1
|
Bautista J, García-Cabezas MÁ, Medalla M, Rosene DL, Zikopoulos B, Barbas H. Pattern of ventral temporal lobe interconnections in rhesus macaques. J Comp Neurol 2023; 531:1963-1986. [PMID: 37919833 PMCID: PMC11142421 DOI: 10.1002/cne.25550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/26/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
The entorhinal cortex (EC, A28) is linked through reciprocal pathways with nearby perirhinal and visual, auditory, and multimodal association cortices in the temporal lobe, in pathways associated with the flow of information for memory processing. The density and laminar organization of these pathways is not well understood in primates. We studied interconnections within the ventral temporal lobe in young adult rhesus monkeys of both sexes with the aid of neural tracers injected in temporal areas (Ts1, Ts2, TE1, area 36, temporal polar area TPro, and area 28) to determine the density and laminar distribution of projection neurons within the temporal lobe. These temporal areas can be categorized into three different cortical types based on their laminar architecture: the sensory association areas Ts1, Ts2, and TE1 have six layers (eulaminate); the perirhinal limbic areas TPro and area 36 have an incipient layer IV (dysgranular); and area 28 lacks layer IV (agranular). We found that (1) temporal areas that are similar in laminar architecture by cortical type are strongly interconnected, and (2) the laminar pattern of connections is dependent on the difference in cortical laminar structure between linked areas. Thus, agranular A28 is more strongly connected with other agranular/dysgranular areas than with eulaminate cortices. Further, A28 predominantly projected via feedback-like pathways that originated in the deep layers, and received feedforward-like projections from areas of greater laminar differentiation, which emanated from the upper layers. Our results are consistent with the Structural Model, which relates the density and laminar distribution of connections to the relationship of the laminar structure between the linked areas. These connections were viewed in the context of the inhibitory microenvironment of A28, which is the key recipient of pathways from the cortex and of the output of hippocampus. Our findings revealed a higher population of calretinin (CR)-expressing neurons in EC, with a significantly higher density in its lateral division. Medial EC had a higher density of CR neurons in the deep layers, particularly in layer Va. In contrast, parvalbumin (PV) neurons were more densely distributed in the deep layers of the lateral subdivisions of rostral EC, especially in layer Va, whereas the densities of calbindin (CB) neurons in the medial and lateral EC were comparable in all layers, except for layer IIIa, in which medial EC had a higher CB population than the lateral. The pattern of connections in the inhibitory microenvironment of EC, which sends and receives input from the hippocampus, may shed light on signal propagation in this network associated with diverse aspects of memory, and disruptions in neurologic and psychiatric diseases that affect this region.
Collapse
Affiliation(s)
- Julied Bautista
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
| | - Miguel Á. García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Douglas L. Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Basilis Zikopoulos
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
- Human Systems Neuroscience Laboratory, Boston University, Boston, Massachusetts, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Villard J, Chareyron LJ, Piguet O, Lambercy P, Lonchampt G, Lavenex PB, Amaral DG, Lavenex P. Structural plasticity in the entorhinal and perirhinal cortices following hippocampal lesions in rhesus monkeys. Hippocampus 2023; 33:1094-1112. [PMID: 37337377 PMCID: PMC10543642 DOI: 10.1002/hipo.23567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Immature neurons expressing the Bcl2 protein are present in various regions of the mammalian brain, including the amygdala and the entorhinal and perirhinal cortices. Their functional role is unknown but we have previously shown that neonatal and adult hippocampal lesions increase their differentiation in the monkey amygdala. Here, we assessed whether hippocampal lesions similarly affect immature neurons in the entorhinal and perirhinal cortices. Since Bcl2-positive cells were found mainly in areas Eo, Er, and Elr of the entorhinal cortex and in layer II of the perirhinal cortex, we also used Nissl-stained sections to determine the number and soma size of immature and mature neurons in layer III of area Er and layer II of area 36 of the perirhinal cortex. We found different structural changes in these regions following hippocampal lesions, which were influenced by the time of the lesion. In neonate-lesioned monkeys, the number of immature neurons in the entorhinal and perirhinal cortices was generally higher than in controls. The number of mature neurons was also higher in layer III of area Er of neonate-lesioned monkeys but no differences were found in layer II of area 36. In adult-lesioned monkeys, the number of immature neurons in the entorhinal cortex was lower than in controls but did not differ from controls in the perirhinal cortex. The number of mature neurons in layer III of area Er did not differ from controls, but the number of small, mature neurons in layer II of area 36 was lower than in controls. In sum, hippocampal lesions impacted populations of mature and immature neurons in discrete regions and layers of the entorhinal and perirhinal cortices, which are interconnected with the amygdala and provide major cortical inputs to the hippocampus. These structural changes may contribute to some functional recovery following hippocampal injury in an age-dependent manner.
Collapse
Affiliation(s)
- Justine Villard
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Loïc J. Chareyron
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Olivia Piguet
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Pauline Lambercy
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Gianni Lonchampt
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Pamela Banta Lavenex
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
- Faculty of Psychology, UniDistance Suisse, Switzerland
| | - David G. Amaral
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California at Davis
- California National Primate Research Center, University of California at Davis
| | - Pierre Lavenex
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| |
Collapse
|
3
|
Abstract
Perception and memory are traditionally thought of as separate cognitive functions, supported by distinct brain regions. The canonical perspective is that perceptual processing of visual information is supported by the ventral visual stream, whereas long-term declarative memory is supported by the medial temporal lobe. However, this modular framework cannot account for the increasingly large body of evidence that reveals a role for early visual areas in long-term recognition memory and a role for medial temporal lobe structures in high-level perceptual processing. In this article, we review relevant research conducted in humans, nonhuman primates, and rodents. We conclude that the evidence is largely inconsistent with theoretical proposals that draw sharp functional boundaries between perceptual and memory systems in the brain. Instead, the weight of the empirical findings is best captured by a representational-hierarchical model that emphasizes differences in content, rather than in cognitive processes within the ventral visual stream and medial temporal lobe.
Collapse
Affiliation(s)
- Chris B Martin
- Department of Psychology, Florida State University, Tallahassee, Florida, USA;
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada;
- Rotman Research Institute, Baycrest Hospital, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Reznik D, Trampel R, Weiskopf N, Witter MP, Doeller CF. Dissociating distinct cortical networks associated with subregions of the human medial temporal lobe using precision neuroimaging. Neuron 2023; 111:2756-2772.e7. [PMID: 37390820 DOI: 10.1016/j.neuron.2023.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 07/02/2023]
Abstract
Tract-tracing studies in primates indicate that different subregions of the medial temporal lobe (MTL) are connected with multiple brain regions. However, no clear framework defining the distributed anatomy associated with the human MTL exists. This gap in knowledge originates in notoriously low MRI data quality in the anterior human MTL and in group-level blurring of idiosyncratic anatomy between adjacent brain regions, such as entorhinal and perirhinal cortices, and parahippocampal areas TH/TF. Using MRI, we intensively scanned four human individuals and collected whole-brain data with unprecedented MTL signal quality. Following detailed exploration of cortical networks associated with MTL subregions within each individual, we discovered three biologically meaningful networks associated with the entorhinal cortex, perirhinal cortex, and parahippocampal area TH, respectively. Our findings define the anatomical constraints within which human mnemonic functions must operate and are insightful for examining the evolutionary trajectory of the MTL connectivity across species.
Collapse
Affiliation(s)
- Daniel Reznik
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian F Doeller
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, Trondheim, Norway; Wilhelm Wundt Institute of Psychology, Leipzig University, Leipzig, Germany; Department of Psychology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Lim HY, Ahn JR, Lee I. The Interaction of Cue Type and Its Associated Behavioral Response Dissociates the Neural Activity between the Perirhinal and Postrhinal Cortices. eNeuro 2022; 9:ENEURO.0065-22.2022. [PMID: 35422417 PMCID: PMC9045475 DOI: 10.1523/eneuro.0065-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
The perirhinal cortex (PER) and postrhinal cortex (POR) in the medial temporal lobe are commonly described as two distinct systems that process nonspatial and spatial information, respectively. Recent findings suggest that the two regions exhibit functional overlap when processing stimulus information, especially when associative responses are required in goal-directed behavior. However, we lack the neural correlates of this. In the current study, we recorded spiking activities for single units of the PER and POR as rats were required to choose a response associated with the identity of a visual object or scene stimulus. We found that similar proportions of cells fired selectively for either scene or object between the two regions. In the PER and POR, response-selective neurons showed higher contrast for different responses than stimulus-selective cells did for stimuli. More cells fired selectively for specific choice response in the POR than in the PER. The differential firing patterns of the PER and POR were best explained when the stimulus and response components were considered together: Stimulus-selective cells were modulated more by the response in the POR than in the PER, whereas response-selective cells in the PER were modulated more by object information than by scenes. Our results suggest that in a goal-directed memory task, the information processing in the PER and POR may be dynamically modulated not only by input stimulus information but also by the associated choice behavior and stimulus-response interaction.
Collapse
Affiliation(s)
- Heung-Yeol Lim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae-Rong Ahn
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
6
|
Chen H, Naya Y. Reunification of Object and View-Center Background Information in the Primate Medial Temporal Lobe. Front Behav Neurosci 2021; 15:756801. [PMID: 34938164 PMCID: PMC8685287 DOI: 10.3389/fnbeh.2021.756801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Recent work has shown that the medial temporal lobe (MTL), including the hippocampus (HPC) and its surrounding limbic cortices, plays a role in scene perception in addition to episodic memory. The two basic factors of scene perception are the object (“what”) and location (“where”). In this review, we first summarize the anatomical knowledge related to visual inputs to the MTL and physiological studies examining object-related information processed along the ventral pathway briefly. Thereafter, we discuss the space-related information, the processing of which was unclear, presumably because of its multiple aspects and a lack of appropriate task paradigm in contrast to object-related information. Based on recent electrophysiological studies using non-human primates and the existing literature, we proposed the “reunification theory,” which explains brain mechanisms which construct object-location signals at each gaze. In this reunification theory, the ventral pathway signals a large-scale background image of the retina at each gaze position. This view-center background signal reflects the first person’s perspective and specifies the allocentric location in the environment by similarity matching between images. The spatially invariant object signal and view-center background signal, both of which are derived from the same retinal image, are integrated again (i.e., reunification) along the ventral pathway-MTL stream, particularly in the perirhinal cortex. The conjunctive signal, which represents a particular object at a particular location, may play a role in scene perception in the HPC as a key constituent element of an entire scene.
Collapse
Affiliation(s)
- He Chen
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Beijing Key Laboratory of Behavioral and Mental Health, Faculty of Science, College of Psychology and Cognitive Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Argyropoulos GPD, Dell’Acqua C, Butler E, Loane C, Roca-Fernandez A, Almozel A, Drummond N, Lage-Martinez C, Cooper E, Henson RN, Butler CR. Functional Specialization of the Medial Temporal Lobes in Human Recognition Memory: Dissociating Effects of Hippocampal versus Parahippocampal Damage. Cereb Cortex 2021; 32:1637-1652. [PMID: 34535797 PMCID: PMC9016283 DOI: 10.1093/cercor/bhab290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/02/2021] [Accepted: 07/24/2021] [Indexed: 11/14/2022] Open
Abstract
A central debate in the systems neuroscience of memory concerns whether different medial temporal lobe (MTL) structures support different processes in recognition memory. Using two recognition memory paradigms, we tested a rare patient (MH) with a perirhinal lesion that appeared to spare the hippocampus. Consistent with a similar previous case, MH showed impaired familiarity and preserved recollection. When compared with patients with hippocampal lesions appearing to spare perirhinal cortex, MH showed greater impairment on familiarity and less on recollection. Nevertheless, the hippocampal patients also showed impaired familiarity compared with healthy controls. However, when replacing this traditional categorization of patients with analyses relating memory performance to continuous measures of damage across patients, hippocampal volume uniquely predicted recollection, whereas parahippocampal, rather than perirhinal, volume uniquely predicted familiarity. We consider whether the familiarity impairment in MH and our patients with hippocampal lesions arises from "subthreshold" damage to parahippocampal cortex (PHC). Our data provide the most compelling neuropsychological support yet for dual-process models of recognition memory, whereby recollection and familiarity depend on different MTL structures, and may support a role for PHC in familiarity. Our study highlights the value of supplementing single-case studies with examinations of continuous brain-behavior relationships across larger patient groups.
