a non‐invasive biomarker for LUAD.
Collapse
Affiliation(s)
- Fushi Han
- Department of Nuclear Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongdong Huang
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinghong Huang
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Internal Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shusong Yang
- Department of Radiotherapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuzhen Chen
- Department of Nuclear Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Wu C, Williams TM, Robb R, Webb A, Wei L, Chen W, Mikhail S, Ciombor KK, Cardin DB, Timmers C, Krishna SG, Arnold M, Harzman A, Abdel-Misih S, Roychowdhury S, Bekaii-Saab T, Wuthrick E. Phase I Trial of Trametinib with Neoadjuvant Chemoradiation in Patients with Locally Advanced Rectal Cancer. Clin Cancer Res 2020; 26:3117-3125. [PMID: 32253228 DOI: 10.1158/1078-0432.ccr-19-4193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE The RAS/RAF/MEK/ERK signaling pathway is critical to the development of colorectal cancers, and KRAS, NRAS, and BRAF mutations foster resistance to radiation. We performed a phase I trial to determine the safety of trametinib, a potent MEK1/2 inhibitor, with 5-fluorouracil (5-FU) chemoradiation therapy (CRT) in patients with locally advanced rectal cancer (LARC). PATIENTS AND METHODS Patients with stage II/III rectal cancer were enrolled on a phase I study with 3+3 study design, with an expansion cohort of 9 patients at the MTD. Following a 5-day trametinib lead-in, with pre- and posttreatment tumor biopsies, patients received trametinib and CRT, surgery, and adjuvant chemotherapy. Trametinib was given orally daily at 3 dose levels: 0.5 mg, 1 mg, and 2 mg. CRT consisted of infusional 5-FU 225 mg/m2/day and radiation dose of 28 daily fractions of 1.8 Gy (total 50.4 Gy). The primary endpoint was to identify the MTD and recommended phase II dose. IHC staining for phosphorylated ERK (pERK) and genomic profiling was performed on the tumor samples. RESULTS Patients were enrolled to all dose levels, and 18 patients were evaluable for toxicities and responses. Treatment was well tolerated, and there was one dose-limiting toxicity of diarrhea, which was attributed to CRT rather than trametinib. At the 2 mg dose level, 25% had pathologic complete response. IHC staining confirmed dose-dependent decrease in pERK with increasing trametinib doses. CONCLUSIONS The combination of trametinib with 5-FU CRT is safe and well tolerated, and may warrant additional study in a phase II trial, perhaps in a RAS/RAF-mutant selected population.
Collapse
Affiliation(s)
- Christina Wu
- Emory University, Winship Cancer Institute, Atlanta, Georgia.
| | | | - Ryan Robb
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Amy Webb
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Lai Wei
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Wei Chen
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | | | | - Dana B Cardin
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Cynthia Timmers
- Medical University of South Carolina, Charleston, South Carolina
| | | | - Mark Arnold
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Alan Harzman
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | | | | | | | |
Collapse
|
24
|
[Prognosis factors after lung stereotactic body radiotherapy for non-small cell lung carcinoma]. Cancer Radiother 2020; 24:267-274. [PMID: 32192839 DOI: 10.1016/j.canrad.2019.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/27/2019] [Accepted: 11/05/2019] [Indexed: 10/24/2022]
Abstract
Lung cancer is the fourth most common cancer in France with a prevalence of 30,000 new cases per year. Lobectomy surgery with dissection is the gold standard treatment for T1-T2 localized non-small cell lung carcinoma. A segmentectomy may be proposed to operable patients but fragile from a respiratory point of view. For inoperable patients or patients with unsatisfactory pulmonary function tests, local treatment with stereotactic radiotherapy may be proposed to achieve local control rates ranging from 85 to 95% at 3-5 years. Several studies have examined prognostic factors after stereotaxic pulmonary radiotherapy. We conducted a general review of the literature to identify factors affecting local control.
