1
|
Herfst L, Burgalossi A, Haskic K, Tukker JJ, Schmidt M, Brecht M. Friction-based stabilization of juxtacellular recordings in freely moving rats. J Neurophysiol 2012; 108:697-707. [PMID: 22514297 DOI: 10.1152/jn.00910.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Virtually nothing is known about the activity of morphologically identified neurons in freely moving mammals. Here we describe stabilization and positioning techniques that allow juxtacellular recordings from labeled single neurons in awake, freely moving animals. This method involves the use of a friction-based device that allows stabilization of the recording pipette by friction forces. Friction is generated by a clamplike mechanism that tightens a sliding pipette holder to a preimplanted pipette guide. The interacting surfaces are smoothed to optical quality (<5-nm roughness) to enable micrometer stepping precision of the device during operation. Our method allows recordings from identified neurons in freely moving animals, and thus opens new perspectives for analyzing the role of identified neurons in the control of behavior.
Collapse
Affiliation(s)
- Lucas Herfst
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
2
|
Kanjhan R, Vaney DI. Semi-loose seal Neurobiotin electroporation for combined structural and functional analysis of neurons. Pflugers Arch 2008; 457:561-8. [PMID: 18600343 DOI: 10.1007/s00424-008-0539-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 05/26/2008] [Indexed: 12/19/2022]
Abstract
Intracellular sharp-electrode, whole-cell patch clamp and juxtacellular labeling methods have previously been developed for combined analysis of neuronal structure and function. We describe a novel electroporation technique for labeling neurons with Neurobiotin, using patch electrodes in a semi-loose seal configuration (R = 100-300 MOmega) with very small amplitude pulses (50 mV). The addition of 2% Neurobiotin to the intracellular solution in the patch electrode reduces the dielectric membrane breakdown voltage threshold by about threefold. The resulting pore formation allows for (1) the stable recording of spontaneous and light-evoked postsynaptic potentials without significant cytoplasmic washout and (2) the passage of dye without spillover. The efficiency and reliability of the method makes it particularly suitable for the serial recording and labeling of multiple neurons in a small area of tissue.
Collapse
Affiliation(s)
- Refik Kanjhan
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia.
| | | |
Collapse
|
3
|
Pilowsky PM, Abbott SB, Burke PGR, Farnham MMJ, Hildreth CM, Kumar NN, Li Q, Lonergan T, McMullan S, Spirovski D, Goodchild AK. METABOTROPIC NEUROTRANSMISSION AND INTEGRATION OF SYMPATHETIC NERVE ACTIVITY BY THE ROSTRAL VENTROLATERAL MEDULLA IN THE RAT. Clin Exp Pharmacol Physiol 2008; 35:508-11. [DOI: 10.1111/j.1440-1681.2008.04906.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Monconduit L, Lopez-Avila A, Molat JL, Chalus M, Villanueva L. Corticofugal output from the primary somatosensory cortex selectively modulates innocuous and noxious inputs in the rat spinothalamic system. J Neurosci 2006; 26:8441-50. [PMID: 16914669 PMCID: PMC6674349 DOI: 10.1523/jneurosci.1293-06.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 06/21/2006] [Accepted: 07/01/2006] [Indexed: 11/21/2022] Open
Abstract
Sensory maps for pain can be modified by deafferentation or injury, and such plasticity has been attributed mainly to changes in the convergence of projections in "bottom-up" mechanisms. We addressed the possible contribution of "top-down" mechanisms by investigating the functional significance of corticofugal influences from the primary somatosensory cortex (S1) to the ventroposterolateral thalamic nucleus (VPL). The strong convergence of spinal and lemniscal afferents to the VPL and the close correspondence between afferents and efferents within the VPL-S1 network suggest the existence of functionally related thalamocortical circuits that are implicated in the detection of innocuous and noxious inputs. Functional characterization of single nociceptive, wide dynamic range, and non-nociceptive VPL neurons and labeling the axons and terminal fields with the juxtacellular technique showed that all three types of cells project to a restricted area, within S1. The convergence of the terminal trees of axons from VPL neurons activated by innocuous, noxious, or both inputs suggests that their inputs are not segregated into anatomically distinct regions. Microinjections within S1 were performed for pharmacological manipulation of corticofugal modulation. Glutamatergic activation of corticofugal output enhanced noxious-evoked responses and affected in a biphasic way tactile-evoked responses of VPL cells. GABA(A)-mediated depression of corticofugal output concomitantly depressed noxious and enhanced innocuous-evoked responses of VPL neurons. Microinjections of a GABA(A) antagonist on corticofugal cells enhanced noxious-evoked responses of VPL cells. Our findings demonstrate that corticofugal influences from S1 contribute to selectively modulate somatosensory submodalities at the thalamic level.
