1
|
Christensen J, Vlassopoulos E, Barlow CK, Schittenhelm RB, Li CN, Sgro M, Warren S, Semple BD, Yamakawa GR, Shultz SR, Mychasiuk R. The beneficial effects of modafinil administration on repeat mild traumatic brain injury (RmTBI) pathology in adolescent male rats are not dependent upon the orexinergic system. Exp Neurol 2024; 382:114969. [PMID: 39332798 DOI: 10.1016/j.expneurol.2024.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
The sleep-wake cycle plays an influential role in the development and progression of repeat mild traumatic brain injury (RmTBI)-related pathology. Therefore, we first aimed to manipulate the sleep-wake cycle post-RmTBI using modafinil, a wake-promoting substance used for the treatment of narcolepsy. We hypothesized that modafinil would exacerbate RmTBI-induced deficits. Chronic behavioural analyses were completed along with a 27-plex serum cytokine array, metabolomic and proteomic analyses of cerebrospinal fluid (CSF), as well as immunohistochemical staining in structures important for sleep/wake cycles, to examine orexin, melanin-concentrating hormone, tyrosine hydroxylase, and choline acetyltransferase, in the lateral hypothalamus, locus coeruleus, and basal forebrain, respectively. Contrary to expectation, modafinil administration attenuated behavioural deficits, metabolomic changes, and neuropathological modifications. Therefore, the second aim was to determine if the beneficial effects of modafinil treatment were driven by the orexinergic system. The same experimental protocol was used; however, RmTBI rats received chronic orexin-A administration instead of modafinil. Orexin-A administration produced drastically different outcomes, exacerbating anxiety-related and motor deficits, while also significantly disrupting their metabolomic and neuropathological profiles. These results suggest that the beneficial effects of modafinil administration post-RmTBI, work independently of its wake-promoting properties, as activation of the orexinergic wake-promoting system with orexin-A was detrimental. Overall, these findings highlight the complexity of sleep-wake changes in the injured brain and showcase the potential of the arousal and sleep systems in its treatment.
Collapse
Affiliation(s)
- Jennaya Christensen
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Elaina Vlassopoulos
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Crystal N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Marissa Sgro
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Samantha Warren
- Monash Micro Imaging, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bridgette D Semple
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Centre for Trauma and Mental Health Research, Vancouver Island University, Nanaimo, B.C., Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Kiyokage E, Ichikawa S, Horie S, Hayashi S, Toida K. Effects of estradiol on dopaminergic synapse formation in the mouse olfactory bulb. J Comp Neurol 2023; 531:528-547. [PMID: 36519231 DOI: 10.1002/cne.25441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/24/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Olfactory glomeruli are the sites of initial synaptic integration in olfactory information processing. They are surrounded by juxtaglomerular (JG) cells, which include periglomerular, superficial short axon, and external tufted cells. A subpopulation of JG cells expresses the dopamine synthetic enzymes, tyrosine hydroxylase (TH), and aromatic l-amino acid decarboxylase (AADC). TH cells corelease γ-aminobutyric acid (GABA) and their processes extend to multiple glomeruli forming intra- and interglomerular circuits. It is well established that 17β-estradiol (E2) exerts wide ranging effects in the central nervous system. However, participation of E2 in the modulation of neurotransmission and synaptic plasticity of TH cells in olfactory glomeruli is unknown. To address this, we subcutaneously implanted a 60-day release pellet of E2 or placebo into intact male mice and compared glomerular TH, AADC, and vesicular γ-aminobutyric acid transporter (VGAT) immunoreactivity between them. High-voltage electron microscopy (HVEM) and ultra-HVEM using immunogold revealed significantly increased immunoreactive intensity at the cellular level for TH and AADC after E2 treatment and for VGAT in TH cells. These results indicate that E2 may affect the interplay between dopaminergic and GABAergic systems. Moreover, random-section electron microscopy analysis showed a significant increase in the number of symmetrical synapses from TH cell to mitral/tufted cell dendrites after E2 treatment. This result was supported by quantitative immunofluorescence staining with synapse markers. Together, these data indicate that E2 may regulate inhibition between TH cells and olfactory bulb neurons within the glomerulus via interaction between dopaminergic and GABAergic systems, thereby contributing to neuromodulation of odor information processing.
Collapse
Affiliation(s)
- Emi Kiyokage
- Department of Medical Technology, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Satoshi Ichikawa
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Japan
| | - Sawa Horie
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Japan
| | - Shuichi Hayashi
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Japan
| | - Kazunori Toida
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Japan.,Department of Anatomy, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
3
|
Adamantidis AR, Schmidt MH, Carter ME, Burdakov D, Peyron C, Scammell TE. A circuit perspective on narcolepsy. Sleep 2021; 43:5699663. [PMID: 31919524 PMCID: PMC7215265 DOI: 10.1093/sleep/zsz296] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/13/2019] [Indexed: 01/25/2023] Open
Abstract
The sleep disorder narcolepsy is associated with symptoms related to either boundary state control that include excessive daytime sleepiness and sleep fragmentation, or rapid eye movement (REM) sleep features including cataplexy, sleep paralysis, hallucinations, and sleep-onset REM sleep events (SOREMs). Although the loss of Hypocretin/Orexin (Hcrt/Ox) peptides or their receptors have been associated with the disease, here we propose a circuit perspective of the pathophysiological mechanisms of these narcolepsy symptoms that encompasses brain regions, neuronal circuits, cell types, and transmitters beyond the Hcrt/Ox system. We further discuss future experimental strategies to investigate brain-wide mechanisms of narcolepsy that will be essential for a better understanding and treatment of the disease.
