1
|
Cai L, Argunşah AÖ, Damilou A, Karayannis T. A nasal chemosensation-dependent critical window for somatosensory development. Science 2024; 384:652-660. [PMID: 38723089 DOI: 10.1126/science.adn5611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/05/2024] [Indexed: 05/31/2024]
Abstract
Nasal chemosensation is considered the evolutionarily oldest mammalian sense and, together with somatosensation, is crucial for neonatal well-being before auditory and visual pathways start engaging the brain. Using anatomical and functional approaches in mice, we reveal that odor-driven activity propagates to a large part of the cortex during the first postnatal week and enhances whisker-evoked activation of primary whisker somatosensory cortex (wS1). This effect disappears in adult animals, in line with the loss of excitatory connectivity from olfactory cortex to wS1. By performing neonatal odor deprivation, followed by electrophysiological and behavioral work in adult animals, we identify a key transient regulation of nasal chemosensory information necessary for the development of wS1 sensory-driven dynamics and somatosensation. Our work uncovers a cross-modal critical window for nasal chemosensation-dependent somatosensory functional maturation.
Collapse
Affiliation(s)
- Linbi Cai
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Ali Özgür Argunşah
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Angeliki Damilou
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Theofanis Karayannis
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
2
|
Portalés A, Sánchez-Aguilera A, Royo M, Jurado S. Assessment of social behavior and chemosensory cue detection in an animal model of neurodegeneration. Methods Cell Biol 2024; 185:137-150. [PMID: 38556445 DOI: 10.1016/bs.mcb.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Numerous studies have shown that aging in humans leads to a decline in olfactory function, resulting in deficits in acuity, detection threshold, discrimination, and olfactory-associated memories. Furthermore, impaired olfaction has been identified as a potential indicator for the onset of age-related neurodegenerative diseases, including Alzheimer's disease (AD). Studies conducted on mouse models of AD have largely mirrored the findings in humans, thus providing a valuable system to investigate the cellular and circuit adaptations of the olfactory system during natural and pathological aging. However, the majority of previous research has focused on assessing the detection of neutral or synthetic odors, with little attention given to the impact of aging and neurodegeneration on the recognition of social cues-a critical feature for the survival of mammalian species. Therefore, in this study, we present a battery of olfactory tests that use conspecific urine samples to examine the changes in social odor recognition in a mouse model of neurodegeneration.
Collapse
Affiliation(s)
- Adrián Portalés
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Alicante, Spain.
| | - Alberto Sánchez-Aguilera
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, IdISSC, Madrid, Spain
| | - Maria Royo
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Alicante, Spain
| | - Sandra Jurado
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
3
|
Mier Quesada Z, Portillo W, Paredes RG. Behavioral evidence of the functional interaction between the main and accessory olfactory system suggests a large olfactory system with a high plastic capability. Front Neuroanat 2023; 17:1211644. [PMID: 37908970 PMCID: PMC10613685 DOI: 10.3389/fnana.2023.1211644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Olfaction is fundamental in many species of mammals. In rodents, the integrity of this system is required for the expression of parental and sexual behavior, mate recognition, identification of predators, and finding food. Different anatomical and physiological evidence initially indicated the existence of two anatomically distinct chemosensory systems: The main olfactory system (MOS) and the accessory olfactory system (AOS). It was originally conceived that the MOS detected volatile odorants related to food, giving the animal information about the environment. The AOS, on the other hand, detected non-volatile sexually relevant olfactory cues that influence reproductive behaviors and neuroendocrine functions such as intermale aggression, sexual preference, maternal aggression, pregnancy block (Bruce effect), puberty acceleration (Vandenbergh effect), induction of estrous (Whitten effect) and sexual behavior. Over the last decade, several lines of evidence have demonstrated that although these systems could be anatomically separated, there are neuronal areas in which they are interconnected. Moreover, it is now clear that both the MOS and the AOS process both volatile and no-volatile odorants, indicating that they are also functionally interconnected. In the first part of the review, we will describe the behavioral evidence. In the second part, we will summarize data from our laboratory and other research groups demonstrating that sexual behavior in male and female rodents induces the formation of new neurons that reach the main and accessory olfactory bulbs from the subventricular zone. Three factors are essential for the neurons to reach the AOS and the MOS: The stimulation frequency, the stimulus's temporal presentation, and the release of opioids induced by sexual behavior. We propose that the AOS and the MOS are part of a large olfactory system with a high plastic capability, which favors the adaptation of species to different environmental signals.
Collapse
Affiliation(s)
- Zacnite Mier Quesada
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Raúl G. Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
4
|
Zhang W, Huang H, Gui A, Mu D, Zhao T, Li H, Watanabe K, Xiao Z, Ye H, Xu Y. Contactin-6-deficient male mice exhibit the abnormal function of the accessory olfactory system and impaired reproductive behavior. Brain Behav 2023; 13:e2893. [PMID: 36860170 PMCID: PMC10097056 DOI: 10.1002/brb3.2893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 03/03/2023] Open
Abstract
INTRODUCTION Contactin-6 (CNTN6), also known as NB-3, is a neural recognition molecule and a member of the contactin subgroup of the immunoglobulin superfamily. Gene encoding CNTN6 is expressed in many regions of the neural system, including the accessory olfactory bulb (AOB) in mice. We aim to determine the effect of CNTN6 deficiency on the function of the accessory olfactory system (AOS). METHODS We examined the effect of CNTN6 deficiency on the reproductive behavior of male mice through behavioral experiments such as urine sniffing and mate preference tests. Staining and electron microscopy were used to observe the gross structure and the circuitry activity of the AOS. RESULTS Cntn6 is highly expressed in the vomeronasal organ (VNO) and the AOB, and sparsely expressed in the medial amygdala (MeA) and the medial preoptic area (MPOA), which receive direct and/or indirect projections from the AOB. Behavioral tests to examine reproductive function in mice, which is mostly controlled by the AOS, revealed that Cntn6-/- adult male mice showed less interest and reduced mating attempts toward estrous female mice in comparison with their Cntn6+/+ littermates. Although Cntn6-/- adult male mice displayed no obvious changes in the gross structure of the VNO or AOB, we observed the increased activation of granule cells in the AOB and the lower activation of neurons in the MeA and the MPOA as compared with Cntn6+/+ adult male mice. Moreover, there were an increased number of synapses between mitral cells and granule cells in the AOB of Cntn6-/- adult male mice as compared with wild-type controls. CONCLUSION These results indicate that CNTN6 deficiency affects the reproductive behavior of male mice, suggesting that CNTN6 participated in normal function of the AOS and its ablation was involved in synapse formation between mitral and granule cells in the AOB, rather than affecting the gross structure of the AOS.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Huiling Huang
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Ailing Gui
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Di Mu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Tian Zhao
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Hongtao Li
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Kazutada Watanabe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Zhicheng Xiao
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Australia
| | - Haihong Ye
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Yiliang Xu
- Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Huang J, Zhang Y, Zhang Q, Wei L, Zhang X, Jin C, Yang J, Li Z, Liang S. The current status and trend of the functional magnetic resonance combined with stimulation in animals. Front Neurosci 2022; 16:963175. [PMID: 36213733 PMCID: PMC9540855 DOI: 10.3389/fnins.2022.963175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
As a non-radiative, non-invasive imaging technique, functional magnetic resonance imaging (fMRI) has excellent effects on studying the activation of blood oxygen levels and functional connectivity of the brain in human and animal models. Compared with resting-state fMRI, fMRI combined with stimulation could be used to assess the activation of specific brain regions and the connectivity of specific pathways and achieve better signal capture with a clear purpose and more significant results. Various fMRI methods and specific stimulation paradigms have been proposed to investigate brain activation in a specific state, such as electrical, mechanical, visual, olfactory, and direct brain stimulation. In this review, the studies on animal brain activation using fMRI combined with different stimulation methods were retrieved. The instruments, experimental parameters, anesthesia, and animal models in different stimulation conditions were summarized. The findings would provide a reference for studies on estimating specific brain activation using fMRI combined with stimulation.
Collapse
|
6
|
Pradier B, Wachsmuth L, Nagelmann N, Segelcke D, Kreitz S, Hess A, Pogatzki-Zahn EM, Faber C. Combined resting state-fMRI and calcium recordings show stable brain states for task-induced fMRI in mice under combined ISO/MED anesthesia. Neuroimage 2021; 245:118626. [PMID: 34637903 DOI: 10.1016/j.neuroimage.2021.118626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
For fMRI in animal models, the combination of low-dose anesthetic, isoflurane (ISO), and the sedative medetomidine (MED) has recently become an advocated regimen to achieve stable neuronal states and brain networks in rats that are required for reliable task-induced BOLD fMRI. However, in mice the temporal stability of neuronal states and networks in resting-state (rs)-fMRI experiments during the combined ISO/MED regimen has not been systematically investigated. Using a multimodal approach with optical calcium (Ca2+) recordings and rs-fMRI, we investigated cortical neuronal/astrocytic Ca2+activity states and brain networks at multiple time points while switching from anesthesia with 1% ISO to a combined ISO/MED regimen. We found that cortical activity states reached a steady-state 45 min following start of MED infusion as indicated by stable Ca2+ transients. Similarly, rs-networks were not statistically different between anesthesia with ISO and the combined ISO/MED regimen 45 and 100 min after start of MED. Importantly, during the transition time we identified changed rs-network signatures that likely reflect the different mode of action of the respective anesthetic; these included a dose-dependent increase in cortico-cortical functional connectivity (FC) presumably caused by reduction of ISO concentration and decreased FC in subcortical arousal nuclei due to MED infusion. Furthermore, we report detection of visual stimulation-induced BOLD fMRI during the stable ISO/MED neuronal state 45 min after induction. Based on our findings, we recommend a 45-minute waiting period after switching from ISO anesthesia to the combined ISO/MED regimen before performing rs- or task-induced fMRI experiments.