Collapse
Affiliation(s)
- Georgios P D Argyropoulos
- Address correspondence to Georgios P. D. Argyropoulos, Division of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - Carola Dell’Acqua
- Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK,Department of General Psychology and Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Emily Butler
- Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Clare Loane
- Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK,Basic and Clinical Neuroscience Department, Maurice Wohl Clinical Neuroscience Institute, King’s College London, 5 Cutcombe Rd, London SE5 9RT, UK
| | - Adriana Roca-Fernandez
- Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Azhaar Almozel
- Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK,School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Nikolas Drummond
- Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Carmen Lage-Martinez
- Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK,Valdecilla Biomedical Research Institute, University Hospital Marqués de Valdecilla, 39011 Santander, Spain
| | - Elisa Cooper
- MRC Cognition and Brain Sciences Unit and Department of Psychiatry, University of Cambridge, Cambridge CB2 7EF, UK
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit and Department of Psychiatry, University of Cambridge, Cambridge CB2 7EF, UK
| | - Christopher R Butler
- Memory Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK,Department of Brain Sciences, Imperial College London, London W12 0NN, UK,Departamento de Neurología, Pontificia Universidad Católica de Chile, Avda. Libertador Bernando O'Higgins 340, Santiago, Chile
| |
Collapse
|
8
|
Sutton NM, Ascoli GA. Spiking Neural Networks and Hippocampal Function: A Web-Accessible Survey of Simulations, Modeling Methods, and Underlying Theories. COGN SYST RES 2021; 70:80-92. [PMID: 34504394 DOI: 10.1016/j.cogsys.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Computational modeling has contributed to hippocampal research in a wide variety of ways and through a large diversity of approaches, reflecting the many advanced cognitive roles of this brain region. The intensively studied neuron type circuitry of the hippocampus is a particularly conducive substrate for spiking neural models. Here we present an online knowledge base of spiking neural network simulations of hippocampal functions. First, we overview theories involving the hippocampal formation in subjects such as spatial representation, learning, and memory. Then we describe an original literature mining process to organize published reports in various key aspects, including: (i) subject area (e.g., navigation, pattern completion, epilepsy); (ii) level of modeling detail (Hodgkin-Huxley, integrate-and-fire, etc.); and (iii) theoretical framework (attractor dynamics, oscillatory interference, self-organizing maps, and others). Moreover, every peer-reviewed publication is also annotated to indicate the specific neuron types represented in the network simulation, establishing a direct link with the Hippocampome.org portal. The web interface of the knowledge base enables dynamic content browsing and advanced searches, and consistently presents evidence supporting every annotation. Moreover, users are given access to several types of statistical reports about the collection, a selection of which is summarized in this paper. This open access resource thus provides an interactive platform to survey spiking neural network models of hippocampal functions, compare available computational methods, and foster ideas for suitable new directions of research.
Collapse
Affiliation(s)
- Nate M Sutton
- Department of Bioengineering, 4400 University Drive, George Mason University, Fairfax, Virginia, 22030 (USA)
| | - Giorgio A Ascoli
- Department of Bioengineering, 4400 University Drive, George Mason University, Fairfax, Virginia, 22030 (USA).,Interdepartmental Neuroscience Program, 4400 University Drive, George Mason University, Fairfax, Virginia, 22030 (USA)
| |
Collapse
|
9
|
Giarrocco F, Averbeck B. Organization of Parieto-Prefrontal and Temporo-Prefrontal Networks in the Macaque. J Neurophysiol 2021; 126:1289-1309. [PMID: 34379536 DOI: 10.1152/jn.00092.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The connectivity among architectonically defined areas of the frontal, parietal, and temporal cortex of the macaque has been extensively mapped through tract tracing methods. To investigate the statistical organization underlying this connectivity, and identify its underlying architecture, we performed a hierarchical cluster analysis on 69 cortical areas based on their anatomically defined inputs. We identified 10 frontal, 4 parietal, and 5 temporal hierarchically related sets of areas (clusters), defined by unique sets of inputs and typically composed of anatomically contiguous areas. Across cortex, clusters that share functional properties were linked by dominant information processing circuits in a topographically organized manner that reflects the organization of the main fiber bundles in the cortex. This led to a dorsal-ventral subdivision of the frontal cortex, where dorsal and ventral clusters showed privileged connectivity with parietal and temporal areas, respectively. Ventrally, temporo-frontal circuits encode information to discriminate objects in the environment, their value, emotional properties, and functions such as memory and spatial navigation. Dorsal parieto-frontal circuits encode information for selecting, generating, and monitoring appropriate actions based on visual-spatial and somatosensory information. This organization may reflect evolutionary antecedents, in which the vertebrate pallium, which is the ancestral cortex, was defined by a ventral and lateral olfactory region and a medial hippocampal region.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
10
|
Meier AM, Wang Q, Ji W, Ganachaud J, Burkhalter A. Modular Network between Postrhinal Visual Cortex, Amygdala, and Entorhinal Cortex. J Neurosci 2021; 41:4809-4825. [PMID: 33849948 PMCID: PMC8260166 DOI: 10.1523/jneurosci.2185-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022] Open
Abstract
The postrhinal area (POR) is a known center for integrating spatial with nonspatial visual information and a possible hub for influencing landmark navigation by affective input from the amygdala. This may involve specific circuits within muscarinic acetylcholine receptor 2 (M2)-positive (M2+) or M2- modules of POR that associate inputs from the thalamus, cortex, and amygdala, and send outputs to the entorhinal cortex. Using anterograde and retrograde labeling with conventional and viral tracers in male and female mice, we found that all higher visual areas of the ventral cortical stream project to the amygdala, while such inputs are absent from primary visual cortex and dorsal stream areas. Unexpectedly for the presumed salt-and-pepper organization of mouse extrastriate cortex, tracing results show that inputs from the dorsal lateral geniculate nucleus and lateral posterior nucleus were spatially clustered in layer 1 (L1) and overlapped with M2+ patches of POR. In contrast, input from the amygdala to L1 of POR terminated in M2- interpatches. Importantly, the amygdalocortical input to M2- interpatches in L1 overlapped preferentially with spatially clustered apical dendrites of POR neurons projecting to amygdala and entorhinal area lateral, medial (ENTm). The results suggest that subnetworks in POR, used to build spatial maps for navigation, do not receive direct thalamocortical M2+ patch-targeting inputs. Instead, they involve local networks of M2- interpatches, which are influenced by affective information from the amygdala and project to ENTm, whose cells respond to visual landmark cues for navigation.SIGNIFICANCE STATEMENT A central purpose of visual object recognition is identifying the salience of objects and approaching or avoiding them. However, it is not currently known how the visual cortex integrates the multiple streams of information, including affective and navigational cues, which are required to accomplish this task. We find that in a higher visual area, the postrhinal cortex, the cortical sheet is divided into interdigitating modules receiving distinct inputs from visual and emotion-related sources. One of these modules is preferentially connected with the amygdala and provides outputs to entorhinal cortex, constituting a processing stream that may assign emotional salience to objects and landmarks for the guidance of goal-directed navigation.
Collapse
Affiliation(s)
- Andrew M Meier
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Quanxin Wang
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Weiqing Ji
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Jehan Ganachaud
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Andreas Burkhalter
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| |
Collapse
|
11
|
Stark SM, Frithsen A, Stark CE. Age-related alterations in functional connectivity along the longitudinal axis of the hippocampus and its subfields. Hippocampus 2021; 31:11-27. [PMID: 32918772 PMCID: PMC8354549 DOI: 10.1002/hipo.23259] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Hippocampal circuit alterations that differentially affect hippocampal subfields are associated with age-related memory decline. Additionally, functional organization along the longitudinal axis of the hippocampus has revealed distinctions between anterior and posterior (A-P) connectivity. Here, we examined the functional connectivity (FC) differences between young and older adults at high-resolution within the medial temporal lobe network (entorhinal, perirhinal, and parahippocampal cortices), allowing us to explore how hippocampal subfield connectivity across the longitudinal axis of the hippocampus changes with age. Overall, we found reliably greater connectivity for younger adults than older adults between the hippocampus and parahippocampal cortex (PHC) and perirhinal cortex (PRC). This drop in functional connectivity was more pronounced in the anterior regions of the hippocampus than the posterior ones, consistent for each of the hippocampal subfields. Further, intra-hippocampal connectivity also reflected an age-related decrease in functional connectivity within the anterior hippocampus in older adults that was offset by an increase in posterior hippocampal functional connectivity. Interestingly, the anterior-posterior dysfunction in older adults between hippocampus and PHC was predictive of lure discrimination performance on the Mnemonic similarity task (MST), suggesting a role in memory performance. While age-related dysfunction within the hippocampal subfields has been well-documented, these results suggest that the age-related dysfunction in hippocampal connectivity across the longitudinal axis may also contribute significantly to memory decline in older adults.
Collapse
Affiliation(s)
- Shauna M. Stark
- Department of Neurobiology and Behavior, University of California Irvine
| | - Amy Frithsen
- Department of Neurobiology and Behavior, University of California Irvine
| | - Craig E.L. Stark
- Department of Neurobiology and Behavior, University of California Irvine
| |
Collapse
|
12
|
Chen J, Ma N, Hu G, Nousayhah A, Xue C, Qi W, Xu W, Chen S, Rao J, Liu W, Zhang F, Zhang X. rTMS modulates precuneus-hippocampal subregion circuit in patients with subjective cognitive decline. Aging (Albany NY) 2020; 13:1314-1331. [PMID: 33260151 PMCID: PMC7835048 DOI: 10.18632/aging.202313] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
Abstract
Hippocampal subregions (HIPsub) and their network connectivities are generally aberrant in patients with subjective cognitive decline (SCD). This study aimed to investigate whether repetitive transcranial magnetic stimulation (rTMS) could ameliorate HIPsub network connectivity by modulating one node of HIPsub network in SCD. In the first cohort, the functional connectivity (FC) of three HIPsub (i.e., hippocampal emotional, cognitive, and perceptual regions: HIPe, HIPc, and HIPp) were analyzed so as to identify alterations in HIPsub connectivity associated with SCD. Afterwards, a support vector machine (SVM) approach was applied using the alterations in order to evaluate to what extent we could distinguish SCD from healthy controls (CN). In the second cohort, a 2-week rTMS course of 5-day, once-daily, was used to activate the altered HIPsub network connectivity in a sham-controlled design. SCD subjects exhibited distinct patterns alterations of HIPsub network connectivity compared to CN in the first cohort. SVM classifier indicated that the abnormalities had a high power to discriminate SCD from CN, with 92.9% area under the receiver operating characteristic curve (AUC), 86.0% accuracy, 83.8% sensitivity and 89.1% specificity. In the second cohort, changes of HIPc connectivity with the left parahippocampal gyrus and HIPp connectivity with the left middle temporal gyrus demonstrated an amelioration of episodic memory in SCD after rTMS. In addition, SCD exhibited improved episodic memory after the rTMS course. rTMS therapy could improve the posterior hippocampus connectivity by modulating the precuneus in SCD. Simultaneous correction of the breakdown in HIPc and HIPp could ameliorate episodic memory in SCD. Thus, these findings suggested that rTMS manipulation of precuneus-hippocampal circuit might prevent disease progression by improving memory as the earliest at-risk state of Alzheimer’s disease in clinical trials and in practice.