Collapse
Affiliation(s)
- A R Adamantidis
- Department of Neurology, Centre for Experimental Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.,Department of Biomedical Research, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - M H Schmidt
- Department of Neurology, Centre for Experimental Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.,Ohio Sleep Medicine Institute, Dublin, OH
| | - M E Carter
- Department of Biology, Program in Neuroscience, Williams College, Williamstown, MA
| | - D Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - C Peyron
- Center for Research in Neuroscience of Lyon, SLEEP team, CNRS UMR5292, INSERM U1028, University Lyon 1, Bron, France
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Sagi D, de Lecea L, Appelbaum L. Heterogeneity of Hypocretin/Orexin Neurons. FRONTIERS OF NEUROLOGY AND NEUROSCIENCE 2021; 45:61-74. [PMID: 34052814 PMCID: PMC8961008 DOI: 10.1159/000514964] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/02/2021] [Indexed: 01/21/2023]
Abstract
The multifunctional, hypothalamic hypocretin/orexin (HCRT)-producing neurons regulate an array of physiological and behavioral states including arousal, sleep, feeding, emotions, stress, and reward. How a presumably uniform HCRT neuron population regulates such a diverse set of functions is not clear. The role of the HCRT neuropeptides may vary depending on the timing and localization of secretion and neuronal activity. Moreover, HCRT neuropeptides may not mediate all functions ascribed to HCRT neurons. Some could be orchestrated by additional neurotransmitters and neuropeptides that are expressed in HCRT neurons. We hypothesize that HCRT neurons are segregated into genetically, anatomically and functionally distinct subpopulations. We discuss accumulating data that suggest the existence of such HCRT neuron subpopulations that may effectuate the diverse functions of these neurons in mammals and fish.
Collapse
Affiliation(s)
- Dana Sagi
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Luis de Lecea
- Dept of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.,Corresponding author: Lior Appelbaum, Bar-Ilan University, Ramat-Gan 5290002, Israel. Telephone: +972-3-7384536,
| |
Collapse
|
5
|
Seoane-Collazo P, Diéguez C, Nogueiras R, Rahmouni K, Fernández-Real JM, López M. Nicotine' actions on energy balance: Friend or foe? Pharmacol Ther 2020; 219:107693. [PMID: 32987056 DOI: 10.1016/j.pharmthera.2020.107693] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Obesity has reached pandemic proportions and is associated with severe comorbidities, such as type 2 diabetes mellitus, hepatic and cardiovascular diseases, and certain cancer types. However, the therapeutic options to treat obesity are limited. Extensive epidemiological studies have shown a strong relationship between smoking and body weight, with non-smokers weighing more than smokers at any age. Increased body weight after smoking cessation is a major factor that interferes with their attempts to quit smoking. Numerous controlled studies in both humans and rodents have reported that nicotine, the main bioactive component of tobacco, exerts a marked anorectic action. Furthermore, nicotine is also known to modulate energy expenditure, by regulating the thermogenic activity of brown adipose tissue (BAT) and the browning of white adipose tissue (WAT), as well as glucose homeostasis. Many of these actions occur at central level, by controlling the activity of hypothalamic neuropeptide systems such as proopiomelanocortin (POMC), or energy sensors such as AMP-activated protein kinase (AMPK). However, direct impact of nicotine on metabolic tissues, such as BAT, WAT, liver and pancreas has also been described. Here, we review the actions of nicotine on energy balance. The relevance of this interaction is interesting, because considering the restricted efficiency of obesity treatments, a possible complementary approach may focus on compounds with known pharmacokinetic profile and pharmacological actions, such as nicotine or nicotinic acetylcholine receptors signaling.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine and Veterans Affairs Health Care System, Iowa City, IA 52242, USA
| | - José Manuel Fernández-Real
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta" and Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
6
|
Linehan V, Fang LZ, Parsons MP, Hirasawa M. High-fat diet induces time-dependent synaptic plasticity of the lateral hypothalamus. Mol Metab 2020; 36:100977. [PMID: 32277924 PMCID: PMC7170999 DOI: 10.1016/j.molmet.2020.100977] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 11/15/2022] Open
Abstract
Objective Orexin (ORX) and melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus are critical regulators of energy homeostasis and are thought to differentially contribute to diet-induced obesity. However, it is unclear whether the synaptic properties of these cells are altered by obesogenic diets over time. Methods Rats and mice were fed a control chow or palatable high-fat diet (HFD) for various durations and then synaptic properties of ORX and MCH neurons were examined using exvivo whole-cell patch clamp recording. Confocal imaging was performed to assess the number of excitatory synaptic contacts to these neurons. Results ORX neurons exhibited a transient increase in spontaneous excitatory transmission as early as 1 day up to 1 week of HFD, which returned to control levels with prolonged feeding. Conversely, HFD induced a delayed increase in excitatory synaptic transmission to MCH neurons, which progressively increased as HFD became chronic. This increase occurred before the onset of significant weight gain. These synaptic changes appeared to be due to altered postsynaptic sensitivity or the number of active synaptic contacts depending on cell type and feeding duration. However, HFD induced no change in inhibitory transmission in either cell type at any time point. Conclusions These results suggest that the effects of HFD on feeding-related neurons are cell type-specific and dynamic. This highlights the importance of considering the feeding duration for research and weight loss interventions. ORX neurons may contribute to early hyperphagia, whereas MCH neurons may play a role in the onset and long-term maintenance of diet-induced obesity. High-fat diet increases excitatory transmission to orexin and MCH neurons. Increased excitatory drive to orexin neurons occurs within the first week but is transient. Excitatory synapses to MCH neurons increase with prolonged high-fat diet. Excitatory changes in MCH neurons are delayed but precede significant weight gain. These synaptic changes may contribute to the development and the maintenance of obesity.
