1
|
Díaz-Rúa A, Chivite M, Comesaña S, Velasco C, Soengas JL, Conde-Sieira M. Central administration of endocannabinoids exerts bimodal effects in food intake of rainbow trout. Horm Behav 2021; 134:105021. [PMID: 34242873 DOI: 10.1016/j.yhbeh.2021.105021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
The endocannabinoid system (ECs) is known to participate in several processes in mammals related to synaptic signaling including regulation of food intake, appetite and energy balance. In fish, the relationship of ECs with food intake regulation is poorly understood. In the present study, we assessed in rainbow trout Oncorhynchus mykiss the effect of intracerebroventricular administration (ICV) of low and high doses of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) on food intake. We assessed endocannabinoid levels in hypothalamus, telencephalon and plasma as well as the effect of AEA and 2-AG administration at central level on gene expression of receptors involved in ECs (cnr1, gpr55 and trpv1) and markers of neural activity (fos, ntrk2 and GABA-related genes). The results obtained indicate that whereas high doses of endocannabinoids did not elicit changes in food intake levels, low doses of the endocannabinoids produce an orexigenic effect that could be due to a possible inhibition of gabaergic neurotransmission and the modulation of neural plasticity in brain areas related to appetite control, such as hypothalamus and telencephalon.
Collapse
Affiliation(s)
- Adrián Díaz-Rúa
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Mauro Chivite
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Sara Comesaña
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Cristina Velasco
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain; CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av.General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - José L Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - Marta Conde-Sieira
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain.
| |
Collapse
|
2
|
Díaz-Rúa A, Chivite M, Velasco C, Comesaña S, Soengas JL, Conde-Sieira M. Periprandial response of central cannabinoid system to different feeding conditions in rainbow trout Oncorhynchus mykiss. Nutr Neurosci 2020; 25:1265-1276. [DOI: 10.1080/1028415x.2020.1853412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Adrián Díaz-Rúa
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Mauro Chivite
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña-CIM, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
3
|
Díaz-Rúa A, Chivite M, Comesaña S, Velasco C, Valente LMP, Soengas JL, Conde-Sieira M. The endocannabinoid system is affected by a high-fat-diet in rainbow trout. Horm Behav 2020; 125:104825. [PMID: 32771417 DOI: 10.1016/j.yhbeh.2020.104825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 01/07/2023]
Abstract
The endocannabinoid system (ECs) is a well known contributor to the hedonic regulation of food intake (FI) in mammals whereas in fish, the knowledge regarding hedonic mechanisms that control FI is limited. Previous studies reported the involvement of ECs in FI regulation in fish since anandamide (AEA) treatment induced enhanced FI and changes of mRNA abundance of appetite-related neuropeptides through cannabinoid receptor 1 (cnr1). However, no previous studies in fish evaluated the impact of palatable food like high-fat diets (HFD) on mechanisms involved in hedonic regulation of FI including the possible involvement of ECs. Therefore, we aimed to evaluate the effect of feeding a HFD on the response of ECs in rainbow trout (Oncorhynchus mykiss). First, we demonstrated a higher intake over 4 days of HFD compared with a control diet (CD). Then, we evaluated the postprandial response (1, 3 and 6 h) of components of the ECs in plasma, hypothalamus, and telencephalon after feeding fish with CD and HFD. The results obtained indicate that the increased FI of HFD occurred along with increased levels of 2-arachidonoylglycerol (2-AG) and AEA in plasma and in brain areas like hypothalamus and telencephalon putatively involved in hedonic regulation of FI in fish. Decreased mRNA abundance of EC receptors like cnr1, gpr55 and trpv1 suggest a feed-back counter-regulatory mechanism in response to the increased levels of EC. Furthermore, the results also suggest that neural activity players associated to FI regulation in mammals as cFOS, γ-Amino butyric acid (GABA) and brain derived neurotrophic factor (BDNF)/neurotrophic receptor tyrosine kinase (NTRK) systems could be involved in the hedonic eating response to a palatable diet in fish.
Collapse
Affiliation(s)
- Adrián Díaz-Rúa
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Spain
| | - Mauro Chivite
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Spain
| | - Sara Comesaña
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Spain
| | - Luisa M P Valente
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões. Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Spain.
| |
Collapse
|
4
|
Demin KA, Meshalkina DA, Kysil EV, Antonova KA, Volgin AD, Yakovlev OA, Alekseeva PA, Firuleva MM, Lakstygal AM, de Abreu MS, Barcellos LJG, Bao W, Friend AJ, Amstislavskaya TG, Rosemberg DB, Musienko PE, Song C, Kalueff AV. Zebrafish models relevant to studying central opioid and endocannabinoid systems. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:301-312. [PMID: 29604314 DOI: 10.1016/j.pnpbp.2018.03.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022]
Abstract
The endocannabinoid and opioid systems are two interplaying neurotransmitter systems that modulate drug abuse, anxiety, pain, cognition, neurogenesis and immune activity. Although they are involved in such critical functions, our understanding of endocannabinoid and opioid physiology remains limited, necessitating further studies, novel models and new model organisms in this field. Zebrafish (Danio rerio) is rapidly emerging as one of the most effective translational models in neuroscience and biological psychiatry. Due to their high physiological and genetic homology to humans, zebrafish may be effectively used to study the endocannabinoid and opioid systems. Here, we discuss current models used to target the endocannabinoid and opioid systems in zebrafish, and their potential use in future translational research and high-throughput drug screening. Emphasizing the high degree of conservation of the endocannabinoid and opioid systems in zebrafish and mammals, we suggest zebrafish as an excellent model organism to study these systems and to search for the new drugs and therapies targeting their evolutionarily conserved mechanisms.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Darya A Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Elana V Kysil
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Kristina A Antonova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey D Volgin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Medical Military Academy, St. Petersburg, Russia
| | - Oleg A Yakovlev
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Medical Military Academy, St. Petersburg, Russia
| | - Polina A Alekseeva
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Maria M Firuleva
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Leonardo J G Barcellos
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Programs in Environmental Sciences, and Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Wandong Bao
- School of Pharmacy, Southwest University, Chongqing, China
| | - Ashton J Friend
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Neuroscience Department, Novosibirsk State University, Novosibirsk, Russia
| | - Denis B Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Pavel E Musienko
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Motor Physiology, Pavlov Institute of Physiology RAS, St. Petersburg, Russia; Laboratory of Neurophysiology and Experimental Neurorehabilitation, St. Petersburg State Research Institute of Phthysiopulmonology, Ministry of Health, St. Petersburg, Russia; Russian Research Center of Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Research and Development Center, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Neuroscience Department, Novosibirsk State University, Novosibirsk, Russia; ZENEREI Research Center, Slidell, LA, USA; Russian Research Center of Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia; Ural Federal University, Ekaterinburg, Russia; Aquatic Laboratory, Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia.
