1
|
Talpo F, Spaiardi P, Castagno AN, Maniezzi C, Raffin F, Terribile G, Sancini G, Pisani A, Biella GR. Neuromodulatory functions exerted by oxytocin on different populations of hippocampal neurons in rodents. Front Cell Neurosci 2023; 17:1082010. [PMID: 36816855 PMCID: PMC9932910 DOI: 10.3389/fncel.2023.1082010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Oxytocin (OT) is a neuropeptide widely known for its peripheral hormonal effects (i.e., parturition and lactation) and central neuromodulatory functions, related especially to social behavior and social, spatial, and episodic memory. The hippocampus is a key structure for these functions, it is innervated by oxytocinergic fibers, and contains OT receptors (OTRs). The hippocampal OTR distribution is not homogeneous among its subregions and types of neuronal cells, reflecting the specificity of oxytocin's modulatory action. In this review, we describe the most recent discoveries in OT/OTR signaling in the hippocampus, focusing primarily on the electrophysiological oxytocinergic modulation of the OTR-expressing hippocampal neurons. We then look at the effect this modulation has on the balance of excitation/inhibition and synaptic plasticity in each hippocampal subregion. Additionally, we review OTR downstream signaling, which underlies the OT effects observed in different types of hippocampal neuron. Overall, this review comprehensively summarizes the advancements in unraveling the neuromodulatory functions exerted by OT on specific hippocampal networks.
Collapse
Affiliation(s)
- Francesca Talpo
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Paolo Spaiardi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy,Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | - Antonio Nicolas Castagno
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Claudia Maniezzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesca Raffin
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Giulia Terribile
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giulio Sancini
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy,Nanomedicine Center, Neuroscience Center, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy,Neurological Institute Foundation Casimiro Mondino (IRCCS), Pavia, Italy
| | - Gerardo Rosario Biella
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy,Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy,*Correspondence: Gerardo Rosario Biella,
| |
Collapse
|
2
|
Lee SM, Seol JM, Lee I. Subicular neurons represent multiple variables of a hippocampal-dependent task by using theta rhythm. PLoS Biol 2022; 20:e3001546. [PMID: 35100261 PMCID: PMC8830791 DOI: 10.1371/journal.pbio.3001546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/10/2022] [Accepted: 01/18/2022] [Indexed: 01/31/2023] Open
Abstract
The subiculum is positioned at a critical juncture at the interface of the hippocampus with the rest of the brain. However, the exact roles of the subiculum in most hippocampal-dependent memory tasks remain largely unknown. One obstacle to make comparisons of neural firing patterns between the subiculum and hippocampus is the broad firing fields of the subicular cells. Here, we used spiking phases in relation to theta rhythm to parse the broad firing field of a subicular neuron into multiple subfields to find the unique functional contribution of the subiculum while male rats performed a hippocampal-dependent visual scene memory task. Some of the broad firing fields of the subicular neurons were successfully divided into multiple subfields similar to those in the CA1 by using the theta phase precession cycle. The new paradigm significantly improved the detection of task-relevant information in subicular cells without affecting the information content represented by CA1 cells. Notably, we found that multiple fields of a single subicular neuron, unlike those in the CA1, carried heterogeneous task-related information such as visual context and choice response. Our findings suggest that the subicular cells integrate multiple task-related factors by using theta rhythm to associate environmental context with action.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Jae-Min Seol
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Imbrosci B, Nitzan N, McKenzie S, Donoso JR, Swaminathan A, Böhm C, Maier N, Schmitz D. Subiculum as a generator of sharp wave-ripples in the rodent hippocampus. Cell Rep 2021; 35:109021. [PMID: 33882307 PMCID: PMC9239734 DOI: 10.1016/j.celrep.2021.109021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 12/04/2022] Open
Abstract
Sharp wave-ripples (SWRs) represent synchronous discharges of hippocampal neurons and are believed to play a major role in memory consolidation. A large body of evidence suggests that SWRs are exclusively generated in the CA3-CA2 network. In contrast, here, we provide several lines of evidence showing that the subiculum can function as a secondary SWRs generator. SWRs with subicular origin propagate forward into the entorhinal cortex as well as backward into the hippocampus proper. Our findings suggest that the output structures of the hippocampus are not only passively facilitating the transfer of SWRs to the cortex, but they also can actively contribute to the genesis of SWRs. We hypothesize that SWRs with a subicular origin may be important for the consolidation of information conveyed to the hippocampus via the temporoammonic pathway. Imbrosci et al. show that the subiculum can work as a secondary generator of sharp wave-ripples (SWRs). SWRs with their origin in subiculum can propagate to the entorhinal cortex and backward to CA1 and CA3.
Collapse
Affiliation(s)
- Barbara Imbrosci
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Noam Nitzan
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Sam McKenzie
- Neuroscience Institute, New York University, New York, NY 10016, USA
| | - José R Donoso
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience (BCCN) Berlin, 10115 Berlin, Germany
| | - Aarti Swaminathan
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Claudia Böhm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Nikolaus Maier
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; NeuroCure Cluster of Excellence, Charitéplatz 1, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience (BCCN) Berlin, 10115 Berlin, Germany; Einstein Center for Neurosciences (ECN) Berlin, 10117 Berlin, Germany; Max-Delbrück-Centrum (MDC) for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|
4
|
Lévesque M, Avoli M. The subiculum and its role in focal epileptic disorders. Rev Neurosci 2020; 32:249-273. [PMID: 33661586 DOI: 10.1515/revneuro-2020-0091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/29/2020] [Indexed: 01/07/2023]
Abstract
The subicular complex (hereafter referred as subiculum), which is reciprocally connected with the hippocampus and rhinal cortices, exerts a major control on hippocampal outputs. Over the last three decades, several studies have revealed that the subiculum plays a pivotal role in learning and memory but also in pathological conditions such as mesial temporal lobe epilepsy (MTLE). Indeed, subicular networks actively contribute to seizure generation and this structure is relatively spared from the cell loss encountered in this focal epileptic disorder. In this review, we will address: (i) the functional properties of subicular principal cells under normal and pathological conditions; (ii) the subiculum role in sustaining seizures in in vivo models of MTLE and in in vitro models of epileptiform synchronization; (iii) its presumptive role in human MTLE; and (iv) evidence underscoring the relationship between subiculum and antiepileptic drug effects. The studies reviewed here reinforce the view that the subiculum represents a limbic area with relevant, as yet unexplored, roles in focal epilepsy.
Collapse
Affiliation(s)
- Maxime Lévesque
- Departments of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, H3A 2B4Québec, Canada
| | - Massimo Avoli
- Departments of Neurology, Neurosurgery, and Physiology, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, H3A 2B4Québec, Canada
| |
Collapse
|
5
|
Grosser S, Buck N, Braunewell KH, Gilling KE, Wozny C, Fidzinski P, Behr J. Loss of Long-Term Potentiation at Hippocampal Output Synapses in Experimental Temporal Lobe Epilepsy. Front Mol Neurosci 2020; 13:143. [PMID: 32982687 PMCID: PMC7484482 DOI: 10.3389/fnmol.2020.00143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
Patients suffering from temporal lobe epilepsy (TLE) show severe problems in hippocampus dependent memory consolidation. Memory consolidation strongly depends on an intact dialog between the hippocampus and neocortical structures. Deficits in hippocampal signal transmission are known to provoke disturbances in memory formation. In the present study, we investigate changes of synaptic plasticity at hippocampal output structures in an experimental animal model of TLE. In pilocarpine-treated rats, we found suppressed long-term potentiation (LTP) in hippocampal and parahippocampal regions such as the subiculum and the entorhinal cortex (EC). Subsequently we focused on the subiculum, serving as the major relay station between the hippocampus proper and downstream structures. In control animals, subicular pyramidal cells express different forms of LTP depending on their intrinsic firing pattern. In line with our extracellular recordings, we could show that LTP could only be induced in a minority of subicular pyramidal neurons. We demonstrate that a well-characterized cAMP-dependent signaling pathway involved in presynaptic forms of LTP is perturbed in pilocarpine-treated animals. Our findings suggest that in TLE, disturbances of synaptic plasticity may influence the information flow between the hippocampus and the neocortex.
