1
|
Singh O, Singh D, Mitra S, Kumar A, Lechan RM, Singru PS. TRH and NPY Interact to Regulate Dynamic Changes in Energy Balance in the Male Zebra Finch. Endocrinology 2023; 164:6845693. [PMID: 36423209 DOI: 10.1210/endocr/bqac195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
In contrast to mammals, birds have a higher basal metabolic rate and undertake wide range of energy-demanding activities. As a consequence, food deprivation for birds, even for a short period, poses major energy challenge. The energy-regulating hypothalamic homeostatic mechanisms, although extensively studied in mammals, are far from clear in the case of birds. We focus on the interplay between neuropeptide Y (NPY) and thyrotropin-releasing hormone (TRH), 2 of the most important hypothalamic signaling agents, in modulating the energy balance in a bird model, the zebra finch, Taeniopygia guttata. TRH neurons were confined to a few nuclei in the preoptic area and hypothalamus, and fibers widely distributed. The majority of TRH neurons in the hypothalamic paraventricular nucleus (PVN) whose axons terminate in median eminence were contacted by NPY-containing axons. Compared to fed animals, fasting significantly reduced body weight, PVN pro-TRH messenger RNA (mRNA) and TRH immunoreactivity, but increased NPY mRNA and NPY immunoreactivity in the infundibular nucleus (IN, avian homologue of mammalian arcuate nucleus) and PVN. Refeeding for a short duration restored PVN pro-TRH and IN NPY mRNA, and PVN NPY innervation to fed levels. Compared to control tissues, treatment of the hypothalamic superfused slices with NPY or an NPY-Y1 receptor agonist significantly reduced TRH immunoreactivity, a response blocked by treatment with a Y1-receptor antagonist. We describe a detailed neuroanatomical map of TRH-equipped elements, identify new TRH-producing neuronal groups in the avian brain, and demonstrate rapid restoration of the fasting-induced suppression of PVN TRH following refeeding. We further show that NPY via Y1 receptors may regulate PVN TRH neurons to control energy balance in T. guttata.
Collapse
Affiliation(s)
- Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Devraj Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
| | - Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Anal Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
2
|
Sobrido‐Cameán D, González‐Llera L, Anadón R, Barreiro‐Iglesias A. Organization of the corticotropin-releasing hormone and corticotropin-releasing hormone-binding protein systems in the central nervous system of the sea lamprey Petromyzon marinus. J Comp Neurol 2023; 531:58-88. [PMID: 36150899 PMCID: PMC9826344 DOI: 10.1002/cne.25412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
The expression of the corticotropin-releasing hormone (PmCRH) and the CRH-binding protein (PmCRHBP) mRNAs was studied by in situ hybridization in the brain of prolarvae, larvae, and adults of the sea lamprey Petromyzon marinus. We also generated an antibody against the PmCRH mature peptide to study the distribution of PmCRH-immunoreactive cells and fibers. PmCRH immunohistochemistry was combined with antityrosine hydroxylase immunohistochemistry, PmCRHBP in situ hybridization, or neurobiotin transport from the spinal cord. The most numerous PmCRH-expressing cells were observed in the magnocellular preoptic nucleus-paraventricular nucleus and in the superior and medial rhombencephalic reticular formation. PmCRH expression was more extended in adults than in larvae, and some cell populations were mainly (olfactory bulb) or only (striatum, ventral hypothalamus, prethalamus) observed in adults. The preopto-paraventricular fibers form conspicuous tracts coursing toward the neurohypophysis, but many immunoreactive fibers were also observed coursing in many other brain regions. Brain descending fibers in the spinal cord mainly come from cells located in the isthmus and in the medial rhombencephalic reticular nucleus. The distribution of PmCRHBP-expressing neurons was different from that of PmCRH cells, with cells mainly present in the septum, striatum, preoptic region, tuberal hypothalamus, pretectum, pineal complex, isthmus, reticular formation, and spinal cord. Again, expression in adults was more extended than in larvae. PmCRH- and PmCRHBP-expressing cells are different, excluding colocalization of these substances in the same neuron. Present findings reveal a complex CRH/CRHBP system in the brain of the oldest extant vertebrate group, the agnathans, which shows similarities but important divergences with that of mammals.