Collapse
|
25
|
Jethwa KR, Jang S, Mullikin TC, Harmsen WS, Petersen MM, Olivier KR, Park SS, Neben-Wittich MA, Hubbard JM, Sandhyavenu H, Whitaker TJ, Waltman LA, Kipp BR, Merrell KW, Haddock MG, Hallemeier CL. Association of tumor genomic factors and efficacy for metastasis-directed stereotactic body radiotherapy for oligometastatic colorectal cancer. Radiother Oncol 2020; 146:29-36. [PMID: 32114263 DOI: 10.1016/j.radonc.2020.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE/OBJECTIVE(S) To report tumor genomic factors associated with overall survival (OS) and local failure (LF) for patients with colorectal cancer (CRC) who received metastasis-directed stereotactic body radiation therapy (SBRT). MATERIALS/METHODS This was a retrospective review of patients with CRC who received metastasis-directed SBRT. Tumor genomic alterations were identified through KRAS, BRAF, or a 50-gene next generation sequencing panel. OS and LF were estimated using Kaplan-Meier and competing-risk methods. RESULTS Eighty-five patients and 109 lesions were treated between 2008 and 2018. The median patient follow-up was 50 months (IQR: 28-107). The median and 5-year OS was 34 months and 26% (95% CI: 16-41%), respectively. The 2-year cumulative incidence of LF was 30% (95% CI: 23-41%). Univariate associates with OS included patient age ≥60 years, bone metastasis, increasing tumor size, KRAS mutation, and combined KRAS and TP53 mutation, while increasing tumor size, bone metastasis, biologically effective dose <100 Gy, and combined KRAS and TP53 mutation were associated with LF. Multivariate associates with OS included patient age ≥60 years (HR: 2.4, 95% CI: 1.2-4.8, p = 0.01), lesion size per 1 cm (HR: 1.3, 95% CI: 1.1-1.5, p < 0.01), and KRAS mutation (HR: 2.2, 95% CI: 1.2-4.3, p < 0.01), while no multivariable model for LF retained more than a single variable. CONCLUSION Genomic factors, in particular KRAS and TP53 mutation, may assist in patient selection and radiotherapeutic decision-making for patients with oligometastatic CRC. Prospective validation, ideally with genomic correlation of all irradiated metastases, is warranted.
Collapse
Affiliation(s)
- Krishan R Jethwa
- Department of Radiation Oncology, Mayo Clinic, Rochester, United States; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, United States
| | - Samuel Jang
- Department of Radiation Oncology, Mayo Clinic, Rochester, United States
| | - Trey C Mullikin
- Department of Radiation Oncology, Mayo Clinic, Rochester, United States
| | - William S Harmsen
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, United States
| | - Molly M Petersen
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, United States
| | - Kenneth R Olivier
- Department of Radiation Oncology, Mayo Clinic, Rochester, United States
| | - Sean S Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, United States
| | | | - Joleen M Hubbard
- Division of Medical Oncology, Mayo Clinic, Rochester, United States
| | | | - Thomas J Whitaker
- Department of Radiation Oncology, Mayo Clinic, Rochester, United States
| | - Lindsey A Waltman
- Department of Laboratory Medicine and pathology, Mayo Clinic, Rochester, United States
| | - Benjamin R Kipp
- Department of Laboratory Medicine and pathology, Mayo Clinic, Rochester, United States
| | - Kenneth W Merrell
- Department of Radiation Oncology, Mayo Clinic, Rochester, United States
| | - Michael G Haddock
- Department of Radiation Oncology, Mayo Clinic, Rochester, United States
| | | |
Collapse
|
26
|
Arrieta O, Ramírez-Tirado LA, Caballé-Perez E, Mejia-Perez A, Zatarain-Barrón ZL, Cardona AF, Lozano-Ruíz F, Segura-González M, Cruz-Rico G, Maldonado F, Rosell R. Response rate of patients with baseline brain metastases from recently diagnosed non-small cell lung cancer receiving radiotherapy according to EGFR, ALK and KRAS mutation status. Thorac Cancer 2020; 11:1026-1037. [PMID: 32072746 PMCID: PMC7113051 DOI: 10.1111/1759-7714.13359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 01/15/2023] Open
Abstract