Collapse
Affiliation(s)
- Sabine Grosser
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Buck
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karl-Heinz Braunewell
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Kate E Gilling
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Wozny
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Faculty of Science, University of Strathclyde, Glasgow, United Kingdom
| | - Pawel Fidzinski
- Department of Neurology with Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim Behr
- Department of Psychiatry and Psychotherapy, Brandenburg Medical School, Neuruppin, Germany.,Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Witter MP, Amaral DG. The entorhinal cortex of the monkey: VI. Organization of projections from the hippocampus, subiculum, presubiculum, and parasubiculum. J Comp Neurol 2020; 529:828-852. [DOI: 10.1002/cne.24983] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Menno P. Witter
- Department of Psychiatry and Behavioral Sciences The MIND Institute and the California National Primate Research Center Davis California USA
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences The MIND Institute and the California National Primate Research Center Davis California USA
| |
Collapse
|
7
|
Bartsch JC, Behr J. Noncanonical, Dopamine-Dependent Long-Term Potentiation at Hippocampal Output Synapses in a Rodent Model of First-Episode Psychosis. Front Mol Neurosci 2020; 13:55. [PMID: 32317931 PMCID: PMC7146052 DOI: 10.3389/fnmol.2020.00055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
Cognitive deficits and positive symptoms in schizophrenia have both been linked to hippocampal dysfunction. Recently, subregion-specific aberrant and maladaptive hippocampal synaptic plasticity has been suggested as one of the mechanistic underpinnings. The subiculum is the final output hub of the hippocampus and orchestrates hippocampal information transfer to other brain regions. While most CA1 pyramidal neurons show regular-spiking behavior, subicular output neurons comprise bursting and regular-firing pyramidal cells. These two cell types target different brain regions and express unique forms of synaptic plasticity. Here, we used a single systemic application of the noncompetitive glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonist MK-801 to model first-episode psychosis in rats and studied long-term potentiation (LTP) in subicular regular-firing cells in acute hippocampal slices. Previously, we have reported a facilitation of a presynaptic, late-onset LTP in subicular bursting pyramidal cells after systemic NMDAR antagonism. Here, we show that single systemic NMDAR antagonist application also facilitates the induction of a noncanonical, but postsynaptic NMDAR-independent LTP in ventral subicular but not in CA1 regular-firing pyramidal cells. This form of LTP was dependent on D1/D5 dopamine receptor activation. Activation of D1/D5 dopamine receptors by a specific agonist mimicked and occluded LTP induced by electrical high-frequency stimulation (HFS). Furthermore, our results indicate that this form of LTP relies on postsynaptic Ca2+ signaling and requires the activation of protein kinase A. Considering the pivotal role of the subiculum as information gatekeeper between the hippocampus and other brain regions, this aberrant LTP in ventral subicular regular-firing neurons is expected to interfere with physiological hippocampal output processing and might thereby contribute to hippocampal dysfunction in psychotic events.
Collapse
Affiliation(s)
- Julia C Bartsch
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim Behr
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
8
|
Egawa J, Zemljic-Harpf A, Mandyam CD, Niesman IR, Lysenko LV, Kleschevnikov AM, Roth DM, Patel HH, Patel PM, Head BP. Neuron-Targeted Caveolin-1 Promotes Ultrastructural and Functional Hippocampal Synaptic Plasticity. Cereb Cortex 2019; 28:3255-3266. [PMID: 28981594 DOI: 10.1093/cercor/bhx196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
A delicate interneuronal communication between pre- and postsynaptic membranes is critical for synaptic plasticity and the formation of memory. Evidence shows that membrane/lipid rafts (MLRs), plasma membrane microdomains enriched in cholesterol and sphingolipids, organize presynaptic proteins and postsynaptic receptors necessary for synaptic formation and signaling. MLRs establish a cell polarity that facilitates transduction of extracellular cues to the intracellular environment. Here we show that neuron-targeted overexpression of an MLR protein, caveolin-1 (SynCav1), in the adult mouse hippocampus increased the number of presynaptic vesicles per bouton, total excitatory type I glutamatergic synapses, number of same-dendrite multiple-synapse boutons, increased myelination, increased long-term potentiation, and increased MLR-localized N-methyl-d-aspartate receptor subunits (GluN1, GluN2A, and GluN2B). Immunogold electron microscopy revealed that Cav-1 localizes to both the pre- and postsynaptic membrane regions as well as in the synaptic cleft. These findings, which are consistent with a significant increase in ultrastructural and functional synaptic plasticity, provide a fundamental framework that underlies previously demonstrated improvements in learning and memory in adult and aged mice by SynCav1. Such observations suggest that Cav-1 and MLRs alter basic aspects of synapse biology that could serve as potential therapeutic targets to promote neuroplasticity and combat neurodegeneration in a number of neurological disorders.
Collapse
Affiliation(s)
- Junji Egawa
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alice Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chitra D Mandyam
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Larisa V Lysenko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Piyush M Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Matsumoto N, Kitanishi T, Mizuseki K. The subiculum: Unique hippocampal hub and more. Neurosci Res 2019; 143:1-12. [DOI: 10.1016/j.neures.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/10/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023]
|
10
|
Cembrowski MS, Phillips MG, DiLisio SF, Shields BC, Winnubst J, Chandrashekar J, Bas E, Spruston N. Dissociable Structural and Functional Hippocampal Outputs via Distinct Subiculum Cell Classes. Cell 2018; 173:1280-1292.e18. [PMID: 29681453 DOI: 10.1016/j.cell.2018.03.031] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/22/2018] [Accepted: 03/14/2018] [Indexed: 12/30/2022]
Abstract
The mammalian hippocampus, comprised of serially connected subfields, participates in diverse behavioral and cognitive functions. It has been postulated that parallel circuitry embedded within hippocampal subfields may underlie such functional diversity. We sought to identify, delineate, and manipulate this putatively parallel architecture in the dorsal subiculum, the primary output subfield of the dorsal hippocampus. Population and single-cell RNA-seq revealed that the subiculum can be divided into two spatially adjacent subregions associated with prominent differences in pyramidal cell gene expression. Pyramidal cells occupying these two regions differed in their long-range inputs, local wiring, projection targets, and electrophysiological properties. Leveraging gene-expression differences across these regions, we use genetically restricted neuronal silencing to show that these regions differentially contribute to spatial working memory. This work provides a coherent molecular-, cellular-, circuit-, and behavioral-level demonstration that the hippocampus embeds structurally and functionally dissociable streams within its serial architecture.