Collapse
Affiliation(s)
- Daniel Sobrido‐Cameán
- Department of Functional Biology, CIBUS, Faculty of BiologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain,Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Laura González‐Llera
- Department of Functional Biology, CIBUS, Faculty of BiologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Ramón Anadón
- Department of Functional Biology, CIBUS, Faculty of BiologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Antón Barreiro‐Iglesias
- Department of Functional Biology, CIBUS, Faculty of BiologyUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| |
Collapse
|
3
|
Hausken KN, Tizon B, Shpilman M, Barton S, Decatur W, Plachetzki D, Kavanaugh S, Ul-Hasan S, Levavi-Sivan B, Sower SA. Cloning and characterization of a second lamprey pituitary glycoprotein hormone, thyrostimulin (GpA2/GpB5). Gen Comp Endocrinol 2018; 264:16-27. [PMID: 29678725 DOI: 10.1016/j.ygcen.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 02/05/2023]
Abstract
A novel heterodimeric glycoprotein hormone (GpH) comprised of alpha (GpA2) and beta (GpB5) subunits was discovered in 2002 and called thyrostimulin for its ability to activate the TSH receptor in mammals, but its central function in vertebrates has not been firmly established. We report here the cloning and expression of lamprey (l)GpB5, and its ability to heterodimerize with lGpA2 to form a functional l-thyrostimulin. The full-length cDNA of lGpB5 encodes 174 amino acids with ten conserved cysteine residues and one glycosylation site that is conserved with other vertebrate GpB5 sequences. Phylogenetic and synteny analyses support that lGpB5 belongs to the vertebrate GpB5 clade. Heterodimerization of lGpB5 and lGpA2 was shown by nickel pull-down of histidine-tagged recombinant subunits. RNA transcripts of lGpB5 were detected in the pituitary of lampreys during both parasitic and adult life stages. Intraperitoneal injection with lGnRH-III (100 μg/kg) increased pituitary lGpA2, lGpB5, and lGpHβ mRNA expression in sexually mature, adult female lampreys. A recombinant l-thyrostimulin produced by expression of a fusion gene in Pichia pastoris activated lamprey GpH receptors I and II as measured by cAMP enzymeimmunoassay. In contrast to jawed vertebrates that have pituitary LH, FSH, and TSH, our data support that lampreys only have two functional pituitary GpHs, lGpH and l-thyrostimulin, which consist of lGpA2 and unique beta subunits. It is hypothesized that lGpH and l-thyrostimulin differentially regulate reproductive and thyroid activities in some unknown way(s) in lampreys.
Collapse
Affiliation(s)
- Krist N Hausken
- Center for Molecular and Comparative Endocrinology, University of New Hampshire, Durham, NH 03824, USA; Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Belen Tizon
- Center for Molecular and Comparative Endocrinology, University of New Hampshire, Durham, NH 03824, USA; Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Michal Shpilman
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Shannon Barton
- Center for Molecular and Comparative Endocrinology, University of New Hampshire, Durham, NH 03824, USA; Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Wayne Decatur
- Center for Molecular and Comparative Endocrinology, University of New Hampshire, Durham, NH 03824, USA; Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - David Plachetzki
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Scott Kavanaugh
- Center for Molecular and Comparative Endocrinology, University of New Hampshire, Durham, NH 03824, USA; Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Sabah Ul-Hasan
- Center for Molecular and Comparative Endocrinology, University of New Hampshire, Durham, NH 03824, USA; Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Berta Levavi-Sivan
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Stacia A Sower
- Center for Molecular and Comparative Endocrinology, University of New Hampshire, Durham, NH 03824, USA; Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA.