Collapse
|
5
|
Song G, Yu Y, Poon CS. Cytoarchitecture of pneumotaxic integration of respiratory and nonrespiratory information in the rat. J Neurosci 2006; 26:300-10. [PMID: 16399700 PMCID: PMC6674322 DOI: 10.1523/jneurosci.3029-05.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The "pneumotaxic center" in the Kölliker-Fuse and medial parabrachial nuclei of dorsolateral pons (dl-pons) plays an important role in respiratory phase switching, modulation of respiratory reflex, and rhythmogenesis. Recent electrophysiological and neural tracing data implicate additional pneumotaxic nuclei in (and a broader role for) the dl-pons in integrating respiratory and nonrespiratory information. Here, we examined the cytoarchitecture of the greater pneumotaxic center and its integrating function by using combined extracellular recording and juxtacellular labeling of unit respiratory rhythmic neurons in dl-pons in urethane-anesthetized, vagotomized, paralyzed, and servo-ventilated adult Sprague Dawley rats. Perievent histogram analysis identified four major types of neuronal discharge patterns: inspiratory, expiratory (with three subdivisions), inspiratory-expiratory, and expiratory-inspiratory phase spanning, sometimes with mild tonic background activity. Most recorded neurons were localized in the Kölliker-Fuse and medial parabrachial nuclei, but some were also found in lateral parabrachial nucleus, intertrigeminal nucleus, principal trigeminal sensory nucleus, and supratrigeminal nucleus. The majority of labeled neurons had large and spatially extended dendritic trees that spanned several of these dl-pons subnuclei, often with terminal dendrites ending in the ventral spinocerebellar tract. The distal sections of the primary and higher-order dendrites exhibited rich varicosities, sometimes with dendritic spines. Axons of some labeled neurons were traced all the way to the ventrolateral pons (vl-pons). These findings extend and generalize the classical definition of the pneumotaxic center to include extensive somatic-axonal-dendritic integration of complex descending and ascending respiratory information as well as nociceptive and possibly musculoskeletal and trigeminal information in multiple dl-pons and vl-pons structures in the rat.
Collapse
Affiliation(s)
- Gang Song
- Harvard University-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
6
|
Monconduit L, Villanueva L. The lateral ventromedial thalamic nucleus spreads nociceptive signals from the whole body surface to layer I of the frontal cortex. Eur J Neurosci 2005; 21:3395-402. [PMID: 16026477 DOI: 10.1111/j.1460-9568.2005.04160.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurons within the lateral ventromedial thalamic nucleus (VMl) convey selectively nociceptive information from all parts of the body. The present experiments were performed in rats and were designed to determine the organization of cortical projections from VMl neurons. In a first series of experiments, these cells were characterized electrophysiologically and individually labelled in a Golgi-like manner following juxtacellular electrophoresis of biotin-dextran. In a second experimental series, topical applications of the tracers fluorogold and tetramethylrhodamine-labelled dextran were placed into both the rostral-most and caudal areas of layer I of the dorsolateral frontal cortex, respectively. All VMl nociceptive neurons were fusiform and their full dendritic arborizations were bipolar, extending in the lateromedial axis. VMl cells are thus particularly well located to receive widespread nociceptive inputs via a brainstem link, viz. the medullary subnucleus reticularis dorsalis. VMl neurons driven by 'whole body' nociceptive receptive fields project to the rostral part of the layer I of the dorsolateral frontal cortex. These projections are widespread because double-labelling data showed a great number of VMl neurons labelled from both rostral and caudal dorsolateral cortices. The VMl comprises a homogeneous, organized subset of thalamic neurons that allow any signals of pain to modify cortical activity in a widespread manner, by interacting with the entire layer I of the dorsolateral neocortex.