Collapse
Affiliation(s)
- Mark S Cembrowski
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA.
| | - Matthew G Phillips
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA
| | - Salvatore F DiLisio
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA
| | - Brenda C Shields
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA
| | - Johan Winnubst
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA
| | - Jayaram Chandrashekar
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA
| | - Erhan Bas
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr., Ashburn, VA 20147, USA.
| |
Collapse
|
11
|
Victor Petersen A, Perrier JF. [Serotonin prevents temporal lobe epilepsy by inhibiting bursting neurons from the subiculum]. Med Sci (Paris) 2017; 33:727-729. [PMID: 28945558 DOI: 10.1051/medsci/20173308013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anders Victor Petersen
- Département de neurosciences, université de Copenhague, Blegdamsvej 3, 2200 Copenhague, Danemark
| | - Jean-François Perrier
- Département de neurosciences, université de Copenhague, Blegdamsvej 3, 2200 Copenhague, Danemark
| |
Collapse
|
12
|
Wang XX, Li YH, Gong HQ, Liang PJ, Zhang PM, Lu QC. The Subiculum: A Potential Site of Ictogenesis in a Neonatal Seizure Model. Front Neurol 2017; 8:147. [PMID: 28473802 PMCID: PMC5397469 DOI: 10.3389/fneur.2017.00147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/31/2017] [Indexed: 01/03/2023] Open
Abstract
Studies have reported that the subiculum is one origin of interictal-like discharges in adult patients with temporal lobe epilepsy; however, whether the subiculum represents a site of ictogenesis for neonatal seizures remains unclear. In this study, multi-electrode recording techniques were used to record epileptiform discharges induced by low-Mg2+ or high-K+ artificial cerebrospinal fluid in neonatal mouse hippocampal slices, and the spatiotemporal dynamics of the epileptiform discharges were analyzed. The Na+–K+–2Cl− cotransporter 1 (NKCC1) blocker, bumetanide, was applied to test its effect upon epileptiform discharges in low-Mg2+ model. The effect of N-methyl-d-aspartate receptors (NMDARs) antagonist, d-AP5, upon the epileptiform discharges in high-K+ model was examined. We found that the neonatal subiculum not only relayed epileptiform discharges emanating from the hippocampus proper (HP) but also initiated epileptiform discharges (interictal- and ictal-like discharges) independently. The latency to onset of the first epileptiform discharge initiated in the subiculum was similar to that initiated in the HP. Bumetanide efficiently blocked seizures in the neonatal HP, but was less effectively in suppressing seizures initiated in the subiculum. In high-K+ model, d-AP5 was more effective in blocking seizures initiated in the subiculum than that initiated in the HP. Furthermore, Western blotting analysis showed that NKCC1 expression was lower in the subiculum than that in the HP, whereas the expression of NMDAR subunits, NR2A and NR2B, was higher in the subiculum than that in the HP. Our results revealed that the subiculum was a potential site of ictogenesis in neonatal seizures and possessed similar seizure susceptibility to the HP. GABAergic excitation resulting from NKCC1 may play a less dominant role during ictogenesis in the subiculum than that in the HP. The subicular ictogenesis may be related to the glutamatergic excitation mediated by NMDARs.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Hua Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Qing Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pei-Ji Liang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pu-Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qin-Chi Lu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Petersen AV, Jensen CS, Crépel V, Falkerslev M, Perrier JF. Serotonin Regulates the Firing of Principal Cells of the Subiculum by Inhibiting a T-type Ca 2+ Current. Front Cell Neurosci 2017; 11:60. [PMID: 28326015 PMCID: PMC5339341 DOI: 10.3389/fncel.2017.00060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
The subiculum is the main output of the hippocampal formation. A high proportion of its principal neurons fire action potentials in bursts triggered by the activation of low threshold calcium currents. This firing pattern promotes synaptic release and regulates spike-timing-dependent plasticity. The subiculum receives a high density of fibers originating from the raphe nuclei, suggesting that serotonin (5-HT) modulates subicular neurons. Here we investigated if and how 5-HT modulates the firing pattern of bursting neurons. By combining electrophysiological analysis with pharmacology, optogenetics and calcium imaging, we demonstrate that 5-HT2C receptors reduce bursting activity by inhibiting a low-threshold calcium current mediated by T-type Ca2+ channels in principal cells of the subiculum. In addition, we show that the activation of this novel pathway decreases bursting activity and the occurrence of epileptiform discharges induced in in vitro models for temporal lobe epilepsy (TLE).
Collapse
Affiliation(s)
- Anders V Petersen
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | - Camilla S Jensen
- Department of Biomedical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Valérie Crépel
- Institut de Neurobiologie de la Méditerranée (INMED), Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Aix-Marseille Université Marseille, France
| | - Mathias Falkerslev
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | - Jean-François Perrier
- Department of Neuroscience and Pharmacology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
14
|
Huberfeld G, Blauwblomme T, Miles R. Hippocampus and epilepsy: Findings from human tissues. Rev Neurol (Paris) 2015; 171:236-51. [PMID: 25724711 PMCID: PMC4409112 DOI: 10.1016/j.neurol.2015.01.563] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/20/2015] [Indexed: 11/18/2022]
Abstract
Surgical removal of the epileptogenic zone provides an effective therapy for several focal epileptic syndromes. This surgery offers the opportunity to study pathological activity in living human tissue for pharmacoresistant partial epilepsy syndromes including temporal lobe epilepsies with hippocampal sclerosis, cortical dysplasias, epilepsies associated with tumors and developmental malformations. Slices of tissue from patients with these syndromes retain functional neuronal networks and may generate epileptic activities. The properties of cells in this tissue may not be greatly changed, but excitatory synaptic transmission is often enhanced and GABAergic inhibition is preserved. Typically epileptic activity is not generated spontaneously by the neocortex, whether dysplastic or not, but can be induced by convulsants. The initiation of ictal discharges in the neocortex depends on both GABAergic signaling and increased extracellular potassium. In contrast, a spontaneous interictal-like activity is generated by tissues from patients with temporal lobe epilepsies associated with hippocampal sclerosis. This activity is initiated, not in the hippocampus but in the subiculum, an output region, which projects to the entorhinal cortex. Interictal events seem to be triggered by GABAergic cells, which paradoxically excite about 20% of subicular pyramidal cells while simultaneously inhibiting the majority. Interictal discharges thus depend on both GABAergic and glutamatergic signaling. The depolarizing effects of GABA depend on a pathological elevation in levels of chloride in some subicular cells, similar to those of developmentally immature cells. Such defect is caused by a perturbed expression of the cotransporters regulating intracellular chloride concentration, the importer NKCC1 and the extruder KCC2. Blockade of NKCC1 actions by the diuretic bumetanide restores intracellular chloride and thus hyperpolarizing GABAergic actions and consequently suppressing interictal activity.