| |
Collapse
|
5
|
Neeley B, Overholt T, Artz E, Kinsey SG, Marsat G. Selective and Context-Dependent Social and Behavioral Effects of Δ9-Tetrahydrocannabinol in Weakly Electric Fish. BRAIN, BEHAVIOR AND EVOLUTION 2018; 91:214-227. [PMID: 30045017 DOI: 10.1159/000490171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/16/2018] [Indexed: 02/02/2023]
Abstract
Cannabinoid (CB) receptors are widespread in the nervous system and influence a variety of behaviors. Weakly electric fish have been a useful model system in the study of the neural basis of behavior, but we know nothing of the role played by the CB system. Here, we determine the overall behavioral effect of a nonselective CB receptor agonist, namely Δ9-tetrahydrocannabinol (THC), in the weakly electric fish Apte-ronotus leptorhynchus. Using various behavioral paradigms involving social stimuli, we show that THC decreases locomotor behavior, as in many species, and influences communication and social behavior. Across the different experiments, we found that the propensity to emit communication signals (chirps) and seek social interactions was affected in a context-dependent manner. We explicitly tested this hypothesis by comparing the behavioral effects of THC injection in fish placed in a novel versus a familiar social and physical environment. THC-injected fish were less likely to chirp than control fish in familiar situations but not in novel ones. The tendency to be in close proximity to other fish was affected only in novel environments, with control fish clustering more than THC-injected ones. By identifying behaviors affected by CB agonists, our study can guide further comparative and neurophysiological studies of the role of the CB system using a weakly electric fish as a model.
Collapse
Affiliation(s)
- Brandon Neeley
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Tyler Overholt
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Emily Artz
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Steven G Kinsey
- Department of Psychology, West Virginia University, Morgantown, West Virginia, USA.,Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Gary Marsat
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA.,Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
6
|
Martella A, Sepe RM, Silvestri C, Zang J, Fasano G, Carnevali O, De Girolamo P, Neuhauss SCF, Sordino P, Di Marzo V. Important role of endocannabinoid signaling in the development of functional vision and locomotion in zebrafish. FASEB J 2016; 30:4275-4288. [DOI: 10.1096/fj.201600602r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/01/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Andrea Martella
- Endocannabinoid Research GroupInstitute of Biomolecular Chemistry Consiglio Nazionale delle Ricerche Pozzuoli Italy
| | - Rosa M. Sepe
- Biology and Evolution of Marine OrganismsStazione Zoologica Anton Dohrn Naples Italy
| | - Cristoforo Silvestri
- Endocannabinoid Research GroupInstitute of Biomolecular Chemistry Consiglio Nazionale delle Ricerche Pozzuoli Italy
| | - Jingjing Zang
- Institute of Molecular Life SciencesUniversity of Zurich Zurich Switzerland
| | - Giulia Fasano
- Biology and Evolution of Marine OrganismsStazione Zoologica Anton Dohrn Naples Italy
| | - Oliana Carnevali
- §Department of Life and Environment SciencesPolytechnic University of Marche Ancona Italy
| | - Paolo De Girolamo
- Dipartimento di Medicina Veterinaria e Produzioni AnimaliUniverstity of Naples Federico II Naples Italy
| | | | - Paolo Sordino
- Biology and Evolution of Marine OrganismsStazione Zoologica Anton Dohrn Naples Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research GroupInstitute of Biomolecular Chemistry Consiglio Nazionale delle Ricerche Pozzuoli Italy
| |
Collapse
|
7
|
Bovolin P, Cottone E, Pomatto V, Fasano S, Pierantoni R, Cobellis G, Meccariello R. Endocannabinoids are Involved in Male Vertebrate Reproduction: Regulatory Mechanisms at Central and Gonadal Level. Front Endocrinol (Lausanne) 2014; 5:54. [PMID: 24782832 PMCID: PMC3995072 DOI: 10.3389/fendo.2014.00054] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/31/2014] [Indexed: 12/12/2022] Open
Abstract
Endocannabinoids (eCBs) are natural lipids regulating a large array of physiological functions and behaviors in vertebrates. The eCB system is highly conserved in evolution and comprises several specific receptors (type-1 and type-2 cannabinoid receptors), their endogenous ligands (e.g., anandamide and 2-arachidonoylglycerol), and a number of biosynthetic and degradative enzymes. In the last few years, eCBs have been described as critical signals in the control of male and female reproduction at multiple levels: centrally, by targeting hypothalamic gonadotropin-releasing-hormone-secreting neurons and pituitary, and locally, with direct effects on the gonads. These functions are supported by the extensive localization of cannabinoid receptors and eCB metabolic enzymes at different levels of the hypothalamic-pituitary-gonadal axis in mammals, as well as bonyfish and amphibians. In vivo and in vitro studies indicate that eCBs centrally regulate gonadal functions by modulating the gonadotropin-releasing hormone-gonadotropin-steroid network through direct and indirect mechanisms. Several proofs of local eCB regulation have been found in the testis and male genital tracts, since eCBs control Sertoli and Leydig cells activity, germ cell progression, as well as the acquisition of sperm functions. A comparative approach usually is a key step in the study of physiological events leading to the building of a general model. Thus, in this review, we summarize the action of eCBs at different levels of the male reproductive axis, with special emphasis, where appropriate, on data from non-mammalian vertebrates.