Background Previous studies have identified that patients with EGFR mutations tend to have better responses to targeted therapy, as well as chemotherapy; however, the effect of genetic alterations in terms of radiotherapy (RT)‐related outcomes has not been fully assessed. We studied the impact of common non‐small cell lung cancer (NSCLC) genetic alterations (EGFR, ALK and KRAS) in relation to objective response rate (ORR) to RT in patients with brain metastases. Methods From 2009–2015, 153 patients with an available genotyping status were treated with whole‐brain irradiation (WBI) before receiving systemic therapy. Primary outcome was ORR; secondary outcomes included intracranial progression‐free survival (IPFS) and overall survival (OS). Results Overall, ORR was 47.1%. ORR to RT varied significantly according to molecular status: EGFR (64.5%) ALK (54.5%) KRAS (20%) and WT (35.4%) (P = 0.001). EGFR mutation was the only independently associated factor for response to WBI (RR 3.52 [95% CI 1.6–7.7]; P = 0.002). Median IPFS was 10.8 months [95% CI 8.2–13.5] overall; however, IPFS also varied significantly according to molecular status: EGFR (18.2 months), ALK (18.4 months), KRAS (6.0 months) and WT (8.7 months) (P < 0.0001). OS for EGFR, ALK, KRAS and WT patients was 36.6, 32.2, 15.5 and 22.4 months, respectively (P = 0.014). Intracranial‐ORR (HR 0.4 [95% CI 0.2–0.6], P < 0.001) and mutation status (HR 0.7 [95% CI 0.6–0.9], P < 0.042) were independently associated with a higher OS. Conclusions RT response varies as per tumor molecular status. The presence of EGFR mutations favors the organ‐specific response to RT, and is associated with longer OS in patients with NSCLC and BM. Key points This study addressed for the first time the difference in radiotherapy‐related outcomes in patients with different genotypes of non‐small cell lung cancer (NSCLC) before they received systemic therapy. Results show that response to radiotherapy varies as per tumor molecular status, particularly EGFR‐mutated tumors, have a favorable response to radiotherapy, contrary to KRAS‐mutated tumors.
Collapse
Affiliation(s)
- Oscar Arrieta
- Thoracic Oncology Unit, National Cancer Institute (INCan), México City, Mexico.,Experimental Oncology Laboratory, National Cancer Institute (INCan), Mexico City, Mexico
| | - Laura-Alejandra Ramírez-Tirado
- Thoracic Oncology Unit, National Cancer Institute (INCan), México City, Mexico.,Experimental Oncology Laboratory, National Cancer Institute (INCan), Mexico City, Mexico
| | | | - Alberto Mejia-Perez
- Department of Imagenology, National Cancer Institute (INCan), Mexico City, Mexico
| | | | - Andrés F Cardona
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia
| | | | | | - Graciela Cruz-Rico
- Experimental Oncology Laboratory, National Cancer Institute (INCan), Mexico City, Mexico
| | - Federico Maldonado
- Thoracic Oncology Unit, National Cancer Institute (INCan), México City, Mexico
| | - Rafael Rosell
- Personalized Medicine Program, Catalan Institute of Oncology-ICO, Barcelona, Spain
| |
Collapse
|
27
|
Regulating autophagy facilitated therapeutic efficacy of the sonic Hedgehog pathway inhibition on lung adenocarcinoma through GLI2 suppression and ROS production. Cell Death Dis 2019; 10:626. [PMID: 31427566 PMCID: PMC6700102 DOI: 10.1038/s41419-019-1840-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 06/12/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022]
Abstract
Lung adenocarcinoma (LUAD), which comprises over 50% of all cases of non-small-cell lung cancer, has a poor prognosis and requires novel therapeutic approaches. The sonic Hedgehog (Shh) pathway, which plays a crucial role in differentiation, proliferation, and survival of cancer cells, is likely to be activated in LUADs, suggesting the Shh pathway as a potential therapeutic target for LUAD treatment. In this study, we reported that vismodegib, an inhibitor of the Shh pathway, only elicited minor antitumor efficacy in A549 and NCI-H1975 LUAD cells as well as in the xenograft tumors, with overexpressed GLI2 and increased autophagic activity. The aberrant autophagy in LUAD cells was further confirmed by the three main stages of autophagic flux, including the formation of autophagosomes, the fusion of autophagosomes with lysosomes, and degradation of autophagosomes in lysosomes. Furthermore, inhibition of autophagy by siRNA against ATG5 or ATG7 rescued the sensitivity of A549 and NCI-H1975 LUAD cells to vismodegib in vitro. Meanwhile, administration of the pharmaceutical inhibitor of autophagy, chloroquine, contributed to the enhanced anti-LUAD efficacy of vismodegib in vivo, probably through overproduction of ROS, acceleration of apoptosis, and suppression of GLI2 in LUAD tissues. In summary, our research revealed that downregulating autophagy facilitated the anti-LUAD efficacy of the Shh pathway suppression, thus highlighting a potential approach for LUAD therapy via simultaneously targeting the Shh signaling and autophagy pathway.