Collapse
Affiliation(s)
- G Huberfeld
- Département de neurophysiologie, Sorbonne universités, UPMC - université Paris 06, UPMC, CHU de la Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France; INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity, University Paris Descartes, Sorbonne Paris Cité, CEA, 12, rue de l'École-de-Médecine, 75006 Paris, France.
| | - T Blauwblomme
- INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity, University Paris Descartes, Sorbonne Paris Cité, CEA, 12, rue de l'École-de-Médecine, 75006 Paris, France; Neurosurgery Department, Necker-Enfants Malades Hospital, University Paris Descartes, PRES Sorbonne Paris Cité, 12, rue de l'École-de-Médecine, 75006 Paris, France
| | - R Miles
- Inserm U1127, CNRS UMR7225, Sorbonne universités, UPMC - université Paris 6 UMR S1127, Institut du cerveau et de la moelle épinière, 47, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
15
|
Roggenhofer E, Fidzinski P, Shor O, Behr J. Reduced threshold for induction of LTP by activation of dopamine D1/D5 receptors at hippocampal CA1-subiculum synapses. PLoS One 2013; 8:e62520. [PMID: 23626827 PMCID: PMC3633881 DOI: 10.1371/journal.pone.0062520] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/21/2013] [Indexed: 11/18/2022] Open
Abstract
The phasic release of dopamine in the hippocampal formation has been shown to facilitate the encoding of novel information. There is evidence that the subiculum operates as a detector and distributor of sensory information, which incorporates the novelty and relevance of signals received from CA1. The subiculum acts as the final hippocampal relay station for outgoing information. Subicular pyramidal cells have been classified as regular- and burst-spiking neurons. The goal of the present study was to study the effect of dopamine D1/D5 receptor activation on synaptic transmission and plasticity in the subicular regular-spiking neurons of 4–6 week old Wistar rats. We demonstrate that prior activation of D1/D5 receptors reduces the threshold for the induction of long-term potentiation (LTP) in subicular regular-spiking neurons. Our results indicate that D1/D5 receptor activation facilitates a postsynaptic form of LTP in subicular regular-spiking cells that is NMDA receptor-dependent, relies on postsynaptic Ca2+ signaling, and requires the activation of protein kinase A. The enhanced propensity of subicular regular-spiking cells to express postsynaptic LTP after activation of D1/D5 receptors provides an intriguing mechanism for the encoding of hippocampal output information.
Collapse
Affiliation(s)
- Elisabeth Roggenhofer
- Department of Psychiatry and Psychotherapy, Charite, Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
16
|
Wide therapeutic time-window of low-frequency stimulation at the subiculum for temporal lobe epilepsy treatment in rats. Neurobiol Dis 2012; 48:20-6. [PMID: 22659307 DOI: 10.1016/j.nbd.2012.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 05/07/2012] [Accepted: 05/24/2012] [Indexed: 11/22/2022] Open
Abstract
Low-frequency stimulation (LFS) has been considered as an option for the treatment of intractable epilepsy. However, previous data showed that LFS of certain brain regions only exerts its effect within a very narrow therapeutic time window, which lasts from seconds to tens of seconds, thus restricting its clinical application. The present study was designed to determine whether there exists a target with a wider therapeutic window for LFS treatment. Therefore, evoked seizures in the rat were induced by amygdala kindling and spontaneous seizures were induced by pilocarpine. The effects of different modes of LFS at the subiculum on the progression and severity of evoked seizures and the frequency of spontaneous seizure were evaluated. We found that (i) LFS at 1Hz delivered to the subiculum before and immediately after the kindling stimulations, or after the cessation of afterdischarge (afterdischarge duration, ADD) decreased the seizure stages and shortened the ADD both in seizure acquisition and expression in amygdaloid-kindled seizures. In addition, even LFS delivered after duration of double the ADD prolonged the kindling progression. (ii) LFS delivered at 1Hz, but not 0.5, 3 or 130Hz, immediately after the cessation of kindling stimulations retarded the progression of kindling seizures. (iii) Pilocarpine-induced spontaneous seizures were completely inhibited by 1Hz LFS. Thus, these results demonstrated that LFS of the subiculum has a wide therapeutic time-window for temporal lobe epilepsy treatment in rats, suggesting that the subiculum may be a promising and suitable target for clinical application.
Collapse
|
17
|
Abstract
Gamma rhythms are essential for memory encoding and retrieval. Despite extensive study of these rhythms in the entorhinal cortex, dentate gyrus, CA3, and CA1, almost nothing is known regarding their generation and organization in the structure delivering the most prominent hippocampal output: the subiculum. Here we show using a complete rat hippocampal preparation in vitro that the subiculum intrinsically and independently generates spontaneous slow (25-50 Hz) and fast (100-150 Hz) gamma rhythms during the rising phase and peak of persistent subicular theta rhythms. These two gamma frequencies are phase modulated by theta rhythms without any form of afferent input from the entorhinal cortex or CA1. Subicular principal cells and interneurons phase lock to both fast and slow gamma, and single cells are independently phase modulated by each form of gamma rhythm, enabling selective participation in neural synchrony at both gamma frequencies at different times. Fast GABAergic inhibition is required for the generation of fast gamma, whereas slow gamma is generated by excitatory and inhibitory mechanisms. In addition, the transverse subicular axis exhibits gamma rhythm topography with faster gamma coupling arising in the distal subiculum region. The subiculum therefore possesses a unique intrinsic circuit organization that can autonomously regulate the timing and topography of hippocampal output synchronization. These results suggest the subiculum is a third spontaneous gamma generator in the hippocampal formation (in addition to CA3 and the entorhinal cortex), and these gamma rhythms likely play an active role in mediating the flow of information between the hippocampus and multiple cortical and subcortical brain regions.
Collapse
|
18
|
Wójtowicz A, Fidzinski P, Heinemann U, Behr J. Beta-adrenergic receptor activation induces long-lasting potentiation in burst-spiking but not regular-spiking cells at CA1-subiculum synapses. Neuroscience 2010; 171:367-72. [DOI: 10.1016/j.neuroscience.2010.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/13/2010] [Accepted: 09/18/2010] [Indexed: 11/26/2022]
|
19
|
Roggenhofer E, Fidzinski P, Bartsch J, Kurz F, Shor O, Behr J. Activation of dopamine D1/D5 receptors facilitates the induction of presynaptic long-term potentiation at hippocampal output synapses. Eur J Neurosci 2010; 32:598-605. [PMID: 20646048 DOI: 10.1111/j.1460-9568.2010.07312.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Encoding of novel information has been proposed to rely on the time-locked release of dopamine in the hippocampal formation during novelty detection. However, the site of novelty detection in the hippocampus remains a matter of debate. According to current models, the CA1 and the subiculum act as detectors and distributors of novel sensory information. Although most CA1 pyramidal neurons exhibit regular-spiking behavior, the majority of subicular pyramidal neurons fire high-frequency bursts of action potentials. The present study investigates the efficacy of dopamine D1/D5 receptor activation to facilitate the induction of activity-dependent long-term potentiation (LTP) in rat CA1 regular-spiking and subicular burst-spiking pyramidal cells. Using a weak stimulation protocol, set at a level subthreshold for the induction of LTP, we show that activation of D1/D5 receptors for 5-10 min facilitates LTP in subicular burst-spiking neurons but not in CA1 neurons. The results demonstrate that D1/D5 receptor-facilitated LTP is NMDA receptor-dependent, and requires the activation of protein kinase A. In addition, the D1/D5 receptor-facilitated LTP is shown to be presynaptically expressed and relies on presynaptic Ca(2+) signaling. The phenomenon of dopamine-induced facilitation of presynaptic NMDA receptor-dependent LTP in subicular burst-spiking pyramidal cells is in accordance with observations of the time-locked release of dopamine during novelty detection in this brain region, and reveals an intriguing mechanism for the encoding of hippocampal output information.