Collapse
Affiliation(s)
- Bruno Pradier
- Department of Clinical Radiology, Translational Research Imaging Center, University Hospital Münster, Münster 48149, Germany; Department of Anesthesiology Intensive Care and Pain Medicine, University Hospital Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, Translational Research Imaging Center, University Hospital Münster, Münster 48149, Germany
| | - Nina Nagelmann
- Department of Clinical Radiology, Translational Research Imaging Center, University Hospital Münster, Münster 48149, Germany
| | - Daniel Segelcke
- Department of Anesthesiology Intensive Care and Pain Medicine, University Hospital Münster, Germany
| | - Silke Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Esther M Pogatzki-Zahn
- Department of Anesthesiology Intensive Care and Pain Medicine, University Hospital Münster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, Translational Research Imaging Center, University Hospital Münster, Münster 48149, Germany.
| |
Collapse
|
7
|
Miao X, Paez AG, Rajan S, Cao D, Liu D, Pantelyat AY, Rosenthal LI, van Zijl PCM, Bassett SS, Yousem DM, Kamath V, Hua J. Functional Activities Detected in the Olfactory Bulb and Associated Olfactory Regions in the Human Brain Using T2-Prepared BOLD Functional MRI at 7T. Front Neurosci 2021; 15:723441. [PMID: 34588949 PMCID: PMC8476065 DOI: 10.3389/fnins.2021.723441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Olfaction is a fundamental sense that plays a vital role in daily life in humans, and can be altered in neuropsychiatric and neurodegenerative diseases. Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) using conventional echo-planar-imaging (EPI) based sequences can be challenging in brain regions important for olfactory processing, such as the olfactory bulb (OB) and orbitofrontal cortex, mainly due to the signal dropout and distortion artifacts caused by large susceptibility effects from the sinonasal cavity and temporal bone. To date, few studies have demonstrated successful fMRI in the OB in humans. T2-prepared (T2prep) BOLD fMRI is an alternative approach developed especially for performing fMRI in regions affected by large susceptibility artifacts. The purpose of this technical study is to evaluate T2prep BOLD fMRI for olfactory functional experiments in humans. Olfactory fMRI scans were performed on 7T in 14 healthy participants. T2prep BOLD showed greater sensitivity than GRE EPI BOLD in the OB, orbitofrontal cortex and the temporal pole. Functional activation was detected using T2prep BOLD in the OB and associated olfactory regions. Habituation effects and a bi-phasic pattern of fMRI signal changes during olfactory stimulation were observed in all regions. Both positively and negatively activated regions were observed during olfactory stimulation. These signal characteristics are generally consistent with literature and showed a good intra-subject reproducibility comparable to previous human BOLD fMRI studies. In conclusion, the methodology demonstrated in this study holds promise for future olfactory fMRI studies in the OB and other brain regions that suffer from large susceptibility artifacts.
Collapse
Affiliation(s)
- Xinyuan Miao
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Adrian G Paez
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Suraj Rajan
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Di Cao
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Dapeng Liu
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Alex Y Pantelyat
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Liana I Rosenthal
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Peter C M van Zijl
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Susan S Bassett
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - David M Yousem
- Department of Radiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jun Hua
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
8
|
Hartig R, Wolf D, Schmeisser MJ, Kelsch W. Genetic influences of autism candidate genes on circuit wiring and olfactory decoding. Cell Tissue Res 2021; 383:581-595. [PMID: 33515293 PMCID: PMC7872953 DOI: 10.1007/s00441-020-03390-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
Olfaction supports a multitude of behaviors vital for social communication and interactions between conspecifics. Intact sensory processing is contingent upon proper circuit wiring. Disturbances in genetic factors controlling circuit assembly and synaptic wiring can lead to neurodevelopmental disorders, such as autism spectrum disorder (ASD), where impaired social interactions and communication are core symptoms. The variability in behavioral phenotype expression is also contingent upon the role environmental factors play in defining genetic expression. Considering the prevailing clinical diagnosis of ASD, research on therapeutic targets for autism is essential. Behavioral impairments may be identified along a range of increasingly complex social tasks. Hence, the assessment of social behavior and communication is progressing towards more ethologically relevant tasks. Garnering a more accurate understanding of social processing deficits in the sensory domain may greatly contribute to the development of therapeutic targets. With that framework, studies have found a viable link between social behaviors, circuit wiring, and altered neuronal coding related to the processing of salient social stimuli. Here, the relationship between social odor processing in rodents and humans is examined in the context of health and ASD, with special consideration for how genetic expression and neuronal connectivity may regulate behavioral phenotypes.
Collapse
Affiliation(s)
- Renée Hartig
- Department of Psychiatry & Psychotherapy, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.,Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany
| | - David Wolf
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Michael J Schmeisser
- Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany
| | - Wolfgang Kelsch
- Department of Psychiatry & Psychotherapy, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany. .,Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany. .,Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
9
|
Choi Y, Yoon M. The expression of androstenone receptor (OR7D4) in vomeronasal organ and olfactory epithelium of horses. Domest Anim Endocrinol 2021; 74:106535. [PMID: 32896801 DOI: 10.1016/j.domaniend.2020.106535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/10/2020] [Accepted: 08/03/2020] [Indexed: 01/19/2023]
Abstract
Androstenone is the first mammalian steroidal pheromone to be identified. Pheromones are chemicals that animals use to communicate within a species. Pheromone detections are related to vomeronasal organ (VNO) and olfactory epithelium (OE) in mammals. Olfactory Receptor Family 7 Subfamily D Member 4 (OR7D4) is an odorant receptor that responds to androstenone. Several studies indicated that spray with androstenone changes behaviors of the boar and dogs. However, the expression of OR7D4 in VNO and OE was not reported in mammals except human. Thus, the main objectives of this study were to investigate the expression of OR7D4 in VNO and OE of horses. Tissue samples were collected from the VNO and nasal cavity of 6 thoroughbred horses. The presence of OR7D4 gene was investigated with reverse transcription-polymerase chain reaction. The expression of OR7D4 was determined using Western blot and immunofluorescence. As a result, the bands for OR7D4 were observed at approximately 462 bp. The protein band of OR7D4 of VNO and OE was detected at 38 kDa. Immunofluorescence result showed that the cilia and cytoplasm of olfactory receptor cells of VNO and nasal cavity tissues were immunolabeled with OR7D4 antibody. The intensity of OR7D4 protein bands in the ventral region of the ethmoidal concha tissues was not significantly different between mares and geldings. In conclusion, thoroughbred horses are capable of androstenone perception through OR7D4 expressed in the VNO and OE.
Collapse
Affiliation(s)
- Y Choi
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Korea
| | - M Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Korea; Department of Horse, Companion and Wild Animal Science, Kyungpook National University, Sangju 37224, Korea.
| |
Collapse
|
10
|
Kermen F, Mandairon N, Chalençon L. Odor hedonics coding in the vertebrate olfactory bulb. Cell Tissue Res 2021; 383:485-493. [PMID: 33515292 PMCID: PMC7873110 DOI: 10.1007/s00441-020-03372-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022]
Abstract
Whether an odorant is perceived as pleasant or unpleasant (hedonic value) governs a range of crucial behaviors: foraging, escaping danger, and social interaction. Despite its importance in olfactory perception, little is known regarding how odor hedonics is represented and encoded in the brain. Here, we review recent findings describing how odorant hedonic value is represented in the first olfaction processing center, the olfactory bulb. We discuss how olfactory bulb circuits might contribute to the coding of innate and learned odorant hedonics in addition to the odorant's physicochemical properties.
Collapse
Affiliation(s)
- Florence Kermen
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway.
| | - Nathalie Mandairon
- CNRS. UMR 5292: INSERM, U1028: Lyon Neuroscience Research Center Neuroplasticity and Neuropathology of Olfactory Perception Team, University Lyon, University Lyon1, F-69000, Villeurbanne, France
| | - Laura Chalençon
- CNRS. UMR 5292: INSERM, U1028: Lyon Neuroscience Research Center Neuroplasticity and Neuropathology of Olfactory Perception Team, University Lyon, University Lyon1, F-69000, Villeurbanne, France
| |
Collapse
|
11
|
Vihani A, Hu XS, Gundala S, Koyama S, Block E, Matsunami H. Semiochemical responsive olfactory sensory neurons are sexually dimorphic and plastic. eLife 2020; 9:e54501. [PMID: 33231170 PMCID: PMC7732343 DOI: 10.7554/elife.54501] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 11/22/2020] [Indexed: 01/21/2023] Open
Abstract
Understanding how genes and experience work in concert to generate phenotypic variability will provide a better understanding of individuality. Here, we considered this in the main olfactory epithelium, a chemosensory structure with over a thousand distinct cell types in mice. We identified a subpopulation of olfactory sensory neurons, defined by receptor expression, whose abundances were sexually dimorphic. This subpopulation of olfactory sensory neurons was over-represented in sex-separated mice and robustly responsive to sex-specific semiochemicals. Sex-combined housing led to an attenuation of the dimorphic representations. Single-cell sequencing analysis revealed an axis of activity-dependent gene expression amongst a subset of the dimorphic OSN populations. Finally, the pro-apoptotic gene Baxwas necessary to generate the dimorphic representations. Altogether, our results suggest a role of experience and activity in influencing homeostatic mechanisms to generate a robust sexually dimorphic phenotype in the main olfactory epithelium.