Collapse
|
28
|
Gurtner K, Kryzmien Z, Koi L, Wang M, Benes CH, Hering S, Willers H, Baumann M, Krause M. Radioresistance of KRAS/TP53-mutated lung cancer can be overcome by radiation dose escalation or EGFR tyrosine kinase inhibition in vivo. Int J Cancer 2019; 147:472-477. [PMID: 31359406 DOI: 10.1002/ijc.32598] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022]
Abstract
Recent clinical data have linked KRAS/TP53 comutation (mut) to resistance to radiotherapy (RT), but supporting laboratory in vivo evidence is lacking. In addition, the ability of different radiation doses, with/without epidermal growth factor receptor (EGFR)-directed treatment, to achieve local tumor control as a function of KRAS status is unknown. Here, we assessed clonogenic radiation survival of a panel of annotated lung cancer cell lines. KRASmut/TP53mut was associated with the highest radioresistance in nonisogenic and isogenic comparisons. To validate these findings, isogenic TP53mut NCI-H1703 models, KRASmut or wild-type (wt), were grown as heterotopic xenografts in nude mice. A clinical RT schedule of 30 fractions over 6 weeks was employed. The dose that controlled 50% of tumors (TCD50 ) was calculated. The TCD50 for KRASwt/TP53mut xenografts was 43.1 Gy whereas KRASmut/TP53mut tumors required a 1.9-fold higher TCD50 of 81.4 Gy. The EGFR inhibitor erlotinib radiosensitized KRASmut but not KRASwt cells and xenografts. The TCD50 associated with adding erlotinib to RT was 58.8 Gy for KRASmut, that is, a ~1.4-fold dose enhancement. However, the EGFR antibody cetuximab did not have a radiosensitizing effect. In conclusion, we demonstrate for the first time that KRASmut in a TP53mut background confers radioresistance when studying a clinical RT schedule and local control rather than tumor growth delay. Despite the known unresponsiveness of KRASmut tumors to EGFR inhibitors, erlotinib radiosensitized KRASmut tumors. Our data highlight KRAS/TP53 comutation as a candidate biomarker of radioresistance that can be at least partially reversed by dose escalation or the addition of a targeted agent.
Collapse
Affiliation(s)
- Kristin Gurtner
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany
| | - Zofia Kryzmien
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lydia Koi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Meng Wang
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Cyril H Benes
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | - Sandra Hering
- Institute of Legal Medicine, Medical Faculty Carl Gustav Carus, University of Technology, Dresden, Germany
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| |
Collapse
|
29
|
Gkountakos A, Sartori G, Falcone I, Piro G, Ciuffreda L, Carbone C, Tortora G, Scarpa A, Bria E, Milella M, Rosell R, Corbo V, Pilotto S. PTEN in Lung Cancer: Dealing with the Problem, Building on New Knowledge and Turning the Game Around. Cancers (Basel) 2019; 11:cancers11081141. [PMID: 31404976 PMCID: PMC6721522 DOI: 10.3390/cancers11081141] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most common malignancy and cause of cancer deaths worldwide, owing to the dismal prognosis for most affected patients. Phosphatase and tensin homolog deleted in chromosome 10 (PTEN) acts as a powerful tumor suppressor gene and even partial reduction of its levels increases cancer susceptibility. While the most validated anti-oncogenic duty of PTEN is the negative regulation of the PI3K/mTOR/Akt oncogenic signaling pathway, further tumor suppressor functions, such as chromosomal integrity and DNA repair have been reported. PTEN protein loss is a frequent event in lung cancer, but genetic alterations are not equally detected. It has been demonstrated that its expression is regulated at multiple genetic and epigenetic levels and deeper delineation of these mechanisms might provide fertile ground for upgrading lung cancer therapeutics. Today, PTEN expression is usually determined by immunohistochemistry and low protein levels have been associated with decreased survival in lung cancer. Moreover, available data involve PTEN mutations and loss of activity with resistance to targeted treatments and immunotherapy. This review discusses the current knowledge about PTEN status in lung cancer, highlighting the prevalence of its alterations in the disease, the regulatory mechanisms and the implications of PTEN on available treatment options.