Collapse
Affiliation(s)
- Lénaïc Monconduit
- INSERM E-216, Neurobiologie de la Douleur Trigéminale, Faculté de Chirurgie Dentaire, 11 Boulevard Charles de Gaulle, 63000, Clermont-Ferrand, France
| | | |
Collapse
|
7
|
Abstract
Layer-V pyramidal cells comprise a major output of primary auditory cortex (A1). At least two cell types displaying different morphology, projections and in vitro physiology have been previously identified in layer-V. The focus of the present study was to characterize extracellular receptive field properties of layer-V neurons to determine whether a similar breakdown of responses can be found in vivo. Recordings from 105 layer-V neurons revealed two predominant receptive field types. Thirty-two percent displayed strong excitatory V/U-shaped receptive field maps and spiking patterns with shorter stimulus-driven interspike intervals (ISIs), reminiscent of the bursting cells discussed in the in vitro literature. V/U-shaped maps remained relatively unchanged across the three sequential repetitions of the map run on each neuron. Neurons with V/U-shaped maps were also easily depolarized with extracellular current pulse stimulation. In contrast, 47% of the neurons displayed Complex receptive field maps characterized by weak and/or inconsistent excitatory regions and were difficult to depolarize with current pulses. These findings suggest that V/U-shaped receptive fields could correspond to previously described intrinsic bursting (IB) cells with corticotectal projections, and that neurons with Complex receptive fields might represent the regular spiking (RS) cells with their greater inhibitory input and corticocortical/corticostriatal projection pattern.
Collapse
Affiliation(s)
- Jeremy G Turner
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, 62794-9629, USA
| | | | | |
Collapse
|
8
|
Ezure K, Tanaka I. GABA, in some cases together with glycine, is used as the inhibitory transmitter by pump cells in the Hering-Breuer reflex pathway of the rat. Neuroscience 2004; 127:409-17. [PMID: 15262331 DOI: 10.1016/j.neuroscience.2004.05.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2004] [Indexed: 11/17/2022]
Abstract
The Hering-Breuer reflex is one of the fundamental respiratory reflexes and is mediated by second-order relay neurons of the slowly adapting lung stretch receptors. These neurons, which are called pump cells, are located in the nucleus tractus solitarii and include a population of inhibitory neurons. We aimed to determine which transmitter, GABA or glycine, the inhibitory pump cells use. In addition, we examined whether or not second-order relay neurons of the rapidly-adapting lung stretch receptors (RAR-cells), whose excitatory or inhibitory nature is not known, use these inhibitory neurotransmitters. In Nembutal-anesthetized, neuromuscularly blocked and artificially ventilated rats, we labeled pump cells (n=33) and RAR-cells (n=26) with Neurobiotin and processed the tissues for detection of mRNA encoding either glutamic acid decarboxylase isoform 67 (GAD67) or glycine transporter 2 (GLYT2) using in situ hybridization. The pump cells were located in the interstitial nucleus and its vicinity and the RAR-cells in the commissural subnucleus. The majority (64%) of the pump cells examined for GAD67 mRNA and many (26%) of the pump cells examined for GLYT2 mRNA expressed respective mRNAs. Of the eight pump cells in which both mRNAs were double-detected, three expressed both mRNAs and one expressed GAD67 mRNA but not GLYT2 mRNA, the other four expressing neither mRNAs. On the other hand, RAR-cells expressed neither GAD67 mRNA nor GLYT2 mRNA. The results suggest that the inhibitory pump cells are basically GABAergic and some of them may corelease GABA and glycine, and that RAR-cells are neither GABAergic nor glycinergic. These findings expand our understanding of the networks of lung receptor-mediated reflexes including the Hering-Breuer reflex.