Collapse
Affiliation(s)
- Jiu Chen
- Institute of Neuropsychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing 210029, China
| | - Nan Ma
- Department of Neurology, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, China
| | - Guanjie Hu
- Institute of Neuropsychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing 210029, China
| | - Amdanee Nousayhah
- Department of Geriatric Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chen Xue
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing 210029, China.,Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenzhang Qi
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing 210029, China.,Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenwen Xu
- Department of Neurology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Shanshan Chen
- Department of Neurology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jiang Rao
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing 210029, China.,Department of Rehabilitation, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wan Liu
- Department of Rehabilitation, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fuquan Zhang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiangrong Zhang
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing 210029, China.,Department of Geriatric Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
13
|
Novitskaya Y, Dümpelmann M, Vlachos A, Reinacher PC, Schulze-Bonhage A. In vivo-assessment of the human temporal network: Evidence for asymmetrical effective connectivity. Neuroimage 2020; 214:116769. [PMID: 32217164 DOI: 10.1016/j.neuroimage.2020.116769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/22/2020] [Accepted: 03/19/2020] [Indexed: 11/16/2022] Open
Abstract
The human temporal lobe is a multimodal association area which plays a key role in various aspects of cognition, particularly in memory formation and spatial navigation. Functional and anatomical connectivity of temporal structures is thus a subject of intense research, yet by far underexplored in humans due to ethical and technical limitations. We assessed intratemporal cortico-cortical interactions in the living human brain by means of single pulse electrical stimulation, an invasive method allowing mapping effective intracortical connectivity with a high spatiotemporal resolution. Eighteen subjects with normal anterior-mesial temporal MR imaging undergoing intracranial presurgical epilepsy diagnostics with multiple depth electrodes were included. The investigated structures were temporal pole, hippocampus, amygdala and parahippocampal gyrus. Intratemporal cortical connectivity was assessed as a function of amplitude of the early component of the cortico-cortical evoked potentials (CCEP). While the analysis revealed robust interconnectivity between all explored structures, a clear asymmetry in bidirectional connectivity was detected for the hippocampal network and for the connections between the temporal pole and parahippocampal gyrus. The amygdala showed bidirectional asymmetry only to the hippocampus. The provided evidence of asymmetrically weighed intratemporal effective connectivity in humans in vivo is important for understanding of functional interactions within the temporal lobe since asymmetries in the brain connectivity define hierarchies in information processing. The findings are in exact accord with the anatomical tracing studies in non-human primates and open a translational route for interventions employing modulation of temporal lobe function.
Collapse
Affiliation(s)
- Yulia Novitskaya
- Epilepsy Center, Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany.
| | - Matthias Dümpelmann
- Epilepsy Center, Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albert Strasse 17, 79104, Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany
| |
Collapse
|
14
|
Lawrence AV, Cardoza J, Ryan L. Medial temporal lobe regions mediate complex visual discriminations for both objects and scenes: A process-based view. Hippocampus 2020; 30:879-891. [PMID: 32163223 DOI: 10.1002/hipo.23203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 02/14/2020] [Accepted: 02/23/2020] [Indexed: 11/08/2022]
Abstract
Debate continues regarding the role of medial temporal lobe regions in object and scene processing. Considerable evidence indicates that the perirhinal cortex (PRC) plays an important role in the perception of objects-namely, in disambiguating complex objects that share conjunctions of features. These findings support a content-specific view of medial temporal lobe functioning in which PRC is critically important for processing complex objects, while the parahippocampal cortex (PHC) and hippocampus (HC) may be selectively engaged during scene processing. However, emerging evidence from both animal and human studies suggest that the PRC is sensitive to spatial configural information as well as object information. In this fMRI study, we observed preliminary evidence for BOLD activation in the PRC during a complex visual discrimination task for objects and scenes, as well as robust activation for both stimulus types in PHC and HC. The results are discussed in light of a recent process-based model of medial temporal lobe functioning.
Collapse
Affiliation(s)
- Ashley V Lawrence
- Department of Psychology, University of Arizona, Tucson, Arizona, USA
| | - Jose Cardoza
- Department of Psychology, University of Arizona, Tucson, Arizona, USA
| | - Lee Ryan
- Department of Psychology, University of Arizona, Tucson, Arizona, USA.,Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
15
|
Nilssen ES, Doan TP, Nigro MJ, Ohara S, Witter MP. Neurons and networks in the entorhinal cortex: A reappraisal of the lateral and medial entorhinal subdivisions mediating parallel cortical pathways. Hippocampus 2019; 29:1238-1254. [PMID: 31408260 DOI: 10.1002/hipo.23145] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 12/31/2022]
Abstract
In this review, we aim to reappraise the organization of intrinsic and extrinsic networks of the entorhinal cortex with a focus on the concept of parallel cortical connectivity streams. The concept of two entorhinal areas, the lateral and medial entorhinal cortex, belonging to two parallel input-output streams mediating the encoding and storage of respectively what and where information hinges on the claim that a major component of their cortical connections is with the perirhinal cortex and postrhinal or parahippocampal cortex in, respectively, rodents or primates. In this scenario, the lateral entorhinal cortex and the perirhinal cortex are connectionally associated and likewise the postrhinal/parahippocampal cortex and the medial entorhinal cortex are partners. In contrast, here we argue that the connectivity matrix emphasizes the potential of substantial integration of cortical information through interactions between the two entorhinal subdivisions and between the perirhinal and postrhinal/parahippocampal cortices, but most importantly through a new observation that the postrhinal/parahippocampal cortex projects to both lateral and medial entorhinal cortex. We suggest that entorhinal inputs provide the hippocampus with high-order complex representations of the external environment, its stability, as well as apparent changes either as an inherent feature of a biological environment or as the result of navigating the environment. This thus indicates that the current connectional model of the parahippocampal region as part of the medial temporal lobe memory system needs to be revised.
Collapse
Affiliation(s)
- Eirik S Nilssen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Thanh P Doan
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Maximiliano J Nigro
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Shinya Ohara
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
16
|
Inhoff MC, Heusser AC, Tambini A, Martin CB, O'Neil EB, Köhler S, Meager MR, Blackmon K, Vazquez B, Devinsky O, Davachi L. Understanding perirhinal contributions to perception and memory: Evidence through the lens of selective perirhinal damage. Neuropsychologia 2019; 124:9-18. [PMID: 30594569 PMCID: PMC6456260 DOI: 10.1016/j.neuropsychologia.2018.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022]
Abstract
Although a memory systems view of the medial temporal lobe (MTL) has been widely influential in understanding how memory processes are implemented, a large body of work across humans and animals has converged on the idea that the MTL can support various other decisions, beyond those involving memory. Specifically, recent work suggests that perception of and memory for visual representations may interact in order to support ongoing cognition. However, given considerations involving lesion profiles in neuropsychological investigations and the correlational nature of fMRI, the precise nature of representations supported by the MTL are not well understood in humans. In the present investigation, three patients with highly specific lesions to MTL were administered a task that taxed perceptual and mnemonic judgments with highly similar face stimuli. A striking double dissociation was observed such that I.R., a patient with a cyst localized to right posterior PRc, displayed a significant impairment in perceptual discriminations, whereas patient A.N., an individual with a lesion in right posterior parahippocampal cortex and the tail of the right hippocampus, and S.D., an individual with bilateral hippocampal damage, did not display impaired performance on the perceptual task. A.N. and S.D. did, however, show impairments in memory performance, whereas patient I.R. did not. These results causally implicate right PRc in successful perceptual oddity judgments, however they suggest that representations supported by PRc are not necessary for correct mnemonic judgments, even in situations of high featural overlap.
Collapse
Affiliation(s)
- Marika C Inhoff
- Department of Psychology, University of California, Davis, CA, USA
| | - Andrew C Heusser
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Arielle Tambini
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Chris B Martin
- Department of Psychology, University of Toronto, Ontario, Canada
| | - Edward B O'Neil
- Department of Psychology, University of Toronto Scarborough, Ontario, Canada
| | - Stefan Köhler
- Brain and Mind Institute and Department of Psychology, Western University, London, Ontario, Canada
| | - Michael R Meager
- Department of Neurology, New York University School of Medicine, Langone Medical Center, New York, NY, USA; Department of Psychology, New York University, New York, NY, USA
| | - Karen Blackmon
- Department of Neurology, New York University School of Medicine, Langone Medical Center, New York, NY, USA; Department of Physiology, Neuroscience and Behavioral Sciences, St. George's University School of Medicine, St. George, Grenada
| | - Blanca Vazquez
- Department of Neurology, New York University School of Medicine, Langone Medical Center, New York, NY, USA
| | - Orrin Devinsky
- Department of Neurology, New York University School of Medicine, Langone Medical Center, New York, NY, USA; Department of Neurosurgery, New York University School of Medicine, New York, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY, USA; Nathan Kline Institute, Orangeburg, NY, USA.
| |
Collapse
|
17
|
Cebada-Sánchez S, Marcos Rabal P, Insausti AM, Insausti R. Postnatal Development of NPY and Somatostatin-28 Peptidergic Populations in the Human Angular Bundle. Front Neuroanat 2019; 12:116. [PMID: 30687024 PMCID: PMC6338036 DOI: 10.3389/fnana.2018.00116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/05/2018] [Indexed: 01/05/2023] Open
Abstract
The angular bundle is a white matter fiber fascicle, which runs longitudinally along the parahippocampal gyrus. It is best known for carrying fibers from the entorhinal cortex (EC) to the hippocampus through the perforant and alvear pathways, as well as for carrying hippocampal output to the neocortex, and distributing fibers to polysensory cortex. The angular bundle is already present prenatally at the beginning of the fetal period. Connections between the EC and the hippocampus are established by the 20th gestational week (gw). In the postnatal period, it shows increasing myelination. The angular bundle, as well as other white matter portions of gyral surfaces in the brain, presents interstitial neurons, a remnant of subplate neurons. Those interstitial neurons show neurochemical phenotypes both prenatally and postnatally, among which, neuropeptide Y (NPY) and Somatostatin-28 (SOM-28) peptidergic populations are noticeable, and accompany the fiber connections in the maturation of the hippocampal formation. We sought to investigate the topography of the postnatal distribution and relative density of neurons immunoreactive for NPY or SOM in the angular bundle along the rostrocaudal axis of the hippocampus. The study was carried out in 15 cases, ranging from 35 gws, up to 14 year old. All cases showed positive neurons showing a polygonal or spindle shaped morphology for both peptides, scattered throughout the angular bundle. The highest number of positive neurons appeared around birth and the ensuing weeks. Up to one and a half years, the density of both peptidergic populations decreased slightly. However, cases older than 2 years of age showed a substantial decrease in density of immunolabeled neurons, density that did not showed a minor decrease in density of positive neurons in cases older than 2 years. In addition, a topography from caudal to rostral levels of the angular bundle was detected at all ages. The functional significance of interstitial cells is unknown, but the existence of SOM and NPY peptidergic neurons, presumably inhibitory, in the white matter of the angular bundle, could contribute to the basic wiring of the hippocampal formation, through which autobiographical and spatial memories can begin to be stored in the infant brain.
