1
|
Hajimirzaei P, Tabatabaei FSA, Nasibi-Sis H, Razavian RS, Nasirinezhad F. Schwann cell transplantation for remyelination, regeneration, tissue sparing, and functional recovery in spinal cord injury: A systematic review and meta-analysis of animal studies. Exp Neurol 2025; 384:115062. [PMID: 39579959 DOI: 10.1016/j.expneurol.2024.115062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
INTRODUCTION Spinal cord injury (SCI) is a significant global health challenge that results in profound physical and neurological impairments. Despite progress in medical care, the treatment options for SCI are still restricted and often focus on symptom management rather than promoting neural repair and functional recovery. This study focused on clarifying the impact of Schwann cell (SC) transplantation on the molecular, cellular, and functional basis of recovery in animal models of SCI. MATERIAL AND METHODS Relevant studies were identified by conducting searches across multiple databases, which included PubMed, Web of Science, Scopus, and ProQuest. The data were analyzed via comprehensive meta-analysis software. We assessed the risk of bias via the SYRCLE method. RESULTS The analysis included 59 studies, 48 of which provided quantitative data. The results revealed significant improvements in various outcome variables, including protein zero structures (SMD = 1.66, 95 %CI: 0.96-2.36; p < 0.001; I2 = 49.8 %), peripherally myelinated axons (SMD = 1.81, 95 %CI: 0.99-2.63; p < 0.001; I2 = 39.3 %), biotinylated dextran amine-labeled CST only rostral (SMD = 1.31, 95 % CI: 0.50-2.12, p < 0.01, I2 = 49.7 %), fast blue-labeled reticular formation (SMD = 0.96, 95 %CI: 0.43-1.49, p < 0.001, I2 = 0.0 %), 5-hydroxytryptamine caudally (SMD = 0.83, 95 %CI: 0.36-1.29, p < 0.001, I2 = 17.2 %) and epicenter (SMD = 0.85, 95 %CI: 0.17-1.53, p < 0.05, I2 = 62.7 %), tyrosine hydroxylase caudally (SMD = 1.86, 95 %CI: 1.14-2.59, p < 0.001, I2 = 0.0 %) and epicenter (SMD = 1.82, 95 %CI: 1.18-2.47, p < 0.001, I2 = 0.0 %), cavity volume (SMD = -2.07, 95 %CI: -2.90 - -1.24, p < 0.001, I2 = 67.2 %), and Basso, Beattie, and Bresnahan (SMD = 1.26, 95 %CI: 0.93-1.58; p < 0.001; I2 = 79.4 %). CONCLUSIONS This study demonstrates the promising potential of SC transplantation as a therapeutic approach for SCI, clarifying its impact on various biological processes critical for recovery.
Collapse
Affiliation(s)
- Pooya Hajimirzaei
- Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hamed Nasibi-Sis
- Department of Medical Library and Information Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Farinaz Nasirinezhad
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, Iran University of Medical sciences, Tehran, Iran; Center of Experimental and Comparative Study, Iran University of Medical sciences, Tehran, Iran.
| |
Collapse
|
2
|
Dill-Macky AS, Lee EN, Wertheim JA, Koss KM. Glia in tissue engineering: From biomaterial tools to transplantation. Acta Biomater 2024; 190:24-49. [PMID: 39396630 DOI: 10.1016/j.actbio.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Glia are imperative in nearly every function of the nervous system, including neurotransmission, neuronal repair, development, immunity, and myelination. Recently, the reparative roles of glia in the central and peripheral nervous systems have been elucidated, suggesting a tremendous potential for these cells as novel treatments to central nervous system disorders. Glial cells often behave as 'double-edged swords' in neuroinflammation, ultimately deciding the life or death of resident cells. Compared to glia, neuronal cells have limited mobility, lack the ability to divide and self-renew, and are generally more delicate. Glia have been candidates for therapeutic use in many successful grafting studies, which have been largely focused on restoring myelin with Schwann cells, olfactory ensheathing glia, and oligodendrocytes with support from astrocytes. However, few therapeutics of this class have succeeded past clinical trials. Several tools and materials are being developed to understand and re-engineer these grafting concepts for greater success, such as extra cellular matrix-based scaffolds, bioactive peptides, biomolecular delivery systems, biomolecular discovery for neuroinflammatory mediation, composite microstructures such as artificial channels for cell trafficking, and graft enhanced electrical stimulation. Furthermore, advances in stem cell-derived cortical/cerebral organoid differentiation protocols have allowed for the generation of patient-derived glia comparable to those acquired from tissues requiring highly invasive procedures or are otherwise inaccessible. However, research on bioengineered tools that manipulate glial cells is nowhere near as comprehensive as that for systems of neurons and neural stem cells. This article explores the therapeutic potential of glia in transplantation with an emphasis on novel bioengineered tools for enhancement of their reparative properties. STATEMENT OF SIGNIFICANCE: Neural glia are responsible for a host of developmental, homeostatic, and reparative roles in the central nervous system but are often a major cause of tissue damage and cellular loss in insults and degenerative pathologies. Most glial grafts have employed Schwann cells for remyelination, but other glial with novel biomaterials have been employed, emphasizing their diverse functionality. Promising strategies have emerged, including neuroimmune mediation of glial scar tissues and facilitated migration and differentiation of stem cells for neural replacement. Herein, a comprehensive review of biomaterial tools for glia in transplantation is presented, highlighting Schwann cells, astrocytes, olfactory ensheating glia, oligodendrocytes, microglia, and ependymal cells.
Collapse
Affiliation(s)
- A S Dill-Macky
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - E N Lee
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - J A Wertheim
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - K M Koss
- Department of Neurobiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, United States; Sealy Institute for Drug Discovery, University of Texas Medical Branch, 105 11th Street Galveston, TX 77555-1110, United States.
| |
Collapse
|
3
|
Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res 2022; 10:35. [PMID: 35396505 PMCID: PMC8993811 DOI: 10.1038/s41413-022-00199-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/14/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) leads to loss of motor and sensory function below the injury level and imposes a considerable burden on patients, families, and society. Repair of the injured spinal cord has been recognized as a global medical challenge for many years. Significant progress has been made in research on the pathological mechanism of spinal cord injury. In particular, with the development of gene regulation, cell sequencing, and cell tracing technologies, in-depth explorations of the SCI microenvironment have become more feasible. However, translational studies related to repair of the injured spinal cord have not yielded significant results. This review summarizes the latest research progress on two aspects of SCI pathology: intraneuronal microenvironment imbalance and regenerative microenvironment imbalance. We also review repair strategies for the injured spinal cord based on microenvironment imbalance, including medications, cell transplantation, exosomes, tissue engineering, cell reprogramming, and rehabilitation. The current state of translational research on SCI and future directions are also discussed. The development of a combined, precise, and multitemporal strategy for repairing the injured spinal cord is a potential future direction.