Collapse
Affiliation(s)
- Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin, University of Turin, Turin, Italy
- *Correspondence: Patrizia Bovolin, Department of Life Sciences and Systems Biology, University of Turin, via Accademia Albertina 13, 10123 Turin, Italy e-mail:
| | - Erika Cottone
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Valentina Pomatto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Naples, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Naples, Italy
| | - Gilda Cobellis
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Naples, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Naples, Italy
| |
Collapse
|
8
|
Harvey-Girard E, Giassi ACC, Ellis W, Maler L. Expression of the cannabinoid CB1 receptor in the gymnotiform fish brain and its implications for the organization of the teleost pallium. J Comp Neurol 2013; 521:949-75. [PMID: 22886386 DOI: 10.1002/cne.23212] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/05/2012] [Accepted: 08/03/2012] [Indexed: 12/14/2022]
Abstract
Cannabinoid CB1 receptors (CB1R) are widely distributed in the brains of many vertebrates, but whether their functions are conserved is unknown. The weakly electric fish, Apteronotus leptorhynchus (Apt), has been well studied for its brain structure, behavior, sensory processing, and learning and memory. It therefore offers an attractive model for comparative studies of CB1R functions. We sequenced partial AptCB1R mRNAs and performed in situ hybridization to localize its expression. Partial AptCB1R protein sequence was highly conserved to zebrafish (90.7%) and mouse (81.9%) orthologs. AptCB1R mRNA was highly expressed in the telencephalon. Subpallial neurons (dorsal, central, intermediate regions and part of the ventral region, Vd/Vc/Vi, and Vv) expressed high levels of AptCB1R transcript. The central region of dorsocentral telencephalon (DC(core) ) strongly expressed CB1R mRNA; cells in DC(core) project to midbrain regions involved in electrosensory/visual function. The lateral and rostral regions of DC surrounding DC(core) (DC(shell) ) lack AptCB1R mRNA. The rostral division of the dorsomedial telencephalon (DM1) highly expresses AptCB1R mRNA. In dorsolateral division (DL) AptCB1R mRNA was expressed in a gradient that declined in a rostrocaudal manner. In diencephalon, AptCB1R RNA probe weakly stained the central-posterior (CP) and prepacemaker (PPn) nuclei. In mesencephalon, AptCB1R mRNA is expressed in deep layers of the dorsal (electrosensory) torus semicircularis (TSd). In hindbrain, AptCB1R RNA probe weakly labeled inhibitory interneurons in the electrosensory lateral line lobe (ELL). Unlike mammals, only few cerebellar granule cells expressed AptCB1R transcripts and these were located in the center of eminentia granularis pars posterior (EGp), a cerebellar region involved in feedback to ELL.
Collapse
Affiliation(s)
- Erik Harvey-Girard
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5.
| | | | | | | |
Collapse
|
9
|
Cottone E, Pomatto V, Bovolin P. Role of the endocannabinoid system in the central regulation of nonmammalian vertebrate reproduction. Int J Endocrinol 2013; 2013:941237. [PMID: 24101926 PMCID: PMC3786540 DOI: 10.1155/2013/941237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/12/2013] [Indexed: 12/20/2022] Open
Abstract
The endocannabinoid system (ECS) has a well-documented pivotal role in the control of mammalian reproductive functions, by acting at multiple levels, that is, central (CNS) and local (gonads) levels. Since studies performed in animal models other than mammals might provide further insight into the biology of these signalling molecules, in the present paper we review the comparative data pointing toward the endocannabinoid involvement in the reproductive control of non-mammalian vertebrates, focussing in particular on the central regulation of teleost and amphibian reproduction. The morphofunctional distribution of brain cannabinoid receptors will be discussed in relation to other crucial signalling molecules involved in the control of reproductive functions, such as GnRH, dopamine, aromatase, and pituitary gonadotropins.
Collapse
Affiliation(s)
- Erika Cottone
- Department of Life Science and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
- *Erika Cottone:
| | - Valentina Pomatto
- Department of Life Science and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Patrizia Bovolin
- Department of Life Science and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| |
Collapse
|
10
|
Chianese R, Ciaramella V, Scarpa D, Fasano S, Pierantoni R, Meccariello R. Endocannabinoids and endovanilloids: a possible balance in the regulation of the testicular GnRH signalling. Int J Endocrinol 2013; 2013:904748. [PMID: 24072997 PMCID: PMC3773452 DOI: 10.1155/2013/904748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/30/2013] [Indexed: 11/18/2022] Open
Abstract
Reproductive functions are regulated both at central (brain) and gonadal levels. In this respect, the endocannabinoid system (eCS) has a very influential role. Interestingly, the characterization of eCS has taken many advantages from the usage of animal models different from mammals. Therefore, this review is oriented to summarize the main pieces of evidence regarding eCS coming from the anuran amphibian Rana esculenta, with particular interest to the morphofunctional relationship between eCS and gonadotropin releasing hormone (GnRH). Furthermore, a novel role for endovanilloids in the regulation of a testicular GnRH system will be also discussed.