Collapse
Affiliation(s)
| | - Pilar Marcos Rabal
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Albacete, Spain
| | - Ana María Insausti
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Albacete, Spain
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
18
|
Burke SN, Foster TC. Animal models of cognitive aging and circuit-specific vulnerability. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:19-36. [PMID: 31753133 DOI: 10.1016/b978-0-12-804766-8.00002-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Medial temporal lobe and prefrontal cortical structures are particularly vulnerable to dysfunction in advanced age and neurodegenerative diseases. This review focuses on cognitive aging studies in animals to illustrate the important aspects of the animal model paradigm for investigation of age-related memory and executive function loss. Particular attention is paid to the discussion of the face, construct, and predictive validity of animal models for determining the possible mechanisms of regional vulnerability in aging and for identifying novel therapeutic strategies. Aging is associated with a host of regionally specific neurobiologic alterations. Thus, targeted interventions that restore normal activity in one brain region may exacerbate aberrant activity in another, hindering the restoration of function at the behavioral level. As such, interventions that target the optimization of "cognitive networks" rather than discrete brain regions may be more effective for improving functional outcomes in the elderly.
Collapse
Affiliation(s)
- Sara N Burke
- Department of Neuroscience, William L. and Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Thomas C Foster
- Department of Neuroscience, William L. and Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
19
|
Robin J, Rai Y, Valli M, Olsen RK. Category specificity in the medial temporal lobe: A systematic review. Hippocampus 2018; 29:313-339. [PMID: 30155943 DOI: 10.1002/hipo.23024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/30/2023]
Abstract
Theoretical accounts of medial temporal lobe (MTL) function ascribe different functions to subregions of the MTL including perirhinal, entorhinal, parahippocampal cortices, and the hippocampus. Some have suggested that the functional roles of these subregions vary in terms of their category specificity, showing preferential coding for certain stimulus types, but the evidence for this functional organization is mixed. In this systematic review, we evaluate existing evidence for regional specialization in the MTL for three categories of visual stimuli: faces, objects, and scenes. We review and synthesize across univariate and multivariate neuroimaging studies, as well as neuropsychological studies of cases with lesions to the MTL. Neuroimaging evidence suggests that faces activate the perirhinal cortex, entorhinal cortex, and the anterior hippocampus, while scenes engage the parahippocampal cortex and both the anterior and posterior hippocampus, depending on the contrast condition. There is some evidence for object-related activity in anterior MTL regions when compared to scenes, and in posterior MTL regions when compared to faces, suggesting that aspects of object representations may share similarities with face and scene representations. While neuroimaging evidence suggests some hippocampal specialization for faces and scenes, neuropsychological evidence shows that hippocampal damage leads to impairments in scene memory and perception, but does not entail equivalent impairments for faces in cases where the perirhinal cortex remains intact. Regional specialization based on stimulus categories has implications for understanding the mechanisms of MTL subregions, and highlights the need for the development of theoretical models of MTL function that can accommodate the differential patterns of specificity observed in the MTL.
Collapse
Affiliation(s)
- Jessica Robin
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Yeshith Rai
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Mikaeel Valli
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna K Olsen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Gaynor LS, Johnson SA, Mizell JM, Campos KT, Maurer AP, Bauer RM, Burke SN. Impaired discrimination with intact crossmodal association in aged rats: A dissociation of perirhinal cortical-dependent behaviors. Behav Neurosci 2018; 132:138-151. [PMID: 29809042 PMCID: PMC5975639 DOI: 10.1037/bne0000246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The perirhinal cortex (PRC) supports associative memory and perception, and PRC dysfunction impairs animals' abilities to associate stimulus features across sensory modalities. PRC damage also leads to deficits in discriminating between stimuli that share features. Although PRC-dependent stimulus discrimination has been shown to be impaired with advanced age, data regarding the abilities of older adults and other animals to form PRC-dependent associations have been equivocal. Moreover, the extent to which similar neural computations within the PRC support associative memory versus discrimination abilities have not been directly examined. In the current study, young and aged rats were cross-characterized on two PRC-dependent crossmodal object recognition (CMOR) tasks to test associative memory, and a LEGO object discrimination task. In the CMOR tasks, rats were familiarized with an object with access to tactile input and then tested for recognition with visual input only. The relative exploration time of novel versus familiar objects indicated that aged rats showed preference for the novel over familiar object with and without an epoch of multimodal preexposure to the familiar object prior to the testing session. Furthermore, crossmodal recognition performance between young and aged rats was not significantly different. In contrast, for the LEGO object discrimination task, aged rats were impaired relative to young rats. Notably, aged rats that performed poorly on the LEGO object discrimination task had better performance on the CMOR tasks. The dissociation of discrimination and association abilities with age suggests that these behaviors rely on distinct neural computations within PRC-medial temporal lobe circuit. (PsycINFO Database Record
Collapse
Affiliation(s)
| | | | | | | | | | - Russell M Bauer
- Department of Clinical and Health Psychology, University of Florida
| | | |
Collapse
|
21
|
Rolls ET. The storage and recall of memories in the hippocampo-cortical system. Cell Tissue Res 2018; 373:577-604. [PMID: 29218403 PMCID: PMC6132650 DOI: 10.1007/s00441-017-2744-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/12/2017] [Indexed: 02/07/2023]
Abstract
A quantitative computational theory of the operation of the hippocampus as an episodic memory system is described. The CA3 system operates as a single attractor or autoassociation network (1) to enable rapid one-trial associations between any spatial location (place in rodents or spatial view in primates) and an object or reward and (2) to provide for completion of the whole memory during recall from any part. The theory is extended to associations between time and object or reward to implement temporal order memory, which is also important in episodic memory. The dentate gyrus performs pattern separation by competitive learning to create sparse representations producing, for example, neurons with place-like fields from entorhinal cortex grid cells. The dentate granule cells generate, by the very small number of mossy fibre connections to CA3, a randomizing pattern separation effect that is important during learning but not recall and that separates out the patterns represented by CA3 firing as being very different from each other. This is optimal for an unstructured episodic memory system in which each memory must be kept distinct from other memories. The direct perforant path input to CA3 is quantitatively appropriate for providing the cue for recall in CA3 but not for learning. The CA1 recodes information from CA3 to set up associatively learned backprojections to the neocortex to allow the subsequent retrieval of information to the neocortex, giving a quantitative account of the large number of hippocampo-neocortical and neocortical-neocortical backprojections. Tests of the theory including hippocampal subregion analyses and hippocampal NMDA receptor knockouts are described and support the theory.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, England.
- Department of Computer Science, University of Warwick, Coventry, England.
| |
Collapse
|
22
|
Burke SN, Gaynor LS, Barnes CA, Bauer RM, Bizon JL, Roberson ED, Ryan L. Shared Functions of Perirhinal and Parahippocampal Cortices: Implications for Cognitive Aging. Trends Neurosci 2018; 41:349-359. [PMID: 29555181 PMCID: PMC5970964 DOI: 10.1016/j.tins.2018.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 02/16/2018] [Accepted: 03/01/2018] [Indexed: 01/13/2023]
Abstract
A predominant view of perirhinal cortex (PRC) and postrhinal/parahippocampal cortex (POR/PHC) function contends that these structures are tuned to represent objects and spatial information, respectively. However, known anatomical connectivity, together with recent electrophysiological, neuroimaging, and lesion data, indicate that both brain areas participate in spatial and nonspatial processing. Instead of content-based organization, the PRC and PHC/POR may participate in two computationally distinct cortical-hippocampal networks: one network that is tuned to process coarse information quickly, forming gist-like representations of scenes/environments, and a second network tuned to process information about the specific sensory details that are necessary for discrimination across sensory modalities. The available data suggest that the latter network may be more vulnerable in advanced age.
Collapse
Affiliation(s)
- Sara N Burke
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA; Institute on Aging, University of Florida, Gainesville, FL, USA.
| | - Leslie S Gaynor
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA; Division of Neural Systems Memory and Aging, University of Arizona, Tucson, AZ, USA; Department of Psychology, University of Arizona, Tucson, AZ, USA; Department of Neurology and Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Russell M Bauer
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Jennifer L Bizon
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Erik D Roberson
- Evelyn F. McKnight Brain Institute, Alzheimer's Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, AL, USA
| | - Lee Ryan
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA; Department of Psychology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
23
|
Buckley MJ. The Role of the Perirhinal Cortex and Hippocampus in Learning, Memory, and Perception. ACTA ACUST UNITED AC 2018; 58:246-68. [PMID: 16194968 DOI: 10.1080/02724990444000186] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
One traditional and long-held view of medial temporal lobe (MTL) function is that it contains a system of structures that are exclusively involved in memory, and that the extent of memory loss following MTL damage is simply related to the amount of MTL damage sustained. Indeed, human patients with extensive MTL damage are typically profoundly amnesic whereas patients with less extensive brain lesions centred upon the hippocampus typically exhibit only moderately severe anterograde amnesia. Accordingly, the latter observations have elevated the hippocampus to a particularly prominent position within the purported MTL memory system. This article reviews recent lesion studies in macaque monkeys in which the behavioural effects of more highly circumscribed lesions (than those observed to occur in human patients with MTL lesions) to different subregions of the MTL have been examined. These studies have reported new findings that contradict this concept of a MTL memory system. First, the MTL is not exclusively involved in mnemonic processes; some MTL structures, most notably the perirhinal cortex, also contribute to perception. Second, there are some forms of memory, including recognition memory, that are not always affected by selective hippocampal lesions. Third, the data support the idea that regional functional specializations exist within the MTL. For example, the macaque perirhinal cortex appears to be specialized for processing object identity whereas the hippocampus may be specialized for processing spatial and temporal relationships.
Collapse
Affiliation(s)
- Mark J Buckley
- Department of Experimental Psychology, University of Oxford, UK.