Collapse
|
4
|
Seidlits SK, Liang J, Bierman RD, Sohrabi A, Karam J, Holley SM, Cepeda C, Walthers CM. Peptide-modified, hyaluronic acid-based hydrogels as a 3D culture platform for neural stem/progenitor cell engineering. J Biomed Mater Res A 2019; 107:704-718. [PMID: 30615255 PMCID: PMC8862560 DOI: 10.1002/jbm.a.36603] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 07/26/2023]
Abstract
Neural stem/progenitor cell (NS/PC)-based therapies have shown exciting potential for regeneration of the central nervous system (CNS) and NS/PC cultures represent an important resource for disease modeling and drug screening. However, significant challenges limiting clinical translation remain, such as generating large numbers of cells required for model cultures or transplantation, maintaining physiologically representative phenotypes ex vivo and directing NS/PC differentiation into specific fates. Here, we report that culture of human NS/PCs in 3D, hyaluronic acid (HA)-rich biomaterial microenvironments increased differentiation toward oligodendrocytes and neurons over 2D cultures on laminin-coated glass. Moreover, NS/PCs in 3D culture exhibited a significant reduction in differentiation into reactive astrocytes. Many NS/PC-derived neurons in 3D, HA-based hydrogels expressed synaptophysin, indicating synapse formation, and displayed electrophysiological characteristics of immature neurons. While inclusion of integrin-binding, RGD peptides into hydrogels resulted in a modest increase in numbers of viable NS/PCs, no combination of laminin-derived, adhesive peptides affected differentiation outcomes. Notably, 3D cultures of differentiating NS/PCs were maintained for at least 70 days in medium with minimal growth factor supplementation. In sum, results demonstrate the use of 3D, HA-based biomaterials for long-term expansion and differentiation of NS/PCs toward oligodendroglial and neuronal fates, while inhibiting astroglial fates. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 704-718, 2019.
Collapse
Affiliation(s)
- Stephanie K. Seidlits
- Department of Bioengineering, UCLA, Los Angels, California
- Board Stem Cell Research Center, UCLA, Los Angels, California
- Brain Research Institute, UCLA, Los Angels, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angels, California
- Center for Minimally Invasive Therapeutics, UCLA, Los Angels, California
| | - Jesse Liang
- Department of Bioengineering, UCLA, Los Angels, California
| | | | | | - Joshua Karam
- Department of Bioengineering, UCLA, Los Angels, California
| | - Sandra M. Holley
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, California
| | | |
Collapse
|
5
|
Becker K, Cana A, Baumgärtner W, Spitzbarth I. p75 Neurotrophin Receptor: A Double-Edged Sword in Pathology and Regeneration of the Central Nervous System. Vet Pathol 2018; 55:786-801. [PMID: 29940812 DOI: 10.1177/0300985818781930] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The low-affinity nerve growth factor receptor p75NTR is a major neurotrophin receptor involved in manifold and pleiotropic functions in the developing and adult central nervous system (CNS). Although known for decades, its entire functions are far from being fully elucidated. Depending on the complex interactions with other receptors and on the cellular context, p75NTR is capable of performing contradictory tasks such as mediating cell death as well as cell survival. In parallel, as a prototype marker for certain differentiation stages of Schwann cells and related CNS aldynoglial cells, p75NTR has recently gained increasing notice as a marker for cells with proposed regenerative potential in CNS diseases, such as demyelinating disease and traumatic CNS injury. Besides its pivotal role as a marker for transplantation candidate cells, recent studies in canine neuroinflammatory CNS conditions also highlight a spontaneous endogenous occurrence of p75NTR-positive glia, which potentially play a role in Schwann cell-mediated CNS remyelination. The aim of the present communication is to review the pleiotropic functions of p75NTR in the CNS with a special emphasis on its role as an immunohistochemical marker in neuropathology. Following a brief illustration of the expression of p75NTR in neurogenesis and in developed neuronal populations, the implications of p75NTR expression in astrocytes, oligodendrocytes, and microglia are addressed. A special focus is put on the role of p75NTR as a cell marker for specific differentiation stages of Schwann cells and a regeneration-promoting CNS population, collectively referred to as aldynoglia.
Collapse
Affiliation(s)
- Kathrin Becker
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Armend Cana
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Baumgärtner
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Ingo Spitzbarth
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
6
|
Espinosa-Hoyos D, Jagielska A, Homan KA, Du H, Busbee T, Anderson DG, Fang NX, Lewis JA, Van Vliet KJ. Engineered 3D-printed artificial axons. Sci Rep 2018; 8:478. [PMID: 29323240 PMCID: PMC5765144 DOI: 10.1038/s41598-017-18744-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/16/2017] [Indexed: 12/02/2022] Open
Abstract
Myelination is critical for transduction of neuronal signals, neuron survival and normal function of the nervous system. Myelin disorders account for many debilitating neurological diseases such as multiple sclerosis and leukodystrophies. The lack of experimental models and tools to observe and manipulate this process in vitro has constrained progress in understanding and promoting myelination, and ultimately developing effective remyelination therapies. To address this problem, we developed synthetic mimics of neuronal axons, representing key geometric, mechanical, and surface chemistry components of biological axons. These artificial axons exhibit low mechanical stiffness approaching that of a human axon, over unsupported spans that facilitate engagement and wrapping by glial cells, to enable study of myelination in environments reflecting mechanical cues that neurons present in vivo. Our 3D printing approach provides the capacity to vary independently the complex features of the artificial axons that can reflect specific states of development, disease, or injury. Here, we demonstrate that oligodendrocytes' production and wrapping of myelin depend on artificial axon stiffness, diameter, and ligand coating. This biofidelic platform provides direct visualization and quantification of myelin formation and myelinating cells' response to both physical cues and pharmacological agents.