Collapse
Affiliation(s)
- Anastasios Gkountakos
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
| | - Giulia Sartori
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, 37134 Verona, Italy
| | - Italia Falcone
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Geny Piro
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Ludovica Ciuffreda
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carmine Carbone
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
- Center for Applied Research on Cancer (ARC-NET), University of Verona, 37134 Verona, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Medical Oncology, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Michele Milella
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, 37134 Verona, Italy
| | - Rafael Rosell
- Germans Trias i Pujol, Health Sciences Institute and Hospital, Campus Can Ruti, 08916 Badalona, Spain
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy.
- Center for Applied Research on Cancer (ARC-NET), University of Verona, 37134 Verona, Italy.
| | - Sara Pilotto
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
30
|
Cheng M, Jolly S, Quarshie WO, Kapadia N, Vigneau FD, Kong FMS. Modern Radiation Further Improves Survival in Non-Small Cell Lung Cancer: An Analysis of 288,670 Patients. J Cancer 2019; 10:168-177. [PMID: 30662537 PMCID: PMC6329848 DOI: 10.7150/jca.26600] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Radiation therapy plays an increasingly important role in the treatment of patients with non-small-cell lung cancer (NSCLC). The purpose of the present study is to assess the survival outcomes of radiotherapy treatment compared to other treatment modalities and to determine the potential role of advanced technologies in radiotherapy on improving survival. Methods: We used cancer incidence and survival data from the Surveillance, Epidemiology, and End Results database linked to U.S. Census data to compare survival outcomes of 288,670 patients with stage I-IV NSCLC treated between 1999 and 2008. The primary endpoint was overall survival. Results: Among the 288,670 patients diagnosed with stage I-IV NSCLC, 92,374 (32%) patients received radiotherapy-almost double the number receiving surgery (51,961, 18%). Compared to other treatment groups and across all stages of NSCLC, patients treated with radiotherapy showed greater median and overall survival than patients without radiation treatment (p < 0.0001). Radiotherapy had effectively improved overall survival regardless of age, gender, and histological categorization. Radiotherapy treatment received during the recent time period 2004 - 2008 is correlated with enhanced survival compared to the earlier time period 1999 - 2003. Conclusion: Radiation therapy was correlated with increased overall survival for all patients with primary NSCLC across stages. Combined surgery and radiotherapy treatment also correlates with improved survival, signaling the value of bimodal or multimodal treatments. Population-based increases in overall survival were seen in the recent time period, suggesting the potential role of advanced radiotherapeutic technologies in enhancing survival outcomes for lung cancer patients.
Collapse
Affiliation(s)
- Monica Cheng
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN
| | - Shruti Jolly
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - William O Quarshie
- Epidemiology Research Core, Metropolitan Detroit Cancer Surveillance System, Surveillance, Epidemiology and End Results (SEER) Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI
| | - Nirav Kapadia
- Department of Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Fawn D Vigneau
- Epidemiology Research Core, Metropolitan Detroit Cancer Surveillance System, Surveillance, Epidemiology and End Results (SEER) Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI
| | - Feng-Ming Spring Kong
- Department of Radiation Oncology, Seidman Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
31
|
Tessema M, Rossi MR, Picchi MA, Yingling CM, Lin Y, Ramalingam SS, Belinsky SA. Common cancer-driver mutations and their association with abnormally methylated genes in lung adenocarcinoma from never-smokers. Lung Cancer 2018; 123:99-106. [PMID: 30089603 PMCID: PMC6331003 DOI: 10.1016/j.lungcan.2018.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/28/2018] [Accepted: 07/10/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Lung adenocarcinoma in never-smokers accounts for 15-20% of all lung cancer. Although targetable mutations are more prevalent in these tumors, the biological and clinical importance of coexisting and/or mutually exclusive abnormalities is just emerging. This study evaluates the relationships between common genetic and epigenetic aberrations in these tumors. MATERIALS AND METHODS Next-generation sequencing was employed to screen 20 commonly mutated cancer-driver genes in 112 lung adenocarcinomas from never-smokers. The relationship of these mutations with cancer-related methylation of 59 genes, and geographical/ethnic differences in the prevalence for mutations compared to multiple East Asian never-smoker lung adenocarcinoma cohorts was studied. RESULTS The most common driver mutation detected in 40% (45/112) of the tumors was EGFR, followed by TP53 (18%), SETD2 (11%), and SMARCA4 (11%). Over 72% (81/112) of the cases have mutation of at least one driver gene. While 30% (34/112) of the tumors have co-mutations of two or more genes, 42% (47/112) have only one driver gene mutation. Differences in the prevalence for some of these mutations were seen between adenocarcinomas in East Asian versus US (mainly Caucasian) never-smokers including a significantly lower rate of EGFR mutation among the US patients. Interestingly, aberrant methylation of multiple cancer-related genes was significantly associated with EGFR wildtype tumors. Among 15 differentially methylated genes by EGFR mutation, 14 were more commonly methylated in EGFR wildtype compared to mutant tumors. These findings were independently validated using publicly available data. CONCLUSION Most lung adenocarcinomas from never-smokers harbor targetable mutation/co-mutations. In the absence of EGFR mutation that drives 40% of these tumors, EGFR wildtype tumors appear to develop by acquiring aberrant promoter methylation that silences tumor-suppressor genes.