| |
Collapse
|
4
|
Sower SA. Landmark discoveries in elucidating the origins of the hypothalamic-pituitary system from the perspective of a basal vertebrate, sea lamprey. Gen Comp Endocrinol 2018; 264:3-15. [PMID: 29111305 DOI: 10.1016/j.ygcen.2017.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022]
Abstract
The hypothalamic-pituitary (HP) system, which is specific to vertebrates, is considered to be an evolutionary innovation that emerged prior to or during the differentiation of the ancestral jawless vertebrates (agnathans) leading to the neuroendocrine control of many complex functions. Along with hagfish, lampreys represent the oldest lineage of vertebrates, agnathans (jawless fish). This review will highlight our discoveries of the major components of the lamprey HP axis. Generally, gnathostomes (jawed vertebrates) have one or two hypothalamic gonadotropin-releasing hormones (GnRH) while lampreys have three hypothalamic GnRHs. GnRH(s) regulate reproduction in all vertebrates via the pituitary. In gnathostomes, there are three classical pituitary glycoprotein hormones (luteinizing hormone, LH; follicle stimulating hormone, FSH; and thyrotropin, TSH) interacting specifically with three receptors, LH-R, FSH-R, and TSH-R, respectively. In general, FSH and LH regulate gonadal activity and TSH regulates thyroidal activity. In contrast to gnathostomes, we propose that lampreys only have two heterodimeric pituitary glycoprotein hormones, lamprey glycoprotein hormone (lGpH) and thyrostimulin, and two lamprey glycoprotein hormone receptors (lGpH-R I and -R II). Our existing data also suggest the existence of a primitive, overlapping yet functional hypothalamic-pituitary-gonadal (HPG) and HP-thyroidal (HPT) endocrine systems in lampreys. The study of basal vertebrates provides promising models for understanding the evolution of the hypothalamic-pituitary-thyroidal and gonadal axes in vertebrates. We hypothesize that the glycoprotein hormone/glycoprotein hormone receptor systems emerged as a link between the neuroendocrine and peripheral control levels during the early stages of gnathostome divergence. Our discovery of a functional HPG axis in lamprey has provided important clues for understanding the forces that ensured a common organization of the hypothalamus and pituitary as essential regulatory systems in all vertebrates. This paper will provide a brief snapshot of my discoveries, collaborations and latest findings including phylogenomic analyses on the origins, co-evolution and divergence of ligand and receptor protein families from the perspective of the lamprey hypothalamic-pituitary system.
Collapse
Affiliation(s)
- Stacia A Sower
- Department of Molecular, Cellular and Biomedical Sciences and Center for Molecular and Comparative Endocrinology, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
5
|
Abstract
As one of the most basal living vertebrates, lampreys represent an excellent model system to study the evolution of thyroid hormone (TH) signaling. The lamprey hypothalamic-pituitary-thyroid and reproductive axes overlap functionally. Lampreys have 3 gonadotropin-releasing hormones and a single glycoprotein hormone from the hypothalamus and pituitary, respectively, that regulate both the reproductive and thyroid axes. TH synthesis in larval lampreys takes place in an endostyle that transforms into typical vertebrate thyroid tissue during metamorphosis; both the endostyle and follicular tissue have all the typical TH synthetic components found in other vertebrates. Furthermore, lampreys also have the vertebrate suite of peripheral regulators including TH distributor proteins (THDPs), deiodinases and TH receptors (TRs). Although at the molecular level the components of the lamprey thyroid system are ancestral to other vertebrates, their functions have been largely conserved. TH signaling as it relates to lamprey metamorphosis represents a particularly interesting phenomenon. Unlike other metamorphosing vertebrates, lamprey THs increase throughout the larval period, peak prior to metamorphosis and decline rapidly at the onset of metamorphosis; patterns of deiodinase activity are consistent with these increases and declines. Moreover, goitrogens (which suppress TH levels) initiate precocious metamorphosis, and exogenous TH treatment blocks goitrogen-induced metamorphosis and disrupts natural metamorphosis. Despite this clear physiological difference, TH action via TRs is consistent with higher vertebrates. Based on observations that TRs are upregulated in a tissue-specific fashion during morphogenesis and the finding that lamprey TRs upregulate genes via THs in a fashion similar to higher vertebrates, we propose the following hypothesis for further testing. THs have a dual role in lampreys where high TH levels promote larval feeding and growth and then at the onset of metamorphosis TH levels decrease rapidly; at this time the relatively low TH levels function via TRs in a fashion similar to that of other metamorphosing vertebrates.