Collapse
Affiliation(s)
- K Ezure
- Department of Neurobiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashi-dai, Fuchu, Tokyo 183-8526, Japan.
| | | |
Collapse
|
9
|
Allers KA, Sharp T. Neurochemical and anatomical identification of fast- and slow-firing neurones in the rat dorsal raphe nucleus using juxtacellular labelling methods in vivo. Neuroscience 2004; 122:193-204. [PMID: 14596860 DOI: 10.1016/s0306-4522(03)00518-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
GABA neurones in the dorsal raphe nucleus (DRN) influence ascending 5-hydroxytryptamine (5-HT) neurones but are not physiologically or anatomically characterised. Here, in vivo juxtacellular labelling methods in urethane-anaesthetised rats were used to establish the neurochemical and morphological identity of a fast-firing population of DRN neurones, which recent data suggest may be GABAergic. Slow-firing, putative 5-HT DRN neurones were also identified for the first time using this approach. Fast-firing, DRN neurones were successfully labelled with neurobiotin (n=10) and the majority (n=8/10) were immunoreactive for the GABA synthetic enzyme glutamic acid decarboxylase. These neurones were located in the DRN (mainly lateral regions), and consistently fired spikes with short width (1.1+/-0.1 ms) and high frequency (12.1+/-2.0 Hz). In most cases spike trains were regular but displayed low frequency oscillations (1-2 Hz). These neurones were morphologically heterogeneous but commonly had branching axons with varicosities and dendrites that extended across DRN subregions and the midline. Slow-firing DRN neurones were also successfully labelled with neurobiotin (n=24). These neurones comprised a population of neurones immunopositive for 5-HT and/or tryptophan hydroxylase (n=12) that fired broad spikes (2.2+/-0.2 ms) with high regularity and low frequency (1.7+/-0.2 Hz). However, a slow-firing, less regular population of neurones immunonegative for 5-HT/tryptophan hydroxylase (n=12) was also apparent. In summary, this study chemically identifies fast- and slow-firing neurones in the DRN and establishes for the first time that fast-firing DRN neurones are GABAergic. The electrophysiological and morphological properties of these neurones suggest a novel function involving co-ordination between GABA and 5-HT neurones dispersed across DRN subregions.
Collapse
Affiliation(s)
- K A Allers
- University Department of Pharmacology, Mansfield Road, Oxford, UK OX1 3QT.
| | | |
Collapse
|
10
|
Glycine is used as a transmitter by decrementing expiratory neurons of the ventrolateral medulla in the rat. J Neurosci 2003. [PMID: 14523096 DOI: 10.1523/jneurosci.23-26-08941.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The medullary respiratory network involves various types of respiratory neurons. The present study focused on possible inhibitory neurons called decrementing expiratory (E-DEC) neurons and aimed to determine whether their transmitter is glycine or GABA. In Nembutal-anesthetized, neuromuscularly blocked, and artificially ventilated rats we labeled E-DEC neurons with Neurobiotin and processed the tissues for detection of mRNA encoding either glycine transporter 2 (GLYT2) as a marker for glycinergic neurons or glutamic acid decarboxylase isoform 67 (GAD67) as a marker for GABAergic neurons, using in situ hybridization. Of 38 E-DEC neurons that were labeled, cranial motoneurons (n = 14), which were labeled as control, were negative for either GLYT2 mRNA (n = 10) or GAD67 mRNA (n = 4). The other E-DEC neurons (n = 24) were non-motoneurons. Sixteen of them were examined for GLYT2 mRNA, and the majority (11 of 16) was GLYT2 mRNA-positive. The remaining E-DEC neurons (n = 8) were examined for GAD67 mRNA, and all of them were GAD67 mRNA-negative. The GLYT2 mRNA-positive E-DEC neurons were located in the ventrolateral medulla spanning the Bötzinger complex (BOT), the rostral ventral respiratory group (VRG), and the caudal VRG. We conclude that not only E-DEC neurons of the BOT but also many E-DEC neurons of the VRG are inhibitory and use glycine as a transmitter. Although the present negative data cannot rule out completely the release of GABA or co-release of glycine and GABA from E-DEC neurons, several lines of evidence suggest that the glycinergic process is primarily responsible for the phasic inhibition of the respiratory network during the expiratory phase.