Collapse
Affiliation(s)
- Elisabeth Roggenhofer
- Department of Psychiatry and Psychotherapy, Charité- Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The subiculum is the first output structure distal to the hippocampus, abutting subfield CA1. As such, the subiculum receives afferent input from the hippocampus. Accumulating clinical and experimental evidence suggests that the subiculum plays an important role in the initiation and maintenance of epileptic discharges in temporal lobe epilepsy. This review discusses the anatomy and physiology of the subiculum and examines its participation in epilepsy and epileptogenesis.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Department of Neurology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Behr J, Wozny C, Fidzinski P, Schmitz D. Synaptic plasticity in the subiculum. Prog Neurobiol 2009; 89:334-42. [PMID: 19770022 DOI: 10.1016/j.pneurobio.2009.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/03/2009] [Accepted: 09/14/2009] [Indexed: 11/25/2022]
Abstract
The subiculum is the principal target of CA1 pyramidal cells. It functions as a mediator of hippocampal-cortical interaction and has been proposed to play an important role in the encoding and retrieval of long-term memory. The cellular mechanisms of memory formation are thought to include long-term potentiation (LTP) and depression (LTD) of synaptic strength. This review summarizes the contemporary knowledge of LTP and LTD at CA1-subiculum synapses. The observation that the underlying mechanisms of LTP and LTD at CA1-subiculum synapses correlate with the discharge properties of subicular pyramidal cell reveals a novel and intriguing mechanism of cell-specific consolidation of hippocampal output.
Collapse
Affiliation(s)
- Joachim Behr
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | |
Collapse
|
22
|
He DF, Ma DL, Tang YC, Engel J, Bragin A, Tang FR. Morpho-physiologic characteristics of dorsal subicular network in mice after pilocarpine-induced status epilepticus. Brain Pathol 2009; 20:80-95. [PMID: 19298597 DOI: 10.1111/j.1750-3639.2009.00243.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The goal of this study was to examine the morpho-physiologic changes in the dorsal subiculum network in the mouse model of temporal lobe epilepsy using extracellular recording, juxtacellular and immunofluorescence double labeling, and anterograde tracing methods. A significant loss of total dorsal subicular neurons, particularly calbindin, parvalbumin (PV) and immunopositive interneurons, was found at 2 months after pilocarpine-induced status epilepticus (SE). However, the sprouting of axons from lateral entorhinal cortex (LEnt) was observed to contact with surviving subicular neurons. These neurons had two predominant discharge patterns: bursting and fast irregular discharges. The bursting neurons were mainly pyramidal cells, and their dendritic spine density and bursting discharge rates were increased significantly in SE mice compared with the control group. Fast irregular discharge neurons were PV-immunopositive interneurons and had less dendritic spines in SE mice when compared with the control mice. When LEnt was stimulated, bursting and fast irregular discharge neurons had much shorter latency and stronger excitatory response in SE mice compared with the control group. Our results illustrate that morpho-physiologic changes in the dorsal subiculum could be part of a multilevel pathologic network that occurs simultaneously in many brain areas to contribute to the generation of epileptiform activity.
Collapse
Affiliation(s)
- De Fu He
- Epilepsy Research Lab, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
23
|
Shor OL, Fidzinski P, Behr J. Muscarinic acetylcholine receptors and voltage-gated calcium channels contribute to bidirectional synaptic plasticity at CA1-subiculum synapses. Neurosci Lett 2008; 449:220-3. [PMID: 19010390 DOI: 10.1016/j.neulet.2008.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/05/2008] [Accepted: 11/06/2008] [Indexed: 11/30/2022]
Abstract
Hippocampal output is mediated via the subiculum, which is the principal target of CA1 pyramidal cells, and which sends projections to a variety of cortical and subcortical regions. Pyramidal cells in the subiculum display two different firing modes and are classified as being burst-spiking or regular-spiking. In a previous study, we found that low-frequency stimulation induces an NMDA receptor-dependent long-term depression (LTD) in burst-spiking cells and a metabotropic glutamate receptor-dependent long-term potentiation (LTP) in regular-spiking cells [P. Fidzinski, O. Shor, J. Behr, Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses, Eur. J. Neurosci., 27 (2008) 1111-1118]. Here, we present evidence that this bidirectional plasticity relies upon the co-activation of muscarinic acetylcholine receptors, as scopolamine blocks synaptic plasticity in both cell types. In addition, we demonstrate that the L-type calcium channel inhibitor nifedipine converts LTD to LTP in burst-spiking cells and LTP to LTD in regular-spiking cells, indicating that the polarity of synaptic plasticity is modulated by voltage-gated calcium channels. Bidirectional synaptic plasticity in subicular cells therefore appears to be governed by a complex signaling system, involving cell-specific recruitment of ligand and voltage-gated ion channels as well as metabotropic receptors. This complex regulation might be necessary for fine-tuning of synaptic efficacy at hippocampal output synapses.
Collapse
Affiliation(s)
- Oded Lipa Shor
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | | | | |
Collapse
|
24
|
Srinivas KV, Sikdar SK. Epileptiform activity induces distance-dependent alterations of the Ca2+extrusion mechanism in the apical dendrites of subicular pyramidal neurons. Eur J Neurosci 2008; 28:2195-212. [DOI: 10.1111/j.1460-9568.2008.06519.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Orman R, Von Gizycki H, Lytton W, Stewart M. Local axon collaterals of area CA1 support spread of epileptiform discharges within CA1, but propagation is unidirectional. Hippocampus 2008; 18:1021-33. [DOI: 10.1002/hipo.20460] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Wouterlood F, Boekel A, Aliane V, Beliën J, Uylings H, Witter M. Contacts between medial and lateral perforant pathway fibers and parvalbumin expressing neurons in the subiculum of the rat. Neuroscience 2008; 156:653-61. [DOI: 10.1016/j.neuroscience.2008.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 08/01/2008] [Accepted: 08/11/2008] [Indexed: 11/30/2022]
|
27
|
Knopp A, Frahm C, Fidzinski P, Witte OW, Behr J. Loss of GABAergic neurons in the subiculum and its functional implications in temporal lobe epilepsy. Brain 2008; 131:1516-27. [PMID: 18504292 DOI: 10.1093/brain/awn095] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Clinical and experimental evidence suggest that the subiculum plays an important role in the maintenance of temporal lobe seizures. Using the pilocarpine-model of temporal lobe epilepsy (TLE), the present study examines the vulnerability of GABAergic subicular interneurons to recurrent seizures and determines its functional implications. In the subiculum of pilocarpine-treated animals, the density of glutamic acid decarboxylase (GAD) mRNA-positive cells was reduced in all layers. Our data indicate a substantial loss of parvalbumin-immunoreactive neurons in the pyramidal cell and molecular layer whereas calretinin-immunoreactive cells were predominantly reduced in the molecular layer. Though the subiculum of pilocarpine-treated rats showed an increased intensity of GAD65 immunoreactivity, the density of GAD65 containing synaptic terminals in the pyramidal cell layer was decreased indicating an increase in the GAD65 intensity of surviving synaptic terminals. We observed a decrease in evoked inhibitory post-synaptic currents that mediate dendritic inhibition as well as a decline in the frequency of miniature inhibitory post-synaptic currents (mIPSCs) that are restricted to the perisomatic region. The decrease in mIPSC frequency (-30%) matched with the reduced number of perisomatic GAD-positive terminals (-28%) suggesting a decrease of pre-synaptic GABAergic input onto pyramidal cells in epileptic animals. Though cell loss in the subiculum has not been considered as a pathogenic factor in human and experimental TLE, our data suggest that the vulnerability of subicular GABAergic interneurons causes an input-specific disturbance of the subicular inhibitory system.