Collapse
Affiliation(s)
- Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| | - Lori A Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
6
|
Sower SA, Hausken KN. A lamprey view on the origins of neuroendocrine regulation of the thyroid axis. Mol Cell Endocrinol 2017; 459:21-27. [PMID: 28412521 DOI: 10.1016/j.mce.2017.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 01/19/2023]
Abstract
This mini review summarizes the current knowledge of the hypothalamic-pituitary-thyroid (HPT) endocrine system in lampreys, jawless vertebrates. Lampreys and hagfish are the only two extant members of the class of agnathans, the oldest lineage of vertebrates. The high conservation of the hypothalamic-pituitary-gonadal (HPG) axis in lampreys makes the lamprey model highly appropriate for comparative and evolutionary analyses. However, there are still many unknown questions concerning the hypothalamic-pituitary (HP) axis in its regulation of thyroid activities in lampreys. As an example, the hypothalamic and pituitary hormone(s) that regulate the HPT axis have not been confirmed and/or characterized. Similar to gnathostomes (jawed vertebrates), lampreys produce thyroxine (T4) and triiodothyronine (T3) from thyroid follicles that are suggested to be involved in larval development, metamorphosis, and reproduction. The existing data provide evidence of a primitive, overlapping yet functional HPG and HPT endocrine system in lamprey. We hypothesize that lampreys are in an evolutionary intermediate stage of hypothalamic-pituitary development, leading to the emergence of the highly specialized HPG and HPT endocrine axes in jawed vertebrates. Study of the ancient lineage of jawless vertebrates, the agnathans, is key to understanding the origins of the neuroendocrine system in vertebrates.
Collapse
Affiliation(s)
- Stacia A Sower
- Department of Molecular, Cellular and Biomedical Sciences and Center for Molecular and Comparative Endocrinology, University of New Hampshire, Durham, NH, USA
| | - Krist N Hausken
- Department of Molecular, Cellular and Biomedical Sciences and Center for Molecular and Comparative Endocrinology, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
7
|
Barreiro-Iglesias A, Fernández-López B, Sobrido-Cameán D, Anadón R. Organization of alpha-transducin immunoreactive system in the brain and retina of larval and young adult Sea Lamprey (Petromyzon marinus), and their relationship with other neural systems. J Comp Neurol 2017; 525:3683-3704. [DOI: 10.1002/cne.24296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Antón Barreiro-Iglesias
- Department of Functional Biology, Faculty of Biology; University of Santiago de Compostela; Santiago de Compostela Spain
| | - Blanca Fernández-López
- Department of Functional Biology, Faculty of Biology; University of Santiago de Compostela; Santiago de Compostela Spain
| | - Daniel Sobrido-Cameán
- Department of Functional Biology, Faculty of Biology; University of Santiago de Compostela; Santiago de Compostela Spain
| | - Ramón Anadón
- Department of Functional Biology, Faculty of Biology; University of Santiago de Compostela; Santiago de Compostela Spain
| |
Collapse
|
8
|
Villar-Cerviño V, Barreiro-Iglesias A, Mazan S, Rodicio MC, Anadón R. Glutamatergic neuronal populations in the forebrain of the sea lamprey, Petromyzon marinus: an in situ hybridization and immunocytochemical study. J Comp Neurol 2012; 519:1712-35. [PMID: 21452205 DOI: 10.1002/cne.22597] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite the importance of glutamate as a major excitatory neurotransmitter in the brain, the distribution of glutamatergic populations in the brain of most vertebrates is still unknown. Here, we studied for the first time the distribution of glutamatergic neurons in the forebrain of the sea lamprey (Petromyzon marinus), belonging to the most ancient group of vertebrates (agnathans). For this, we used in situ hybridization with probes for a lamprey vesicular glutamate transporter (VGLUT) in larvae and immunofluorescence with antiglutamate antibodies in both larvae and adults. We also compared glutamate and γ-aminobutyric acid (GABA) immunoreactivities in sections using double-immunofluorescence methods. VGLUT-expressing neurons were observed in the olfactory bulb, pallium, septum, subhippocampal lobe, preoptic region, thalamic eminence, prethalamus, thalamus, epithalamus, pretectum, hypothalamus, posterior tubercle, and nucleus of the medial longitudinal fascicle. Comparison of VGLUT signal and glutamate immunoreactivity in larval forebrain revealed a consistent distribution of positive cells, which were numerous in most regions. Glutamate-immunoreactive cell populations were also found in similar regions of the adult forebrain. These include mitral-like cells of the olfactory bulbs and abundant cells in the lateral pallium, septum, and various diencephalic regions, mainly in the prethalamus, thalamus, habenula, pineal complex, and pretectum. Only a small portion of the glutamate-immunoreactive cells showed colocalization with GABA, which was observed mainly in the olfactory bulb, telencephalon, hypothalamus, ventral thalamus, and pretectum. Comparison with glutamatergic cells observed in rodent forebrains suggests that the regional distribution of glutamatergic cells does not differ greatly in lampreys and mammals.