Collapse
Affiliation(s)
- Aashutosh Vihani
- Department of Neurobiology, Neurobiology Graduate Program, Duke University Medical CenterDurhamUnited States
| | - Xiaoyang Serene Hu
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Sivaji Gundala
- Department of Chemistry, University at Albany, State University of New YorkAlbanyUnited States
| | - Sachiko Koyama
- School of Medicine, Medical Sciences, Indiana UniversityBloomingtonUnited States
| | - Eric Block
- Department of Chemistry, University at Albany, State University of New YorkAlbanyUnited States
| | - Hiroaki Matsunami
- Department of Neurobiology, Neurobiology Graduate Program, Duke University Medical CenterDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
- Duke Institute for Brain Sciences, Duke UniversityDurhamUnited States
| |
Collapse
|
12
|
Guarneros M, Sánchez-García O, Martínez-Gómez M, Arteaga L. The underexplored role of chemical communication in the domestic horse, Equus caballus. J Vet Behav 2020. [DOI: 10.1016/j.jveb.2020.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020; 14:8. [PMID: 32508601 PMCID: PMC7248373 DOI: 10.3389/fnsys.2020.00008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, technical and procedural advances have brought functional magnetic resonance imaging (fMRI) to the field of murine neuroscience. Due to its unique capacity to measure functional activity non-invasively, across the entire brain, fMRI allows for the direct comparison of large-scale murine and human brain functions. This opens an avenue for bidirectional translational strategies to address fundamental questions ranging from neurological disorders to the nature of consciousness. The key challenges of murine fMRI are: (1) to generate and maintain functional brain states that approximate those of calm and relaxed human volunteers, while (2) preserving neurovascular coupling and physiological baseline conditions. Low-dose anesthetic protocols are commonly applied in murine functional brain studies to prevent stress and facilitate a calm and relaxed condition among animals. Yet, current mono-anesthesia has been shown to impair neural transmission and hemodynamic integrity. By linking the current state of murine electrophysiology, Ca2+ imaging and fMRI of anesthetic effects to findings from human studies, this systematic review proposes general principles to design, apply and monitor anesthetic protocols in a more sophisticated way. The further development of balanced multimodal anesthesia, combining two or more drugs with complementary modes of action helps to shape and maintain specific brain states and relevant aspects of murine physiology. Functional connectivity and its dynamic repertoire as assessed by fMRI can be used to make inferences about cortical states and provide additional information about whole-brain functional dynamics. Based on this, a simple and comprehensive functional neurosignature pattern can be determined for use in defining brain states and anesthetic depth in rest and in response to stimuli. Such a signature can be evaluated and shared between labs to indicate the brain state of a mouse during experiments, an important step toward translating findings across species.
Collapse
Affiliation(s)
- Henning M. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
14
|
Zhao F, Meng X, Lu S, Hyde LA, Kennedy ME, Houghton AK, Evelhoch JL, Hines CDG. fMRI study of olfactory processing in mice under three anesthesia protocols: Insight into the effect of ketamine on olfactory processing. Neuroimage 2020; 213:116725. [PMID: 32173412 DOI: 10.1016/j.neuroimage.2020.116725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a valuable tool for studying neural activations in the central nervous system of animals due to its wide spatial coverage and non-invasive nature. However, the advantages of fMRI have not been fully realized in functional studies in mice, especially in the olfactory system, possibly due to the lack of suitable anesthesia protocols with spontaneous breathing. Since mice are widely used in biomedical research, it is desirable to evaluate different anesthesia protocols for olfactory fMRI studies in mice. Dexmedetomidine (DEX) as a sedative/anesthetic has been introduced to fMRI studies in mice, but it has a limited anesthesia duration. To extend the anesthesia duration, DEX has been combined with a low dose of isoflurane (ISO) or ketamine (KET) in previous functional studies in mice. In this report, olfactory fMRI studies were performed under three anesthesia protocols (DEX alone, DEX/ISO, and DEX/KET) in three different groups of mice. Isoamyl-acetate was used as an odorant, and the odorant-induced neural activations were measured by blood oxygenation-level dependent (BOLD) fMRI. BOLD fMRI responses were observed in the olfactory bulb (OB), anterior olfactory nuclei (AON), and piriform cortex (Pir). Interestingly, BOLD fMRI activations were also observed in the prefrontal cortical region (PFC), which are most likely caused by the draining vein effect. The response in the OB showed no adaptation to either repeated odor stimulations or continuous odor exposure, but the response in the Pir showed adaptation during the continuous odor exposure. The data also shows that ISO suppresses the olfactory response in the OB and AON, while KET enhances the olfactory response in the Pir. Thus, DEX/KET should be an attractive anesthesia for olfactory fMRI in mice.
Collapse
Affiliation(s)
| | | | - Sherry Lu
- Merck & Co. Inc, West Point, PA, 19486, USA
| | | | | | | | | | | |
Collapse
|
15
|
Wang L, Zhang Z, Chen J, Manyande A, Haddad R, Liu Q, Xu F. Cell-Type-Specific Whole-Brain Direct Inputs to the Anterior and Posterior Piriform Cortex. Front Neural Circuits 2020; 14:4. [PMID: 32116571 PMCID: PMC7019026 DOI: 10.3389/fncir.2020.00004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/21/2020] [Indexed: 12/20/2022] Open
Abstract
The piriform cortex (PC) is a key brain area involved in both processing and coding of olfactory information. It is implicated in various brain disorders, such as epilepsy, Alzheimer’s disease, and autism. The PC consists of the anterior (APC) and posterior (PPC) parts, which are different anatomically and functionally. However, the direct input networks to specific neuronal populations within the APC and PPC remain poorly understood. Here, we mapped the whole-brain direct inputs to the two major neuronal populations, the excitatory glutamatergic principal neurons and inhibitory γ-aminobutyric acid (GABA)-ergic interneurons within the APC and PPC using the rabies virus (RV)-mediated retrograde trans-synaptic tracing system. We found that for both types of neurons, APC and PPC share some similarities in input networks, with dominant inputs originating from the olfactory region (OLF), followed by the cortical subplate (CTXsp), isocortex, cerebral nuclei (CNU), hippocampal formation (HPF) and interbrain (IB), whereas the midbrain (MB) and hindbrain (HB) were rarely labeled. However, APC and PPC also show distinct features in their input distribution patterns. For both types of neurons, the input proportion from the OLF to the APC was higher than that to the PPC; while the PPC received higher proportions of inputs from the HPF and CNU than the APC did. Overall, our results revealed the direct input networks of both excitatory and inhibitory neuronal populations of different PC subareas, providing a structural basis to analyze the diverse PC functions.
Collapse
Affiliation(s)
- Li Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Zhijian Zhang
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Jiacheng Chen
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex, United Kingdom
| | - Rafi Haddad
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Qing Liu
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Fuqiang Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of the Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
16
|
A methodological investigation of a flexible surface MRI coil to obtain functional signals from the human olfactory bulb. J Neurosci Methods 2020; 335:108624. [PMID: 32032715 DOI: 10.1016/j.jneumeth.2020.108624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Mammalian olfaction begins with transduction in olfactory receptors, continues with extensive processing in the olfactory bulb, and culminates in cortical representation. Most rodent studies on the functional neuroanatomy of olfaction have concentrated on the olfactory bulb, yet whether this structure is tuned only to basic chemical features of odorants or also to higher-order perceptual features is unclear. NEW METHOD Whereas studies of the human brain can typically uncover involvement of higher-order feature extraction, this has not been possible in the case of the olfactory bulb, inaccessible to fMRI. The present study examined whether a novel method of acquisition using a facial coil could overcome this limitation. RESULTS A series of experiments provided preliminary evidence of odor-driven responses in the human olfactory bulb, and found that these responses differed between individuals. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS The present preliminary technical achievement renders possible to design novel human odor fMRI studies by considering the olfactory system from the olfactory bulb to associative areas.
Collapse
|
17
|
Muir ER, Biju KC, Cong L, Rogers WE, Torres Hernandez E, Duong TQ, Clark RA. Functional MRI of the mouse olfactory system. Neurosci Lett 2019; 704:57-61. [PMID: 30951799 PMCID: PMC11113078 DOI: 10.1016/j.neulet.2019.03.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/18/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
Abstract
Although olfactory dysfunction is an early warning sign of Alzheimer's and Parkinson's diseases, and is commonly present in a range of other neurodegenerative disorders, the mechanisms for its pathogenesis are not yet clear. Since fMRI allows the mapping of spatial and temporal patterns of activity in multiple brain regions simultaneously, it serves as a powerful tool to study olfactory dysfunction in animal models of neurodegenerative diseases. Nonetheless, there have been no reports to date of mapping odor-induced activation patterns beyond the olfactory bulb to the extended networks of olfactory and limbic archicortex, likely due to the small size of the mouse brain. Therefore, using an 11.7 T magnet and a blood volume-weighted fMRI technique, we mapped the functional neuroanatomy of the mouse olfactory system. Consistent with reports on imaging of the much larger human brain, we mapped activity in regions of the olfactory bulb, as well as olfactory and limbic archicortex. By using two distinct odorants, we further demonstrated odorant-specific activation patterns. Our work thus provides a methodological framework for fMRI studies of olfactory dysfunction in mouse models of neurodegeneration.
Collapse
Affiliation(s)
- Eric R Muir
- Research Imaging Institute, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, United States; Department of Ophthalmology, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, United States
| | - K C Biju
- Department of Medicine, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, United States
| | - Linlin Cong
- Research Imaging Institute, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, United States; Department of Biomedical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, United States
| | - William E Rogers
- Research Imaging Institute, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, United States
| | - Enrique Torres Hernandez
- Department of Medicine, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, United States
| | - Timothy Q Duong
- Research Imaging Institute, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, United States; Department of Ophthalmology, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, United States; South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, TX, 78229, United States
| | - Robert A Clark
- Department of Medicine, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, United States; South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, TX, 78229, United States.
| |
Collapse
|
18
|
Zhang YH, Tang MM, Guo X, Gao XR, Zhang JH, Zhang JX. Associative learning is necessary for airborne pheromones to activate sexual arousal-linked brain areas of female rats. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Noguchi T, Miyazono S, Kashiwayanagi M. Stimulus dynamics-dependent information transfer of olfactory and vomeronasal sensory neurons in mice. Neuroscience 2018; 400:48-61. [PMID: 30599273 DOI: 10.1016/j.neuroscience.2018.12.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 01/29/2023]
Abstract
The parallel processing of chemical signals by the main olfactory system and the vomeronasal system has been known to control animal behavior. The physiological significance of peripheral parallel pathways consisting of olfactory sensory neurons and vomeronasal sensory neurons is not well understood. Here, we show complementary characteristics of the information transfer of the olfactory sensory neurons and vomeronasal sensory neurons. A difference in excitability between the sensory neurons was revealed by patch-clamp experiments. The olfactory and vomeronasal sensory neurons showed phasic and tonic firing, respectively. Intrinsic channel kinetics determining firing patterns was demonstrated by a Hodgkin-Huxley-style computation. Our estimation of the information carried by action potentials during one cycle of sinusoidal stimulation with variable durations revealed distinct characteristics of information transfer between the sensory neurons. Phasic firing of the olfactory sensory neurons was suitable to carry information about rapid changes in a shorter cycle (<200 ms). In contrast, tonic firing of the vomeronasal sensory neurons was able to convey information about smaller stimuli changing slowly with longer cycles (>500 ms). Thus, the parallel pathways of the two types of sensory neurons can convey information about a wide range of dynamic stimuli. A combination of complementary characteristics of olfactory information transfer may enhance the synergy of the interaction between the main olfactory system and the vomeronasal system.