Collapse
Affiliation(s)
- Andreas Knopp
- Dept. of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
28
|
Huberfeld G, Clemenceau S, Cohen I, Pallud J, Wittner L, Navarro V, Baulac M, Miles R. [Epileptiform activities generated in vitro by human temporal lobe tissue]. Neurochirurgie 2008; 54:148-58. [PMID: 18420229 DOI: 10.1016/j.neuchi.2008.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 02/13/2008] [Indexed: 11/28/2022]
Abstract
Drug-resistant partial epilepsies, including temporal lobe epilepsies with hippocampal sclerosis and cortical dysplasias, offer the opportunity to study human epileptic activity in vitro since the preferred therapy often consists of the surgical removal of the epileptogenic zone. Slices of this tissue retain functional neuronal networks and may generate epileptic activity. The properties of cells in this tissue do not seem to be significantly changed, but excitatory synaptic characteristics are enhanced and GABAergic inhibition is preserved. Typically, epileptic activity is not generated spontaneously by the neocortex, whether dysplastic or not, but can be induced by convulsants. The initiation of ictal discharges in neocortex depends on both GABAergic signaling and increased extracellular potassium. In contrast, a spontaneous interictal-like activity is generated by tissues from patients with temporal lobe epilepsies associated with hippocampal sclerosis. This activity is initiated not in the hippocampus but in the subiculum, an output region that projects to the entorhinal cortex. Interictal events seem to be triggered by GABAergic cells, which paradoxically excite approximately 20% of subicular pyramidal cells, while simultaneously inhibiting the majority. Interictal discharges are therefore sustained by both GABAergic and glutamatergic signaling. The atypical depolarizing effects of GABA depend on a pathological elevation in the basal levels of chloride in some subicular cells, similar to those of developmentally immature cells. This defect is caused by the perturbation of the expression of the cotransporters regulating the intracellular chloride concentration, the importer NKCC1, and the extruder KCC2. Blockade of excessive NKCC1 by the diuretic bumetanide restores intracellular chloride and thus hyperpolarizing GABAergic actions, suppressing interictal activity.
Collapse
Affiliation(s)
- G Huberfeld
- Inserm U739 Cortex & Epilepsie, université Pierre-et-Marie-Curie, CHU de la Pitié-Salpêtrière, 105, boulevard de l'Hôpital, 75013 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Robertson R, Menne KM. Depolarizing, GABA-mediated synaptic responses and their possible role in epileptiform events; Simulation studies. Neurocomputing 2007. [DOI: 10.1016/j.neucom.2006.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
van Welie I, Remme MWH, van Hooft JA, Wadman WJ. Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum. J Physiol 2006; 576:203-14. [PMID: 16809363 PMCID: PMC1995643 DOI: 10.1113/jphysiol.2006.113944] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/22/2006] [Accepted: 06/28/2006] [Indexed: 11/08/2022] Open
Abstract
Pyramidal neurons in the subiculum typically display either bursting or regular-spiking behaviour. Although this classification into two neuronal classes is well described, it is unknown how these two classes of neurons contribute to the integration of input to the subiculum. Here, we report that bursting neurons possess a hyperpolarization-activated cation current (I(h)) that is two-fold larger (conductance, 5.3 +/- 0.5 nS) than in regular-spiking neurons (2.2 +/- 0.6 nS), whereas I(h) exhibits similar voltage-dependent and kinetic properties in both classes of neurons. Bursting and regular-spiking neurons display similar morphology. The difference in I(h) between the two classes of neurons is not responsible for the distinct firing patterns, as neither pharmacological blockade of I(h) nor enhancement of I(h) using a dynamic clamp affects the qualitative firing patterns. Instead, the difference in I(h) between bursting and regular-spiking neurons determines the temporal integration of evoked synaptic input from the CA1 area. In response to stimulation at 50 Hz, bursting neurons, with a large I(h), show approximately 50% less temporal summation than regular-spiking neurons. The amount of temporal summation in both neuronal classes is equal after pharmacological blockade of I(h). A computer simulation model of a subicular neuron with the properties of either a bursting or a regular-spiking neuron confirmed the pivotal role of I(h) in temporal integration of synaptic input. These data suggest that in the subicular network, bursting neurons are better suited to discriminate the content of high-frequency input, such as that occurring during gamma oscillations, than regular-spiking neurons.
Collapse
Affiliation(s)
- Ingrid van Welie
- SILS, Center for NeuroScience, University of Amsterdam, PO Box 94084, 1090 GB Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
31
|
Saito T, Sakamoto K, Koizumi K, Stewart M. Repeatable focal seizure suppression: A rat preparation to study consequences of seizure activity based on urethane anesthesia and reversible carotid artery occlusion. J Neurosci Methods 2006; 155:241-50. [PMID: 16516976 DOI: 10.1016/j.jneumeth.2006.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 01/05/2006] [Accepted: 01/13/2006] [Indexed: 11/27/2022]
Abstract
Seizures can be associated with serious systemic complications (even death) due to autonomic nervous system or respiratory dysfunction. Clinical and laboratory studies examining the relationship between seizures and autonomic dysfunction have not resolved important questions, such as whether autonomic changes result primarily from muscle activation or from limbic cortical seizure activity, because correlational studies are limited by opportunities to observe seizures and study seizure spread. We describe a rat preparation that will greatly facilitate such studies. First, we show that systemic kainic acid in urethane anesthetized animals causes a period of status epilepticus as it does in ketamine/xylazine anesthetized or awake animals, but with a critical distinction: limbic cortical seizures occur without neocortical involvement. No paralytic agents are necessary to keep animals "safely" in a stereotaxic frame because there are not motor convulsions, yet animals continue to breathe on their own. Second, we describe the construction of a simple device to permit remote reversible unilateral or bilateral common carotid artery occlusion, and show that seizure activity in dorsal hippocampal regions can be unilaterally or bilaterally suppressed during periods of occlusion. Using this preparation, we found an increase in vagus nerve activity and a decrease in mean arterial pressure during suppression of right dorsal hippocampal seizures. By contrast, suppression of left dorsal hippocampal seizures caused no changes in vagus nerve activity and a small increase in mean arterial pressure. This preparation will be invaluable for defining the dynamic interactions of limbic brain regions and the interactions of limbic brain regions with autonomic brain regions.
Collapse
Affiliation(s)
- Takeshi Saito
- Department of Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
32
|
Wu CP, Huang HL, Asl MN, He JW, Gillis J, Skinner FK, Zhang L. Spontaneous rhythmic field potentials of isolated mouse hippocampal-subicular-entorhinal cortices in vitro. J Physiol 2006; 576:457-76. [PMID: 16887877 PMCID: PMC1890361 DOI: 10.1113/jphysiol.2006.114918] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The rodent hippocampal circuit is capable of exhibiting in vitro spontaneous rhythmic field potentials (SRFPs) of 1-4 Hz that originate from the CA3 area and spread to the CA1 area. These SRFPs are largely correlated with GABA-A IPSPs in pyramidal neurons and repetitive discharges in inhibitory interneurons. As such, their generation is thought to result from cooperative network activities involving both pyramidal neurons and GABAergic interneurons. Considering that the hippocampus, subiculum and entorhinal cortex function as an integrated system crucial for memory and cognition, it is of interest to know whether similar SRFPs occur in hippocampal output structures (that is, the subiculum and entorhinal cortex), and if so, to understand the cellular basis of these subicular and entorhinal SRFPs as well as their temporal relation to hippocampal SRFPs. We explored these issues in the present study using thick hippocampal-subicular-entorhinal cortical slices prepared from adult mice. SRFPs were found to spread from the CA1 area to the subicular and entorhinal cortical areas. Subicular and entorhinal cortical SRFPs were correlated with mixed IPSPs/EPSPs in local pyramidal neurons, and their generation was dependent upon the activities of GABA-A and AMPA glutamate receptors. In addition, the isolated subicular circuit could elicit SRFPs independent of CA3 inputs. We hypothesize that the SRFPs represent a basal oscillatory activity of the hippocampal-subicular-entorhinal cortices and that the subiculum functions as both a relay and an amplifier, spreading the SRFPs from the hippocampus to the entorhinal cortex.