Collapse
Affiliation(s)
- Victoria Linehan
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, A1B 3V6, Canada
| | - Lisa Z Fang
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, A1B 3V6, Canada
| | - Matthew P Parsons
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, A1B 3V6, Canada
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, Newfoundland, A1B 3V6, Canada.
| |
Collapse
|
7
|
Barbier M, Risold PY. The claustrum is a target for projections from the supramammillary nucleus in the rat. Neuroscience 2019; 409:261-275. [PMID: 30930128 DOI: 10.1016/j.neuroscience.2019.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/23/2022]
Abstract
Injection of the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHAL) into the rat rostral and caudal supramammillary nucleus (SUM) provided expected patterns of projections into the hippocampus and the septal region. In addition, unexpectedly intense projections were observed into the claustrum defined by parvalbumin expression. Injections of the retrograde tracer fluorogold (FG) into the hippocampus and the region of the claustrum showed that the cells of origin of these projections distributed similarly within the borders of the SUM. The SUM is usually involved in control of hippocampal theta activity, but the observation of intense projections into the claustrum indicates that it may also influence isocortical processes. Therefore, the SUM may coordinate sensory processing in the isocortex with memory formation in the hippocampus.
Collapse
Affiliation(s)
- Marie Barbier
- EA481, Neurosciences Intégratives et Cliniques, UFR Santé, 19 rue Ambroise Paré, Université de Bourgogne Franche-Comté, 25030 Besançon cedex, France.
| | - Pierre-Yves Risold
- EA481, Neurosciences Intégratives et Cliniques, UFR Santé, 19 rue Ambroise Paré, Université de Bourgogne Franche-Comté, 25030 Besançon cedex, France
| |
Collapse
|
8
|
Agostinelli LJ, Geerling JC, Scammell TE. Basal forebrain subcortical projections. Brain Struct Funct 2019; 224:1097-1117. [PMID: 30612231 PMCID: PMC6500474 DOI: 10.1007/s00429-018-01820-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/16/2018] [Indexed: 12/25/2022]
Abstract
The basal forebrain (BF) contains at least three distinct populations of neurons (cholinergic, glutamatergic, and GABA-ergic) across its different regions (medial septum, diagonal band, magnocellular preoptic area, and substantia innominata). Much attention has focused on the BF's ascending projections to cortex, but less is known about descending projections to subcortical regions. Given the neurochemical and anatomical heterogeneity of the BF, we used conditional anterograde tracing to map the patterns of subcortical projections from multiple BF regions and neurochemical cell types using mice that express Cre recombinase only in cholinergic, glutamatergic, or GABAergic neurons. We confirmed that different BF regions innervate distinct subcortical targets, with more subcortical projections arising from neurons in the caudal and lateral BF (substantia innominata and magnocellular preoptic area). Additionally, glutamatergic and GABAergic BF neurons have distinct patterns of descending projections, while cholinergic descending projections are sparse. Considering the intensity of glutamatergic and GABAergic descending projections, the BF likely acts through subcortical targets to promote arousal, motivation, and other behaviors.
Collapse
Affiliation(s)
- Lindsay J Agostinelli
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Joel C Geerling
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Rodrigues LTC, da Silva EN, Horta-Júnior JDAC, Gargaglioni LH, Dias MB. Glutamate metabotropic receptors in the lateral hypothalamus/perifornical area reduce the CO 2 chemoreflex. Respir Physiol Neurobiol 2018; 260:122-130. [PMID: 30471436 DOI: 10.1016/j.resp.2018.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/27/2018] [Accepted: 11/20/2018] [Indexed: 11/26/2022]
Abstract
It has been shown that the lateral hypothalamus/perifornical area (LH/PFA) exerts an important role on arousal-state variations of the central chemoreflex, but the mechanisms that underlie LH/PFA chemoreception are poorly understood. Here we asked whether glutamate inputs on metabotropic receptors in the LH/PFA modulate the hypercapnic ventilatory response. We studied the effects of microinjection of a glutamate metabotropic receptor (mGluR) antagonist ((+)-α-Methyl-4-carboxyphenylglycine; MCPG; 100 mM) and a selective Group II/III mGluR antagonist ((2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid; LY341495; 5 mM) into the LH/PFA of conscious rats on ventilation in room air and in 7% CO2, during wakefulness and sleep, in the dark and light periods of the diurnal cycle. Microinjection of MCPG and LY341495 increased the hypercapnic ventilatory response in both the light and the dark period during wakefulness, but not during sleep, (p < 0.001). Our data suggest that glutamate, acting on Group II/III metabotropic receptors in the LH/PFA, exerts an inhibitory modulation of the hypercapnic ventilatory response in awake rats.