Collapse
Affiliation(s)
- Daniela Espinosa-Hoyos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biosystems & Micromechanics Interdisciplinary Research Group (BioSyM), Singapore-MIT Alliance in Research & Technology (SMART), Singapore, Singapore
| | - Anna Jagielska
- Biosystems & Micromechanics Interdisciplinary Research Group (BioSyM), Singapore-MIT Alliance in Research & Technology (SMART), Singapore, Singapore
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kimberly A Homan
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Harvard, MA, 02138, USA
| | - Huifeng Du
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Travis Busbee
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Harvard, MA, 02138, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, 02139, USA
| | - Nicholas X Fang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jennifer A Lewis
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
- School of Engineering and Applied Sciences, Harvard University, Harvard, MA, 02138, USA
| | - Krystyn J Van Vliet
- Biosystems & Micromechanics Interdisciplinary Research Group (BioSyM), Singapore-MIT Alliance in Research & Technology (SMART), Singapore, Singapore.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Abstract
Adult Schwann cells (SCs) can provide both a permissive substrate for axonal growth and a source of cells to ensheath and myelinate axons when transplanted into the injured spinal cord. Multiple studies have demonstrated that SC transplants can be used as part of a combinatorial approach to repairing the injured spinal cord. Here, we describe the protocols for collection and transplantation of adult rat primary SCs into the injured spinal cord. Protocols are included for the tissue culture procedures necessary for collection, quantification, and suspension of the cells for transplantation and for the surgical procedures for spinal cord injury at thoracic level nine (T9), reexposure of the injury site for delayed transplantation, and injection of the cells into the spinal cord.
Collapse
Affiliation(s)
- Ying Dai
- Burke Medical Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Caitlin E Hill
- Burke Medical Research Institute, White Plains, NY, USA. .,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Chronic TNFα Exposure Induces Robust Proliferation of Olfactory Ensheathing Cells, but not Schwann Cells. Neurochem Res 2017; 42:2595-2609. [PMID: 28497341 DOI: 10.1007/s11064-017-2285-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/21/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022]
Abstract
TNFα is persistently elevated in many injury and disease conditions. Previous reports of cytotoxicity of TNFα for oligodendrocytes and their progenitors suggest that the poor endogenous remyelination in patients with traumatic injury or multiple sclerosis may be due in part to persistent inflammation. Understanding the effects of inflammatory cytokines on potential cell therapy candidates is therefore important for evaluating the feasibility of their use. In this study, we assessed the effects of long term exposure to TNFα on viability, proliferation, migration and TNFα receptor expression of cultured rat olfactory ensheathing cells (OECs) and Schwann cells (SCs). Although OECs and SCs transplanted into the CNS produce similar myelinating phenotypes, and might be expected to have similar therapeutic uses, we report that they have very different sensitivities to TNFα. OECs exhibited positive proliferative responses to TNFα over a much broader range of concentrations than SCs. Low TNFα concentrations increased proliferation and migration of both OECs and SCs, but SC number declined in the presence of 100 ng/ml or higher concentrations of TNFα. In contrast, OECs exhibited enhanced proliferation even at high TNFα concentrations (up to 1 µg/ml) and showed no evidence of TNF cytotoxicity even at 4 weeks post-treatment. Furthermore, while both OECs and SCs expressed TNFαR1 and TNFαR2, TNFα receptor levels were downregulated in OECs after exposure to100 ng/ml TNFα for 5-7 days, but were either elevated or unchanged in SCs. These results imply that OECs may be a more suitable cell therapy candidate if transplanted into areas with persistent inflammation.
Collapse
|
9
|
Cell transplantation therapy for spinal cord injury. Nat Neurosci 2017; 20:637-647. [DOI: 10.1038/nn.4541] [Citation(s) in RCA: 435] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023]
|
10
|
Liu H, Lv P, Zhu Y, Wu H, Zhang K, Xu F, Zheng L, Zhao J. Salidroside promotes peripheral nerve regeneration based on tissue engineering strategy using Schwann cells and PLGA: in vitro and in vivo. Sci Rep 2017; 7:39869. [PMID: 28054637 PMCID: PMC5213129 DOI: 10.1038/srep39869] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Salidriside (SDS), a phenylpropanoid glycoside derived from Rhodiola rosea L, has been shown to be neuroprotective in many studies, which may be promising in nerve recovery. In this study, the neuroprotective effects of SDS on engineered nerve constructed by Schwann cells (SCs) and Poly (lactic-co-glycolic acid) (PLGA) were studied in vitro. We further investigated the effect of combinational therapy of SDS and PLGA/SCs based tissue engineering on peripheral nerve regeneration based on the rat model of nerve injury by sciatic transection. The results showed that SDS dramatically enhanced the proliferation and function of SCs. The underlying mechanism may be that SDS affects SCs growth through the modulation of neurotrophic factors (BDNF, GDNF and CNTF). 12 weeks after implantation with a 12 mm gap of sciatic nerve injury, SDS-PLGA/SCs achieved satisfying outcomes of nerve regeneration, as evidenced by morphological and functional improvements upon therapy by SDS, PLGA/SCs or direct suture group assessed by sciatic function index, nerve conduction assay, HE staining and immunohistochemical analysis. Our results demonstrated the significant role of introducing SDS into neural tissue engineering to promote nerve regeneration.