Collapse
|
11
|
Sartor DM, Verberne AJM. Phenotypic identification of rat rostroventrolateral medullary presympathetic vasomotor neurons inhibited by exogenous cholecystokinin. J Comp Neurol 2003; 465:467-79. [PMID: 12975810 DOI: 10.1002/cne.10840] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Systemic administration of the gastrointestinal hormone cholecystokinin (CCK) selectively inhibits splanchnic sympathetic vasomotor discharge and differentially affects presympathetic vasomotor neurons of the rostroventrolateral medulla (RVLM). Stimulation of the sympathoexcitatory region of the periaqueductal grey (PAG) produces profound mesenteric vasoconstriction. In this study, our aim was to identify phenotypically different populations of RVLM presympathetic vasomotor neurons using juxtacellular neuronal labelling and immunohistochemical detection of the adrenergic neuronal marker phenylethanolamine-N-methyl transferase (PNMT) and to determine whether the PAG provides functional excitatory input to these neurons. Fifty-eight percent (36/62) of RVLM presympathetic neurons were inhibited by systemic administration of CCK. These cells had conduction velocities (3.6 +/- 0.2 m/sec) in the non-C-fiber range consistent with neurons possessing lightly myelinated spinal axons. Of these, 79% (22/28) were excited by PAG stimulation, and 59% (10/17) were not immunoreactive for PNMT. Conversely, 42% (26/62) of RVLM presympathetic neurons were either unaffected or activated by CCK administration and had slower conduction velocities (1.4 +/- 0.3 m/sec) than cells inhibited by CCK. Fifty percent (11/22) of these cells were driven by PAG stimulation, and most (11/14 or 79%) were PNMT-positive. These results suggest that cardiovascular responses elicited by PAG stimulation occur via activation of non-C1 and C1 RVLM presympathetic neurons. RVLM neurons inhibited by CCK were more likely to be driven by PAG stimulation and may be a subset of neurons responsible for driving gastrointestinal sympathetic vasomotor tone. CCK-induced inhibition of a subpopulation of RVLM presympathetic neurons may be implicated in postprandial hyperemia and postprandial hypotension.
Collapse
Affiliation(s)
- Daniela M Sartor
- Clinical Pharmacology and Therapeutics Unit, Austin and Repatriation Medical Centre, Department of Medicine, University of Melbourne, Heidelberg 3084, Victoria, Australia
| | | |
Collapse
|
12
|
Ezure K, Tanaka I, Saito Y. Brainstem and spinal projections of augmenting expiratory neurons in the rat. Neurosci Res 2003; 45:41-51. [PMID: 12507723 DOI: 10.1016/s0168-0102(02)00197-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There are two types of expiratory neurons with augmenting firing patterns (E-AUG neurons), those in the Bötzinger complex (BOT) and those in the caudal ventral respiratory group (cVRG). We studied their axonal projections morphologically using intracellular labeling of single E-AUG neurons with Neurobiotin, in anesthetized, paralyzed and artificially-ventilated rats. BOT E-AUG neurons (n = 11) had extensive axonal projections to the brainstem, but E-AUG neurons (n = 5) of the cVRG sent axons that descended the contralateral spinal cord without medullary collaterals. In addition to these somewhat expected characteristics, the present study revealed a number of new projection patterns of the BOT E-AUG neurons. First, as compared with the dense projections to the ipsilateral brainstem, those to the contralateral side were sparse. Second, several BOT E-AUG neurons sent long ascending collaterals to the pons, which included an axon that reached the ipsilateral parabrachial and Kölliker-Fuse nuclei and distributed boutons. Third, conspicuous projections from branches of these ascending collaterals to the area dorsolateral to the facial nucleus were found. Thus, the present study has shown an anatomical substrate for the extensive inhibitory projections of single BOT E-AUG neurons to the areas spanning the bilateral medulla and the pons.