Collapse
Affiliation(s)
- Rosanna Chianese
- Dipartimento di Medicina Sperimentale Sezione “F. Bottazzi,” Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Vincenza Ciaramella
- Dipartimento di Medicina Sperimentale Sezione “F. Bottazzi,” Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Donatella Scarpa
- Dipartimento di Medicina Sperimentale Sezione “F. Bottazzi,” Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale Sezione “F. Bottazzi,” Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale Sezione “F. Bottazzi,” Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
- *Riccardo Pierantoni:
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Via Medina 40, 80133 Napoli, Italy
| |
Collapse
|
11
|
Elphick MR. The evolution and comparative neurobiology of endocannabinoid signalling. Philos Trans R Soc Lond B Biol Sci 2012; 367:3201-15. [PMID: 23108540 PMCID: PMC3481536 DOI: 10.1098/rstb.2011.0394] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CB(1)- and CB(2)-type cannabinoid receptors mediate effects of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via presynaptic CB(1)-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the vertebrates, whereas system-level studies point to conserved roles for endocannabinoid signalling in neural mechanisms of learning and control of locomotor activity and feeding. CB(1)/CB(2)-type receptors originated in a common ancestor of extant chordates, and in the sea squirt Ciona intestinalis a CB(1)/CB(2)-type receptor is targeted to axons, indicative of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. Although CB(1)/CB(2)-type receptors are unique to chordates, enzymes involved in biosynthesis/inactivation of endocannabinoids occur throughout the animal kingdom. Accordingly, non-CB(1)/CB(2)-mediated mechanisms of endocannabinoid signalling have been postulated. For example, there is evidence that 2-AG mediates retrograde signalling at synapses in the nervous system of the leech Hirudo medicinalis by activating presynaptic transient receptor potential vanilloid-type ion channels. Thus, postsynaptic synthesis of 2-AG or anandamide may be a phylogenetically widespread phenomenon, and a variety of proteins may have evolved as presynaptic (or postsynaptic) receptors for endocannabinoids.
Collapse
Affiliation(s)
- Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
12
|
Battista N, Meccariello R, Cobellis G, Fasano S, Di Tommaso M, Pirazzi V, Konje JC, Pierantoni R, Maccarrone M. The role of endocannabinoids in gonadal function and fertility along the evolutionary axis. Mol Cell Endocrinol 2012; 355:1-14. [PMID: 22305972 DOI: 10.1016/j.mce.2012.01.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/05/2011] [Accepted: 01/16/2012] [Indexed: 02/07/2023]
Abstract
Endocannabinoids are natural lipids able to bind to cannabinoid and vanilloid receptors. Their biological actions at the central and peripheral level are under the tight control of the proteins responsible for their synthesis, transport and degradation. In the last few years, several reports have pointed out these lipid mediators as critical signals, together with sex hormones and cytokines, in various aspects of animal and human reproduction. The identification of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in reproductive cells and tissues of invertebrates, vertebrates and mammals highlights the key role played by these endogenous compounds along the evolutionary axis. Here, we review the main actions of endocannabinoids on female and male reproductive events, and discuss the interplay between them, steroid hormones and cytokines in regulating fertility. In addition, we discuss the involvement of endocannabinoid signalling in ensuring a correct chromatin remodeling, and hence a good DNA quality, in sperm cells.
Collapse
Affiliation(s)
- Natalia Battista
- Dipartimento di Scienze Biomediche Comparate, Università di Teramo, 64100 Teramo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Palermo FA, Mosconi G, Avella MA, Carnevali O, Verdenelli MC, Cecchini C, Polzonetti-Magni AM. Modulation of cortisol levels, endocannabinoid receptor 1A, proopiomelanocortin and thyroid hormone receptor alpha mRNA expressions by probiotics during sole (Solea solea) larval development. Gen Comp Endocrinol 2011; 171:293-300. [PMID: 21352826 DOI: 10.1016/j.ygcen.2011.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 02/03/2011] [Accepted: 02/16/2011] [Indexed: 11/17/2022]
Abstract
In the present study, we investigated whether the use of Enterococcus faecium IMC 511 as a probiotic can modulate neuroendocrine system responses during the larval rearing of Solea solea; to this end, the gene expression patterns of proopiomelanocortin (POMC), endocannabinoid receptor 1A (CB1A), and thyroid receptor alpha (TRα) were quantified, and whole-body cortisol levels were measured. Probiotic treatment up-regulated transcription of all selected genes and cortisol concentrations on day 10 post hatch (ph), while on day 30 ph experimental groups showed significantly lower levels of both POMC and CB1A compared to those of the control group. These changes were no longer evident on day 60 ph, when POMC, CB1A, TRα gene expression and cortisol titers were found to be similar in all experimental groups. Our results suggest that metabolic responses to probiotic treatment can be modulated through the activation of genes selected for functional interaction between the hypothalamic-pituitary-thyroid (HPT) axis and the melanocortin and the endocannabinoid systems. Furthermore, the observed (30 ph) down-regulation of both POMC and CB1A gene expression coupled with up-regulation of TRα mRΝΑ levels suggest the activation of a compensatory mechanism that promotes growth and development and perhaps modulates food intake.
Collapse
Affiliation(s)
- Francesco Alessandro Palermo
- Centro Universitario di Ricerca per Sviluppo e Gestione delle Risorse dell'Ambiente Marino e Costiero (UNICRAM), Università degli Studi di Camerino, Lungomare A. Scipioni 6, I-63039 San Benedetto del Tronto (AP), Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Strickler AG, Soares D. Comparative genetics of the central nervous system in epigean and hypogean Astyanax mexicanus. Genetica 2011; 139:383-91. [PMID: 21318738 DOI: 10.1007/s10709-011-9557-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 01/27/2011] [Indexed: 02/02/2023]
Abstract
The extreme environment of subterranean caves presents an adaptive challenge to troglobitic organisms. The mechanisms by which natural selection modify an ancestral surface neural circuit to produce a novel subterranean behavior remain a mystery. To address this question, we performed cross species microarray experiments to compare differences in gene expression levels in the adult brain of the teleost Astyanax mexicanus. This species provides a unique opportunity for comparative genetic studies as it consists of extant epigean (surface) and hypogean (cave) conspecifics. Microarray experiments herein revealed significant changes in transcription levels of seventeen genes, several of which are important for behaviors involved in metabolic management. We focused on genes central to three neurotransmission and neuromodulation networks: the endocannabinoid system (Cannabinoid receptor CB1), the dopaminergic system (Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein) and the glutamatergic system (glutamate receptor AMPA 2a). All three genes were upregulated in the hypogean form of A. mexicanus compared to the epigean form, indicating that behavioral differences in the hypogean form of the species could be due to alterations in expression levels of several key genes. This information provides insights into the complex relationships among environmental factors, genetics, nervous systems and adaptive behavior, and can subsequently help us understand how these interactions affect behavior in other biological systems.