Collapse
Affiliation(s)
| | - Eliandra Nunes da Silva
- Department of Physiology, Institute of Bioscience, Sao Paulo State University-UNESP, Botucatu, SP, Brazil.
| | | | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University-FCAV, Jaboticabal, SP, Brazil.
| | - Mirela B Dias
- Department of Physiology, Institute of Bioscience, Sao Paulo State University-UNESP, Botucatu, SP, Brazil.
| |
Collapse
|
10
|
Linehan V, Rowe TM, Hirasawa M. Dopamine modulates excitatory transmission to orexin neurons in a receptor subtype-specific manner. Am J Physiol Regul Integr Comp Physiol 2018; 316:R68-R75. [PMID: 30462527 DOI: 10.1152/ajpregu.00150.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dopamine (DA) can promote or inhibit consummatory and reward-related behaviors by activating different receptor subtypes in the lateral hypothalamus and perifornical area (LH/PF). Because orexin neurons are involved in reward and localized in the LH/PF, DA may modulate these neurons to influence reward-related behaviors. To determine the cellular mechanism underlying dopaminergic modulation of orexin neurons, the effect of DA on excitatory transmission to these neurons was investigated using in vitro electrophysiology on rat brain slices. We found that low concentrations (0.1-1 µM) of DA increased evoked excitatory postsynaptic current amplitude while decreasing paired-pulse ratio. In contrast, high concentrations (10-100 µM) of DA did the opposite. The excitatory effect of low DA was blocked by the D1 receptor antagonist SCH-23390, whereas the inhibitory effect of high DA was blocked by the D2 receptor antagonist sulpiride. These results indicate distinct roles of D1 and D2 receptors in bidirectional presynaptic modulation of excitatory transmission. DA had stronger effects on isolated synaptic activity than repetitive ones, suggesting that sensitivity to dopaminergic modulation depends on the level of network activity. In orexin neurons from high-fat diet-fed rats, a high concentration of DA was less effective in suppressing repetitive synaptic activity compared with chow controls. Therefore, in diet-induced obesity, intense synaptic inputs may preferentially reach orexin neurons while intermittent signals are inhibited by high DA levels. In summary, our study provides a cellular mechanism by which DA may exert opposite behavioral effects in the LH/PF through bidirectional modulation of orexin neurons via different DA receptors.
Collapse
Affiliation(s)
- Victoria Linehan
- Division of Biomedical Sciences, Memorial University , St. John's, Newfoundland , Canada
| | - Todd M Rowe
- Division of Biomedical Sciences, Memorial University , St. John's, Newfoundland , Canada
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Memorial University , St. John's, Newfoundland , Canada
| |
Collapse
|
11
|
Azeez IA, Del Gallo F, Cristino L, Bentivoglio M. Daily Fluctuation of Orexin Neuron Activity and Wiring: The Challenge of "Chronoconnectivity". Front Pharmacol 2018; 9:1061. [PMID: 30319410 PMCID: PMC6167434 DOI: 10.3389/fphar.2018.01061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
In the heterogeneous hub represented by the lateral hypothalamus, neurons containing the orexin/hypocretin peptides play a key role in vigilance state transitions and wakefulness stability, energy homeostasis, and other functions relevant for motivated behaviors. Orexin neurons, which project widely to the neuraxis, are innervated by multiple extra- and intra-hypothalamic sources. A key property of the adaptive capacity of orexin neurons is represented by daily variations of activity, which is highest in the period of the animal’s activity and wakefulness. These sets of data are here reviewed. They concern the discharge profile during the sleep/wake cycle, spontaneous Fos induction, peptide synthesis and release reflected by immunostaining intensity and peptide levels in the cerebrospinal fluid as well as postsynaptic effects. At the synaptic level, adaptive capacity of orexin neurons subserved by remodeling of excitatory and inhibitory inputs has been shown in response to changes in the nutritional status and prolonged wakefulness. The present review wishes to highlight that synaptic plasticity in the wiring of orexin neurons also occurs in unperturbed conditions and could account for diurnal variations of orexin neuron activity. Data in zebrafish larvae have shown rhythmic changes in the density of inhibitory innervation of orexin dendrites in relation to vigilance states. Recent findings in mice have indicated a diurnal reorganization of the excitatory/inhibitory balance in the perisomatic innervation of orexin neurons. Taken together these sets of data point to “chronoconnectivity,” i.e., a synaptic rearrangement of inputs to orexin neurons over the course of the day in relation to sleep and wake states. This opens questions on the underlying circadian and homeostatic regulation and on the involved players at synaptic level, which could implicate dual transmitters, cytoskeletal rearrangements, hormonal regulation, as well as surrounding glial cells and extracellular matrix. Furthermore, the question arises of a “chronoconnectivity” in the wiring of other neuronal cell groups of the sleep-wake-regulatory network, many of which are characterized by variations of their firing rate during vigilance states.