| |
Collapse
|
24
|
Ahlgrim NS, Raper J, Johnson E, Bachevalier J. Neonatal perirhinal cortex lesions impair monkeys' ability to modulate their emotional responses. Behav Neurosci 2017; 131:359-71. [PMID: 28956946 PMCID: PMC5675115 DOI: 10.1037/bne0000208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The medial temporal lobe (MTL) is a collection of brain regions best known for their role in perception, memory, and emotional behavior. Within the MTL, the perirhinal cortex (PRh) plays a critical role in perceptual representation and recognition memory, although its contribution to emotional regulation is still debated. Here, rhesus monkeys with neonatal perirhinal lesions (Neo-PRh) and controls (Neo-C) were tested on the Human Intruder (HI) task at 2 months, 4.5 months, and 5 years of age to assess the role of the PRh in the development of emotional behaviors. The HI task presents a tiered social threat to which typically developing animals modulate their emotional responses according to the level of threat. Unlike animals with neonatal amygdala or hippocampal lesions, Neo-PRh animals were not broadly hyper- or hyporesponsive to the threat presented by the HI task as compared with controls. Instead, Neo-PRh animals displayed an impaired ability to modulate their freezing and anxiety-like behavioral responses according to the varying levels of threat. Impaired transmission of perceptual representation generated by the PRh to the amygdala and hippocampus may explain the animals' inability to appropriately assess and react to complex social stimuli. Neo-PRh animals also displayed fewer hostile behaviors in infancy and more coo vocalizations in adulthood. Neither stress-reactive nor basal cortisol levels were affected by the Neo-PRh lesions. Overall, these results suggest that the PRh is indirectly involved in the expression of emotional behavior and that effects of Neo-PRh lesions are dissociable from neonatal lesions to other temporal lobe structures. (PsycINFO Database Record
Collapse
Affiliation(s)
- Nathan S. Ahlgrim
- Graduate Program in Neuroscience, Emory University, Atlanta GA
- Department of Psychology, Emory University, Atlanta GA
| | - Jessica Raper
- Department of Psychology, Emory University, Atlanta GA
- Yerkes National Primate Research Center, Emory University, Atlanta GA
| | - Emily Johnson
- Department of Psychology, Emory University, Atlanta GA
- Yerkes National Primate Research Center, Emory University, Atlanta GA
| | - Jocelyne Bachevalier
- Department of Psychology, Emory University, Atlanta GA
- Yerkes National Primate Research Center, Emory University, Atlanta GA
| |
Collapse
|
25
|
Attenuated Activity across Multiple Cell Types and Reduced Monosynaptic Connectivity in the Aged Perirhinal Cortex. J Neurosci 2017; 37:8965-8974. [PMID: 28821661 DOI: 10.1523/jneurosci.0531-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/25/2017] [Accepted: 08/04/2017] [Indexed: 01/25/2023] Open
Abstract
The perirhinal cortex (PER), which is critical for associative memory and stimulus discrimination, has been described as a wall of inhibition between the neocortex and hippocampus. With advanced age, rats show deficits on PER-dependent behavioral tasks and fewer PER principal neurons are activated by stimuli, but the role of PER interneurons in these altered circuit properties in old age has not been characterized. In the present study, PER neurons were recorded while rats traversed a circular track bidirectionally in which the track was either empty or contained eight novel objects evenly spaced around the track. Putative interneurons were discriminated from principal cells based on the autocorrelogram, waveform parameters, and firing rate. While object modulation of interneuron firing was observed in both young and aged rats, PER interneurons recorded from old animals had lower firing rates compared with those from young animals. This difference could not be accounted for by differences in running speed, as the firing rates of PER interneurons did not show significant velocity modulation. Finally, in the aged rats, relative to young rats, there was a significant reduction in detected excitatory and inhibitory monosynaptic connections. Together these data suggest that with advanced age there may be reduced afferent drive from excitatory cells onto interneurons that may compromise the wall of inhibition between the hippocampus and cortex. This circuit dysfunction could erode the function of temporal lobe networks and ultimately contribute to cognitive aging.SIGNIFICANCE STATEMENT We report that lower firing rates observed in aged perirhinal cortical principal cells are associated with weaker interneuron activity and reduced monosynaptic coupling between excitatory and inhibitory cells. This is likely to affect feedforward inhibition from the perirhinal to the entorhinal cortex that gates the flow of information to the hippocampus. This is significant because cognitive dysfunction in normative and pathological aging has been linked to hyperexcitability in the aged CA3 subregion of the hippocampus in rats, monkeys, and humans. The reduced inhibition in the perirhinal cortex reported here could contribute to this circuit imbalance, and may be a key point to consider for therapeutic interventions aimed at restoring network function to optimize cognition.
Collapse
|
26
|
Bostelmann M, Fragnière E, Costanzo F, Di Vara S, Menghini D, Vicari S, Lavenex P, Lavenex PB. Dissociation of spatial memory systems in Williams syndrome. Hippocampus 2017; 27:1192-1203. [PMID: 28710800 DOI: 10.1002/hipo.22764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 11/07/2022]
Abstract
Williams syndrome (WS), a genetic deletion syndrome, is characterized by severe visuospatial deficits affecting performance on both tabletop spatial tasks and on tasks which assess orientation and navigation. Nevertheless, previous studies of WS spatial capacities have ignored the fact that two different spatial memory systems are believed to contribute parallel spatial representations supporting navigation. The place learning system depends on the hippocampal formation and creates flexible relational representations of the environment, also known as cognitive maps. The spatial response learning system depends on the striatum and creates fixed stimulus-response representations, also known as habits. Indeed, no study assessing WS spatial competence has used tasks which selectively target these two spatial memory systems. Here, we report that individuals with WS exhibit a dissociation in their spatial abilities subserved by these two memory systems. As compared to typically developing (TD) children in the same mental age range, place learning performance was impaired in individuals with WS. In contrast, their spatial response learning performance was facilitated. Our findings in individuals with WS and TD children suggest that place learning and response learning interact competitively to control the behavioral strategies normally used to support human spatial navigation. Our findings further suggest that the neural pathways supporting place learning may be affected by the genetic deletion that characterizes WS, whereas those supporting response learning may be relatively preserved. The dissociation observed between these two spatial memory systems provides a coherent theoretical framework to characterize the spatial abilities of individuals with WS, and may lead to the development of new learning strategies based on their facilitated response learning abilities.
Collapse
Affiliation(s)
- Mathilde Bostelmann
- Laboratory of Brain and Cognitive Development, The Institute of Psychology, University of Lausanne, Lausanne, 1005, Switzerland
| | - Emilie Fragnière
- Laboratory of Brain and Cognitive Development, The Institute of Psychology, University of Lausanne, Lausanne, 1005, Switzerland
| | - Floriana Costanzo
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, 00165, Italy
| | - Silvia Di Vara
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, 00165, Italy
| | - Deny Menghini
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, 00165, Italy
| | - Stefano Vicari
- Department of Neuroscience, Bambino Gesù Children's Hospital, Rome, 00165, Italy
| | - Pierre Lavenex
- Laboratory of Brain and Cognitive Development, The Institute of Psychology, University of Lausanne, Lausanne, 1005, Switzerland
| | - Pamela Banta Lavenex
- Laboratory of Brain and Cognitive Development, The Institute of Psychology, University of Lausanne, Lausanne, 1005, Switzerland
| |
Collapse
|
27
|
Rockland KS. What do we know about laminar connectivity? Neuroimage 2017; 197:772-784. [PMID: 28729159 DOI: 10.1016/j.neuroimage.2017.07.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 12/17/2022] Open
Abstract
In this brief review, I attempt an overview of the main components of anatomical laminar-level connectivity. These are: extrinsic outputs, excitatory and inhibitory intrinsic connectivity, and intrinsic inputs. Supporting data are biased from the visual system of nonhuman primates (NHPs), but I have drawn as much as possible from a broader span in order to treat the important issue of area-specific variability. In a second part, I briefly discuss laminar connectivity in the context of network organization (feedforward/feedback cortical connections, and the major types of corticothalamic connections). I also point out anatomical issues in need of clarification, including more systematic, whole brain coverage of tracer injections; more data on anterogradely labeled terminations; more complete, area-specific quantitative data about projection neurons, and quantitative data on terminal density and convergence. Postsynaptic targets are largely unknown, but their identification is essential for understanding the finer analysis and principles of laminar patterns. Laminar resolution MRI offers a promising new tool for exploring laminar connectivity: it is potentially fast and macro-scale, and allows for repeated investigation under different stimulus conditions. Conversely, anatomical resolution, although detailed beyond the current level of MRI visualization, offers a rich trove for experimental design and interpretation of fMRI activation patterns.
Collapse
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy&Neurobiology, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA.
| |
Collapse
|
28
|
Chavoix C, Insausti R. Self-awareness and the medial temporal lobe in neurodegenerative diseases. Neurosci Biobehav Rev 2017; 78:1-12. [DOI: 10.1016/j.neubiorev.2017.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/03/2017] [Accepted: 04/15/2017] [Indexed: 12/13/2022]
|
29
|
Functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion in rhesus monkeys. Brain Struct Funct 2017; 222:3899-3914. [PMID: 28488186 DOI: 10.1007/s00429-017-1441-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/29/2017] [Indexed: 12/12/2022]
Abstract
Hippocampal damage in adult humans impairs episodic and semantic memory, whereas hippocampal damage early in life impairs episodic memory but leaves semantic learning relatively preserved. We have previously shown a similar behavioral dissociation in nonhuman primates. Hippocampal lesion in adult monkeys prevents allocentric spatial relational learning, whereas spatial learning persists following neonatal lesion. Here, we quantified the number of cells expressing the immediate-early gene c-fos, a marker of neuronal activity, to characterize the functional organization of the medial temporal lobe memory system following neonatal hippocampal lesion. Ninety minutes before brain collection, three control and four adult monkeys with bilateral neonatal hippocampal lesions explored a novel environment to activate brain structures involved in spatial learning. Three other adult monkeys with neonatal hippocampal lesions remained in their housing quarters. In unlesioned monkeys, we found high levels of c-fos expression in the intermediate and caudal regions of the entorhinal cortex, and in the perirhinal, parahippocampal, and retrosplenial cortices. In lesioned monkeys, spatial exploration induced an increase in c-fos expression in the intermediate field of the entorhinal cortex, the perirhinal, parahippocampal, and retrosplenial cortices, but not in the caudal entorhinal cortex. These findings suggest that different regions of the medial temporal lobe memory system may require different types of interaction with the hippocampus in support of memory. The caudal perirhinal cortex, the parahippocampal cortex, and the retrosplenial cortex may contribute to spatial learning in the absence of functional hippocampal circuits, whereas the caudal entorhinal cortex may require hippocampal output to support spatial learning.
Collapse
|
30
|
Anderson MC, Bunce JG, Barbas H. Prefrontal-hippocampal pathways underlying inhibitory control over memory. Neurobiol Learn Mem 2016; 134 Pt A:145-161. [PMID: 26642918 PMCID: PMC5106245 DOI: 10.1016/j.nlm.2015.11.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/06/2015] [Accepted: 11/17/2015] [Indexed: 12/29/2022]
Abstract
A key function of the prefrontal cortex is to support inhibitory control over behavior. It is widely believed that this function extends to stopping cognitive processes as well. Consistent with this, mounting evidence establishes the role of the right lateral prefrontal cortex in a clear case of cognitive control: retrieval suppression. Retrieval suppression refers to the ability to intentionally stop the retrieval process that arises when a reminder to a memory appears. Functional imaging data indicate that retrieval suppression involves top-down modulation of hippocampal activity by the dorsolateral prefrontal cortex, but the anatomical pathways supporting this inhibitory modulation remain unclear. Here we bridge this gap by integrating key findings about retrieval suppression observed through functional imaging with a detailed consideration of relevant anatomical pathways observed in non-human primates. Focusing selectively on the potential role of the anterior cingulate cortex, we develop two hypotheses about the pathways mediating interactions between lateral prefrontal cortex and the medial temporal lobes during suppression, and their cellular targets: the entorhinal gating hypothesis, and thalamo-hippocampal modulation via the nucleus reuniens. We hypothesize that whereas entorhinal gating is well situated to stop retrieval proactively, thalamo-hippocampal modulation may interrupt an ongoing act of retrieval reactively. Isolating the pathways that underlie retrieval suppression holds the potential to advance our understanding of a range of psychiatric disorders characterized by persistent intrusive thoughts. More broadly, an anatomical account of retrieval suppression would provide a key model system for understanding inhibitory control over cognition.