Collapse
Affiliation(s)
- C P Wu
- Room 13-411, Toronto Western Hospital, 399 Bathurst Street, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The subiculum has long been considered as a simple bidirectional relay region interposed between the hippocampus and the temporal cortex. Recent evidence, however, suggests that this region has specific roles in the cognitive functions and pathological deficits of the hippocampal formation. A group of 20 researchers participated in an ESF-sponsored meeting in Oxford in September, 2005 focusing on the neurobiology of the subiculum. Each brought a distinct expertise and approach to the anatomy, physiology, psychology, and pathologies of the subiculum. Here, we review the recent findings that were presented at the meeting.
Collapse
|
34
|
Stewart M. Insights into the functional organization of limbic cortical circuits from studies of evoked potentials and spontaneous activity. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2006; 59:219-22. [PMID: 16893115 DOI: 10.1016/s1567-424x(09)70034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Mark Stewart
- Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center Brooklyn, NY 11203, USA.
| |
Collapse
|
35
|
Lytton WW, Orman R, Stewart M. Computer simulation of epilepsy: implications for seizure spread and behavioral dysfunction. Epilepsy Behav 2005; 7:336-44. [PMID: 16105749 PMCID: PMC2656282 DOI: 10.1016/j.yebeh.2005.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/07/2005] [Indexed: 11/24/2022]
Abstract
Hippocampal area CA3 has been one of the most intensively studied brain regions for computer models of epileptiform activity. As physiological studies begin to extend outward to other hippocampal and parahippocampal areas, we must extend these models to understand more complex circuitry containing diverse elements. Study of subiculum is of particular interest in this context, as it is a structure of intermediate complexity, with an inchoate columnar and laminar organization. In addition to helping us understand seizures, modeling of these structures will also help us understand the genesis of physiological activity patterns that are below threshold for seizure generation. Such modeling can also serve as a basis for speculation regarding the nonictal behavioral consequences of epilepsy.
Collapse
Affiliation(s)
- William W Lytton
- Department of Physiology and Pharmacology, SUNY Downstate, 450 Clarkson Avenue, Box 31, Brooklyn, NY 11203, USA.
| | | | | |
Collapse
|
36
|
Wozny C, Knopp A, Lehmann TN, Heinemann U, Behr J. The subiculum: a potential site of ictogenesis in human temporal lobe epilepsy. Epilepsia 2005; 46 Suppl 5:17-21. [PMID: 15987248 DOI: 10.1111/j.1528-1167.2005.01066.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE This study determines synaptic and intrinsic alterations of subicular pyramidal cells that are associated with activity recorded in patients suffering from temporal lobe epilepsy. METHODS Electroencephalograms with sphenoidal electrodes were correlated with in vitro single cell recordings of subicular pyramidal cells from the corresponding resected epileptic tissue. We determined alterations of synaptic and intrinsic properties of subicular pyramidal cells that accompany spontaneous rhythmic activity in human sclerotic and nonsclerotic epileptic tissue. RESULTS We found that in sclerotic, but also in nonsclerotic hippocampal tissue, the subiculum showed cellular and synaptic changes that were associated with spontaneous rhythmic activity correlated to the occurrence and frequency of interictal discharges recorded in the electroencephalograms of the corresponding patients. CONCLUSIONS Even though Ammon's horn sclerosis (AHS) in resected hippocampi from patients suffering from temporal lobe epilepsy has important prognostic implications for freedom from seizures postoperatively, we report here that both synaptic and intrinsic alterations enhance seizure susceptibility of the subiculum also in the absence of classical AHS.
Collapse
Affiliation(s)
- Christian Wozny
- Neuroscience Research Center of the Charité, Humboldt University Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
37
|
Benini R, Avoli M. Rat subicular networks gate hippocampal output activity in an in vitro model of limbic seizures. J Physiol 2005; 566:885-900. [PMID: 15932889 PMCID: PMC1464785 DOI: 10.1113/jphysiol.2005.088708] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Evidence obtained from human epileptic tissue maintained in vitro indicates that the subiculum may play a crucial role in initiating epileptiform discharges in patients with mesial temporal lobe epilepsy. Hence, we used rat hippocampus-entorhinal cortex (EC) slices to identify the role of subiculum in epileptiform synchronization during bath application of 4-aminopyridine (4AP, 50 microM). In these slices, fast CA3-driven interictal-like events were restricted to the hippocampal CA3/CA1 areas and failed to propagate to the EC where slow interictal-like and ictal-like epileptiform discharges were recorded. However, antagonizing GABA(A) receptors with picrotoxin (50 microM) made CA3-driven interictal activity spread to EC. Sequential field potential analysis along the CA3-CA1-subiculum axis revealed that the amplitude of CA3-driven interictal discharges recorded in the presence of 4AP only diminished within the subiculum. Furthermore, CA1 electrical stimulation under control conditions elicited little or no subicular activation and never any response in EC; in contrast, robust subicular discharges that spread to EC could be evoked after picrotoxin. Intracellular recordings indicated that potentiation by picrotoxin was associated with blockade of hyperpolarizing IPSPs in subicular cells. Finally, when surgically isolated from adjacent structures, the subiculum generated low-amplitude synchronous discharges that corresponded to an intracellular hyperpolarization-depolarization sequence, were resistant to glutamatergic antagonists, and represented the activity of synchronized interneuronal networks. Bath application of picrotoxin abolished these 4AP-induced events and in their place robust network bursting occurred. In conclusion, our study demonstrates that the subiculum plays a powerful gating role on hippocampal output activity. This function depends on GABA(A) receptor-mediated inhibition and controls hippocampal-parahippocampal interactions that are known to modulate limbic seizures.
Collapse
Affiliation(s)
- Ruba Benini
- Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
38
|
Knopp A, Kivi A, Wozny C, Heinemann U, Behr J. Cellular and network properties of the subiculum in the pilocarpine model of temporal lobe epilepsy. J Comp Neurol 2005; 483:476-88. [PMID: 15700275 DOI: 10.1002/cne.20460] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The subiculum was recently shown to be crucially involved in the generation of interictal activity in human temporal lobe epilepsy. Using the pilocarpine model of epilepsy, this study examines the anatomical substrates for network hyperexcitability recorded in the subiculum. Regular- and burst-spiking subicular pyramidal cells were stained with fluorescence dyes and reconstructed to analyze seizure-induced alterations of the dendritic and axonal system. In control animals burst-spiking cells outnumbered regular-spiking cells by about two to one. Regular- and burst-spiking cells were characterized by extensive axonal branching and autapse-like contacts, suggesting a high intrinsic connectivity. In addition, subicular axons projecting to CA1 indicate a CA1-subiculum-CA1 circuit. In the subiculum of pilocarpine-treated rats we found an enhanced network excitability characterized by spontaneous rhythmic activity, polysynaptic responses, and all-or-none evoked bursts of action potentials. In pilocarpine-treated rats the subiculum showed cell loss of about 30%. The ratio of regular- and burst-spiking cells was practically inverse as compared to control preparations. A reduced arborization and spine density in the proximal part of the apical dendrites suggests a partial deafferentiation from CA1. In pilocarpine-treated rats no increased axonal outgrowth of pyramidal cells was observed. Hence, axonal sprouting of subicular pyramidal cells is not mandatory for the development of the pathological events. We suggest that pilocarpine-induced seizures cause an unmasking or strengthening of synaptic contacts within the recurrent subicular network.