Collapse
Affiliation(s)
- Idris A Azeez
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Del Gallo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience, Verona Unit, Verona, Italy
| |
Collapse
|
12
|
Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons. J Neurosci 2018; 38:2505-2518. [PMID: 29431649 DOI: 10.1523/jneurosci.2179-17.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Glutamate transporter 1 (GLT1) is the main astrocytic transporter that shapes glutamatergic transmission in the brain. However, whether this transporter modulates sleep-wake regulatory neurons is unknown. Using quantitative immunohistochemical analysis, we assessed perisomatic GLT1 apposition with sleep-wake neurons in the male rat following 6 h sleep deprivation (SD) or following 6 h undisturbed conditions when animals were mostly asleep (Rest). We found that SD decreased perisomatic GLT1 apposition with wake-promoting orexin neurons in the lateral hypothalamus compared with Rest. Reduced GLT1 apposition was associated with tonic presynaptic inhibition of excitatory transmission to these neurons due to the activation of Group III metabotropic glutamate receptors, an effect mimicked by a GLT1 inhibitor in the Rest condition. In contrast, SD resulted in increased GLT1 apposition with sleep-promoting melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus. Functionally, this decreased the postsynaptic response of MCH neurons to high-frequency synaptic activation without changing presynaptic glutamate release. The changes in GLT1 apposition with orexin and MCH neurons were reversed after 3 h of sleep opportunity following 6 h SD. These SD effects were specific to orexin and MCH neurons, as no change in GLT1 apposition was seen in basal forebrain cholinergic or parvalbumin-positive GABA neurons. Thus, within a single hypothalamic area, GLT1 differentially regulates excitatory transmission to wake- and sleep-promoting neurons depending on sleep history. These processes may constitute novel astrocyte-mediated homeostatic mechanisms controlling sleep-wake behavior.SIGNIFICANCE STATEMENT Sleep-wake cycles are regulated by the alternate activation of sleep- and wake-promoting neurons. Whether and how astrocytes can regulate this reciprocal neuronal activity are unclear. Here we report that, within the lateral hypothalamus, where functionally opposite wake-promoting orexin neurons and sleep-promoting melanin-concentrating hormone neurons codistribute, the glutamate transporter GLT1, mainly present on astrocytes, distinctly modulates excitatory transmission in a cell-type-specific manner and according to sleep history. Specifically, GLT1 is reduced around the somata of orexin neurons while increased around melanin-concentrating hormone neurons following sleep deprivation, resulting in different forms of synaptic plasticity. Thus, astrocytes can fine-tune the excitability of functionally discrete neurons via glutamate transport, which may represent novel regulatory mechanisms for sleep.
Collapse
|
13
|
Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. J Neurosci 2018; 38:1588-1599. [PMID: 29311142 DOI: 10.1523/jneurosci.1925-17.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/04/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022] Open
Abstract
Orexin (also known as hypocretin) neurons are considered a key component of the ascending arousal system. They are active during wakefulness, at which time they drive and maintain arousal, and are silent during sleep. Their activity is controlled by long-range inputs from many sources, as well as by more short-range inputs, including from presumptive GABAergic neurons in the lateral hypothalamus/perifornical region (LH/PF). To characterize local GABAergic input to orexin neurons, we used channelrhodopsin-2-assisted circuit mapping in brain slices. We expressed channelrhodopsin-2 in GABAergic neurons (Vgat+) in the LH/PF and recorded from genetically identified surrounding orexin neurons (LH/PFVgat → Orx). We performed all experiments in mice of either sex. Photostimulation of LH/PF GABAergic neurons inhibited the firing of orexin neurons through the release of GABA, evoking GABAA-mediated IPSCs in orexin neurons. These photo-evoked IPSCs were maintained in the presence of TTX, indicating direct connectivity. Carbachol inhibited LH/PFVgat → Orx input through muscarinic receptors. By contrast, application of orexin was without effect on LH/PFVgat → Orx input, whereas dynorphin, another peptide produced by orexin neurons, inhibited LH/PFVgat → Orx input through κ-opioid receptors. Our results demonstrate that orexin neurons are under inhibitory control by local GABAergic neurons and that this input is depressed by cholinergic signaling, unaffected by orexin and inhibited by dynorphin. We propose that local release of dynorphin may, via collaterals, provides a positive feedback to orexin neurons and that, during wakefulness, orexin neurons may be disinhibited by acetylcholine and by their own release of dynorphin.SIGNIFICANCE STATEMENT The lateral hypothalamus contains important wake-promoting cell populations, including orexin-producing neurons. Intermingled with the orexin neurons, there are other cell populations that selectively discharge during nonrapid eye movement or rapid eye movement sleep. Some of these sleep-active neurons release GABA and are thought to inhibit wake-active neurons during rapid eye movement and nonrapid eye movement sleep. However, this hypothesis had not been tested. Here we show that orexin neurons are inhibited by a local GABAergic input. We propose that this local GABAergic input inhibits orexin neurons during sleep but that, during wakefulness, this input is depressed, possibly through cholinergically mediated disinhibition and/or by release of dynorphin from orexin neurons themselves.