Collapse
|
15
|
Abstract
There is abundant evidence for the presence of endogenous cannabinoid signaling systems in many nonmammalian species, including several classes of invertebrates. Interest in the study of these animals largely relates to their production of distinct and measurable specialized behaviors. The ability to alter these behaviors through manipulation of cannabinoid signaling has provided important insight into both the phylogenetic history and physiological relevance of this essential neuromodulatory system.This chapter presents a review of literature relevant to cannabinoid-altered behaviors in nonmammalian species from insects through advanced vocal learning avian species. Integration of findings supports a common role for endocannabinoid (ECB) modulation of ingestive and locomotor behaviors, with interesting contrasting agonist effects that distinguish vertebrate and invertebrate classes. Studies in amphibians and birds suggest that ECB signaling may function as a behavioral switch, allowing redirection from less- to more-essential behaviors in response to emergent environmental changes. Overall, the studies provide evidence for cannabinoid modulation of aggression, emesis, feeding behavior, locomotor activity, reproductive behaviors, vocal learning, sensory perception and stress responses.
Collapse
|
16
|
Abstract
Starting from an historical overview of lasting Cannabis use over the centuries, we will focus on a description of the cannabinergic system, with a comprehensive analysis of chemical and pharmacological properties of endogenous and synthetic cannabimimetic analogues. The metabolic pathways and the signal transduction mechanisms, activated by cannabinoid receptors stimulation, will also be discussed. In particular, we will point out the action of cannabinoids and endocannabinoids on the different neuronal networks involved in reproductive axis, and locally, on male and female reproductive tracts, by emphasizing the pivotal role played by this system in the control of fertility.
Collapse
|
17
|
Dietary Lecithin Source Affects Growth Potential and Gene Expression in Sparus aurata Larvae. Lipids 2010; 45:1011-23. [DOI: 10.1007/s11745-010-3471-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
|
18
|
Cottone E, Guastalla A, Pomatto V, Campantico E, Palermo F, Magni AMP, Mackie K, Franzoni MF. Interplay of the Endocannabinoid System with Neuropeptide Y and Corticotropin-releasing Factor in the Goldfish Forebrain. Ann N Y Acad Sci 2009; 1163:372-5. [DOI: 10.1111/j.1749-6632.2009.04432.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
|
20
|
Elphick MR, Egertová M. Cannabinoid Receptor Genetics and Evolution. THE CANNABINOID RECEPTORS 2009. [DOI: 10.1007/978-1-59745-503-9_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Palermo FA, Ruggeri B, Mosconi G, Virgili M, Polzonetti-Magni AM. Partial cloning of CB1 cDNA and CB1 mRNA changes in stress responses in the Solea solea. Mol Cell Endocrinol 2008; 286:S52-9. [PMID: 18336994 DOI: 10.1016/j.mce.2008.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 11/24/2022]
Abstract
Endogenous cannabinoids, through the CB1 receptor, are involved in the control of several functions including stress responses. The aim of this study was to investigate the presence of cannabinoid receptor CB1 in the sole ovary by partial cloning of brain CB1 cDNA; in a stress paradigm of disturbance by handling, which consisted in catching, netting and hand-sorting, changes of CB1 mRNA were related with those of proopiomelanocortin (POMC) mRNA; the trend and timing of stress responses and adaptation were monitored by measuring plasma cortisol levels. We characterized two forms of CB1-like receptor, termed CB1A and CB1B. The two sole CB1 (both 799bp) share 76% identity in their cDNAs, and the deduced amino acid sequences are 80% identical. The handling stress induced a sustained increase in plasma cortisol levels 1h after the handling began and decreased to low levels 12h after initiation of handling, showing the same trend of ovarian POMC mRNA expression. In addition, while CB1A mRNA did not show any significant changes during handling stress, significantly lower levels of CB1B mRNA were found in stressed fish 1h after the beginning of handling, with CB1 expression increased 24h after stress induction, both in the ovary and brain. It can be concluded that endocannabinoid system is involved in the modulation of adaptive responses to environmental conditions.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- Female
- Flatfishes/genetics
- Gene Expression Regulation
- Hydrocortisone/blood
- Molecular Sequence Data
- Ovary/metabolism
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- F A Palermo
- Dipartimento di Scienze Morfologiche e Biochimiche Comparate, Università degli Studi di Camerino, via Gentile III da Varano, 62032 Camerino (MC), Italy
| | | | | | | | | |
Collapse
|
22
|
Cottone E, Guastalla A, Mackie K, Franzoni MF. Endocannabinoids affect the reproductive functions in teleosts and amphibians. Mol Cell Endocrinol 2008; 286:S41-5. [PMID: 18343023 DOI: 10.1016/j.mce.2008.01.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/28/2008] [Accepted: 01/28/2008] [Indexed: 01/31/2023]
Abstract
Following the discovery in the brain of the bonyfish Fugu rubripes of two genes encoding for type 1 cannabinoid receptors (CB1A and CB1B), investigations on the phylogeny of these receptors have indicated that the cannabinergic system is highly conserved. Among the multiple functions modulated by cannabinoids/endocannabinoids through the CB1 receptors one of the more investigated is the mammalian reproduction. Therefore, since studies performed in animal models other than mammals might provide further insight into the biology of these signalling molecules, the major aim of the present paper was to review the comparative data pointing toward the endocannabinoid involvement in the reproductive control of non-mammalian vertebrates, namely bonyfish and amphibians. The expression and distribution of CB1 receptors were investigated in the CNS and gonads of two teleosts, Pelvicachromis pulcher and Carassius auratus as well as in the anuran amphibians Xenopus laevis and Rana esculenta. In general the large diffusion of neurons targeted by cannabinoids in both fish and amphibian forebrain indicate endocannabinoids as pivotal local messengers in several neural circuits involved in either sensory integrative activities, like the olfactory processes (in amphibians) and food response (in bonyfish), or neuroendocrine machinery (in both). By using immunohistochemistry for CB1 and GnRH-I, the codistribution of the two signalling molecules was found in the fish basal telencephalon and preoptic area, which are key centers for gonadotropic regulation in all vertebrates. A similar topographical codistribution was observed also in the septum of the telencephalon in Rana esculenta and Xenopus laevis. Interestingly, the double standard immunofluorescence on the same brain section, aided with a laser confocal microscope, showed that in anurans a subset of GnRH-I neurons exhibited also the CB1 immunostaining. The fact that CB1-LI-IR was found indeed in the FSH gonadotrophs of the Xenopus pituitary gland and CB1 receptors together with the fatty acid amide hydrolase, the degradative enzyme of the endocannabinoid anandamide, were demonstrated in both bonyfish and frog gonads, strongly suggests that endocannabinoids are involved in central and peripheral gonadotropic functions of teleosts and amphibians.