Collapse
Affiliation(s)
- Hui Liu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, China.,The Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, China
| | - Peizhen Lv
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, China.,Department of Spine Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongjia Zhu
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huayu Wu
- Department of Cell Biology &Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning, China
| | - Kun Zhang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fuben Xu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, China.,The Medical and Scientific Research Center, Guangxi Medical University, Nanning, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, China.,The Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, China.,The Medical and Scientific Research Center, Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, China.,The Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
11
|
Lin XY, Lai BQ, Zeng X, Che MT, Ling EA, Wu W, Zeng YS. Cell Transplantation and Neuroengineering Approach for Spinal Cord Injury Treatment: A Summary of Current Laboratory Findings and Review of Literature. Cell Transplant 2016; 25:1425-38. [DOI: 10.3727/096368916x690836] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Spinal cord injury (SCI) can cause severe traumatic injury to the central nervous system (CNS). Current therapeutic effects achieved for SCI in clinical medicine show that there is still a long way to go to reach the desired goal of full or significant functional recovery. In basic medical research, however, cell transplantation, gene therapy, application of cytokines, and biomaterial scaffolds have been widely used and investigated as treatments for SCI. All of these strategies when used separately would help rebuild, to some extent, the neural circuits in the lesion area of the spinal cord. In light of this, it is generally accepted that a combined treatment may be a more effective strategy. This review focuses primarily on our recent series of work on transplantation of Schwann cells and adult stem cells, and transplantation of stem cell-derived neural network scaffolds with functional synapses. Arising from this, an artificial neural network (an exogenous neuronal relay) has been designed and fabricated by us—a biomaterial scaffold implanted with Schwann cells modified by the neurotrophin-3 (NT-3) gene and adult stem cells modified with the TrkC (receptor of NT-3) gene. More importantly, experimental evidence suggests that the novel artificial network can integrate with the host tissue and serve as an exogenous neuronal relay for signal transfer and functional improvement of SCI.
Collapse
Affiliation(s)
- Xin-Yi Lin
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Jinan University–Hong Kong University Joint Laboratory, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
- Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
LIU GUOMIN, WANG XUKAI, SHAO GUOXI, LIU QINYI. Genetically modified Schwann cells producing glial cell line-derived neurotrophic factor inhibit neuronal apoptosis in rat spinal cord injury. Mol Med Rep 2014; 9:1305-12. [DOI: 10.3892/mmr.2014.1963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/31/2014] [Indexed: 11/06/2022] Open
|
13
|
Lankford KL, Brown RJ, Sasaki M, Kocsis JD. Olfactory ensheathing cells, but not Schwann cells, proliferate and migrate extensively within moderately X-irradiated juvenile rat brain. Glia 2013; 62:52-63. [PMID: 24166823 DOI: 10.1002/glia.22583] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 11/09/2022]
Abstract
Olfactory ensheathing cells (OECs) and Schwann cells (SCs) share many characteristics, including the ability to promote neuronal repair when transplanted directly into spinal cord lesions, but poor survival and migration when transplanted into intact adult spinal cord. Interestingly, transplanted OECs, but not SCs, migrate extensively within the X-irradiated (40 Gy) adult rat spinal cord, suggesting distinct responses to environmental cues [Lankford et al., (2008) GLIA 56:1664-1678]. In this study, GFP-expressing OECs and SCs were transplanted into juvenile rat brains (hippocampus) subjected to a moderate radiation dose (16 Gy). As in the adult spinal cord, OECs, but not SCs, migrated extensively within the irradiated juvenile rat brain. Unbiased stereology revealed that the number of OECs observed within irradiated rat brains three weeks after transplantation was as much as 20 times greater than the number of cells transplanted, and the cells distributed extensively within the brain. In conjunction with the OEC dispersion, the number of activated microglia in OEC-transplanted irradiated brains was reduced. Unlike in the intact adult spinal cord, both OECs and SCs showed some, but limited, migration within nonirradiated rat brains, suggesting that the developing brain may be a more permissive environment for cell migration than the adult CNS. These results show that OECs display unique migratory, proliferative, and microglia interaction properties as compared with SCs when transplanted into the moderately X-irradiated brain.
Collapse
Affiliation(s)
- Karen L Lankford
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | | | | | | |
Collapse
|
14
|
Li BC, Xu C, Zhang JY, Li Y, Duan ZX. Differing Schwann Cells and Olfactory Ensheathing Cells Behaviors, from Interacting with Astrocyte, Produce Similar Improvements in Contused Rat Spinal Cord's Motor Function. J Mol Neurosci 2012; 48:35-44. [DOI: 10.1007/s12031-012-9740-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
|
15
|
Saxena A, Ackbar R, Höllwarth M. Tissue Engineering for the Neonatal and Pediatric Patients. JOURNAL OF HEALTHCARE ENGINEERING 2012. [DOI: 10.1260/2040-2295.3.1.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Saberi H, Firouzi M, Habibi Z, Moshayedi P, Aghayan HR, Arjmand B, Hosseini K, Razavi HE, Yekaninejad MS. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J Neurosurg Spine 2011; 15:515-25. [PMID: 21800956 DOI: 10.3171/2011.6.spine10917] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Many experimental studies on spinal cord injuries (SCIs) support behavioral improvement after Schwann cell treatment. This study was conducted to evaluate safety issues 2 years after intramedullary Schwann cell transplantation in 33 consecutively selected patients with SCI. METHODS Of 356 patients with SCIs who had completed at least 6 months of a conventional rehabilitation program and who were screened for the study criteria, 33 were enrolled. After giving their informed consent, they volunteered for participation. They underwent sural nerve harvesting and intramedullary injection of a processed Schwann cell solution. Outcome assessments included a general health questionnaire, neurological examination, and functional recordings in terms of American Spinal Injury Association (ASIA) and Functional Independence Measure scoring, which were documented by independent observers. There were 24 patients with thoracic and 9 with cervical injuries. Sixteen patients were categorized in ASIA Grade A, and the 17 remaining participants had ASIA Grade B. RESULTS There were no cases of deep infection, and the follow-up MR imaging studies obtained at 2 years did not reveal any deformity related to the procedure. There was no case of permanent neurological worsening or any infectious or viral complications. No new increment in syrinx size or abnormal tissue and/or tumor formation were observed on contrast-enhanced MR imaging studies performed 2 years after the treatment. CONCLUSIONS Preliminary results, especially in terms of safety, seem to be promising, paving the way for future cell therapy trials.