Collapse
Affiliation(s)
- Tomohiro Noguchi
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan.
| | - Sadaharu Miyazono
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan.
| | - Makoto Kashiwayanagi
- Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
20
|
Carew SJ, Mukherjee B, MacIntyre ITK, Ghosh A, Li S, Kirouac GJ, Harley CW, Yuan Q. Pheromone-Induced Odor Associative Fear Learning in Rats. Sci Rep 2018; 8:17701. [PMID: 30532054 PMCID: PMC6286391 DOI: 10.1038/s41598-018-36023-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/14/2018] [Indexed: 12/02/2022] Open
Abstract
Alarm pheromones alert conspecifics to the presence of danger. Can pheromone communication aid in learning specific cues? Such facilitation has an evident evolutionary advantage. We use two associative learning paradigms to test this hypothesis. The first is stressed cage mate-induced conditioning. One pair-housed adult rat received 4 pairings of terpinene + shock over 30 min. Ten minutes after return to the home cage, its companion rat was removed and exposed to terpinene. Single-housed controls were exposed to either terpinene or shock only. Companion rats showed terpinene-specific freezing, which was prevented by β-adrenoceptor blockade. Using Arc to index neuronal activation in response to terpinene re-exposure, stressed cage-mate induced associative learning was measured. Companion rats showed increased neuronal activity in the accessory olfactory bulb, while terpinene + shock-conditioned rats showed increased activity in the main olfactory bulb. Both groups had enhanced activity in the anterior basolateral amygdala and central amygdala. To test involvement of pheromone mediation, in the 2nd paradigm, we paired terpinene with soiled bedding from odor + shock rats or a rat alarm pheromone. Both conditioning increased rats’ freezing to terpinene. Blocking NMDA receptors in the basolateral amygdala prevented odor-specific learning suggesting shock and pheromone-paired pathways converge in the amygdala. An alarm pheromone thus enables cue-specific learning as well as signalling danger.
Collapse
Affiliation(s)
- Samantha J Carew
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, Canada
| | - Bandhan Mukherjee
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, Canada
| | - Iain T K MacIntyre
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, Canada
| | - Abhinaba Ghosh
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, Canada
| | - Sa Li
- Department of Oral Biology and Psychiatry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, R3E 0W2, Canada
| | - Gilbert J Kirouac
- Department of Oral Biology and Psychiatry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, R3E 0W2, Canada
| | - Carolyn W Harley
- Psychology Department, Faculty of Science, Memorial University of Newfoundland, St. John's, A1B 3X9, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, Canada.
| |
Collapse
|
21
|
Kida H, Fukutani Y, Mainland JD, de March CA, Vihani A, Li YR, Chi Q, Toyama A, Liu L, Kameda M, Yohda M, Matsunami H. Vapor detection and discrimination with a panel of odorant receptors. Nat Commun 2018; 9:4556. [PMID: 30385742 PMCID: PMC6212438 DOI: 10.1038/s41467-018-06806-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/04/2018] [Indexed: 12/29/2022] Open
Abstract
Olfactory systems have evolved the extraordinary capability to detect and discriminate volatile odorous molecules (odorants) in the environment. Fundamentally, this process relies on the interaction of odorants and their cognate olfactory receptors (ORs) encoded in the genome. Here, we conducted a cell-based screen using over 800 mouse ORs against seven odorants, resulting in the identification of a set of high-affinity and/or broadly-tuned ORs. We then test whether heterologously expressed ORs respond to odors presented in vapor phase by individually expressing 31 ORs to measure cAMP responses against vapor phase odor stimulation. Comparison of response profiles demonstrates this platform is capable of discriminating between structural analogs. Lastly, co-expression of carboxyl esterase Ces1d expressed in olfactory mucosa resulted in marked changes in activation of specific odorant-OR combinations. Altogether, these results establish a cell-based volatile odor detection and discrimination platform and form the basis for an OR-based volatile odor sensor. Biomimetic “noses” have been proposed to replace trained animals for chemical detection. Here the authors select 31 mouse olfactory receptors (ORs), based on a large cell-based screen of >800 ORs against seven chemicals, to build an OR-based sensor able to discriminate structurally similar compounds.
Collapse
Affiliation(s)
- Hitoshi Kida
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Yosuke Fukutani
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Joel D Mainland
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Monell Chemical Senses Center, Philadelphia, PA, 19104, USA.,Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Aashutosh Vihani
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Neurobiology, Neurobiology graduate program, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yun Rose Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Qiuyi Chi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Akemi Toyama
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Linda Liu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Masaharu Kameda
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Department of Neurobiology, Neurobiology graduate program, Duke University Medical Center, Durham, NC, 27710, USA. .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan. .,Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
22
|
Wacker D, Ludwig M. The role of vasopressin in olfactory and visual processing. Cell Tissue Res 2018; 375:201-215. [PMID: 29951699 PMCID: PMC6335376 DOI: 10.1007/s00441-018-2867-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Neural vasopressin is a potent modulator of behaviour in vertebrates. It acts at both sensory processing regions and within larger regulatory networks to mediate changes in social recognition, affiliation, aggression, communication and other social behaviours. There are multiple populations of vasopressin neurons within the brain, including groups in olfactory and visual processing regions. Some of these vasopressin neurons, such as those in the main and accessory olfactory bulbs, anterior olfactory nucleus, piriform cortex and retina, were recently identified using an enhanced green fluorescent protein-vasopressin (eGFP-VP) transgenic rat. Based on the interconnectivity of vasopressin-producing and sensitive brain areas and in consideration of autocrine, paracrine and neurohormone-like actions associated with somato-dendritic release, we discuss how these different neuronal populations may interact to impact behaviour.
Collapse
Affiliation(s)
- Douglas Wacker
- School of STEM (Division of Biological Sciences), University of Washington Bothell, Bothell, WA, USA.
| | - Mike Ludwig
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
23
|
Gutiérrez-García AG, Contreras CM, Saldivar-Lara M. An alarm pheromone reduces ventral tegmental area-nucleus accumbens shell responsivity. Neurosci Lett 2018; 678:16-21. [DOI: 10.1016/j.neulet.2018.04.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/15/2023]
|
24
|
Muroi Y, Nishimura M, Ishii T. The Accessory Olfactory System Facilitates the Recovery of the Attraction to Familiar Volatile Female Odors in Male Mice. Chem Senses 2017; 42:737-745. [PMID: 28968801 DOI: 10.1093/chemse/bjx045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Odors in female mice induce sexual arousal in male mice. Repeated exposure to female odors attenuates male attraction, which recovers when the odors are removed. The neuronal mechanisms for the recovery of male attraction have not been clarified. In this study, we examined how olfactory systems are involved in the recovery of male attraction to female odors following habituation in mice. Presentation with volatile female odors for 5 min induced habituation in males. To evaluate male attraction to familiar volatile female odors, we measured the duration for investigating volatile female odors from the same female mouse, which was presented twice for 5 min with 1-, 3-, or 5-min interval. Intranasal irrigation with ZnSO4 solution almost completely suppressed investigating behavior, indicating that the main olfactory system is indispensable for inducing the attraction to volatile female odors. In contrast, removal of the vomeronasal organ, bilateral lesions of the accessory olfactory bulb (AOB), or pharmacological blockage of neurotransmission in the AOB did not affect the investigation time at the first odor presentation. However, each one of the treatments decreased the investigation time in the second presentation, compared to that in the first presentation, at longer intervals than control treatment, indicating that the disturbance of neurotransmission in the accessory olfactory system delayed the recovery of the attraction attenuated by the first presentation. These results suggest that the accessory olfactory system facilitates the recovery of the attraction to familiar volatile female odors in male mice.
Collapse
Affiliation(s)
- Yoshikage Muroi
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Masakazu Nishimura
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Toshiaki Ishii
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
25
|
Vargas-Barroso V, Peña-Ortega F, Larriva-Sahd JA. Olfaction and Pheromones: Uncanonical Sensory Influences and Bulbar Interactions. Front Neuroanat 2017; 11:108. [PMID: 29187814 PMCID: PMC5695156 DOI: 10.3389/fnana.2017.00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023] Open
Abstract
The rodent main and accessory olfactory systems (AOS) are considered functionally and anatomically segregated information-processing pathways. Each system is devoted to the detection of volatile odorants and pheromones, respectively. However, a growing number of evidences supports a cooperative interaction between them. For instance, at least four non-canonical receptor families (i.e., different from olfactory and vomeronasal receptor families) have been recently discovered. These atypical receptor families are expressed in the sensory organs of the nasal cavity and furnish parallel processing-pathways that detect specific stimuli and mediate specific behaviors as well. Aside from the receptor and functional diversity of these sensory modalities, they converge into a poorly understood bulbar area at the intersection of the main- main olfactory bulb (MOB) and accessory olfactory bulb (AOB) that has been termed olfactory limbus (OL). Given the intimate association the OL with specialized glomeruli (i.e., necklace and modified glomeruli) receiving uncanonical sensory afferences and its interactions with the MOB and AOB, the possibility that OL is a site of non-olfactory and atypical vomeronasal sensory decoding is discussed.