Collapse
Affiliation(s)
- E Cottone
- Dipartimento di Biologia Animale e dell'Uomo, Laboratorio di Anatomia Comparata, Università degli Studi di Torino, Via Accademia Albertina 13, I-10123 Torino, Italy
| | | | | | | |
Collapse
|
23
|
Meccariello R, Chianese R, Cobellis G, Pierantoni R, Fasano S. Cloning of type 1 cannabinoid receptor in Rana esculenta reveals differences between genomic sequence and cDNA. FEBS J 2007; 274:2909-20. [PMID: 17518972 DOI: 10.1111/j.1742-4658.2007.05824.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endocannabinoid system is a conserved system involved in the modulation of several physiologic processes, from the activity of the central nervous system to reproduction. Type 1 cannabinoid receptor (CNR1) cDNA was cloned from the brain and testis of the anuran amphibian, the frog Rana esculenta. Nucleotide identity ranging from 62.6% to 81.9% is observed among vertebrates. The reading frame encoded a protein of 462 amino acids (FCNR1) with all the properties of a membrane G-coupled receptor. Alignments of FCNR1 with those of other vertebrates revealed amino acid identity ranging from 61.9% to 88.1%; critical domains for CNR1 functionality were conserved in the frog. As nucleotide differences of cnr1 cDNA were observed in brain and testis, the genomic sequence of the cnr1 gene was also determined in the same tissue preparations. Nucleotide changes in codons 5, 30, 70, 186, 252 and 408 were observed when cDNA and genomic DNA were compared; the nucleotide differences did not affect the predicted amino acid sequences, except for changes in codons 70 and 408. Interestingly, the predicted RNA folding was strongly affected by different nucleotide sequences. Comparison of cnr1 mRNA sequences available in GenBank with the corresponding genomic sequences revealed that also in human, rat, zebrafish and pufferfish, nucleotide changes between mRNA and genomic sequences occurred. Furthermore, amino acid sequences deduced from both mRNA and the genome were compared among vertebrates, and also in pufferfish the nucleotide changes corresponded to modifications in the amino acid sequence. The present results indicate for the first time that changes in nucleotides may occur in cnr1 mRNA maturation and that this phenomenon might not be restricted to the frog.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Dipartimento di Studi delle Istituzioni e dei Sistemi Territoriali, Università di Napoli Parthenope, Naples, Italy
| | | | | | | | | |
Collapse
|
24
|
Ruggeri B, Soverchia L, Mosconi G, Franzoni MF, Cottone E, Polzonetti-Magni AM. Changes of gonadal CB1 cannabinoid receptor mRNA in the gilthead seabream, Sparus aurata, during sex reversal. Gen Comp Endocrinol 2007; 150:263-9. [PMID: 17078952 DOI: 10.1016/j.ygcen.2006.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/05/2006] [Accepted: 09/10/2006] [Indexed: 11/30/2022]
Abstract
Two cannabinoid receptor-like genes (CB1-like), named CB1A and CB1B, have been isolated in teleost fish, specifically in the puffer fish, Fugu rubripes. However, information on the physiological roles, such as the control of reproduction and development in fish is still scarce. Therefore, the aim of the present study was to investigate the presence of CB1-like mRNA in the gonads of a marine teleost species, the gilthead seabream, Sparus aurata, a hermaphrodite species in which the gonadal tissues first develop as testes, and then as functional ovary. We isolated an 890 bp fragment (GenBank accession number ); that corresponded to the open reading frame of the teleost CB1 receptor gene, encoding for the central portion of the protein, which was aligned with the other bony fish sequence. Using "in situ" hybridization, CB1-like mRNA was localized in both mature and sex-reversing gonads, and relative changes in CB1-like expression levels were detected through semi-quantitative RT-PCR. In the mature testis and in the testicular part of the sex-reversing gonad, CB1 expression levels were found to be much higher compared to the ovarian portion. This suggests that the CB1 signaling is likely involved in the process of testicular regression of the S. aurata, but its actual role has yet to be determined.