Collapse
Affiliation(s)
- Andreas Knopp
- Neuroscience Research Center of the Charité, Humboldt University of Berlin, D-10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
39
|
Menendez de la Prida L, Gal B. Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro. J Neurosci 2004; 24:5525-36. [PMID: 15201325 PMCID: PMC6729319 DOI: 10.1523/jneurosci.0309-04.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The subiculum, which has a strategic position in controlling hippocampal activity, is receiving significant attention in epilepsy research. However, the functional organization of subicular circuits remains unknown. Here, we combined different recording and analytical methods to study focal and widespread population activity in the isolated subiculum in zero Mg2+ media. Patch and field recordings were combined to examine the contribution of different cell types to population activity. The properties of cells leading field activity were examined. Predictive factors for a cell to behave as leader included exhibiting the bursting phenotype, displaying a low firing threshold, and having more distal apical dendrites. A subset of bursting cells constituted the first glutamatergic type that led a recruitment process that subsequently activated additional excitatory as well as inhibitory cells. This defined a sequence of synaptic excitation and inhibition that was studied by measuring the associated conductance changes and the evolution of the composite reversal potential. It is shown that inhibition was time-locked to excitation, which shunted excitatory inputs and suppressed firing during focal activity. This was recorded extracellularly as a multi-unit ensemble of active cells, the spatial boundaries of which were controlled by inhibition in contrast to widespread epileptiform activity. Focal activity was not dependent on the preparation or the developmental state because it was also recorded under 5 mm [K+]o and in adult tissue. Our data indicate that the subicular networks can be spontaneously organized as leader-follower local circuits in which excitation is mainly driven by a subset of bursting cells and inhibition controls spatiotemporal firing.
Collapse
Affiliation(s)
- L Menendez de la Prida
- Departamento de Neurobiología-Investigación, Hospital Ramón y Cajal, Madrid 28034, Spain.
| | | |
Collapse
|
40
|
Menendez de la Prida L, Suarez F, Pozo MA. Electrophysiological and morphological diversity of neurons from the rat subicular complex in vitro. Hippocampus 2003; 13:728-44. [PMID: 12962317 DOI: 10.1002/hipo.10123] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We combined whole-cell recordings with Neurobiotin labeling to examine the electrophysiological and morphological properties of neurons from the ventral subicular complex in vitro (including the subicular, presubicular, and parasubicular areas). No a priori morphological sampling criteria were used to select cells. Cells were classified as bursting (IB), regular-spiking (RS), and fast-spiking (FS) according to their firing patterns in response to depolarizing current pulses. A number of cells remained unclassified. We found 54% RS, 26% IB, 11% FS, and 9% unclassified cells out of a total of 131 neurons examined. We also found cells showing intrinsic membrane potential oscillations (MPO) (6%), which represented a subgroup of the unclassified cells. We analyzed several electrophysiological parameters and found that RS and IB cells can be subclassified into two separate subgroups. RS cells were subclassified as tonic and adapting, according to the degree of firing adaptation. Both responded with single spikes to orthodromic stimulation. IB cells were subclassified in two subgroups according to their capacity to fire more than one burst, and showed different responses to orthodromic stimulation. We observed that bursting in these two subgroups appeared to involve both Ca2+ and persistent Na+ components. Both IB and RS cells, as well as MPO neurons, were projecting cells. FS cells were morphologically identified as local circuit interneurons. We also analyzed the spatial distribution of these cell types from the vicinity of CA1 to the parasubicular areas. We conclude that, in contrast to the commonly accepted idea of the subicular complex as a bursting structure, there is a wide electrophysiological variability even within a given cellular group.
Collapse
Affiliation(s)
- L Menendez de la Prida
- Brain Mapping Unit, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | |
Collapse
|
41
|
Abstract
The subiculum, which provides the major hippocampal output, contains different cell types including weak/strong bursting and regular-spiking cells, and fast-spiking interneurons. These cellular populations play different roles in the generation of physiological rhythms and epileptiform activity. However, their intrinsic connectivity and the synaptic regulation of their discharge patterns remain unknown. In the present study, the local synaptic responses of subicular cell types were examined in vitro. To this purpose, slices were prepared at a specific orientation that permitted the antidromic activation of projection cells as a tool to examine local circuits. Patch recordings in cell-attached and whole-cell configurations were combined with neurobiotin labelling to classify cell types. Strong (approximately 75 %), but not weak (approximately 22 %), bursting cells typically fired bursts in response to local synaptic excitation, whereas the majority of regular-spiking cells (approximately 87 %) remained silent. Local excitation evoked single spikes in more than 70 % of fast-spiking interneurons. This different responsiveness was determined by intrinsic membrane properties and not by the amplitude and pharmacology of synaptic currents. Inhibitory GABAergic responses were also detected in some cells, typically as a component of an excitatory/inhibitory sequence. A positive correlation between the latency of the excitatory and inhibitory responses, together with the glutamatergic control (via non-NMDA receptors) of inhibition, suggested a local mechanism. The effect of local inhibition on synaptically activated firing of different cell types was evaluated. It is shown that projection bursting cells of the subiculum are strongly controlled by local inhibitory circuits.
Collapse
Affiliation(s)
- L Menendez de la Prida
- Departamento de Neurobiología-Investigación, Hospital Ramón y Cajal, Ctra Colmenar Km 9, Madrid 28034, Spain.
| |
Collapse
|
42
|
Abstract
The brain reward circuit consists of specialized cortical and subcortical structural components that code for various cognitive aspects of goal-directed behavior. These components include the prefrontal cortex (PFC), amygdala (AMY), nucleus accumbens (Nac), subiculum (SUB) of the hippocampal formation, and the dopamine (DA) neurons in the ventral tegmental area (VTA). Both serial and parallel processing in the different components of the circuit code the various aspects of reward-related behavior. Individual neurons within each component have developed specialized intrinsic membrane properties that have led them to be typically defined as either single spiking or high frequency burst-firing neurons. However, a strict definition based on the output mode may not be appropriate. Under the right conditions, neurons can switch between bursting and single-spiking modes, therefore providing a conditional output state. The preferred mode of each individual neuron depends on a combination of different plastic neuronal properties such as, dendritic architecture, neuromodulation, intracellular calcium (Ca(++)) buffering, excitatory and inhibitory synaptic strength, and the spatial distribution and density of voltage and ligand-gated channels. It is likely that, in vivo, most neurons in the circuit, despite variations in intrinsic membrane properties, are conditional output neurons equipped with the versatility of switching between output modes under appropriate conditions. Bursting mode may be used to boost the gain of neural signaling of important or novel events by enhancing transmitter release and enhancing dendritic depolarization, thereby increasing synaptic potentiation. Conversely, single spiking mode may be used to dampen neuronal signaling and may be associated with habituation to unimportant events. Mode switching may provide flexibility to the circuit allowing different sets of neurons to conditionally code for the various aspects of reward-related memory and behavior.
Collapse
Affiliation(s)
- Donald C Cooper
- Department of Neurobiology and Physiology, Institute for Neuroscience, Northwestern University, 2153 N Campus Drive, 60208-3520, Evanston, IL, USA.
| |
Collapse
|