Collapse
Affiliation(s)
- Víctor Vargas-Barroso
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico
| | - Fernando Peña-Ortega
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico
| | - Jorge A Larriva-Sahd
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Mexico
| |
Collapse
|
26
|
Activity Patterns Elicited by Airflow in the Olfactory Bulb and Their Possible Functions. J Neurosci 2017; 37:10700-10711. [PMID: 28972124 DOI: 10.1523/jneurosci.2210-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/23/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022] Open
Abstract
Olfactory sensory neurons (OSNs) can sense both odorants and airflows. In the olfactory bulb (OB), the coding of odor information has been well studied, but the coding of mechanical stimulation is rarely investigated. Unlike odor-sensing functions of OSNs, the airflow-sensing functions of OSNs are also largely unknown. Here, the activity patterns elicited by mechanical airflow in male rat OBs were mapped using fMRI and correlated with local field potential recordings. In an attempt to reveal possible functions of airflow sensing, the relationship between airflow patterns and physiological parameters was also examined. We found the following: (1) the activity pattern in the OB evoked by airflow in the nasal cavity was more broadly distributed than patterns evoked by odors; (2) the pattern intensity increases with total airflow, while the pattern topography with total airflow remains almost unchanged; and (3) the heart rate, spontaneous respiratory rate, and electroencephalograph power in the β band decreased with regular mechanical airflow in the nasal cavity. The mapping results provide evidence that the signals elicited by mechanical airflow in OSNs are transmitted to the OB, and that the OB has the potential to code and process mechanical information. Our functional data indicate that airflow rhythm in the olfactory system can regulate the physiological and brain states, providing an explanation for the effects of breath control in meditation, yoga, and Taoism practices.SIGNIFICANCE STATEMENT Presentation of odor information in the olfactory bulb has been well studied, but studies about breathing features are rare. Here, using blood oxygen level-dependent functional MRI for the first time in such an investigation, we explored the global activity patterns in the rat olfactory bulb elicited by airflow in the nasal cavity. We found that the activity pattern elicited by airflow is broadly distributed, with increasing pattern intensity and similar topography under increasing total airflow. Further, heart rate, spontaneous respiratory rate in the lung, and electroencephalograph power in the β band decreased with regular airflow in the nasal cavity. Our study provides further understanding of the airflow map in the olfactory bulb in vivo, and evidence for the possible mechanosensitivity functions of olfactory sensory neurons.
Collapse
|
27
|
Piriform cortical glutamatergic and GABAergic neurons express coordinated plasticity for whisker-induced odor recall. Oncotarget 2017; 8:95719-95740. [PMID: 29221161 PMCID: PMC5707055 DOI: 10.18632/oncotarget.21207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
Neural plasticity occurs in learning and memory. Coordinated plasticity at glutamatergic and GABAergic neurons during memory formation remains elusive, which we investigate in a mouse model of associative learning by cellular imaging and electrophysiology. Paired odor and whisker stimulations lead to whisker-induced olfaction response. In mice that express this cross-modal memory, the neurons in the piriform cortex are recruited to encode newly acquired whisker signal alongside innate odor signal, and their response patterns to these associated signals are different. There are emerged synaptic innervations from barrel cortical neurons to piriform cortical neurons from these mice. These results indicate the recruitment of associative memory cells in the piriform cortex after associative memory. In terms of the structural and functional plasticity at these associative memory cells in the piriform cortex, glutamatergic neurons and synapses are upregulated, GABAergic neurons and synapses are downregulated as well as their mutual innervations are refined in the coordinated manner. Therefore, the associated activations of sensory cortices triggered by their input signals induce the formation of their mutual synapse innervations, the recruitment of associative memory cells and the coordinated plasticity between the GABAergic and glutamatergic neurons, which work for associative memory cells to encode cross-modal associated signals in their integration, associative storage and distinguishable retrieval.
Collapse
|
28
|
Pardo-Bellver C, Martínez-Bellver S, Martínez-García F, Lanuza E, Teruel-Martí V. Synchronized Activity in The Main and Accessory Olfactory Bulbs and Vomeronasal Amygdala Elicited by Chemical Signals in Freely Behaving Mice. Sci Rep 2017; 7:9924. [PMID: 28855563 PMCID: PMC5577179 DOI: 10.1038/s41598-017-10089-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
Chemosensory processing in mammals involves the olfactory and vomeronasal systems, but how the activity of both circuits is integrated is unknown. In our study, we recorded the electrophysiological activity in the olfactory bulbs and the vomeronasal amygdala in freely behaving mice exploring a battery of neutral and conspecific stimuli. The exploration of stimuli, including a neutral stimulus, induced synchronic activity in the olfactory bulbs characterized by a dominant theta rhythmicity, with specific theta-gamma coupling, distinguishing between vomeronasal and olfactory structures. The correlated activation of the bulbs suggests a coupling between the stimuli internalization in the nasal cavity and the vomeronasal pumping. In the amygdala, male stimuli are preferentially processed in the medial nucleus, whereas female cues induced a differential response in the posteromedial cortical amygdala. Thus, particular theta-gamma patterns in the olfactory network modulates the integration of chemosensory information in the amygdala, allowing the selection of an appropriate behaviour.
Collapse
Affiliation(s)
- Cecília Pardo-Bellver
- Department of de Biologia Cellular, Facultat de Ciències Biològiques, Universitat de València, Burjassot, Spain.,Laboratori de Circuits Neurals, Department of d'Anatomia i Embriologia Humana, Facultat de Medicina, Universitat de València, Valencia, Spain
| | - Sergio Martínez-Bellver
- Laboratori de Circuits Neurals, Department of d'Anatomia i Embriologia Humana, Facultat de Medicina, Universitat de València, Valencia, Spain
| | - Fernando Martínez-García
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I. Castelló de la Plana, Castelló, Spain
| | - Enrique Lanuza
- Department of de Biologia Cellular, Facultat de Ciències Biològiques, Universitat de València, Burjassot, Spain
| | - Vicent Teruel-Martí
- Laboratori de Circuits Neurals, Department of d'Anatomia i Embriologia Humana, Facultat de Medicina, Universitat de València, Valencia, Spain.
| |
Collapse
|
29
|
Optogenetic Activation of Accessory Olfactory Bulb Input to the Forebrain Differentially Modulates Investigation of Opposite versus Same-Sex Urinary Chemosignals and Stimulates Mating in Male Mice. eNeuro 2017; 4:eN-NWR-0010-17. [PMID: 28374006 PMCID: PMC5362934 DOI: 10.1523/eneuro.0010-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 01/13/2023] Open
Abstract
Surgical or genetic disruption of vomeronasal organ (VNO)-accessory olfactory bulb (AOB) function previously eliminated the ability of male mice to processes pheromones that elicit territorial behavior and aggression. By contrast, neither disruption significantly affected mating behaviors, although VNO lesions reduced males' investigation of nonvolatile female pheromones. We explored the contribution of VNO-AOB pheromonal processing to male courtship using optogenetic activation of AOB projections to the forebrain. Protocadherin-Cre male transgenic mice received bilateral AOB infections with channelrhodopsin2 (ChR2) viral vectors, and an optical fiber was implanted above the AOB. In olfactory choice tests, males preferred estrous female urine (EFU) over water; however, this preference was eliminated when diluted (5%) EFU was substituted for 100% EFU. Optogenetic AOB activation concurrent with nasal contact significantly augmented males' investigation compared to 5% EFU alone. Conversely, concurrent optogenetic AOB activation significantly reduced males' nasal investigation of diluted urine from gonadally intact males (5% IMU) compared to 5% IMU alone. These divergent effects of AOB optogenetic activation were lost when males were prevented from making direct nasal contact. Optogenetic AOB stimulation also failed to augment males' nasal investigation of deionized water or of food odors. Finally, during mating tests, optogenetic AOB stimulation delivered for 30 s when the male was in physical contact with an estrous female significantly facilitated the occurrence of penile intromission. Our results suggest that VNO-AOB signaling differentially modifies males' motivation to seek out female vs male urinary pheromones while augmenting males' sexual arousal leading to intromission and improved reproductive performance.
Collapse
|
30
|
Abstract
Social signals are identified through processing in sensory systems to trigger appropriate behavioral responses. Social signals are received primarily in most mammals through the olfactory system. Individuals are recognized based on their unique blend of odorants. Such individual recognition is critical to distinguish familiar conspecifics from intruders and to recognize offspring. Social signals can also trigger stereotyped responses like mating behaviors. Specific sensory pathways for individual recognition and eliciting stereotyped responses have been identified both in the early olfactory system and its connected cortices. Oxytocin is emerging as a major state modulator of sensory processing with distinct functions in early and higher olfactory brain regions. The brain state induced through Oxytocin influences social perception. Oxytocin acting on different brain regions can promote either exploration and recognition towards same- or other-sex conspecifics, or association learning. Region-specific deletion of Oxytocin receptors suffices to disrupt these behaviors. Together, these recent insights highlight that Oxytocin's function in social behaviors cannot be understood without considering its actions on sensory processing.
Collapse
|
31
|
Vargas-Barroso V, Ordaz-Sánchez B, Peña-Ortega F, Larriva-Sahd JA. Electrophysiological Evidence for a Direct Link between the Main and Accessory Olfactory Bulbs in the Adult Rat. Front Neurosci 2016; 9:518. [PMID: 26858596 PMCID: PMC4726767 DOI: 10.3389/fnins.2015.00518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022] Open
Abstract
It is accepted that the main- and accessory- olfactory systems exhibit overlapping responses to pheromones and odorants. We performed whole-cell patch-clamp recordings in adult rat olfactory bulb slices to define a possible interaction between the first central relay of these systems: the accessory olfactory bulb (AOB) and the main olfactory bulb (MOB). This was tested by applying electrical field stimulation in the dorsal part of the MOB while recording large principal cells (LPCs) of the anterior AOB (aAOB). Additional recordings of LPCs were performed at either side of the plane of intersection between the aAOB and posterior-AOB (pAOB) halves, or linea alba, while applying field stimulation to the opposite half. A total of 92 recorded neurons were filled during whole-cell recordings with biocytin and studied at the light microscope. Neurons located in the aAOB (n = 6, 8%) send axon collaterals to the MOB since they were antidromically activated in the presence of glutamate receptor antagonists (APV and CNQX). Recorded LPCs evoked orthodromic excitatory post-synaptic responses (n = 6, aAOB; n = 1, pAOB) or antidromic action potentials (n = 8, aAOB; n = 7, pAOB) when applying field stimulation to the opposite half of the recording site (e.g., recording in aAOB; stimulating in pAOB, and vice-versa). Observation of the filled neurons revealed that indeed, LPCs send axon branches that cross the linea alba to resolve in the internal cellular layer. Additionally, LPCs of the aAOB send axon collaterals to dorsal-MOB territory. Notably, while performing AOB recordings we found a sub-population of neurons (24% of the total) that exhibited voltage-dependent bursts of action potentials. Our findings support the existence of: 1. a direct projection from aAOB LPCs to dorsal-MOB, 2. physiologically active synapses linking aAOB and pAOB, and 3. pacemaker-like neurons in both AOB halves. This work was presented in the form of an Abstract on SfN 2014 (719.14/EE17).