Collapse
Affiliation(s)
- Verona Villar-Cerviño
- Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | | | | | | | | |
Collapse
|
9
|
Iziga R, Ponce M, Infante C, Rebordinos L, Cañavate JP, Manchado M. Molecular characterization and gene expression of thyrotropin-releasing hormone in Senegalese sole (Solea senegalensis). Comp Biochem Physiol B Biochem Mol Biol 2010; 157:167-74. [DOI: 10.1016/j.cbpb.2010.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/31/2010] [Accepted: 05/31/2010] [Indexed: 10/19/2022]
|
10
|
Sower SA, Freamat M, Kavanaugh SI. The origins of the vertebrate hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) endocrine systems: new insights from lampreys. Gen Comp Endocrinol 2009; 161:20-9. [PMID: 19084529 DOI: 10.1016/j.ygcen.2008.11.023] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 11/04/2008] [Accepted: 11/20/2008] [Indexed: 11/30/2022]
Abstract
The acquisition of a hypothalamic-pituitary axis was a seminal event in vertebrate evolution leading to the neuroendocrine control of many complex functions including growth, reproduction, osmoregulation, stress and metabolism. Lampreys as basal vertebrates are the earliest evolved vertebrates for which there are demonstrated functional roles for two gonadotropin-releasing hormones (GnRHs) that act via the hypothalamic-pituitary-gonadal axis controlling reproductive processes. With the availability of the lamprey genome, we have identified a novel GnRH form (lamprey GnRH-II) and a novel glycoprotein hormone receptor, lGpH-R II (thyroid-stimulating hormone-like receptor). Based on functional studies, in situ hybridization and phylogenetic analysis, we hypothesize that the newly identified lamprey GnRH-II is an ancestral GnRH to the vertebrate GnRHs. This finding opens a new understanding of the GnRH family and can help to delineate the evolution of the complex neuro/endocrine axis of reproduction. A second glycoprotein hormone receptor (lGpH-R II) was also identified in the sea lamprey. The existing data suggest the existence of a primitive, overlapping yet functional HPG and HPT endocrine systems in this organism, involving one possibly two pituitary glycoprotein hormones and two glycoprotein hormone receptors as opposed to three or four glycoprotein hormones interacting specifically with three receptors in gnathostomes. We hypothesize that the glycoprotein hormone/glycoprotein hormone receptor systems emerged as a link between the neuro-hormonal and peripheral control levels during the early stages of gnathostome divergence. The significance of the results obtained by analysis of the HPG/T axes in sea lamprey may transcend the limited scope of the corresponding physiological compartments by providing important clues in respect to the interplay between genome-wide events (duplications), coding sequence (mutation) and expression control level evolutionary mechanisms in definition of the chemical control pathways in vertebrates.