Collapse
Affiliation(s)
- Hooshang Saberi
- Department of Neurosurgery, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wewetzer K, Radtke C, Kocsis J, Baumgärtner W. Species-specific control of cellular proliferation and the impact of large animal models for the use of olfactory ensheathing cells and Schwann cells in spinal cord repair. Exp Neurol 2011; 229:80-7. [DOI: 10.1016/j.expneurol.2010.08.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/22/2010] [Indexed: 10/19/2022]
|
18
|
Radtke C, Allmeling C, Waldmann KH, Reimers K, Thies K, Schenk HC, Hillmer A, Guggenheim M, Brandes G, Vogt PM. Spider silk constructs enhance axonal regeneration and remyelination in long nerve defects in sheep. PLoS One 2011; 6:e16990. [PMID: 21364921 PMCID: PMC3045382 DOI: 10.1371/journal.pone.0016990] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 01/18/2011] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Surgical reapposition of peripheral nerve results in some axonal regeneration and functional recovery, but the clinical outcome in long distance nerve defects is disappointing and research continues to utilize further interventional approaches to optimize functional recovery. We describe the use of nerve constructs consisting of decellularized vein grafts filled with spider silk fibers as a guiding material to bridge a 6.0 cm tibial nerve defect in adult sheep. METHODOLOGY/PRINCIPAL FINDINGS The nerve constructs were compared to autologous nerve grafts. Regeneration was evaluated for clinical, electrophysiological and histological outcome. Electrophysiological recordings were obtained at 6 months and 10 months post surgery in each group. Ten months later, the nerves were removed and prepared for immunostaining, electrophysiological and electron microscopy. Immunostaining for sodium channel (NaV 1.6) was used to define nodes of Ranvier on regenerated axons in combination with anti-S100 and neurofilament. Anti-S100 was used to identify Schwann cells. Axons regenerated through the constructs and were myelinated indicating migration of Schwann cells into the constructs. Nodes of Ranvier between myelin segments were observed and identified by intense sodium channel (NaV 1.6) staining on the regenerated axons. There was no significant difference in electrophysiological results between control autologous experimental and construct implantation indicating that our construct are an effective alternative to autologous nerve transplantation. CONCLUSIONS/SIGNIFICANCE This study demonstrates that spider silk enhances Schwann cell migration, axonal regrowth and remyelination including electrophysiological recovery in a long-distance peripheral nerve gap model resulting in functional recovery. This improvement in nerve regeneration could have significant clinical implications for reconstructive nerve surgery.
Collapse
Affiliation(s)
- Christine Radtke
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sasaki M, Lankford KL, Brown RJ, Ruddle NH, Kocsis JD. Focal experimental autoimmune encephalomyelitis in the lewis rat induced by immunization with myelin oligodendrocyte glycoprotein and intraspinal injection of vascular endothelial growth factor. Glia 2010; 58:1523-31. [DOI: 10.1002/glia.21026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Soluble neuregulin-1 has bifunctional, concentration-dependent effects on Schwann cell myelination. J Neurosci 2010; 30:6122-31. [PMID: 20427670 DOI: 10.1523/jneurosci.1681-09.2010] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Members of the neuregulin-1 (Nrg1) growth factor family play important roles during Schwann cell development. Recently, it has been shown that the membrane-bound type III isoform is required for Schwann cell myelination. Interestingly, however, Nrg1 type II, a soluble isoform, inhibits the process. The mechanisms underlying these isoform-specific effects are unknown. It is possible that myelination requires juxtacrine Nrg1 signaling provided by the membrane-bound isoform, whereas paracrine stimulation by soluble Nrg1 inhibits the process. To investigate this, we asked whether Nrg1 type III provided in a paracrine manner would promote or inhibit myelination. We found that soluble Nrg1 type III enhanced myelination in Schwann cell-neuron cocultures. It improved myelination of Nrg1 type III(+/-) neurons and induced myelination on normally nonmyelinated sympathetic neurons. However, soluble Nrg1 type III failed to induce myelination on Nrg1 type III(-/-) neurons. To our surprise, low concentrations of Nrg1 type II also elicited a similar promyelinating effect. At high doses, however, both type II and III isoforms inhibited myelination and increased c-Jun expression in a manner dependent on Mek/Erk (mitogen-activated protein kinase kinase/extracellular signal-regulated kinase) activation. These results indicate that paracrine Nrg1 signaling provides concentration-dependent bifunctional effects on Schwann cell myelination. Furthermore, our studies suggest that there may be two distinct steps in Schwann cell myelination: an initial phase dependent on juxtacrine Nrg1 signaling and a later phase that can be promoted by paracrine stimulation.
Collapse
|
21
|
Radtke C, Lankford KL, Wewetzer K, Imaizumi T, Fodor WL, Kocsis JD. Impaired spinal cord remyelination by long-term cultured adult porcine olfactory ensheathing cells correlates with altered in vitro phenotypic properties. Xenotransplantation 2010; 17:71-80. [DOI: 10.1111/j.1399-3089.2009.00562.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Kocsis JD, Lankford KL, Sasaki M, Radtke C. Unique in vivo properties of olfactory ensheathing cells that may contribute to neural repair and protection following spinal cord injury. Neurosci Lett 2009; 456:137-42. [PMID: 19429149 DOI: 10.1016/j.neulet.2008.08.093] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 08/06/2008] [Accepted: 08/15/2008] [Indexed: 12/19/2022]
Abstract
Olfactory ensheathing cells (OECs) are specialized glial cells that guide olfactory receptor axons from the nasal mucosa into the brain where they make synaptic contacts in the olfactory bulb. While a number of studies have demonstrated that in vivo transplantation of OECs into injured spinal cord results in improved functional outcome, precise cellular mechanisms underlying this improvement are not fully understood. Current thinking is that OECs can encourage axonal regeneration, provide trophic support for injured neurons and for angiogenesis, and remyelinate axons. However, Schwann cell (SC) transplantation also results in significant functional improvement in animal models of spinal cord injury. In culture SCs and OECs share a number of phenotypic properties such as expression of the low affinity NGF receptor (p75). An important area of research has been to distinguish potential differences in the in vivo behavior of OECs and SCs to determine if one cell type may offer greater advantage as a cellular therapeutic candidate. In this review we focus on several unique features of OECs when they are transplanted into the spinal cord.