Collapse
Affiliation(s)
- Michael C Anderson
- MRC Cognition & Brain Sciences Unit, 15 Chaucer Road, Cambridge, England CB2 7EF, United Kingdom.
| | - Jamie G Bunce
- Neural Systems Laboratory, Boston University, 635 Commonwealth Ave., Boston, MA 02215, USA
| | - Helen Barbas
- Neural Systems Laboratory, Boston University, 635 Commonwealth Ave., Boston, MA 02215, USA
| |
Collapse
|
31
|
Agster KL, Tomás Pereira I, Saddoris MP, Burwell RD. Subcortical connections of the perirhinal, postrhinal, and entorhinal cortices of the rat. II. efferents. Hippocampus 2016; 26:1213-30. [PMID: 27101786 DOI: 10.1002/hipo.22600] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/17/2023]
Abstract
This is the second of two studies detailing the subcortical connections of the perirhinal (PER), the postrhinal (POR) and entorhinal (EC) cortices of the rat. In the present study, we analyzed the subcortical efferents of the rat PER areas 35 and 36, POR, and the lateral and medial entorhinal areas (LEA and MEA). Anterograde tracers were injected into these five regions, and the resulting density of fiber labeling was quantified in an extensive set of subcortical structures. Density and topography of fiber labeling were quantitatively assessed in 36 subcortical areas, including olfactory structures, claustrum, amygdala nuclei, septal nuclei, basal ganglia, thalamic nuclei, and hypothalamic structures. In addition to reporting the density of labeled fibers, we incorporated a new method for quantifying the size of anterograde projections that takes into account the volume of the target subcortical structure as well as the density of fiber labeling. The PER, POR, and EC displayed unique patterns of projections to subcortical areas. Interestingly, all regions examined provided strong input to the basal ganglia, although the projections arising in the PER and LEA were stronger and more widespread. PER areas 35 and 36 exhibited similar pattern of projections with some differences. PER area 36 projects more heavily to the lateral amygdala and much more heavily to thalamic nuclei including the lateral posterior nucleus, the posterior complex, and the nucleus reuniens. Area 35 projects more heavily to olfactory structures. The LEA provides the strongest and most widespread projections to subcortical structures including all those targeted by the PER as well as the medial and posterior septal nuclei. POR shows fewer subcortical projections overall, but contributes substantial input to the lateral posterior nucleus of the thalamus. The MEA projections are even weaker. Our results suggest that the PER and LEA have greater influence over olfactory, amygdala, and septal nuclei, whereas PER area 36 and the POR have greater influence over thalamic nuclei. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kara L Agster
- Department of Neuroscience, Brown University, Providence, Rhode Island
| | - Inês Tomás Pereira
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| | - Michael P Saddoris
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| | - Rebecca D Burwell
- Department of Neuroscience, Brown University, Providence, Rhode Island.,Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| |
Collapse
|
32
|
Chen J, Duan X, Shu H, Wang Z, Long Z, Liu D, Liao W, Shi Y, Chen H, Zhang Z. Differential contributions of subregions of medial temporal lobe to memory system in amnestic mild cognitive impairment: insights from fMRI study. Sci Rep 2016; 6:26148. [PMID: 27184985 PMCID: PMC4868964 DOI: 10.1038/srep26148] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/27/2016] [Indexed: 12/13/2022] Open
Abstract
Altered function of the medial temporal lobe (MTL) is a valuable indicator of conversion from amnestic mild cognitive impairment (aMCI) to Alzheimer’s disease. This study is to delineate the functional circuitry of multiple subdivisions of parahippocampal gyrus and hippocampus (HIP) and to examine how this knowledge contributes to a more principled understanding of the contributions of its subregions to memory in aMCI. The functional connectivity (FC) analysis was performed in 85 aMCI and 129 healthy controls. The aMCI demonstrated the distinct disruptive patterns of the MTL subregional connectivity with the whole-brain. The right entorhinal cortex (ERC) and perirhinal cortex (PRC) showed increased connectivity with the left inferior and middle occipital gyrus, respectively, which potentially indicated a compensatory mechanism. Furthermore, the right altered MTL subregional FC was associated with episodic memory performance in aMCI. These results provide novel insights into the heterogeneous nature of its large-scale connectivity in MTL subregions in memory system underlying the memory deficits in aMCI. It further suggests that altered FC of MTL subregions is associated with the impairment of the differential encoding stages of memories and the functional changes in the specific right HIP-ERC-PRC-temporal circuitry may contribute to the impairment of episodic memory in aMCI.
Collapse
Affiliation(s)
- Jiu Chen
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Xujun Duan
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Hao Shu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Zhiliang Long
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Duan Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Wenxiang Liao
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yongmei Shi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Huafu Chen
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China.,Department of Psychology, Xinxiang Medical University, Xinxiang, Henan 453003, China
| |
Collapse
|
33
|
Abstract
UNLABELLED Categorization allows organisms to efficiently extract relevant information from a diverse environment. Because of the multidimensional nature of odor space, this ability is particularly important for the olfactory system. However, categorization relies on experience, and the processes by which the human brain forms categorical representations about new odor percepts are currently unclear. Here we used olfactory psychophysics and multivariate fMRI techniques, in the context of a paired-associates learning task, to examine the emergence of novel odor category representations in the human brain. We found that learning between novel odors and visual category information induces a perceptual reorganization of those odors, in parallel with the emergence of odor category-specific ensemble patterns in perirhinal, orbitofrontal, piriform, and insular cortices. Critically, the learning-induced pattern effects in orbitofrontal and perirhinal cortex predicted the magnitude of categorical learning and perceptual plasticity. The formation of de novo category-specific representations in olfactory and limbic brain regions suggests that such ensemble patterns subserve the development of perceptual classes of information, and imply that these patterns are instrumental to the brain's capacity for odor categorization. SIGNIFICANCE STATEMENT How the human brain assigns novel odors to perceptual classes and categories is poorly understood. We combined an olfactory-visual paired-associates task with multivariate pattern-based fMRI approaches to investigate the de novo formation of odor category representations within the human brain. The identification of emergent odor category codes within the perirhinal, piriform, orbitofrontal, and insular cortices suggests that these regions can integrate multimodal sensory input to shape category-specific olfactory representations for novel odors, and may ultimately play an important role in assembling each individual's semantic knowledge base of the olfactory world.
Collapse
|
34
|
Zhuo J, Fan L, Liu Y, Zhang Y, Yu C, Jiang T. Connectivity Profiles Reveal a Transition Subarea in the Parahippocampal Region That Integrates the Anterior Temporal-Posterior Medial Systems. J Neurosci 2016; 36:2782-95. [PMID: 26937015 PMCID: PMC6604873 DOI: 10.1523/jneurosci.1975-15.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 01/25/2016] [Accepted: 01/30/2016] [Indexed: 11/21/2022] Open
Abstract
Traditional anatomical studies of the parahippocampal region (PHR) defined the lateral portion into two subregions, the perirhinal (PRC) and parahippocampal (PHC) cortices. Based on this organization, several models suggested that the PRC and the PHC play different roles in memory through connections with different memory-related brain networks. To identify the key components of the human PHR, we used a well accepted connection-based parcellation method on two independent datasets. Our parcellation divided the PRC and PHC into three subregions, specifically, the rostral PRC, caudal PRC (PRCc), and PHC. The connectivity profile for each subregion showed that the rostral PRC was connected to the anterior temporal (AT) system and the PHC was connected to the posterior medial (PM) system. The transition area (PRCc) integrated the AT-PM systems. These results suggest that the lateral PHR not only contains functionally segregated subregions, but also contains a functionally integrated subregion. SIGNIFICANCE STATEMENT We redefined the cartography of the human parahippocampal region (PHR) and identified a transition subarea based on distinct anatomical and functional connectivity profiles. This well defined anatomical organization of the PHR is necessary for expanding our understanding and studying the functional relevance of its subregions in recognition memory. We found that the transition subregion [caudal perirhinal cortex (PRCc)] is a functionally integrated subregion that integrates the anterior temporal (AT)-posterior medial (PM) systems. In addition, we found that the core components of the AT and PM systems connect with the PHR in the rostral PRC and parahippocampal cortex (PHC), respectively, rather than connecting with the traditional, larger, and thus less concise PRC and PHC areas. This may lead to new insights into the human memory system and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Junjie Zhuo
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, Peoples' Republic of China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, Peoples' Republic of China, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, Peoples' Republic of China
| | - Yong Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, Peoples' Republic of China, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, Peoples' Republic of China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, Peoples' Republic of China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, Peoples' Republic of China
| | - Tianzi Jiang
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, Peoples' Republic of China, Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, Peoples' Republic of China, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, Peoples' Republic of China, Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, Peoples' Republic of China, The Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia, and
| |
Collapse
|
35
|
Jacklin DL, Cloke JM, Potvin A, Garrett I, Winters BD. The Dynamic Multisensory Engram: Neural Circuitry Underlying Crossmodal Object Recognition in Rats Changes with the Nature of Object Experience. J Neurosci 2016; 36:1273-89. [PMID: 26818515 PMCID: PMC6604816 DOI: 10.1523/jneurosci.3043-15.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/01/2015] [Accepted: 12/13/2015] [Indexed: 01/04/2023] Open
Abstract
Rats, humans, and monkeys demonstrate robust crossmodal object recognition (CMOR), identifying objects across sensory modalities. We have shown that rats' performance of a spontaneous tactile-to-visual CMOR task requires functional integration of perirhinal (PRh) and posterior parietal (PPC) cortices, which seemingly provide visual and tactile object feature processing, respectively. However, research with primates has suggested that PRh is sufficient for multisensory object representation. We tested this hypothesis in rats using a modification of the CMOR task in which multimodal preexposure to the to-be-remembered objects significantly facilitates performance. In the original CMOR task, with no preexposure, reversible lesions of PRh or PPC produced patterns of impairment consistent with modality-specific contributions. Conversely, in the CMOR task with preexposure, PPC lesions had no effect, whereas PRh involvement was robust, proving necessary for phases of the task that did not require PRh activity when rats did not have preexposure; this pattern was supported by results from c-fos imaging. We suggest that multimodal preexposure alters the circuitry responsible for object recognition, in this case obviating the need for PPC contributions and expanding PRh involvement, consistent with the polymodal nature of PRh connections and results from primates indicating a key role for PRh in multisensory object representation. These findings have significant implications for our understanding of multisensory information processing, suggesting that the nature of an individual's past experience with an object strongly determines the brain circuitry involved in representing that object's multisensory features in memory. SIGNIFICANCE STATEMENT The ability to integrate information from multiple sensory modalities is crucial to the survival of organisms living in complex environments. Appropriate responses to behaviorally relevant objects are informed by integration of multisensory object features. We used crossmodal object recognition tasks in rats to study the neurobiological basis of multisensory object representation. When rats had no prior exposure to the to-be-remembered objects, the spontaneous ability to recognize objects across sensory modalities relied on functional interaction between multiple cortical regions. However, prior multisensory exploration of the task-relevant objects remapped cortical contributions, negating the involvement of one region and significantly expanding the role of another. This finding emphasizes the dynamic nature of cortical representation of objects in relation to past experience.
Collapse
Affiliation(s)
- Derek L Jacklin
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Ontario N1G 2W1, Canada
| | - Jacob M Cloke
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Ontario N1G 2W1, Canada
| | - Alphonse Potvin
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Ontario N1G 2W1, Canada
| | - Inara Garrett
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Ontario N1G 2W1, Canada
| | - Boyer D Winters
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
36
|
Wang SF, Ritchey M, Libby LA, Ranganath C. Functional connectivity based parcellation of the human medial temporal lobe. Neurobiol Learn Mem 2016; 134 Pt A:123-134. [PMID: 26805590 DOI: 10.1016/j.nlm.2016.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
Regional differences in large-scale connectivity have been proposed to underlie functional specialization along the anterior-posterior axis of the medial temporal lobe (MTL), including the hippocampus (HC) and the parahippocampal gyrus (PHG). However, it is unknown whether functional connectivity (FC) can be used reliably to parcellate the human MTL. The current study aimed to differentiate subregions of the HC and the PHG based on patterns of whole-brain intrinsic FC. FC maps were calculated for each slice along the longitudinal axis of the PHG and the HC. A hierarchical clustering algorithm was then applied to these data in order to group slices according to the similarity of their connectivity patterns. Surprisingly, three discrete clusters were identified in the PHG. Two clusters corresponded to the parahippocampal cortex (PHC) and the perirhinal cortex (PRC), and these regions showed preferential connectivity with previously described posterior-medial and anterior-temporal networks, respectively. The third cluster corresponded to an anterior PRC region previously described as area 36d, and this region exhibited preferential connectivity with auditory cortical areas and with a network involved in visceral processing. The three PHG clusters showed different profiles of activation during a memory-encoding task, demonstrating that the FC-based parcellation identified functionally dissociable sub-regions of the PHG. In the hippocampus, no sub-regions were identified via the parcellation procedure. These results indicate that connectivity-based methods can be used to parcellate functional regions within the MTL, and they suggest that studies of memory and high-level cognition need to differentiate between PHC, posterior PRC, and anterior PRC.