Collapse
Affiliation(s)
- B Ruggeri
- Dipartimento di Scienze Morfologiche e Biochimiche Comparate, Università degli Studi di Camerino, via Camerini 2, 62032 Camerino (MC), Italy
| | | | | | | | | | | |
Collapse
|
25
|
Rodriguez-Martin I, Marron Fernandez de Velasco E, Rodriguez RE. Characterization of cannabinoid-binding sites in zebrafish brain. Neurosci Lett 2006; 413:249-54. [PMID: 17178193 DOI: 10.1016/j.neulet.2006.11.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/26/2006] [Accepted: 11/29/2006] [Indexed: 02/04/2023]
Abstract
We present here the pharmacological characterization of cannabinoid-binding sites in zebrafish brain homogenates using radiolabeled binding techniques. The nonselective agonist [3H]-CP55940 binds with high affinity (KD = 0.50+/-0.06 nM and a Bmax = 1047+/-36.01 fmol/mg protein), displaying one binding site. The slightly CB2 selective agonist [3H]-WIN55212-2 also binds with high affinity to zebrafish brain membranes displaying two different binding sites with affinities KD1 = 0.35+/-0.09 nM and KD2 = 105.81+/-66.36 nM. Competition binding assays using [3H]-WIN55212-2 and several unlabeled ligands were performed. WIN55212-2 significantly displaced the tritiated ligand binding showing the two binding sites observed with its tritiated homologous, while the slightly selective CB1 cannabinoid ligand HU-210, the nonselective cannabinoid ligand CP55940 and the endogenous cannabinoid ligand anandamide presented one binding site. Also, the functionality of these cannabinoid sites was analyzed using the known [35S]GTPgammaS assay. All the agonist used presented an agonist profile and the rank order for potency was HU-210 > WIN55212-2 > CP55940 >anandamide. Our results provide evidence that, although some of the typical cannabinoid ligands for mammalian receptors do not fully recognize the cannabinoid-binding sites in zebrafish brain, the activity of the endogenous zebrafish cannabinoid system might not significantly differ from that displayed by the cannabinoid system described in other species. Hence the study of zebrafish cannabinoid activity may contribute to an understanding of the endogenous cannabinoid system in higher vertebrates.
Collapse
Affiliation(s)
- Ivan Rodriguez-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Instituto de Neurociencias de Castilla y León, University of Salamanca, Spain
| | | | | |
Collapse
|
26
|
Soderstrom K, Tian Q. Developmental pattern of CB1 cannabinoid receptor immunoreactivity in brain regions important to zebra finch (Taeniopygia guttata) song learning and control. J Comp Neurol 2006; 496:739-58. [PMID: 16615122 DOI: 10.1002/cne.20963] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Zebra finches learn song during distinct developmental stages, making them an important species for studying mechanisms underlying vocal development. Distinct interconnected forebrain regions have been identified as important to specific features of zebra finch vocal learning and production. Because prior experiments have demonstrated that late postnatal exposure to cannabinoid agonists alters zebra finch song learning, we have sought to identify brain regions likely involved in it. By using an affinity-purified polyclonal antibody directed against the zebra finch CB(1) cannabinoid receptor, we have studied staining patterns in groups of males at 25, 50, 75, and >100 days of age (adults). A general waxing and waning of staining intensity were observed over this developmental period. Distinct staining of song-related brain regions was also noted. Early establishment of staining patterns within rostral telencephalic song regions [area X and lateral magnocellular nucleus of the anterior nidopallium (lMAN)] suggests a role in auditory learning. Later establishment and maintenance in adulthood of small somata and neuropil staining within regions of rostral telencephalon [HVC and robust nucleus of the arcopallium (RA)] are consistent with a vocal motor role for cannabinoid signaling. Our results provide insight into brain regions likely responsible for cannabinoid-altered vocal learning and add to accumulating evidence supporting an important role for cannabinoid signaling in CNS development.
Collapse
Affiliation(s)
- Ken Soderstrom
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | | |
Collapse
|
27
|
Hollis DM, Coddington EJ, Moore FL. Neuroanatomical Distribution of Cannabinoid Receptor Gene Expression in the Brain of the Rough-Skinned Newt, Taricha granulosa. BRAIN, BEHAVIOR AND EVOLUTION 2006; 67:135-49. [PMID: 16415569 DOI: 10.1159/000090978] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 09/22/2005] [Indexed: 11/19/2022]
Abstract
Type I cannabinoid receptor (CB1) is a G-protein coupled receptor with a widespread distribution in the central nervous system in mammals. In a urodele amphibian, the rough-skinned newt (Taricha granulosa), recent evidence indicates that endogenous cannabinoids (endocannabinoids) mediate behavioral responses to acute stress and electrophysiological responses to corticosterone. To identify possible sites of action for endocannabinoids, in situ hybridization using a gene and species specific cRNA probe was used to label CB1 mRNA in brains of male T. granulosa. Labeling of CB1 mRNA in the telencephalon was observed in the olfactory bulb and all areas of the pallium, as well as the bed nucleus of the stria terminalis and nucleus amygdalae dorsolateralis. The labeling of CB1 mRNA was also found in regions of the preoptic area, thalamus, midbrain tegmentum and tectum, cerebellum, and the stratum griseum of the hindbrain. A notable difference in CB1 labeling between this amphibian and mammals is the abundance of labeling in areas associated with olfaction (anterior olfactory nuclei, nucleus amygdalae dorsolateralis, and lateral pallium), which hints that endocannabinoids might modulate responses to odors as well as pheromones. This widespread distribution of CB1 labeling, particularly in sensory and motor control centers, fits with prior results showing that endocannabinoids modulate sensorimotor processing and behavioral output in this species. The distribution of CB1 in the brain of T. granulosa was in many of the same sites previously observed in the brain of the anuran amphibian, Xenopus laevis, as well as those of different species of mammals, suggesting that endocannabinoid signaling pathways are conserved.