Collapse
Affiliation(s)
- Mathewos Tessema
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA.
| | - Michael R Rossi
- Departments of Pathology and Laboratory Medicine, Radiation Oncology, USA
| | - Maria A Picchi
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Christin M Yingling
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Yong Lin
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Suresh S Ramalingam
- Hematology and Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA, USA
| | - Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
32
|
Cassidy RJ, Zhang X, Switchenko JM, Patel PR, Shelton JW, Tian S, Nanda RH, Steuer CE, Pillai RN, Owonikoko TK, Ramalingam SS, Fernandez FG, Force SD, Gillespie TW, Curran WJ, Higgins KA. Health care disparities among octogenarians and nonagenarians with stage III lung cancer. Cancer 2018; 124:775-784. [PMID: 29315497 PMCID: PMC5801133 DOI: 10.1002/cncr.31077] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/14/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND To the authors' knowledge, the practice patterns for patients aged more than 80 years with stage III non-small cell lung cancer (NSCLC) is not well known. The purpose of the current study was to investigate factors predictive of and the impact on overall survival (OS) after concurrent chemoradiation (CRT) among patients aged ≥80 years with American Joint Committee on Cancer stage III NSCLC in the National Cancer Data Base (NCDB). METHODS In the NCDB, patients aged ≥80 years who were diagnosed with stage III NSCLC from 2004 to 2013 with complete treatment records were identified. Multivariable logistic regression and Cox proportional hazard models were generated and propensity score-matched analysis was used. RESULTS A total of 12,641 patients met the entry criteria: 6018 (47.6%) had stage IIIA disease and 6623 (52.4%) had stage IIIB disease. The median age at the time of diagnosis was 83.0 years (range, 80-91 years). A total of 7921 patients (62.7%) received no therapy. Black race (odds ratio [OR], 1.23; 95% confidence interval [95% CI], 1.06-1.43) and living in a lower educated census tract of residence (OR, 1.20; 95% CI, 1.03-1.40) were found to be associated with not receiving care, whereas treatment at an academic center (OR, 0.80; 95% CI, 0.70-0.92) was associated with receiving cancer-directed therapy. Receipt of no treatment (hazard ratio [HR], 2.69; 95% CI, 2.57-2.82) or definitive radiation alone (HR, 1.15; 95% CI, 1.07-1.24) compared with CRT was associated with worse OS. On propensity score matching, not receiving CRT was found to be associated with worse OS (HR, 1.58; 95% CI, 1.44-1.72). CONCLUSIONS In this NCDB analysis, approximately 62.7% of patients aged ≥80 years with stage III NSCLC received no cancer-directed care. Black race and living in a lower educated census tract were associated with not receiving cancer-directed care. OS was found to be improved in patients receiving CRT. Cancer 2018;124:775-84. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Richard J. Cassidy
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Xinyan Zhang
- Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Jeffrey M. Switchenko
- Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Pretesh R. Patel
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Joseph W. Shelton
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Sibo Tian
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Ronica H. Nanda
- University of Florida Proton Therapy Institute, Jacksonville, FL
| | - Conor E. Steuer
- Department of Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Rathi N. Pillai
- Department of Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Taofeek K. Owonikoko
- Department of Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Suresh S. Ramalingam
- Department of Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Felix G. Fernandez
- Department of Thoracic Surgery, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Seth D. Force
- Department of Thoracic Surgery, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Theresa W. Gillespie
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Walter J. Curran
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Kristin A. Higgins
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| |
Collapse
|
33
|