Collapse
Affiliation(s)
- Victor Vargas-Barroso
- Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla Querétaro, México
| | - Benito Ordaz-Sánchez
- Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla Querétaro, México
| | - Fernando Peña-Ortega
- Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla Querétaro, México
| | - Jorge A Larriva-Sahd
- Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla Querétaro, México
| |
Collapse
|
32
|
KCNQ potassium channels in sensory system and neural circuits. Acta Pharmacol Sin 2016; 37:25-33. [PMID: 26687932 DOI: 10.1038/aps.2015.131] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/10/2015] [Indexed: 12/15/2022] Open
Abstract
M channels, an important regulator of neural excitability, are composed of four subunits of the Kv7 (KCNQ) K(+) channel family. M channels were named as such because their activity was suppressed by stimulation of muscarinic acetylcholine receptors. These channels are of particular interest because they are activated at the subthreshold membrane potentials. Furthermore, neural KCNQ channels are drug targets for the treatments of epilepsy and a variety of neurological disorders, including chronic and neuropathic pain, deafness, and mental illness. This review will update readers on the roles of KCNQ channels in the sensory system and neural circuits as well as discuss their respective mechanisms and the implications for physiology and medicine. We will also consider future perspectives and the development of additional pharmacological models, such as seizure, stroke, pain and mental illness, which work in combination with drug-design targeting of KCNQ channels. These models will hopefully deepen our understanding of KCNQ channels and provide general therapeutic prospects of related channelopathies.
Collapse
|
33
|
Zhao F, Wang X, Zariwala HA, Uslaner JM, Houghton AK, Evelhoch JL, Williams DS, Winkelmann CT. fMRI study of olfaction in the olfactory bulb and high olfactory structures of rats: Insight into their roles in habituation. Neuroimage 2015; 127:445-455. [PMID: 26522425 DOI: 10.1016/j.neuroimage.2015.10.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 01/09/2023] Open
Abstract
Cerebral blood volume (CBV) fMRI with ultrasmall superparamagnetic iron oxide particles (USPIO) as a contrast agent was used to investigate olfactory processing in rats. fMRI data were acquired in sixteen 0.75-mm coronal slices covering the olfactory bulb (OB) and higher olfactory regions (HOR), including the anterior olfactory nucleus and piriform cortex. For each animal, multiple consecutive fMRI measurements were made during a 3-h experiment session, with each measurement consisting of a baseline period, an odorant stimulation period, and a recovery period. Two different stimulation paradigms with a stimulation period of 40s or 80s, respectively, were used to study olfactory processing. Odorant-induced CBV increases were robustly observed in the OB and HOR of each individual animal. Olfactory adaptation, which is characterized by an attenuation of responses to continuous exposure or repeated stimulations, has different characteristics in the OB and HOR. For adaptation to repeated stimuli, while it was observed in both the OB and HOR, CBV responses in the HOR were attenuated more significantly than responses in the OB. In contrast, within each continuous 40-s or 80-s odor exposure, CBV responses in the OB were stable and did not show adaptation, but the CBV responses in the HOR were state dependent, with no adaptation during initial exposures, but significant adaptation during following exposures. These results support previous reports that HOR plays a more significant role than OB in olfactory habituation. The technical approach presented in this study should enable more extensive fMRI studies of olfactory processing in rats.
Collapse
|
34
|
Fortes-Marco L, Lanuza E, Martínez-García F, Agustín-Pavón C. Avoidance and contextual learning induced by a kairomone, a pheromone and a common odorant in female CD1 mice. Front Neurosci 2015; 9:336. [PMID: 26500474 PMCID: PMC4594011 DOI: 10.3389/fnins.2015.00336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/07/2015] [Indexed: 01/11/2023] Open
Abstract
Chemosignals mediate both intra- and inter-specific communication in most mammals. Pheromones elicit stereotyped reactions in conspecifics, whereas kairomones provoke a reaction in an allospecific animal. For instance, predator kairomones elicit anticipated defensive responses in preys. The aim of this work was to test the behavioral responses of female mice to two chemosignals: 2-heptanone (2-HP), a putative alarm pheromone, and 2,4,5-trimethylthiazoline (TMT), a fox-derived putative kairomone, widely used to investigate fear and anxiety in rodents. The banana-like odorant isoamyl acetate (IA), unlikely to act as a chemosignal, served as a control odorant. We first presented increasing amounts of these odorants in consecutive days, in a test box in which mice could explore or avoid them. Female mice avoided the highest amounts of all three compounds, with TMT and IA eliciting avoidance at lower amounts (3.8 pmol and 0.35 μmol, respectively) than 2-HP (35 μmol). All three compounds induced minimal effects in global locomotion and immobility in this set up. Further, mice detected 3.5 pmol of TMT and IA in a habituation–dishabituation test, so avoidance of IA started well beyond the detection threshold. Finally, both TMT and IA, but not 2-HP, induced conditioned place avoidance and increased immobility in the neutral compartment during a contextual memory test. These data suggest that intense odors can induce contextual learning irrespective of their putative biological significance. Our results support that synthetic predator-related compounds (like TMT) or other intense odorants are useful to investigate the neurobiological basis of emotional behaviors in rodents. Since intense odorants unlikely to act as chemosignals can elicit similar behavioral reactions than chemosignals, we stress the importance of using behavioral measures in combination with other physiological (e.g., hormonal levels) or neural measures (e.g., immediate early gene expression) to establish the ethological significance of odorants.
Collapse
Affiliation(s)
- Lluís Fortes-Marco
- Unitat Pre-departamental de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I Castelló de la Plana, Spain ; Departament de Biologia Cel·lular, Facultat de Ciències Biològiques, Universitat de València València, Spain
| | - Enrique Lanuza
- Departament de Biologia Cel·lular, Facultat de Ciències Biològiques, Universitat de València València, Spain
| | - Fernando Martínez-García
- Unitat Pre-departamental de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I Castelló de la Plana, Spain
| | - Carmen Agustín-Pavón
- Unitat Pre-departamental de Medicina, Facultad de Ciencias de la Salud, Universitat Jaume I Castelló de la Plana, Spain
| |
Collapse
|
35
|
Sansone A, Hassenklöver T, Offner T, Fu X, Holy TE, Manzini I. Dual processing of sulfated steroids in the olfactory system of an anuran amphibian. Front Cell Neurosci 2015; 9:373. [PMID: 26441543 PMCID: PMC4585043 DOI: 10.3389/fncel.2015.00373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/07/2015] [Indexed: 11/14/2022] Open
Abstract
Chemical communication is widespread in amphibians, but if compared to later diverging tetrapods the available functional data is limited. The existing information on the vomeronasal system of anurans is particularly sparse. Amphibians represent a transitional stage in the evolution of the olfactory system. Most species have anatomically separated main and vomeronasal systems, but recent studies have shown that in anurans their molecular separation is still underway. Sulfated steroids function as migratory pheromones in lamprey and have recently been identified as natural vomeronasal stimuli in rodents. Here we identified sulfated steroids as the first known class of vomeronasal stimuli in the amphibian Xenopus laevis. We show that sulfated steroids are detected and concurrently processed by the two distinct olfactory subsystems of larval Xenopus laevis, the main olfactory system and the vomeronasal system. Our data revealed a similar but partially different processing of steroid-induced responses in the two systems. Differences of detection thresholds suggest that the two information channels are not just redundant, but rather signal different information. Furthermore, we found that larval and adult animals excrete multiple sulfated compounds with physical properties consistent with sulfated steroids. Breeding tadpole and frog water including these compounds activated a large subset of sensory neurons that also responded to synthetic steroids, showing that sulfated steroids are likely to convey intraspecific information. Our findings indicate that sulfated steroids are conserved vomeronasal stimuli functioning in phylogenetically distant classes of tetrapods living in aquatic and terrestrial habitats.
Collapse
Affiliation(s)
- Alfredo Sansone
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen Göttingen, Germany ; Center for Nanoscale Microscopy and Molecular Physiology of the Brain Göttingen, Germany
| | - Thomas Hassenklöver
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen Göttingen, Germany ; Center for Nanoscale Microscopy and Molecular Physiology of the Brain Göttingen, Germany
| | - Thomas Offner
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen Göttingen, Germany ; Center for Nanoscale Microscopy and Molecular Physiology of the Brain Göttingen, Germany
| | - Xiaoyan Fu
- Department of Anatomy and Neurobiology, Washington University School of Medicine St. Louis, MO, USA
| | - Timothy E Holy
- Department of Anatomy and Neurobiology, Washington University School of Medicine St. Louis, MO, USA
| | - Ivan Manzini
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen Göttingen, Germany ; Center for Nanoscale Microscopy and Molecular Physiology of the Brain Göttingen, Germany
| |
Collapse
|
36
|
Oberland S, Ackels T, Gaab S, Pelz T, Spehr J, Spehr M, Neuhaus EM. CD36 is involved in oleic acid detection by the murine olfactory system. Front Cell Neurosci 2015; 9:366. [PMID: 26441537 PMCID: PMC4584952 DOI: 10.3389/fncel.2015.00366] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/03/2015] [Indexed: 11/29/2022] Open
Abstract
Olfactory signals influence food intake in a variety of species. To maximize the chances of finding a source of calories, an animal’s preference for fatty foods and triglycerides already becomes apparent during olfactory food search behavior. However, the molecular identity of both receptors and ligands mediating olfactory-dependent fatty acid recognition are, so far, undescribed. We here describe that a subset of olfactory sensory neurons expresses the fatty acid receptor CD36 and demonstrate a receptor-like localization of CD36 in olfactory cilia by STED microscopy. CD36-positive olfactory neurons share olfaction-specific transduction elements and project to numerous glomeruli in the ventral olfactory bulb. In accordance with the described roles of CD36 as fatty acid receptor or co-receptor in other sensory systems, the number of olfactory neurons responding to oleic acid, a major milk component, in Ca2+ imaging experiments is drastically reduced in young CD36 knock-out mice. Strikingly, we also observe marked age-dependent changes in CD36 localization, which is prominently present in the ciliary compartment only during the suckling period. Our results support the involvement of CD36 in fatty acid detection by the mammalian olfactory system.