Collapse
Affiliation(s)
- Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06516, USA.
| | | | | | | |
Collapse
|
23
|
Radtke C, Aizer AA, Agulian SK, Lankford KL, Vogt PM, Kocsis JD. Transplantation of olfactory ensheathing cells enhances peripheral nerve regeneration after microsurgical nerve repair. Brain Res 2008; 1254:10-7. [PMID: 19059220 DOI: 10.1016/j.brainres.2008.11.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/24/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
While axonal regeneration is more successful in peripheral nerve than in the central nervous system, it is by no means complete and research to enhance peripheral nerve regeneration is clinically important. Olfactory ensheathing cells (OECs) are known to enhance axonal regeneration and to produce myelin after transplantation. In contrast to Schwann cells their migratory potential and ability to penetrate glial scars is higher. This study evaluated the effect of OEC transplantation on microsurgically repaired sciatic nerves. Rat sciatic nerves were transected followed by microsurgical repair and transplantation of OECs or injection of medium without cells. Twenty-one days later the nerves were removed and prepared for either histology or electrophysiological analysis. Footprint analysis was carried out at 7, 14 and 21 days. The OECs survived and integrated into the repaired nerves as indicated by eGFP-expressing cells aligned with neurofilament identified axons bridging the repair site. Moreover, regenerated axons were myelinated by the transplanted OECs and nodes of Ranvier were formed. Conduction velocity in the OEC transplant group was increased in comparison to the microsurgical repair alone, and improved stepping was observed in the transplant group. These results suggest that presentation of OECs at the time of nerve injury enhances regeneration and improves functional outcome. Even a modest improvement in nerve regeneration could have significant clinical implications for reconstructive nerve surgery.
Collapse
Affiliation(s)
- Christine Radtke
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
24
|
Lankford KL, Sasaki M, Radtke C, Kocsis JD. Olfactory ensheathing cells exhibit unique migratory, phagocytic, and myelinating properties in the X-irradiated spinal cord not shared by Schwann cells. Glia 2008; 56:1664-78. [DOI: 10.1002/glia.20718] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Kozlowski P, Raj D, Liu J, Lam C, Yung AC, Tetzlaff W. Characterizing White Matter Damage in Rat Spinal Cord with Quantitative MRI and Histology. J Neurotrauma 2008; 25:653-76. [DOI: 10.1089/neu.2007.0462] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Piotr Kozlowski
- Departments of Radiology and Urologic Sciences, University of British Columbia, Vancouver, Canada
- University of British Columbia MRI Research Centre, Vancouver, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada
| | - Disha Raj
- University of British Columbia MRI Research Centre, Vancouver, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada
| | - Clarrie Lam
- International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada
| | - Andrew C. Yung
- University of British Columbia MRI Research Centre, Vancouver, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada
- Departments of Zoology and Surgery, University of British Columbia, Vancouver, Canada
| |
Collapse
|
26
|
Kozlowski P, Liu J, Yung AC, Tetzlaff W. High-resolution myelin water measurements in rat spinal cord. Magn Reson Med 2008; 59:796-802. [PMID: 18302247 DOI: 10.1002/mrm.21527] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Piotr Kozlowski
- University of British Columbia, Department of Radiology, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|
27
|
Pearse DD, Sanchez AR, Pereira FC, Andrade CM, Puzis R, Pressman Y, Golden K, Kitay BM, Blits B, Wood PM, Bunge MB. Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: Survival, migration, axon association, and functional recovery. Glia 2007; 55:976-1000. [PMID: 17526000 DOI: 10.1002/glia.20490] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Schwann cells (SCs) and olfactory ensheathing glia (OEG) have shown promise for spinal cord injury repair. We sought their in vivo identification following transplantation into the contused adult rat spinal cord at 1 week post-injury by: (i) DNA in situ hybridization (ISH) with a Y-chromosome specific probe to identify male transplants in female rats and (ii) lentiviral vector-mediated expression of EGFP. Survival, migration, and axon-glia association were quantified from 3 days to 9 weeks post-transplantation. At 3 weeks after transplantation into the lesion, a 60-90% loss of grafted cells was observed. OEG-only grafts survived very poorly within the lesion (<5%); injection outside the lesion led to a 60% survival rate, implying that the injury milieu was hostile to transplanted cells and or prevented their proliferation. At later times post-grafting, p75(+)/EGFP(-) cells in the lesion outnumbered EGFP(+) cells in all paradigms, evidence of significant host SC infiltration. SCs and OEG injected into the injury failed to migrate from the lesion. Injection of OEG outside of the injury resulted in their migration into the SC-injected injury site, not via normal-appearing host tissue but along the pia or via the central canal. In all paradigms, host axons were seen in association with or ensheathed by transplanted glia. Numerous myelinated axons were found within regions of grafted SCs but not OEG. The current study details the temporal survival, migration, axon association of SCs and OEG, and functional recovery after grafting into the contused spinal cord, research previously complicated due to a lack of quality, long-term markers for cell tracking in vivo.
Collapse
Affiliation(s)
- Damien D Pearse
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vroemen M, Caioni M, Bogdahn U, Weidner N. Failure of Schwann cells as supporting cells for adult neural progenitor cell grafts in the acutely injured spinal cord. Cell Tissue Res 2006; 327:1-13. [PMID: 16941122 DOI: 10.1007/s00441-006-0252-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 05/18/2006] [Indexed: 11/27/2022]
Abstract
Adult neural progenitor cells (NPC) co-grafted with fibroblasts replace cystic lesion defects and promote cell-contact-mediated axonal regeneration in the acutely injured spinal cord. Fibroblasts are required as a platform to maintain NPC within the lesion; however, they are suspected to create an inhospitable milieu for regenerating central nervous system (CNS) axons. Therefore, we thought to replace fibroblasts by primary Schwann cells, which might serve as a superior scaffold to maintain NPC within the lesion and might further enhance axon regrowth and remyelination following spinal cord injury. Adult rats underwent a cervical dorsal column transection immediately followed by transplantation of either NPC/Schwann cell or NPC/Schwann cell/fibroblast co-grafts. Animals receiving Schwann cell or fibroblast grafts alone, or Schwann cell/fibroblast co-grafts served as controls. At 3 weeks after injury/transplantation, histological analysis revealed that only fibroblast-containing grafts were able to replace the cystic lesion defect. In both co-cultures and co-grafts, Schwann cells and NPC were segregated. Almost all NPC migrated out of the graft into the adjacent host spinal cord. As a consequence, only peripheral-type myelin, but no CNS-type myelin, was detected within co-grafts containing NPC/Schwann cells. Corticospinal axon regeneration into Schwann-cell-containing co-grafts was reduced. Taken together, Schwann cells within NPC grafts contribute to remyelination. However, Schwann cells fail as a supporting platform to maintain NPC within the graft and impair CNS axon regeneration; this makes them an unfavorable candidate to support/augment NPC grafts following spinal cord injury.