Wang Y, Gudikote J, Giri U, Yan J, Deng W, Ye R, Jiang W, Li N, Hobbs BP, Wang J, Swisher SG, Fujimoto J, Wistuba II, Komaki R, Heymach JV, Lin SH. RAD50 Expression Is Associated with Poor Clinical Outcomes after Radiotherapy for Resected Non-small Cell Lung Cancer. Clin Cancer Res 2018; 24:341-350. [PMID: 29030353 DOI: 10.1158/1078-0432.ccr-17-1455] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/30/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Although postoperative radiotherapy is often used to maintain local control after surgical resection and chemotherapy for locally advanced non-small cell lung cancer (NSCLC), both locoregional failure and distant metastasis remain problematic. The mechanisms of therapeutic resistance remain poorly understood.Experimental Design: We used reverse-phase protein arrays (RPPA) to profile the baseline expression of 170 total and phosphorylated proteins in 70 NSCLC cell lines to categorize pathways that may contribute to radiation resistance. Significant markers identified by RPPA were further analyzed in tissue microarrays (TMA) of specimens from 127 patients with NSCLC who had received surgery before receiving postoperative radiotherapy. Cox regression analysis and log-rank tests were used to identify potential predictive factors. We then validated the biological function of the markers in NSCLC cell lines in vitroResults: Of the 170 proteins or phospho-proteins profiled, a subset of 12 proteins was found to correlate with radiation response parameters. TMA analysis of the 12 proteins showing the greatest differences in expression in the RPPA analysis demonstrated that RAD50 had the strongest correlation with distant relapse-free survival, locoregional relapse-free survival, and disease-free survival in patients with NSCLC. We confirmed that knockdown of RAD50 sensitized NSCLC cells to radiation and that upregulation of RAD50 increased radioresistance in in vitro experiments.Conclusions: Upregulated RAD50 may be a predictor of radioresistance in patients with lung cancer who received radiotherapy. Clin Cancer Res; 24(2); 341-50. ©2017 AACR.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Jayanthi Gudikote
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Uma Giri
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Yan
- Oncology Research for Biologics and Immunotherapy Translation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weiye Deng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rui Ye
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian P Hobbs
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven H Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
34
|
Dong Z, Chen J, Yang X, Zheng W, Wang L, Fang M, Wu M, Yao M, Yao D. Ang-2 promotes lung cancer metastasis by increasing epithelial-mesenchymal transition. Oncotarget 2018; 9:12705-12717. [PMID: 29560103 PMCID: PMC5849167 DOI: 10.18632/oncotarget.24061] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the most common malignant tumor with increasing angiopoietin-2 (Ang-2) and a high rate of metastasis. However, the mechanism of Ang-2 enhancing tumor proliferation and facilitating metastasis remains to be clarified. In this study, Ang-2 expression and its gene transcription on effects of biological behaviors and epithelial-mesenchymal transition (EMT) were investigated in lung cancers. Total incidence of Ang-2 expression in the cancerous tissues was up to 91.8 % (112 of 122) with significantly higher (χ2=103.753, P2=7.883, P=0.005), differentiation degree (χ2=4.554, P=0.033), tumor node metastasis (TNM) staging (χ2=5.039, P=0.025), and 5-year survival rate (χ2 =11.220, P2=18.881, P2=0.81, P=0.776) or III & IV (χ2=1.845, P=0.174). Over-expression of Ang-2 or Ang-2 mRNA in lung A549 and NCI-H1975 cells were identified among different cell lines. When silencing Ang-2 in A549 cells with specific shRNA-1 transfection, the cell proliferation was significantly inhibited in a time-dependent manner, with up-regulating E-cadherin, down-regulating Vimentin, Twist, and Snail expression, and decreasing invasion and metastasis of cancer cell abilities, suggesting that Ang-2 promote tumor metastasis through increasing EMT, and it could be a potential target for lung cancer therapy.
Collapse
Affiliation(s)
- Zhizhen Dong
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jianrong Chen
- Department of Respiratory Medicine, Second Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xuli Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Departments of Medical Informatics & Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Miao Fang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Mengna Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Min Yao
- Departments of Medical Informatics & Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Dengfu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|