Collapse
Affiliation(s)
- Shao-Fang Wang
- Center for Neuroscience, University of California, Davis, CA 95618, USA.
| | - Maureen Ritchey
- Center for Neuroscience, University of California, Davis, CA 95618, USA
| | - Laura A Libby
- Center for Neuroscience, University of California, Davis, CA 95618, USA
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, CA 95616, USA
| |
Collapse
|
37
|
Weiss AR, Nadji R, Bachevalier J. Neonatal Perirhinal Lesions in Rhesus Macaques Alter Performance on Working Memory Tasks with High Proactive Interference. Front Syst Neurosci 2016; 9:179. [PMID: 26778978 PMCID: PMC4700260 DOI: 10.3389/fnsys.2015.00179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/04/2015] [Indexed: 01/11/2023] Open
Abstract
The lateral prefrontal cortex is known for its contribution to working memory (WM) processes in both humans and animals. Yet, recent studies indicate that the prefrontal cortex is part of a broader network of interconnected brain areas involved in WM. Within the medial temporal lobe (MTL) structures, the perirhinal cortex, which has extensive direct interactions with the lateral and orbital prefrontal cortex, is required to form active/flexible representations of familiar objects. However, its participation in WM processes has not be fully explored. The goal of this study was to assess the effects of neonatal perirhinal lesions on maintenance and monitoring WM processes. As adults, animals with neonatal perirhinal lesions and their matched controls were tested in three object-based (non-spatial) WM tasks that tapped different WM processing domains, e.g., maintenance only (Session-unique Delayed-nonmatching-to Sample, SU-DNMS), and maintenance and monitoring (Object-Self-Order, OBJ-SO; Serial Order Memory Task, SOMT). Neonatal perirhinal lesions transiently impaired the acquisition of SU-DNMS at a short (5 s) delay, but not when re-tested with a longer delay (30 s). The same neonatal lesions severely impacted acquisition of OBJ-SO task, and the impairment was characterized by a sharp increase in perseverative errors. By contrast, neonatal perirhinal lesion spared the ability to monitor the temporal order of items in WM as measured by the SOMT. Contrary to the SU-DNMS and OBJ-SO, which re-use the same stimuli across trials and thus produce proactive interference, the SOMT uses novel objects on each trial and is devoid of interference. Therefore, the impairment of monkeys with neonatal perirhinal lesions on SU-DNMS and OBJ-SO tasks is likely to be caused by an inability to solve working memory tasks with high proactive interference. The sparing of performance on the SOMT demonstrates that neonatal perirhinal lesions do not alter working memory processes per se but rather impact processes modulating impulse control and/or behavioral flexibility.
Collapse
Affiliation(s)
| | - Ryhan Nadji
- Department of Psychology, Emory UniversityAtlanta, GA, USA
| | - Jocelyne Bachevalier
- Department of Psychology, Emory UniversityAtlanta, GA, USA
- Division of Developmental Cognitive Neuroscience, Yerkes National Primate Research CenterAtlanta, GA, USA
| |
Collapse
|
38
|
Abstract
UNLABELLED Developmental topographic disorientation (DTD) is a life-long condition in which affected individuals are severely impaired in navigating around their environment. Individuals with DTD have no apparent structural brain damage on conventional imaging and the neural mechanisms underlying DTD are currently unknown. Using functional and diffusion tensor imaging, we present a comprehensive neuroimaging study of an individual, J.N., with well defined DTD. J.N. has intact scene-selective responses in the parahippocampal place area (PPA), transverse occipital sulcus, and retrosplenial cortex (RSC), key regions associated with scene perception and navigation. However, detailed fMRI studies probing selective tuning properties of these regions, as well as functional connectivity, suggest that J.N.'s RSC has an atypical response profile and an atypical functional coupling to PPA compared with human controls. This deviant functional profile of RSC is not due to compromised structural connectivity. This comprehensive examination suggests that the RSC may play a key role in navigation-related processing and that an alteration of the RSC's functional properties may serve as the neural basis for DTD. SIGNIFICANCE STATEMENT Individuals with developmental topographic disorientation (DTD) have a life-long impairment in spatial navigation in the absence of brain damage, neurological conditions, or basic perceptual or memory deficits. Although progress has been made in identifying brain regions that subserve normal navigation, the neural basis of DTD is unknown. Using functional and structural neuroimaging and detailed statistical analyses, we investigated the brain regions typically involved in navigation and scene processing in a representative DTD individual, J.N. Although scene-selective regions were identified, closer scrutiny indicated that these areas, specifically the retrosplenial cortex (RSC), were functionally disrupted in J.N. This comprehensive examination of a representative DTD individual provides insight into the neural basis of DTD and the role of the RSC in navigation-related processing.
Collapse
|
39
|
Schultz H, Sommer T, Peters J. The Role of the Human Entorhinal Cortex in a Representational Account of Memory. Front Hum Neurosci 2015; 9:628. [PMID: 26635581 PMCID: PMC4653609 DOI: 10.3389/fnhum.2015.00628] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/02/2015] [Indexed: 01/08/2023] Open
Abstract
Connectivity studies in animals form the basis for a representational view of medial temporal lobe (MTL) subregions. In this view, distinct subfields of the entorhinal cortex (EC) relay object-related and spatial information from the perirhinal and parahippocampal cortices (PRC, PHC) to the hippocampus (HC). Relatively recent advances in functional magnetic resonance imaging (fMRI) methodology allow examining properties of human EC subregions directly. Antero-lateral and posterior-medial EC subfields show remarkable consistency to their putative rodent and nonhuman primate homologs with regard to intra- and extra-MTL functional connectivity. Accordingly, there is now evidence for a dissociation of object-related vs. spatial processing in human EC subfields. Here, variance in localization may be integrated in the antero-lateral vs. posterior-medial distinction, but may additionally reflect process differences. Functional results in rodents further suggest material-specific representations may be more integrated in EC compared to PRC/PHC. In humans, however, evidence for such a dissociation between EC and PRC/PHC is lacking. Future research may elucidate on the unique contributions of human EC to memory, especially in light of its high degree of intrinsic and extrinsic connectivity. A thorough characterization of EC subfield function may not only advance our understanding of human memory, but also have important clinical implications.
Collapse
Affiliation(s)
- Heidrun Schultz
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Department of Education and Psychology, Freie Universität Berlin Berlin, Germany
| | - Tobias Sommer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Jan Peters
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| |
Collapse
|
40
|
Mueller S, Wang D, Fox MD, Pan R, Lu J, Li K, Sun W, Buckner RL, Liu H. Reliability correction for functional connectivity: Theory and implementation. Hum Brain Mapp 2015; 36:4664-80. [PMID: 26493163 PMCID: PMC4803495 DOI: 10.1002/hbm.22947] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/18/2015] [Accepted: 08/06/2015] [Indexed: 01/15/2023] Open
Abstract
Network properties can be estimated using functional connectivity MRI (fcMRI). However, regional variation of the fMRI signal causes systematic biases in network estimates including correlation attenuation in regions of low measurement reliability. Here we computed the spatial distribution of fcMRI reliability using longitudinal fcMRI datasets and demonstrated how pre-estimated reliability maps can correct for correlation attenuation. As a test case of reliability-based attenuation correction we estimated properties of the default network, where reliability was significantly lower than average in the medial temporal lobe and higher in the posterior medial cortex, heterogeneity that impacts estimation of the network. Accounting for this bias using attenuation correction revealed that the medial temporal lobe's contribution to the default network is typically underestimated. To render this approach useful to a greater number of datasets, we demonstrate that test-retest reliability maps derived from repeated runs within a single scanning session can be used as a surrogate for multi-session reliability mapping. Using data segments with different scan lengths between 1 and 30 min, we found that test-retest reliability of connectivity estimates increases with scan length while the spatial distribution of reliability is relatively stable even at short scan lengths. Finally, analyses of tertiary data revealed that reliability distribution is influenced by age, neuropsychiatric status and scanner type, suggesting that reliability correction may be especially important when studying between-group differences. Collectively, these results illustrate that reliability-based attenuation correction is an easily implemented strategy that mitigates certain features of fMRI signal nonuniformity.
Collapse
Affiliation(s)
- Sophia Mueller
- Department of RadiologyAthinoula a. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownMassachusetts
- Department of Psychology and Center for Brain ScienceHarvard UniversityCambridgeMassachusetts
- Institute of Clinical Radiology, Ludwig Maximilians University MunichMunichGermany
| | - Danhong Wang
- Department of RadiologyAthinoula a. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownMassachusetts
| | - Michael D. Fox
- Department of RadiologyAthinoula a. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownMassachusetts
- Department of NeurologyBerenson‐Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusetts
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusetts
| | - Ruiqi Pan
- Department of RadiologyAthinoula a. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownMassachusetts
- Department of RadiologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Jie Lu
- Department of RadiologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Kuncheng Li
- Department of RadiologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Wei Sun
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Randy L. Buckner
- Department of RadiologyAthinoula a. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownMassachusetts
- Department of Psychology and Center for Brain ScienceHarvard UniversityCambridgeMassachusetts
- Department of PsychiatryMassachusetts General HospitalBostonMassachusetts
| | - Hesheng Liu
- Department of RadiologyAthinoula a. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownMassachusetts
| |
Collapse
|
41
|
Rolls ET. Pattern separation, completion, and categorisation in the hippocampus and neocortex. Neurobiol Learn Mem 2015; 129:4-28. [PMID: 26190832 DOI: 10.1016/j.nlm.2015.07.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/02/2015] [Accepted: 07/11/2015] [Indexed: 12/22/2022]
Abstract
The mechanisms for pattern completion and pattern separation are described in the context of a theory of hippocampal function in which the hippocampal CA3 system operates as a single attractor or autoassociation network to enable rapid, one-trial, associations between any spatial location (place in rodents, or spatial view in primates) and an object or reward, and to provide for completion of the whole memory during recall from any part. The factors important in the pattern completion in CA3 and also a large number of independent memories stored in CA3 include: a sparse distributed representation, representations that are independent due to the randomizing effect of the mossy fibres, heterosynaptic long-term depression as well as long-term potentiation in the recurrent collateral synapses, and diluted connectivity to minimize the number of multiple synapses between any pair of CA3 neurons which otherwise distort the basins of attraction. Recall of information from CA3 is implemented by the entorhinal cortex perforant path synapses to CA3 cells, which in acting as a pattern associator allow some pattern generalization. Pattern separation is performed in the dentate granule cells using competitive learning to convert grid-like entorhinal cortex firing to place-like fields, and in the dentate to CA3 connections that have diluted connectivity. Recall to the neocortex is achieved by a reverse hierarchical series of pattern association networks implemented by the hippocampo-cortical backprojections, each one of which performs some pattern generalization, to retrieve a complete pattern of cortical firing in higher-order cortical areas. New results on competitive networks show which factors contribute to their ability to perform pattern separation, pattern clustering, and pattern categorisation, and how these apply in different hippocampal and neocortical systems.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, England, United Kingdom; University of Warwick, Department of Computer Science, Coventry CV4 7AL, England, United Kingdom.