Collapse
Affiliation(s)
- Maurice Vroemen
- Department of Neurology, University of Regensburg, Universitätsstrasse 84, 93053 Regensburg, Germany
| | | | | | | |
Collapse
|
29
|
Black JA, Waxman SG, Smith KJ. Remyelination of dorsal column axons by endogenous Schwann cells restores the normal pattern of Nav1.6 and Kv1.2 at nodes of Ranvier. ACTA ACUST UNITED AC 2006; 129:1319-29. [PMID: 16537565 DOI: 10.1093/brain/awl057] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Demyelination of CNS axons occurs in a number of pathological conditions, including multiple sclerosis and contusion-type spinal cord injury. The demyelination can be repaired by remyelination in both humans and rodents, and even within the CNS remyelination can be achieved by endogenous and/or exogenous Schwann cells, the myelinating cells of the PNS. Remyelinated axons can often conduct impulses securely, but the organization of ion channels at long-term remyelinated nodes is not known. In the present study, the expression of voltage-gated sodium (Na(v)) and potassium (K(v)) channels along central axons remyelinated by endogenous Schwann cells has been studied in lesions induced more than 1 year previously by the intraspinal injection of ethidium bromide (EB). The expression of the channels at long-term nodes formed by Schwann cell remyelination has been compared with that present in nascent nodes formed in the adult at 18 and 23 days post-EB injection. Immunohistochemical studies revealed that long-term nodes formed by Schwann cell remyelination exhibit a clustering of Na(v)1.6 sodium channels within the nodal membrane, with the Shaker-type potassium channel K(v)1.2 segregated within the juxtaparanodal region, similar to the arrangement at normal mature CNS nodes. Na(v)1.2 was not detected at nodes formed by Schwann cells at any stage of their development. Moreover, Na(v)1.6, but not Na(v)1.2, was clustered at nascent nodes formed by remyelinating Schwann cells 18 and 23 days following EB injection. These observations show that endogenous Schwann cells can establish and maintain nodes of Ranvier on central axons for over one year, and that the nodes exhibit an apparently normal distribution of sodium and potassium channels, with Na(v)1.6 the predominant subtype of sodium channel present at such nodes at all stages of their development.
Collapse
Affiliation(s)
- Joel A Black
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale School of Medicine, New Haven, 2 Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT 06518, USA.
| | | | | |
Collapse
|
30
|
Macica CM, Liang G, Lankford KL, Broadus AE. Induction of parathyroid hormone-related peptide following peripheral nerve injury: Role as a modulator of Schwann cell phenotype. Glia 2006; 53:637-48. [PMID: 16470617 DOI: 10.1002/glia.20319] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parathyroid hormone-related peptide (PTHrP) is widely distributed in the rat nervous system, including the peripheral nervous system, where its function is unknown. PTHrP mRNA expression has recently been shown to be significantly elevated following axotomy of sympathetic ganglia, although the role of PTHrP was not investigated. The role of PTHrP in peripheral nerve injury was investigated in this study using the sciatic nerve injury model and dorsal root ganglion (DRG) explant model of nerve regeneration. We find that PTHrP is a constitutively secreted peptide of proliferating Schwann cells and that the PTHrP receptor (PTH1R) mRNA is expressed in isolated DRG and in sciatic nerve. Using the sciatic nerve injury model, we show that PTHrP is significantly upregulated in DRG and in sciatic nerve. In addition, in situ hybridization revealed significant localization of PTHrP mRNA to Schwann cells in the injured sciatic nerve. We also find that PTHrP causes a dramatic increase in the number of Schwann cells that align with and bundle regrowing axons in explants, characteristic of immature, dedifferentiated Schwann cells. In addition to stimulating migration of Schwann cells along the axonal membrane, PTHrP also stimulates migration on a type 1 collagen matrix. Furthermore, treatment of purified Schwann cell cultures with PTHrP results in the rapid phosphorylation of the cAMP response element protein, CREB. We propose that PTHrP acts by promoting the dedifferentiation of Schwann cells, a critical requirement for successful nerve regeneration and an effect consistent with known PTHrP functions in other cellular differentiation programs.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/metabolism
- Disease Models, Animal
- Ganglia, Spinal/cytology
- Ganglia, Spinal/injuries
- Ganglia, Spinal/metabolism
- Growth Cones/metabolism
- Ligation
- Mice
- Nerve Regeneration/drug effects
- Nerve Regeneration/physiology
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Parathyroid Hormone-Related Protein/metabolism
- Parathyroid Hormone-Related Protein/pharmacology
- Peripheral Nerve Injuries
- Peripheral Nerves/cytology
- Peripheral Nerves/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Parathyroid Hormone, Type 1/genetics
- Schwann Cells/cytology
- Schwann Cells/drug effects
- Schwann Cells/metabolism
- Sciatic Nerve/cytology
- Sciatic Nerve/injuries
- Sciatic Nerve/metabolism
- Sciatic Neuropathy/metabolism
- Sciatic Neuropathy/physiopathology
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Carolyn M Macica
- Department of Internal Medicine, Division of Endocrinology, Yale University School of Medicine, New Haven, CT 06520-8020, USA.
| | | | | | | |
Collapse
|
31
|
Radtke C, Akiyama Y, Lankford KL, Vogt PM, Krause DS, Kocsis JD. Integration of engrafted Schwann cells into injured peripheral nerve: axonal association and nodal formation on regenerated axons. Neurosci Lett 2005; 387:85-9. [PMID: 16084645 PMCID: PMC2605373 DOI: 10.1016/j.neulet.2005.06.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 06/21/2005] [Accepted: 06/24/2005] [Indexed: 11/25/2022]
Abstract
Transplantation of myelin-forming cells can remyelinate axons, but little is known of the sodium channel organization of axons myelinated by donor cells. Sciatic nerve axons of female wild type mice were transected by a crush injury and Schwann cells (SCs) from green fluorescence protein (GFP)-expressing male mice were transplanted adjacent to the crush site. The male donor cells were identified by GFP fluorescence and fluorescence in situ hybridization (FISH) for Y chromosome. In nerves of GFP-expressing mice, GFP was observed in the axoplasm and in the cytoplasmic compartments of the Schwann cells, but not in the myelin. Following transplantation of GFP-SCs into crushed nerve of wild type mice, immuno-electron microscopic analysis indicated that GFP was observed in the cytoplasmic compartments of engrafted Schwann cells which formed myelin. Nodal and paranodal regions of the axons myelinated by the GFP-SCs were identified by Na(v)1.6 sodium channel and Caspr immunostaining, respectively. Nuclear identification of the Y chromosome by FISH confirmed the donor origin of the myelin-forming cells. These results indicate that engrafted GFP-SCs participate in myelination of regenerated peripheral nerve fibers and that Na(v)1.6 sodium channel, which is the dominant sodium channel at normal nodes, is reconstituted on the regenerated axons.