Collapse
|
14
|
M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina. J Neurosci 2017; 36:7184-97. [PMID: 27383593 DOI: 10.1523/jneurosci.3500-15.2016] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 05/26/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs, with five subtypes named M1-M5) are a unique subclass of RGCs with axons that project directly to many brain nuclei involved in non-image-forming functions such as circadian photoentrainment and the pupillary light reflex. Recent evidence suggests that melanopsin-based signals also influence image-forming visual function, including light adaptation, but the mechanisms involved are unclear. Intriguingly, a small population of M1 ipRGCs have intraretinal axon collaterals that project toward the outer retina. Using genetic mouse models, we provide three lines of evidence showing that these axon collaterals make connections with upstream dopaminergic amacrine cells (DACs): (1) ipRGC signaling to DACs is blocked by tetrodotoxin both in vitro and in vivo, indicating that ipRGC-to-DAC transmission requires voltage-gated Na(+) channels; (2) this transmission is partly dependent on N-type Ca(2+) channels, which are possibly expressed in the axon collateral terminals of ipRGCs; and (3) fluorescence microscopy reveals that ipRGC axon collaterals make putative presynaptic contact with DACs. We further demonstrate that elimination of M1 ipRGCs attenuates light adaptation, as evidenced by an impaired electroretinogram b-wave from cones, whereas a dopamine receptor agonist can potentiate the cone-driven b-wave of retinas lacking M1 ipRGCs. Together, the results strongly suggest that ipRGCs transmit luminance signals retrogradely to the outer retina through the dopaminergic system and in turn influence retinal light adaptation. SIGNIFICANCE STATEMENT Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) comprise a third class of retinal photoreceptors that are known to mediate physiological responses such as circadian photoentrainment. However, investigation into whether and how ipRGCs contribute to vision has just begun. Here, we provide convergent anatomical and physiological evidence that axon collaterals of ipRGCs constitute a centrifugal pathway to DACs, conveying melanopsin-based signals from the innermost retina to the outer retina. We further demonstrate that retrograde signals likely influence visual processing because elimination of axon collateral-bearing ipRGCs impairs light adaptation by limiting dopamine-dependent facilitation of the cone pathway. Our findings strongly support the hypothesis that retrograde melanopsin-based signaling influences visual function locally within the retina, a notion that refutes the dogma that RGCs only provide physiological signals to the brain.
Collapse
|
15
|
DeKorver NW, Chaudoin TR, Bonasera SJ. Toll-Like Receptor 2 Is a Regulator of Circadian Active and Inactive State Consolidation in C57BL/6 Mice. Front Aging Neurosci 2017; 9:219. [PMID: 28769782 PMCID: PMC5510442 DOI: 10.3389/fnagi.2017.00219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/23/2017] [Indexed: 12/18/2022] Open
Abstract
Regulatory systems required to maintain behavioral arousal remain incompletely understood. We describe a previously unappreciated role that toll-like receptor 2 (Tlr2, a membrane bound pattern recognition receptor that recognizes specific bacterial, viral, and fungal peptides), contributes toward regulation of behavioral arousal. In 4–4.5 month old mice with constitutive loss of Tlr2 function (Tlr2−/− mice), we note a marked consolidation in the circadian pattern of both active and inactive states. Specifically, Tlr2−/− mice demonstrated significantly fewer but longer duration active states during the circadian dark cycle, and significantly fewer but longer duration inactive states during the circadian light cycle. Tlr2−/− mice also consumed less food and water, and moved less during the circadian light cycle. Analysis of circadian rhythms further suggested that Tlr2−/− mice demonstrated less day-to-day variability in feeding, drinking, and movement behaviors. Reevaluation of this same mouse cohort at age 8–8.5 months revealed a clear blunting of these differences. However, Tlr2−/− mice were still noted to have fewer short-duration active states during the circadian dark cycle, and continued to demonstrate significantly less day-to-day variability in feeding, drinking, and movement behaviors. These results suggest that Tlr2 function may have a role in promoting transitions between active and inactive states. Prior studies have demonstrated that Tlr2 regulates sickness behaviors including hypophagia, hyperthermia, and decreased activity. Our work suggests that Tlr2 function also evokes behavioral fragmentation, another aspect of sickness behavior and a clinically significant problem of older adults.
Collapse
Affiliation(s)
- Nicholas W DeKorver
- Division of Geriatrics, Department of Internal Medicine, Durham Research Center II, University of Nebraska Medical CenterOmaha, NE, United States
| | - Tammy R Chaudoin
- Division of Geriatrics, Department of Internal Medicine, Durham Research Center II, University of Nebraska Medical CenterOmaha, NE, United States
| | - Stephen J Bonasera
- Division of Geriatrics, Department of Internal Medicine, Durham Research Center II, University of Nebraska Medical CenterOmaha, NE, United States
| |
Collapse
|
16
|
The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization. Brain Struct Funct 2017; 222:3847-3859. [PMID: 28669028 DOI: 10.1007/s00429-017-1466-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 06/20/2017] [Indexed: 02/07/2023]
Abstract
Orexin (OX)/hypocretin-containing neurons are main regulators of wakefulness stability, arousal, and energy homeostasis. Their activity varies in relation to the animal's behavioral state. We here tested whether such variation is subserved by synaptic plasticity phenomena in basal conditions. Mice were sacrificed during day or night, at times when sleep or wake, respectively, predominates, as assessed by electroencephalography in matched mice. Triple immunofluorescence was used to visualize OX-A perikarya and varicosities containing the vesicular glutamate transporter (VGluT)2 or the vesicular GABA transporter (VGAT) combined with synaptophysin (Syn) as a presynaptic marker. Appositions on OX-A+ somata were quantitatively analyzed in pairs of sections in epifluorescence and confocal microscopy. The combined total number of glutamatergic (Syn+/VGluT2+) and GABAergic (Syn+/VGAT+) varicosities apposed to OX-A somata was similar during day and night. However, glutamatergic varicosities were significantly more numerous at night, whereas GABAergic varicosities prevailed in the day. Triple immunofluorescence in confocal microscopy was employed to visualize synapse scaffold proteins as postsynaptic markers and confirmed the nighttime prevalence of VGluT2+ together with postsynaptic density protein 95+ excitatory contacts, and daytime prevalence of VGAT+ together with gephyrin+ inhibitory contacts, while also showing that they formed synapses on OX-A+ cell bodies. The findings reveal a daily reorganization of axosomatic synapses in orexinergic neurons, with a switch from a prevalence of excitatory innervation at a time corresponding to wakefulness to a prevalence of inhibitory innervations in the antiphase, at a time corresponding to sleep. This reorganization could represent a key mechanism of plasticity of the orexinergic network in basal conditions.