| |
Collapse
|
42
|
Blockade of glutamatergic transmission in perirhinal cortex impairs object recognition memory in macaques. J Neurosci 2015; 35:5043-50. [PMID: 25810533 DOI: 10.1523/jneurosci.4307-14.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The perirhinal cortex (PRc) is essential for visual recognition memory, as shown by electrophysiological recordings and lesion studies in a variety of species. However, relatively little is known about the functional contributions of perirhinal subregions. Here we used a systematic mapping approach to identify the critical subregions of PRc through transient, focal blockade of glutamate receptors by intracerebral infusion of kynurenic acid. Nine macaques were tested for visual recognition memory using the delayed nonmatch-to-sample task. We found that inactivation of medial PRc (consisting of Area 35 together with the medial portion of Area 36), but not lateral PRc (the lateral portion of Area 36), resulted in a significant delay-dependent impairment. Significant impairment was observed with 30 and 60 s delays but not with 10 s delays. The magnitude of impairment fell within the range previously reported after PRc lesions. Furthermore, we identified a restricted area located within the most anterior part of medial PRc as critical for this effect. Moreover, we found that focal blockade of either NMDA receptors by the receptor-specific antagonist AP-7 or AMPA receptors by the receptor-specific antagonist NBQX was sufficient to disrupt object recognition memory. The present study expands the knowledge of the role of PRc in recognition memory by identifying a subregion within this area that is critical for this function. Our results also indicate that, like in the rodent, both NMDA and AMPA-mediated transmission contributes to object recognition memory.
Collapse
|
43
|
Muñoz-López M, Insausti R, Mohedano-Moriano A, Mishkin M, Saunders RC. Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex. Front Neurosci 2015; 9:158. [PMID: 26041980 PMCID: PMC4435056 DOI: 10.3389/fnins.2015.00158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/16/2015] [Indexed: 12/29/2022] Open
Abstract
Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10–20 min. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30–40 s. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys' auditory memory performance. The anatomical pathways for auditory memory may differ from those in vision. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC). We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG), and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY) and anterograde (10% BDA 10,000 mW) tracer injections in rSTG and the dorsolateral area 38DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex (EC), and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.
Collapse
Affiliation(s)
- M Muñoz-López
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health Bethesda, MD, USA ; Human Neuroanatomy Laboratory and Regional Centre for Biomedical Research (CRIB), School of Medicine, University of Castilla-La Mancha Albacete, Spain
| | - R Insausti
- Human Neuroanatomy Laboratory and Regional Centre for Biomedical Research (CRIB), School of Medicine, University of Castilla-La Mancha Albacete, Spain
| | - A Mohedano-Moriano
- Human Neuroanatomy Laboratory and Regional Centre for Biomedical Research (CRIB), School of Medicine, University of Castilla-La Mancha Albacete, Spain
| | - M Mishkin
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health Bethesda, MD, USA
| | - R C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
44
|
Pascual B, Masdeu JC, Hollenbeck M, Makris N, Insausti R, Ding SL, Dickerson BC. Large-scale brain networks of the human left temporal pole: a functional connectivity MRI study. Cereb Cortex 2015; 25:680-702. [PMID: 24068551 PMCID: PMC4318532 DOI: 10.1093/cercor/bht260] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The most rostral portion of the human temporal cortex, the temporal pole (TP), has been described as "enigmatic" because its functional neuroanatomy remains unclear. Comparative anatomy studies are only partially helpful, because the human TP is larger and cytoarchitectonically more complex than in nonhuman primates. Considered by Brodmann as a single area (BA 38), the human TP has been recently parceled into an array of cytoarchitectonic subfields. In order to clarify the functional connectivity of subregions of the TP, we undertook a study of 172 healthy adults using resting-state functional connectivity MRI. Remarkably, a hierarchical cluster analysis performed to group the seeds into distinct subsystems according to their large-scale functional connectivity grouped 87.5% of the seeds according to the recently described cytoarchitectonic subregions of the TP. Based on large-scale functional connectivity, there appear to be 4 major subregions of the TP: (1) dorsal, with predominant connectivity to auditory/somatosensory and language networks; (2) ventromedial, predominantly connected to visual networks; (3) medial, connected to paralimbic structures; and (4) anterolateral, connected to the default-semantic network. The functional connectivity of the human TP, far more complex than its known anatomic connectivity in monkey, is concordant with its hypothesized role as a cortical convergence zone.
Collapse
Affiliation(s)
- Belen Pascual
- MGH Frontotemporal Dementia Unit, Alzheimer's Disease Research Center, Department of Neurology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Joseph C. Masdeu
- Section on Integrative Neuroimaging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Hollenbeck
- MGH Frontotemporal Dementia Unit, Alzheimer's Disease Research Center, Department of Neurology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Nikos Makris
- Center for Morphometric Analysis, Departments of Psychiatry, Neurology, and Radiology Services
- Center for Neural Systems Investigation, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Ricardo Insausti
- Center for Human Neuroanatomy Laboratory, Department of Health Sciences, School of Medicine, University of Castilla-La Mancha, Albacete 02071, Spain
| | - Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA 98103, USA
| | - Bradford C. Dickerson
- MGH Frontotemporal Dementia Unit, Alzheimer's Disease Research Center, Department of Neurology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Center for Neural Systems Investigation, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
45
|
A computational theory of hippocampal function, and tests of the theory: New developments. Neurosci Biobehav Rev 2015; 48:92-147. [DOI: 10.1016/j.neubiorev.2014.11.009] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/24/2014] [Accepted: 11/12/2014] [Indexed: 01/01/2023]
|
46
|
Amaral DG, Kondo H, Lavenex P. An analysis of entorhinal cortex projections to the dentate gyrus, hippocampus, and subiculum of the neonatal macaque monkey. J Comp Neurol 2014; 522:1485-505. [PMID: 24122645 DOI: 10.1002/cne.23469] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 09/07/2013] [Accepted: 09/13/2013] [Indexed: 11/05/2022]
Abstract
The entorhinal cortex is the primary interface between the hippocampal formation and neocortical sources of sensory information. Although much is known about the cells of origin, termination patterns, and topography of the entorhinal projections to other fields of the adult hippocampal formation, very little is known about the development of these pathways, particularly in the human or nonhuman primate. We have carried out experiments in which the anterograde tracers (3) H-amino acids, biotinylated dextran amine, and Phaseolus vulgaris leucoagglutinin were injected into the entorhinal cortex in 2-week-old rhesus monkeys (Macaca mulatta). We found that the three fiber bundles originating from the entorhinal cortex (the perforant path, the alvear pathway, and the commissural connection) are all established by 2 weeks of age. Fundamental features of the laminar and topographic distribution of these pathways are also similar to those in adults. There is evidence, however, that some of these projections may be more extensive in the neonate than in the mature brain. The homotopic commissural projections from the entorhinal cortex, for example, originate from a larger region within the entorhinal cortex and terminate much more densely in layer I of the contralateral entorhinal cortex than in the adult. These findings indicate that the overall topographical organization of the main cortical afferent pathways to the dentate gyrus and hippocampus are established by birth. These findings add to the growing body of literature on the development of the primate hippocampal formation and will facilitate further investigations on the development of episodic memory.
Collapse
Affiliation(s)
- David G Amaral
- Department of Psychiatry and Behavioral Sciences, The M.I.N.D. Institute, The Center for Neuroscience and the California National Primate Research Center, University of California, Davis, Davis, California, 95817
| | | | | |
Collapse
|
47
|
Abstract
Establishing associations between pieces of information is related to the medial temporal lobe (MTL). However, it remains unclear how emotions affect memory for associations and, consequently, MTL activity. Thus, this event-related fMRI study attempted to identify neural correlates of the influence of positive and negative emotions on associative memory. Twenty-five participants were instructed to memorize 90 pairs of standardized pictures during a scanned encoding phase. Each pair was composed of a scene and an unrelated object. Trials were neutral, positive, or negative as a function of the emotional valence of the scene. At the behavioral level, participants exhibited better memory retrieval for both emotional conditions relative to neutral trials. Within the right MTL, a functional dissociation was observed, with entorhinal activation elicited by emotional associations, posterior parahippocampal activation elicited by neutral associations, and hippocampal activation elicited by both emotional and neutral associations. In addition, emotional associations induced greater activation than neutral trials in the right amygdala. This fMRI study shows that emotions are associated with the performance improvement of associative memory, by enhancing activity in the right amygdala and the right entorhinal cortex. It also provides evidence for a rostrocaudal specialization within the MTL regarding the emotional valence of associations.
Collapse
|
48
|
Morgan JT, Amaral DG. Comparative analysis of the dendritic organization of principal neurons in the lateral and central nuclei of the rhesus macaque and rat amygdala. J Comp Neurol 2014; 522:689-716. [PMID: 24114951 DOI: 10.1002/cne.23467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/23/2013] [Accepted: 09/13/2013] [Indexed: 11/10/2022]
Abstract
The amygdala plays a critical role in emotional processing and has been implicated in the etiology of numerous psychiatric disorders. It is an evolutionarily ancient structure that is enlarged in primates relative to rodents. Certain amygdala nuclei, such as the lateral nucleus, show relatively greater phylogenetic expansion than other nuclei. However, it is unknown whether there is also differential alteration in neuronal features. To address this question, we examined the dendritic arbors of principal neurons, visualized by using the Golgi method, in the lateral and central nuclei of young adult rhesus macaques and rats. Total dendritic length is greater in the macaque than in the rat. Dendritic trees are increased by 250% in length in the lateral nucleus of the monkey compared with the rat (6,009 μm vs. 2,473 μm); dendritic tree length in the central nucleus is increased by 50% (1,786 μm vs. 1,232 μm). Somal volume is increased 62% between species in the lateral nucleus and 48% in the central nucleus. Spine density is lower on macaque lateral nucleus dendrites compared with rat (-22%) but equivalent in the central nucleus. Spines are equally long in the lateral nucleus of rat and macaque, but spines are longer by about 20% in the central nucleus of the macaque. The alterations in dendritic structure that we observed between the two species suggest differences in the number and spacing of inputs into these nuclei that undoubtedly influence amygdala function.
Collapse
Affiliation(s)
- John T Morgan
- Department of Psychiatry and Behavioral Sciences, The M.I.N.D. Institute, Center for Neuroscience and California National Primate Research Center, University of California, Davis, Sacramento, California, 95817
| | | |
Collapse
|
49
|
Affiliation(s)
- Wendy A. Suzuki
- Center for Neural Science, New York University, New York, NY 10003;
| | - Yuji Naya
- Department of Psychology, Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
| |
Collapse
|
50
|
Bunce JG, Zikopoulos B, Feinberg M, Barbas H. Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory-related rhinal cortices. J Comp Neurol 2014; 521:4260-83. [PMID: 23839697 DOI: 10.1002/cne.23413] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/24/2013] [Accepted: 06/28/2013] [Indexed: 01/19/2023]
Abstract
To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases.
Collapse
Affiliation(s)
- Jamie G Bunce
- Neural Systems Lab, Department of Health Sciences, Boston University, Boston, Massachusetts, 02215
| | | | | | | |
Collapse
|