Collapse
Affiliation(s)
- Christine Radtke
- Department of Neurology, LCI 7, P.O. Box 208018, Yale University School of Medicine, New Haven, CT 06516, USA
- Yale University School of Medicine, Neuroscience Research Center (127A), VA Connecticut Healthcare System, West Haven, CT 06516, USA
- Department of Plastic, Hand- and Reconstructive Surgery, Medical School Hannover, Hannover, Germany
| | - Yukinori Akiyama
- Department of Neurology, LCI 7, P.O. Box 208018, Yale University School of Medicine, New Haven, CT 06516, USA
- Yale University School of Medicine, Neuroscience Research Center (127A), VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Karen L. Lankford
- Department of Neurology, LCI 7, P.O. Box 208018, Yale University School of Medicine, New Haven, CT 06516, USA
- Yale University School of Medicine, Neuroscience Research Center (127A), VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Peter M. Vogt
- Department of Plastic, Hand- and Reconstructive Surgery, Medical School Hannover, Hannover, Germany
| | - Diane S. Krause
- Laboratory Medicine and Pathology, Yale University School of Medicine, New Haven, CT 06516, USA
| | - Jeffery D. Kocsis
- Department of Neurology, LCI 7, P.O. Box 208018, Yale University School of Medicine, New Haven, CT 06516, USA
- Yale University School of Medicine, Neuroscience Research Center (127A), VA Connecticut Healthcare System, West Haven, CT 06516, USA
- Corresponding author. Tel.: +1 203 937 3802; fax: +1 203 937 3801., E-mail address: (J.D. Kocsis)
| |
Collapse
|
32
|
Sasaki M, Lankford KL, Zemedkun M, Kocsis JD. Identified olfactory ensheathing cells transplanted into the transected dorsal funiculus bridge the lesion and form myelin. J Neurosci 2005; 24:8485-93. [PMID: 15456822 PMCID: PMC2605369 DOI: 10.1523/jneurosci.1998-04.2004] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Olfactory ensheathing cells (OECs) prepared from the olfactory bulbs of adult transgenic Sprague Dawley (SD) rats expressing green fluorescent protein (GFP) were transplanted into a dorsal spinal cord transection lesion of SD rats. Five weeks after transplantation, the cells survived within the lesion zone and oriented longitudinally along axons that bridged the transection site. Although the highest density of GFP cells was within the lesion zone, some cells distributed longitudinally outside of the lesion area. Myelinated axons spanning the lesion were observed in discrete bundles encapsulated by a cellular element. Electron micrographs of spinal cords immunostained with an anti-GFP antibody indicated that a majority of the peripheral-like myelinated axons were derived from donor OECs. Open-field locomotor behavior was significantly improved in the OEC transplantation group. Thus, transplanted OECs derived from the adult olfactory bulb can survive and orient longitudinally across a spinal cord transection site and form myelin. This pattern of repair is associated with improved locomotion.
Collapse
Affiliation(s)
- Masanori Sasaki
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
33
|
Grimpe B, Pressman Y, Lupa MD, Horn KP, Bunge MB, Silver J. The role of proteoglycans in Schwann cell/astrocyte interactions and in regeneration failure at PNS/CNS interfaces. Mol Cell Neurosci 2005; 28:18-29. [PMID: 15607938 DOI: 10.1016/j.mcn.2004.06.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 06/15/2004] [Accepted: 06/15/2004] [Indexed: 11/19/2022] Open
Abstract
In the dorsal root entry zone (DREZ) peripheral sensory axons fail to regenerate past the peripheral nervous system/central nervous system (PNS/CNS) interface. Additionally, in the spinal cord, central fibers that regenerate into Schwann cell (SC) bridges can enter but do not exit at the distal Schwann cell/astrocyte (AC) boundary. At both interfaces where limited mixing of the two cell types occurs, one can observe an up-regulation of inhibitory chondroitin sulfate proteoglycans (CSPGs). We treated confrontation Schwann cell/astrocyte cultures with the following: (1) a deoxyribonucleic acid (DNA) enzyme against the glycosaminoglycan (GAG)-chain-initiating enzyme, xylosyltransferase-1 (XT-1), (2) a control DNA enzyme, and (3) chondroitinase ABC (Ch'ase ABC) to degrade the GAG chains. Both techniques for reducing CSPGs allowed Schwann cells to penetrate deeply into the territory of the astrocytes. After adding sensory neurons to the assay, the axons showed different growth behaviors depending upon the glial cell type that they first encountered during regeneration. Our results help to explain why regeneration fails at PNS/CNS glial boundaries.
Collapse
Affiliation(s)
- Barbara Grimpe
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
34
|
Kocsis JD, Akiyama Y, Radtke C. Neural precursors as a cell source to repair the demyelinated spinal cord. J Neurotrauma 2004; 21:441-9. [PMID: 15115593 DOI: 10.1089/089771504323004584] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Schwann cells and neural precursor cells derived from adult human brain (subventricular zone) and from bone marrow were studied anatomically and physiologically after transplantation into the demyelinated rat spinal cord. All cell types formed myelin and restored conduction velocity. Following transection of the dorsal funiculus, Schwann cells and olfactory ensheathing cells facilitated axonal regeneration and restoration of conduction across the lesion site. There is discussion on the challenges of cell type selection and preparation for a potential clinical cell therapy study in human demyelinating diseases.
Collapse
Affiliation(s)
- Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven,VA Medical Center, West Haven, Connecticut 06516, USA.
| | | | | |
Collapse
|
35
|
Jose AM. Multiple sclerosis: can Schwann cells wrap it up? THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2002; 75:113-6. [PMID: 12230310 PMCID: PMC2588733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Antony Merlin Jose
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520-8024, USA.
| |
Collapse
|