Collapse
Affiliation(s)
- Sonja Oberland
- Pharmacology and Toxicology, University Hospital Jena, Friedrich-Schiller-University Jena Jena, Germany ; Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin Berlin, Germany ; Freie Universität-Berlin, Fachbereich Biologie, Chemie und Pharmazie Berlin, Germany
| | - Tobias Ackels
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University Aachen, Germany
| | - Stefanie Gaab
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Thomas Pelz
- Pharmacology and Toxicology, University Hospital Jena, Friedrich-Schiller-University Jena Jena, Germany ; Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Jennifer Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University Aachen, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University Aachen, Germany
| | - Eva M Neuhaus
- Pharmacology and Toxicology, University Hospital Jena, Friedrich-Schiller-University Jena Jena, Germany ; Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
37
|
Azzouzi N, Barloy-Hubler F, Galibert F. Identification and characterization of cichlid TAAR genes and comparison with other teleost TAAR repertoires. BMC Genomics 2015; 16:335. [PMID: 25900688 PMCID: PMC4415300 DOI: 10.1186/s12864-015-1478-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TAARs (trace amine-associated receptors) are among the principal receptors expressed by the olfactory epithelium. We used the recent BROAD Institute release of the genome sequences of five representative fishes of the cichlid family to establish the complete TAAR repertoires of these species and to compare them with five other fish TAAR repertoires. RESULTS The genome sequences of O. niloticus, P. nyererei, H. burtoni, N. brichardi and M. zebra were analyzed by exhaustive TBLASTN searches with a set of published TAAR gene sequences used as positive bait. A second TBLASTN analysis was then performed on the candidate genes, with a set of non-TAAR class A GPCR (G protein-coupled receptors) used as negative bait. The resulting cichlid repertoire contained 44 complete TAAR genes from O. niloticus, 18 from P. nyererei, 23 from H. burtoni, 12 from N. brichardi and 20 from M. zebra, plus a number of pseudogenes, edge genes and fragments. A large proportion of these sequences (80%) consisted of two coding exons, separated in all but two cases by an intron in the interloop 1 coding sequence. We constructed phylogenetic trees. These trees indicated that TAARs constitute a distinct clade, well separated from ORs (olfactory receptors) and other class A GPCRs. Also these repertoires consist of several families and subfamilies, a number of which are common to fugu, tetraodon, stickleback and medaka. Like all other TAARs identified to date, cichlid TAARs have a characteristic two-dimensional structure and contain a number of amino-acid motifs or amino acids, such cysteine, in particular conserved positions. CONCLUSIONS Little is known about the functions of TAARs: in most cases their ligands have yet to be identified, partly because appropriate methods for such investigations have not been developed. Sequences analyses and comparisons of TAARs in several animal species, here fishes living in the same environment, should help reveal their roles and whether they are complementary to that of ORs.
Collapse
Affiliation(s)
- Naoual Azzouzi
- UMR CNRS/Institut de Génétique et Développement de Rennes, Faculté de Médecine, Université de Rennes 1, 2 avenue Léon Bernard, Rennes, 35000, France.
| | - Frederique Barloy-Hubler
- UMR CNRS/Institut de Génétique et Développement de Rennes, Faculté de Médecine, Université de Rennes 1, 2 avenue Léon Bernard, Rennes, 35000, France.
| | - Francis Galibert
- UMR CNRS/Institut de Génétique et Développement de Rennes, Faculté de Médecine, Université de Rennes 1, 2 avenue Léon Bernard, Rennes, 35000, France.
| |
Collapse
|
38
|
Zhao F, Holahan MA, Houghton AK, Hargreaves R, Evelhoch JL, Winkelmann CT, Williams DS. Functional imaging of olfaction by CBV fMRI in monkeys: Insight into the role of olfactory bulb in habituation. Neuroimage 2015; 106:364-72. [DOI: 10.1016/j.neuroimage.2014.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/04/2014] [Accepted: 12/01/2014] [Indexed: 11/26/2022] Open
|
39
|
Baum MJ, Cherry JA. Processing by the main olfactory system of chemosignals that facilitate mammalian reproduction. Horm Behav 2015; 68:53-64. [PMID: 24929017 DOI: 10.1016/j.yhbeh.2014.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/22/2014] [Accepted: 06/04/2014] [Indexed: 11/21/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". Most mammalian species possess two parallel circuits that process olfactory information. One of these circuits, the accessory system, originates with sensory neurons in the vomeronasal organ (VNO). This system has long been known to detect non-volatile pheromonal odorants from conspecifics that influence numerous aspects of social communication, including sexual attraction and mating as well as the release of luteinizing hormone from the pituitary gland. A second circuit, the main olfactory system, originates with sensory neurons in the main olfactory epithelium (MOE). This system detects a wide range of non-pheromonal odors relevant to survival (e.g., food and predator odors). Over the past decade evidence has accrued showing that the main olfactory system also detects a range of volatile odorants that function as pheromones to facilitate mate recognition and activate the hypothalamic-pituitary-gonadal neuroendocrine axis. We review early studies as well as the new literature supporting the view that the main olfactory system processes a variety of different pheromonal cues that facilitate mammalian reproduction.
Collapse
Affiliation(s)
- Michael J Baum
- Departments of Biology, Boston University, Boston, MA 02215, USA.
| | - James A Cherry
- Departments of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| |
Collapse
|
40
|
Kanageswaran N, Demond M, Nagel M, Schreiner BSP, Baumgart S, Scholz P, Altmüller J, Becker C, Doerner JF, Conrad H, Oberland S, Wetzel CH, Neuhaus EM, Hatt H, Gisselmann G. Deep sequencing of the murine olfactory receptor neuron transcriptome. PLoS One 2015; 10:e0113170. [PMID: 25590618 PMCID: PMC4295871 DOI: 10.1371/journal.pone.0113170] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/25/2014] [Indexed: 11/18/2022] Open
Abstract
The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.
Collapse
Affiliation(s)
| | - Marilen Demond
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
- University Duisburg-Essen, Institute of Medical Radiation Biology, Essen, Germany
| | - Maximilian Nagel
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | | | - Sabrina Baumgart
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Paul Scholz
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | | | | | - Julia F. Doerner
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Heike Conrad
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
- Cluster of Excellence and DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sonja Oberland
- Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Str. 1, 07747 Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian H. Wetzel
- University of Regensburg, Department of Psychiatry and Psychotherapy, Molecular Neurosciences, Regensburg, Germany
| | - Eva M. Neuhaus
- Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Str. 1, 07747 Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hanns Hatt
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| | - Günter Gisselmann
- Ruhr-University Bochum, Department of Cell Physiology, Bochum, Germany
| |
Collapse
|
41
|
Rolen SH, Salcedo E, Restrepo D, Finger TE. Differential localization of NT-3 and TrpM5 in glomeruli of the olfactory bulb of mice. J Comp Neurol 2014; 522:1929-40. [PMID: 24288162 DOI: 10.1002/cne.23512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/25/2013] [Accepted: 11/26/2013] [Indexed: 12/13/2022]
Abstract
Olfactory sensory neurons that express transient receptor potential channel M5 (TrpM5) or neurotrophin-3 (NT-3) project to defined clusters of glomeruli situated ventrally in the main olfactory bulb. Using genetically labeled mice, we investigated whether expression of NT-3-driven βgal and TrpM5-driven GFP marked overlapping sets of glomeruli and whether expression of these markers was coordinated. Our results indicate that these markers largely characterize independent sets of olfactory sensory neuron axons and glomeruli. Further, in glomeruli in which both TrpM5-GFP and NT-3-βgal labeled axons occur, they are expressed independently. The nature of staining for these two markers also differs within glomeruli. Within each labeled TrpM5-positive glomerulus, the level of TrpM5-GFP expression was similar throughout the glomerular neuropil. In contrast, NT-3-driven βgal expression levels are heterogeneous even within heavily labeled glomeruli. In addition, a population of very small TrpM5-GFP positive glomeruli is apparent while no similar populations of NT-3-βgal glomeruli are evident. Taken together, these data suggest that TrpM5 and NT-3 characterize two largely independent receptor populations both conveying odorant information to the ventral olfactory bulb.
Collapse
Affiliation(s)
- S H Rolen
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| | | | | | | |
Collapse
|
42
|
Hohenbrink P, Dempewolf S, Zimmermann E, Mundy NI, Radespiel U. Functional promiscuity in a mammalian chemosensory system: extensive expression of vomeronasal receptors in the main olfactory epithelium of mouse lemurs. Front Neuroanat 2014; 8:102. [PMID: 25309343 PMCID: PMC4173931 DOI: 10.3389/fnana.2014.00102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/05/2014] [Indexed: 01/20/2023] Open
Abstract
The vomeronasal organ (VNO) is functional in most terrestrial mammals, though progressively reduced in the primate lineage, and is used for intraspecific communication and predator recognition. Vomeronasal receptor (VR) genes comprise two families of chemosensory genes (V1R and V2R) that have been considered to be specific for the VNO. However, recently a large number of VRs were reported to be expressed in the main olfactory epithelium (MOE) of mice, but there is little knowledge of the expression of these genes outside of rodents. To explore the function of VR genes in mammalian evolution, we analyzed and compared the expression of 64 V1R and 2 V2R genes in the VNO and the MOE of the gray mouse lemur (Microcebus murinus), the primate with the largest known VR repertoire. We furthermore compared expression patterns in adults of both sexes and seasons, and in an infant. A large proportion (83-97%) of the VR loci was expressed in the VNO of all individuals. The repertoire in the infant was as rich as in adults, indicating reliance on olfactory communication from early postnatal development onwards. In concordance with mice, we also detected extensive expression of VRs in the MOE, with proportions of expressed loci in individuals ranging from 29 to 45%. TRPC2, which encodes a channel protein crucial for signal transduction via VRs, was co-expressed in the MOE in all individuals indicating likely functionality of expressed VR genes in the MOE. In summary, the large VR repertoire in mouse lemurs seems to be highly functional. Given the differences in the neural pathways of MOE and VNO signals, which project to higher cortical brain centers or the limbic system, respectively, this raises the intriguing possibility that the evolution of MOE-expression of VRs enabled mouse lemurs to adaptively diversify the processing of VR-encoded olfactory information.