Collapse
|
17
|
Agostinelli LJ, Ferrari LL, Mahoney CE, Mochizuki T, Lowell BB, Arrigoni E, Scammell TE. Descending projections from the basal forebrain to the orexin neurons in mice. J Comp Neurol 2017; 525:1668-1684. [PMID: 27997037 PMCID: PMC5806522 DOI: 10.1002/cne.24158] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 12/23/2022]
Abstract
The orexin (hypocretin) neurons play an essential role in promoting arousal, and loss of the orexin neurons results in narcolepsy, a condition characterized by chronic sleepiness and cataplexy. The orexin neurons excite wake-promoting neurons in the basal forebrain (BF), and a reciprocal projection from the BF back to the orexin neurons may help promote arousal and motivation. The BF contains at least three different cell types (cholinergic, glutamatergic, and γ-aminobutyric acid (GABA)ergic neurons) across its different regions (medial septum, diagonal band, magnocellular preoptic area, and substantia innominata). Given the neurochemical and anatomical heterogeneity of the BF, we mapped the pattern of BF projections to the orexin neurons across multiple BF regions and neuronal types. We performed conditional anterograde tracing using mice that express Cre recombinase only in neurons producing acetylcholine, glutamate, or GABA. We found that the orexin neurons are heavily apposed by axon terminals of glutamatergic and GABAergic neurons of the substantia innominata (SI) and magnocellular preoptic area, but there was no innervation by the cholinergic neurons. Channelrhodopsin-assisted circuit mapping (CRACM) demonstrated that glutamatergic SI neurons frequently form functional synapses with the orexin neurons, but, surprisingly, functional synapses from SI GABAergic neurons were rare. Considering their strong reciprocal connections, BF and orexin neurons likely work in concert to promote arousal, motivation, and other behaviors. J. Comp. Neurol. 525:1668-1684, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lindsay J Agostinelli
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Loris L Ferrari
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Takatoshi Mochizuki
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Bradford B Lowell
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Matsuno T, Kiyokage E, Toida K. Synaptic distribution of individually labeled mitral cells in the external plexiform layer of the mouse olfactory bulb. J Comp Neurol 2017; 525:1633-1648. [PMID: 27864926 DOI: 10.1002/cne.24148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/28/2016] [Accepted: 10/11/2016] [Indexed: 11/07/2022]
Abstract
Mitral cells are the major projection neurons of the olfactory bulb. They receive olfactory inputs, regulate information, and project their axons to the olfactory cortex. To understand output regulation of mitral cells better, we established a method to visualize individual projection neurons and quantitatively examined their synaptic distribution. Individual mitral cells were labeled by viral injection, reconstructed three dimensionally with light microscopy, and serial sectioned for electron microscopy. Synaptic distributions were analyzed in electron microscopically reconstructed cell bodies, two regions of secondary dendrites (near the somata and ∼200 μm from the somata), and primary dendrites. The ratio of presynaptic sites (60%) and reciprocal synapses (60% presynaptic and 80% postsynaptic sites) were similar in each region. Characteristically, primary dendrite synapses were distributed mainly within the inner half of the external plexiform layer (EPL). For comparison, tufted cells were also examined, and the synaptic distribution in two secondary dendrite regions, which corresponded with mitral cells, was analyzed. The results showed that the ratio of reciprocal synapses (80% presynaptic and 90% postsynaptic sites) was greater than in mitral cells. The distribution of symmetrical synapses was also analyzed with synaptic and neuronal markers, such as parvalbumin, vesicular gamma-aminobutyric acid transporter, and gephyrin. Parvalbumin-expressing neurons tended to form synapses on secondary dendrites near the somata and were more uniformly distributed on primary dendrites of mitral cells. These results indicate that local mitral cell synaptic circuits are formed in accordance with their functional roles and restricted to the inner half of the EPL. J. Comp. Neurol. 525:1633-1648, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Takeshi Matsuno
- Department of Anatomy, Kawasaki Medical School, Okayama, Japan
| | - Emi Kiyokage
- Department of Anatomy, Kawasaki Medical School, Okayama, Japan
| | - Kazunori Toida
- Department of Anatomy, Kawasaki Medical School, Okayama, Japan.,Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| |
Collapse
|
19
|
Villano I, Messina A, Valenzano A, Moscatelli F, Esposito T, Monda V, Esposito M, Precenzano F, Carotenuto M, Viggiano A, Chieffi S, Cibelli G, Monda M, Messina G. Basal Forebrain Cholinergic System and Orexin Neurons: Effects on Attention. Front Behav Neurosci 2017; 11:10. [PMID: 28197081 PMCID: PMC5281635 DOI: 10.3389/fnbeh.2017.00010] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 01/12/2017] [Indexed: 12/27/2022] Open
Abstract
The basal forebrain (BF) cholinergic system has an important role in attentive functions. The cholinergic system can be activated by different inputs, and in particular, by orexin neurons, whose cell bodies are located within the postero-lateral hypothalamus. Recently the orexin-producing neurons have been proved to promote arousal and attention through their projections to the BF. The aim of this review article is to summarize the evidence showing that the orexin system contributes to attentional processing by an increase in cortical acetylcholine release and in cortical neurons activity.