Collapse
Affiliation(s)
- Stacia A Sower
- Center for Molecular and Comparative Endocrinology and Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | | | | |
Collapse
|
11
|
López JM, Domínguez L, González A. Immunohistochemical localization of thyrotropin-releasing hormone in the brain of reptiles. J Chem Neuroanat 2008; 36:251-63. [DOI: 10.1016/j.jchemneu.2008.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/26/2008] [Accepted: 06/26/2008] [Indexed: 01/31/2023]
|
12
|
Domínguez L, López JM, González A. Distribution of Thyrotropin-Releasing Hormone (TRH) Immunoreactivity in the Brain of Urodele Amphibians. BRAIN, BEHAVIOR AND EVOLUTION 2008; 71:231-46. [DOI: 10.1159/000122835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 12/13/2007] [Indexed: 01/28/2023]
|
13
|
Osório J, Rétaux S. The lamprey in evolutionary studies. Dev Genes Evol 2008; 218:221-35. [PMID: 18274775 DOI: 10.1007/s00427-008-0208-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/22/2008] [Indexed: 12/13/2022]
Abstract
Lampreys are a key species to study the evolution of morphological characters at the dawn of Craniates and throughout the evolution of the craniate's phylum. Here, we review a number of research fields where studies on lampreys have recently brought significant and fundamental insights on the timing and mechanisms of evolution, on the amazing diversification of morphology and on the emergence of novelties among Craniates. We report recent example studies on neural crest, muscle and the acquisition of jaws, where important technical advancements in lamprey developmental biology have been made (morpholino injections, protein-soaked bead applications or even the first transgenesis trials). We describe progress in the understanding and knowledge about lamprey anatomy and physiology (skeleton, immune system and buccal secretion), ecology (life cycle, embryology), phylogeny (genome duplications, monophyly of cyclostomes), paleontology, embryonic development and the beginnings of lamprey genomics. Finally, in a special focus on the nervous system, we describe how changes in signaling, neurogenesis or neuronal migration patterns during brain development may be at the origin of some important differences observed between lamprey and gnathostome brains.
Collapse
Affiliation(s)
- Joana Osório
- UPR 2197 Développement, Evolution, Plasticité du Système Nerveux, Institut de Neurobiologie Alfred Fessard, C.N.R.S., Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
14
|
Aoki Y, Masuda T, Iigo M, Yanagisawa T. Molecular cloning of prepro-thyrotropin-releasing hormone cDNA from medaka (Oryzias latipes). Gen Comp Endocrinol 2007; 150:364-70. [PMID: 17098236 DOI: 10.1016/j.ygcen.2006.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 09/25/2006] [Accepted: 09/27/2006] [Indexed: 11/18/2022]
Abstract
The cDNA encoding prepro-thyrotropin-releasing hormone (ppTRH) in a teleost, medaka (Oryzias latipes) was isolated and characterized. The medaka ppTRH cDNA codes for 270 amino acid residues including eight TRH progenitor sequences (-Lys/Arg-Arg-Gln-His-Pro-Gly-Lys/Arg-Arg-). In silico analyses of the medaka genome database predicted that the structure of the medaka ppTRH gene is similar to the ppTRH genes of the other vertebrate species studied to date; consisting of three exons and two introns. Identity of the medaka ppTRH with the other vertebrates is rather low except the sockeye salmon. A molecular phylogenic tree showed that the ppTRH sequences reflected the predicted pattern of species classification. RT-PCR analysis demonstrated ppTRH gene expression in the brain and retina. These results gave some insight into the molecular evolution of ppTRH and physiological functions of TRH in vertebrates.
Collapse
Affiliation(s)
- Yasuhiro Aoki
- Department of Biotechnology, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | |
Collapse
|
15
|
Osório J, Megías M, Pombal MA, Rétaux S. Dynamic expression of the LIM-homeodomain gene Lhx15 through larval brain development of the sea lamprey (Petromyzon marinus). Gene Expr Patterns 2006; 6:873-8. [PMID: 16597515 DOI: 10.1016/j.modgep.2006.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 10/25/2022]
Abstract
LIM-homeodomain genes encode a family of transcription factors with highly conserved roles in the patterning and regionalisation of the vertebrate brain. The expression of one of those genes, Lhx15, in the embryonic lamprey brain, characterises precise functional subdivisions. In order to analyse the non-embryonic development of the lamprey brain, we chose this gene to perform in situ hybridisations in Petromyzon marinus larvae of different ages. We demonstrate the usefulness of Lhx15 to follow the development and morphogenesis of brain structures and show the dynamical expression of this gene through time. Furthermore, we provide evidence for the evolutionary conservation of the expression of this gene in the spinal cord, notochord and urogenital system.