Collapse
Affiliation(s)
- Philipp Hohenbrink
- Institute of Zoology, University of Veterinary Medicine Hannover Hannover, Germany ; Department of Zoology, University of Cambridge Cambridge, UK
| | - Silke Dempewolf
- Institute of Zoology, University of Veterinary Medicine Hannover Hannover, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover Hannover, Germany
| | | | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover Hannover, Germany
| |
Collapse
|
43
|
Asaba A, Hattori T, Mogi K, Kikusui T. Sexual attractiveness of male chemicals and vocalizations in mice. Front Neurosci 2014; 8:231. [PMID: 25140125 PMCID: PMC4122165 DOI: 10.3389/fnins.2014.00231] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/14/2014] [Indexed: 12/04/2022] Open
Abstract
Male-female interaction is important for finding a suitable mating partner and for ensuring reproductive success. Male sexual signals such as pheromones transmit information and social and sexual status to females, and exert powerful effects on the mate preference and reproductive biology of females. Likewise, male vocalizations are attractive to females and enhance reproductive function in many animals. Interestingly, females' preference for male pheromones and vocalizations is associated with their genetic background, to avoid inbreeding. Moreover, based on acoustic cues, olfactory signals have significant effects on mate choice in mice, suggesting mate choice involves multisensory integration. In this review, we synopsize the effects of both olfactory and auditory cues on female behavior and neuroendocrine functions. We also discuss how these male signals are integrated and processed in the brain to regulate behavior and reproductive function.
Collapse
Affiliation(s)
- Akari Asaba
- Department of Animal Science and Biotechnology, Graduate School of Veterinary Medicine, Azabu University Kanagawa, Japan
| | - Tatsuya Hattori
- Department of Animal Science and Biotechnology, Graduate School of Veterinary Medicine, Azabu University Kanagawa, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, Graduate School of Veterinary Medicine, Azabu University Kanagawa, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Graduate School of Veterinary Medicine, Azabu University Kanagawa, Japan
| |
Collapse
|
44
|
Distribution of the neuronal inputs to the ventral premammillary nucleus of male and female rats. Brain Res 2014; 1582:77-90. [PMID: 25084037 DOI: 10.1016/j.brainres.2014.07.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 02/08/2023]
Abstract
The ventral premammillary nucleus (PMV) expresses dense collections of sex steroid receptors and receptors for metabolic cues, including leptin, insulin and ghrelin. The PMV responds to opposite sex odor stimulation and projects to areas involved in reproductive control, including direct innervation of gonadotropin releasing hormone neurons. Thus, the PMV is well positioned to integrate metabolic and reproductive cues, and control downstream targets that mediate reproductive function. In fact, lesions of PMV neurons blunt female reproductive function and maternal aggression. However, although the projections of PMV neurons have been well documented, little is known about the neuronal inputs received by PMV neurons. To fill this gap, we performed a systematic evaluation of the brain sites innervating the PMV neurons of male and female rats using the retrograde tracer subunit B of the cholera toxin (CTb). In general, we observed that males and females show a similar pattern of afferents. We also noticed that the PMV is preferentially innervated by neurons located in the forebrain, with very few projections coming from brainstem nuclei. The majority of inputs originated from the medial nucleus of the amygdala, the bed nucleus of the stria terminalis and the medial preoptic nucleus. A moderate to high density of afferents was also observed in the ventral subiculum, the arcuate nucleus and the ventrolateral subdivision of the ventromedial nucleus of the hypothalamus. Our findings strengthen the concept that the PMV is part of the vomeronasal system and integrates the brain circuitry controlling reproductive functions.
Collapse
|
45
|
Gong L, Li B, Wu R, Li A, Xu F. Brain-state dependent uncoupling of BOLD and local field potentials in laminar olfactory bulb. Neurosci Lett 2014; 580:1-6. [PMID: 25079901 DOI: 10.1016/j.neulet.2014.07.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/23/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
Abstract
The neural activities of the olfactory bulb (OB) can be modulated significantly by internal brain states. While blood oxygenation level dependent functional MRI (BOLD-fMRI) has been extensively applied to study OB in small animals, the relationship between BOLD signals and electrophysiological signals remains to be elucidated. Our recent study has revealed a complex relationship between BOLD and local field potentials (LFP) signals in different OB layers during odor stimulation. However, no study has been performed to compare these two types of signals under global brain states. Here, the changes of BOLD and LFP signals in the glomerular, mitral cell, and granular cell layers of the OB under different brain states, which were induced by different concentrations of isoflurane, were sequentially acquired using electrode array and high-resolution MRI. It was found that under deeper anesthesia, the LFP powers in all layers were decreased but the BOLD signals were unexpectedly increased. Furthermore, the decreases of LFP powers were layer-independent, but the increases of BOLD signal were layer-specific, with the order of glomerular>mitral cell>granular cell layer. The results provide new evidence that the direct neural activity levels might not be correlated well with BOLD signals in some cases, and remind us that cautions should be taken to use BOLD signals as the index of neural activities.
Collapse
Affiliation(s)
- Ling Gong
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Li
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqi Wu
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anan Li
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China.
| |
Collapse
|
46
|
Li B, Gong L, Wu R, Li A, Xu F. Complex relationship between BOLD-fMRI and electrophysiological signals in different olfactory bulb layers. Neuroimage 2014; 95:29-38. [DOI: 10.1016/j.neuroimage.2014.03.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/06/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023] Open
|
47
|
Noguchi T, Sasajima H, Miyazono S, Kashiwayanagi M. Similar rate of information transfer on stimulus intensity in accessory and main olfactory bulb output neurons. Neurosci Lett 2014; 576:56-61. [PMID: 24909616 DOI: 10.1016/j.neulet.2014.05.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/15/2014] [Accepted: 05/29/2014] [Indexed: 01/29/2023]
Abstract
Recently, evidence has accumulated that the vomeronasal system cooperates with the main olfactory system to process volatile cues that regulate the animal's behavior. This is contradictory to the traditional view that the vomeronasal system is quite different from the main olfactory system in the time scale of information processing. Particularly, the firing rate of mitral/tufted cells in the accessory olfactory bulb (MTAOB) is known to be significantly lower than that of mitral cells in the main olfactory bulb (MCMOB). To address this question of whether the low-frequency firing in MTAOB carries less information than the high-frequency firing in MCMOB in the early stages of stimulation, we compared MTAOB and MCMOB for their firing mechanisms and information transfer characteristics. A model computation demonstrated that the inherent channel kinetics of MTAOB was responsible for their firing at a lower frequency than MCMOB. Nevertheless, our analysis suggested that MTAOB were comparable to MCMOB in both the amount and speed of information transfer about depolarizing current intensity immediately after current injection onset (<200ms). Our results support a hypothesis of simultaneous processing of common cues in both systems.
Collapse
Affiliation(s)
- Tomohiro Noguchi
- Department of Sensory Physiology, Asahikawa Medical University, Midorigaokahigashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | - Hitoshi Sasajima
- Department of Sensory Physiology, Asahikawa Medical University, Midorigaokahigashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | - Sadaharu Miyazono
- Department of Sensory Physiology, Asahikawa Medical University, Midorigaokahigashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | - Makoto Kashiwayanagi
- Department of Sensory Physiology, Asahikawa Medical University, Midorigaokahigashi 2-1-1-1, Asahikawa 078-8510, Japan.
| |
Collapse
|
48
|
Maier JX, Blankenship ML, Barry NC, Richards SE, Katz DB. Stability and flexibility of the message carried by semiochemical stimuli, as revealed by devaluation of carbon disulfide followed by social transmission of food preference. Behav Neurosci 2014; 128:413-8. [PMID: 24841743 DOI: 10.1037/bne0000002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Semiochemicals are volatile compounds that communicate specific meaning between individuals and elicit specific behavioral and/or physiological responses mediated by highly sensitive and highly specific olfactory pathways. Recent work suggests that semiochemicals can activate multiple olfactory pathways at once, but the degree to which parallel pathways activated by the same semiochemical interact and what the behavioral consequences of such interactions are remains a topic of debate. Here, we approached this question behaviorally, investigating whether rats could be trained to avoid carbon disulfide (CS₂; conditional stimulus) via taste-potentiated odor aversion, and asking whether any such learning would have an impact on rats' subsequent use of CS₂ as a semiochemical cue (i.e., in a socially transmitted food preference paradigm). The results show that CS₂-mediated food preference learning is unimpaired by aversions conditioned to CS₂, a result indicating that canonical and semiochemical pathways for the processing of CS₂ function in a largely independent manner.
Collapse
|
49
|
Oboti L, Peretto P. How neurogenesis finds its place in a hardwired sensory system. Front Neurosci 2014; 8:102. [PMID: 24847202 PMCID: PMC4023038 DOI: 10.3389/fnins.2014.00102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/18/2014] [Indexed: 02/05/2023] Open
Abstract
So far most studies on adult neurogenesis aimed to unravel mechanisms and molecules regulating the integration of newly generated neurons in the mature brain parenchyma. The exceedingly abundant amount of results that followed, rather than being beneficial in the perspective of brain repair, provided a clear evidence that adult neurogenesis constitutes a necessary feature to the correct functioning of the hosting brain regions. In particular, the rodent olfactory system represents a privileged model to study how neuronal plasticity and neurogenesis interact with sensory functions. Until recently, the vomeronasal system (VNS) has been commonly described as being specialized in the detection of innate chemosignals. Accordingly, its circuitry has been considered necessarily stable, if not hard-wired, in order to allow stereotyped behavioral responses. However, both first and second order projections of the rodent VNS continuously change their synaptic connectivity due to ongoing postnatal and adult neurogenesis. How the functional integrity of a neuronal circuit is maintained while newborn neurons are continuously added—or lost—is a fundamental question for both basic and applied neuroscience. The VNS is proposed as an alternative model to answer such question. Hereby the underlying motivations will be reviewed.
Collapse
Affiliation(s)
- Livio Oboti
- Children's National Health System, Center for Neuroscience Research Washington, DC, USA
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of Torino Orbassano, Italy
| |
Collapse
|
50
|
Laska M. Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Ketones in CD-1 Mice. Chem Senses 2014; 39:415-24. [DOI: 10.1093/chemse/bju011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|