Collapse
Affiliation(s)
- David M Hollis
- Department of Zoology, Oregon State University, Corvallis, Oreg., USA.
| | | | | |
Collapse
|
28
|
Meccariello R, Chianese R, Cacciola G, Cobellis G, Pierantoni R, Fasano S. Type-1 cannabinoid receptor expression in the frog,Rana esculenta, tissues: A possible involvement in the regulation of testicular activity. Mol Reprod Dev 2006; 73:551-8. [PMID: 16485273 DOI: 10.1002/mrd.20434] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endogenous cannabinoids and type-1 cannabinoid receptor (CB1) are widely produced and distributed in the central nervous system (CNS) and peripheral nerves in mammals. In addition, the detection of endocannabinoids and corresponding receptors in non nervous peripheral tissues indicates an involvement of the system in the control of a wide range of physiological activities, including reproduction. Recently, the existence of CB1 was also observed in lower vertebrates and in urochordate suggesting that the endocannabinoid system is phylogenetically conserved. Using RT-PCR, CB1 mRNA expression profiles were characterized in a wide range of tissues of the anuran amphibian, the frog, Rana esculenta. Besides a strong expression in the CNS, CB1 was also present in testis, kidney, liver, ovary, muscle, heart, spleen, and pituitary. The CB1 expression pattern has been characterized in both testis and CNS during the annual sexual cycle. In testis, CB1 is poorly expressed during the winter stasis of the spermatogenesis rising during the breeding season and resumption period. An expression profile mismatching to that observed in testis was detected in whole-brain preparations during the sexual cycle; in particular in the diencephalon, the encephalic area mainly involved in the control of reproductive functions. Furthermore, fluctuations inside isolated encephalic areas and spinal cord were observed all over the reproductive cycle. In conclusion, CB1 receptor is expressed in R. esculenta CNS and testis. As far as the gonad it concerns, our results suggest the involvement of the endocannabinoids in the control of reproductive function.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Dipartimento di Studi delle Istituzioni e dei Sistemi Territoriali, Università di Napoli Parthenope, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Lam CS, Rastegar S, Strähle U. Distribution of cannabinoid receptor 1 in the CNS of zebrafish. Neuroscience 2005; 138:83-95. [PMID: 16368195 DOI: 10.1016/j.neuroscience.2005.10.069] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 10/21/2005] [Accepted: 10/25/2005] [Indexed: 12/11/2022]
Abstract
The cannabinoid receptor 1 (Cb1) mediates the psychoactive effect of marijuana. In mammals, there is abundant evidence advocating the importance of cannabinoid signaling; activation of Cb1 exerts diverse functions, chiefly by its ability to modulate neurotransmission. Thus, much attention has been devoted to understand its role in health and disease and to evaluate its therapeutic potential. Here, we have cloned zebrafish cb1 and investigated its expression in developing and adult zebrafish brain. Sequence analysis showed that there is a high degree of conservation, especially in residues demonstrated to be critical for function in mammals. In situ hybridization revealed that zebrafish cb1 appears first in the preoptic area at 24 hours post-fertilization. Subsequently, transcripts are detected in the dorsal telencephalon, hypothalamus, pretectum and torus longitudinalis. A similar pattern of expression is recapitulated in the adult brain. While cb1 is intensively stained in the medial zone of the dorsal telencephalon, expression elsewhere is weak by comparison. In particular, localization of cb1 in the telencephalic periventricular matrix is suggestive of the involvement of Cb1 in neurogenesis, bearing strong resemblance in terms of expression and function to the proliferative mammalian hippocampal formation. In addition, a gradient-like expression of cb1 is detected in the torus longitudinalis, a teleost specific neural tissue. In relation to dopaminergic neurons in the diencephalic posterior tuberculum (considered to be the teleostean homologue of the mammalian midbrain dopaminergic system), both cb1 and tyrosine hydroxylase-expressing cells occupy non-overlapping domains. However there is evidence that they are co-localized in the caudal zone of the hypothalamus, implying a direct modulation of dopamine release in this particular region. Collectively, our data indicate the propensity of zebrafish cb1 to participate in multiple neurological processes.
Collapse
Affiliation(s)
- C S Lam
- Institute for Toxicology and Genetics, Forschungszentrum Karlsruhe, Postfach 3640, 76021 Karlsruhe, University of Heidelberg, Baden-Wurtemberg, Germany
| | | | | |
Collapse
|
30
|
Valenti M, Cottone E, Martinez R, De Pedro N, Rubio M, Viveros MP, Franzoni MF, Delgado MJ, Di Marzo V. The endocannabinoid system in the brain of Carassius auratus and its possible role in the control of food intake. J Neurochem 2005; 95:662-72. [PMID: 16135090 DOI: 10.1111/j.1471-4159.2005.03406.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cannabinoid receptors and the endocannabinoids anandamide and 2-arachidonoylglycerol have been suggested to regulate food intake in several animal phyla. Orthologs of the mammalian cannabinoid CB(1) and CB(2) receptors have been identified in fish. We investigated the presence of this endocannabinoid system in the brain of the goldfish Carassius auratus and its role in food consumption. CB(1)-like immunoreactivity was distributed throughout the goldfish brain. The prosencephalon showed strong CB(1)-like immunoreactivity in the telencephalon and the inferior lobes of the posterior hypothalamus. Endocannabinoids were detected in all brain regions of C. auratus and an anandamide-hydrolysing enzymatic activity with features similar to those of mammalian fatty acid amide hydrolase was found. Food deprivation for 24 h was accompanied by a significant increase of anandamide, but not 2-arachidonoylglycerol, levels only in the telencephalon. Anandamide caused a dose-dependent effect on food intake within 2 h of intraperitoneal administration to satiated fish and significantly enhanced or reduced food intake at low (1 pg/g body weight) or intermediate (10 pg/g) doses, respectively, the highest dose tested (100 pg/g) being inactive. We suggest that endocannabinoids might variously contribute to adaptive responses to food shortage in fish.
Collapse
Affiliation(s)
- M Valenti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, C.N.R., Pozzuoli (NA), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|