Collapse
Affiliation(s)
- Joana Osório
- UPR 2197 Développement, Evolution, Plasticité du Système Nerveux, Institut de Neurobiologie Alfred Fessard, C.N.R.S., Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | | | | | | |
Collapse
|
16
|
Villar-Cheda B, Pérez-Costas E, Meléndez-Ferro M, Abalo XM, Rodríguez-Muñoz R, Anadón R, Rodicio MC. Cell proliferation in the forebrain and midbrain of the sea lamprey. J Comp Neurol 2005; 494:986-1006. [PMID: 16385485 DOI: 10.1002/cne.20851] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell proliferation in the forebrain and midbrain of the sea lamprey (Petromyzon marinus L.) was investigated by proliferation cell nuclear antigen (PCNA) immunocytochemistry, with BrdU labeling as a complementary technique. Correspondence between proliferation regions and areas of early neuronal differentiation was also assessed using antibodies against HNK-1 early differentiation marker. The brain of late embryos shows a homogeneously thick ventricular zone (VZ) containing PCNA-immunoreactive (PCNA-ir) nuclei. In early prolarvae, several discontinuities formed by PCNA-negative cells, and differences among regions in VZ thickness, become apparent. In late prolarvae and early larvae, these differences in VZ thickness and appearance, as well as the presence of PCNA-negative discontinuities, allowed us to correlate proliferation domains and neuroanatomical regions. In larvae, the number of PCNA-ir cells in the VZs diminish gradually, although a few PCNA-ir cells are present in the ependyma of most regions. In late larvae, proliferation becomes confined to a few ventricular areas (medial pallium, caudal habenula, ventral preoptic recess near the optic nerve, and tuberal portion of the posterior hypothalamic recess). During metamorphosis there appears to be no proliferation, but in upstream adults a few PCNA-ir cells are observed in the most caudal habenula. The characteristics of the proliferative regions revealed in lamprey with PCNA immunocytochemistry show notable differences from those observed in other vertebrates, and these differences may be related to the peculiar life cycle of lampreys.
Collapse
Affiliation(s)
- Begoña Villar-Cheda
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Pombal MA, Abalo XM, Rodicio MC, Anadón R, González A. Choline acetyltransferase-immunoreactive neurons in the retina of adult and developing lampreys. Brain Res 2003; 993:154-63. [PMID: 14642841 DOI: 10.1016/j.brainres.2003.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The presence of choline acetyltransferase-immunoreactive (ChATir) amacrine cells is reported for the first time in the retinas of three species of lamprey (Lampetra fluviatilis, Ichthyomyzon unicuspis, and Petromyzon marinus). In the three species, the ChATir cells were mainly distributed in the inner plexiform layer (IPL), which in lampreys extends from the inner nuclear layer (INL) to the inner limiting membrane. These cells had a bipolar, triangular or stellate appearance, and gave rise to processes coursing in the inner plexiform layer. In transforming lampreys, ChATir processes formed two asymmetrical inner and outer subplexuses in the inner plexiform layer, which is reminiscent of the distribution of processes of ChATir cells in the On and Off sublaminae reported in jawed vertebrates. The larval retina lacked ChAT immunoreactivity, and ChATir cells and processes appeared at early metamorphosis throughout the retina, exhibiting in late transforming stages an organization similar to that of adults. This first report of ChATir cells in the lamprey retina indicates that the appearance of cholinergic circuits in the retina of vertebrates occurred before the divergence of the agnathan and gnathostome lines.
Collapse
Affiliation(s)
- Manuel Angel Pombal
- Department of Functional Biology and Health Sciences, University of Vigo, 36200 Vigo, Spain
| | | | | | | | | |
Collapse
|