Collapse
Affiliation(s)
- Kazuhisa Ezure
- Department of Neurobiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan.
| | | | | |
Collapse
|
13
|
Saito Y, Tanaka I, Ezure K. Morphology of the decrementing expiratory neurons in the brainstem of the rat. Neurosci Res 2002; 44:141-53. [PMID: 12354629 DOI: 10.1016/s0168-0102(02)00095-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In anesthetized and artificially-ventilated rats, the morphological properties of decrementing expiratory (E-DEC) neurons were studied using intracellular recording and labeling with Neurobiotin. Sixteen E-DEC neurons were successfully labeled; ten of which were cranial motoneurons located in the facial (FN) and ambiguus (NA) nuclei. Two interneurons were labeled in the Bötzinger complex (BOT) and the ventral respiratory group (VRG) rostral to the obex, and the remaining four in the VRG caudal to the obex. All the interneurons had extensive intramedullary collaterals within the ventrolateral medulla. Terminal-like boutons were distributed ventral to the NA at the level of the BOT, both ventral to and within the NA at the level rostral to the obex and largely within the cell column tentatively designed as the ambiguous-retroambiguus complex (NA/NRA) caudal to the obex. The four interneurons in the NA/NRA had axons projecting to the spinal cord as well. The extensive intramedullary projections suggest that these E-DEC interneurons of the BOT and the VRG play a significant role in respiration. The simultaneous projections from the caudal E-DEC neurons to both the spinal cord and the NA suggest that these neurons also play integrative roles in non-respiratory behaviors including vocalization, swallowing and defecation.
Collapse
Affiliation(s)
- Yoshiaki Saito
- Department of Neurobiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashi-dai, Fuchu, Tokyo 183-8526, Japan
| | | | | |
Collapse
|
14
|
Ezure K, Tanaka I, Saito Y, Otake K. Axonal projections of pulmonary slowly adapting receptor relay neurons in the rat. J Comp Neurol 2002; 446:81-94. [PMID: 11920722 DOI: 10.1002/cne.10185] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We elucidated efferent projections of second-order relay neurons (P-cells) activated by afferents originating from slowly adapting pulmonary receptors (SARs) to determine the central pathway of the SAR-evoked reflexes. Special attention was paid to visualizing the P-cell projections within the nucleus tractus solitarii (NTS), which may correspond to the inhibitory pathway from P-cells to second-order relay neurons (RAR-cells) of rapidly adapting pulmonary receptors. P-cells were recorded from the NTS in Nembutal-anesthetized, paralyzed, and artificially ventilated rats. First, we used electrophysiological methods of antidromic mapping and showed that the majority of the P-cells examined projected their axons to the caudal NTS and to the dorsolateral pons corresponding to the parabrachial complex. Second, a mixture of HRP and Neurobiotin was injected intracellularly or juxtramembranously into P-cells. (1) Stained P-cells (n = 7) were located laterally to the solitary tract and had dendrites extending characteristically along the lateral border of the solitary tract. (2) All P-cells had stem axons projecting to the ipsilateral medulla. Of these, the axons from five P-cells projected to the nucleus ambiguus and its vicinity with distributing boutons. Some of these axons further ascended in the ventrolateral medulla, and distributed boutons in the areas ventral or ventrolateral to the nucleus ambiguus. (3) All the P-cells had axonal branches with boutons in the NTS area. In particular, axons from three P-cells projected bilaterally to the medial NTS caudal to the obex, i.e., to the area of RAR-cells. These results show anatomic substrates for the connections implicated in the P-cell inhibition of RAR-cells as well as the SAR-induced respiratory reflexes.
Collapse
Affiliation(s)
- Kazuhisa Ezure
- Department of Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Tokyo 183-8526, Japan.
| | | | | | | |
Collapse
|
15
|
Pilowsky PM, Feldman JL. Identifying neurons in the preBötzinger complex that generate respiratory rhythm: visualizing the ghost in the machine. J Comp Neurol 2001; 434:125-7. [PMID: 11331520 DOI: 10.1002/cne.1168] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- P M Pilowsky
- Hypertension and Stroke Research Laboratory, Department of Physiology, University of Sydney and Department of Neurosurgery, Royal North Shore Hospital, Sydney NSW 2065, Australia.
| | | |
Collapse
|