Collapse
Affiliation(s)
- Ines Villano
- Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of FoggiaFoggia, Italy; Department of Motor, Human and Health Science, University of Rome, "Foro Italico"Rome, Italy
| | - Teresa Esposito
- Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Vincenzo Monda
- Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Maria Esposito
- Department of Mental Health, Physical and Preventive Medicine, Second University of Naples Naples, Italy
| | - Francesco Precenzano
- Department of Mental Health, Physical and Preventive Medicine, Second University of Naples Naples, Italy
| | - Marco Carotenuto
- Department of Mental Health, Physical and Preventive Medicine, Second University of NaplesNaples, Italy; Neapolitan Brain Group (NBG), Clinic of Child and Adolescent Neuropsychiatry, Department of Mental, Physical Health and Preventive Medicine, Second University of NaplesNaples, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno Salerno, Italy
| | - Sergio Chieffi
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia Foggia, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Giovanni Messina
- Department of Experimental Medicine, Second University of NaplesNaples, Italy; Department of Clinical and Experimental Medicine, University of FoggiaFoggia, Italy
| |
Collapse
|
20
|
Barbier M, Houdayer C, Franchi G, Poncet F, Risold PY. Melanin-concentrating hormone axons, but not orexin or tyrosine hydroxylase axons, innervate the claustrum in the rat: An immunohistochemical study. J Comp Neurol 2016; 525:1489-1498. [PMID: 27580962 DOI: 10.1002/cne.24110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/12/2016] [Accepted: 08/24/2016] [Indexed: 01/16/2023]
Abstract
The claustrum is a small, elongated nucleus close to the external capsule and deep in the insular cortex. In rodents, this nucleus is characterized by a dense cluster of parvalbumin labeling. The claustrum is connected with the cerebral cortex. It does not project to the brainstem, but brainstem structures can influence this nucleus. To identify some specific projections from the lateral hypothalamus and midbrain, we analyzed the distribution of projections labeled with antibodies against tyrosine hydroxylase (TH), melanin-concentrating hormone (MCH), and hypocretin (Hcrt) in the region of the claustrum. The claustrum contains a significant projection by MCH axons, whereas it is devoid of TH projections. Unlike TH and MCH axons, Hcrt axons are scattered throughout the region. This observation is discussed mainly with regard to the role of the claustrum in cognitive functions and that of MCH in REM sleep. J. Comp. Neurol. 525:1489-1498, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie Barbier
- EA3922, UFR Sciences Médicales et Pharmaceutiques, IFR IBCT, Université de Bourgogne-Franche-Comté, 25030, Besançon, France
| | - Christophe Houdayer
- EA3922, UFR Sciences Médicales et Pharmaceutiques, IFR IBCT, Université de Bourgogne-Franche-Comté, 25030, Besançon, France
| | - Gabrielle Franchi
- EA3922, UFR Sciences Médicales et Pharmaceutiques, IFR IBCT, Université de Bourgogne-Franche-Comté, 25030, Besançon, France
| | - Fabrice Poncet
- EA3922, UFR Sciences Médicales et Pharmaceutiques, IFR IBCT, Université de Bourgogne-Franche-Comté, 25030, Besançon, France
| | - Pierre-Yves Risold
- EA3922, UFR Sciences Médicales et Pharmaceutiques, IFR IBCT, Université de Bourgogne-Franche-Comté, 25030, Besançon, France
| |
Collapse
|
21
|
Yokota S, Oka T, Asano H, Yasui Y. Orexinergic fibers are in contact with Kölliker-Fuse nucleus neurons projecting to the respiration-related nuclei in the medulla oblongata and spinal cord of the rat. Brain Res 2016; 1648:512-523. [PMID: 27544422 DOI: 10.1016/j.brainres.2016.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/02/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023]
Abstract
The neural pathways underlying the respiratory variation dependent on vigilance states remain unsettled. In the present study, we examined the orexinergic innervation of Kölliker-Fuse nucleus (KFN) neurons sending their axons to the rostral ventral respiratory group (rVRG) and phrenic nucleus (PhN) as well as to the hypoglossal nucleus (HGN) by using a combined retrograde tracing and immunohistochemistry. After injection of cholera toxin B subunit (CTb) into the KFN, CTb-labeled neurons that are also immunoreactive for orexin (ORX) were found prominently in the perifornical and medial regions and additionally in the lateral region of the hypothalamic ORX field. After injection of fluorogold (FG) into the rVRG, PhN or HGN, we found an overlapping distribution of ORX-immunoreactive axon terminals and FG-labeled neurons in the KFN. Within the neuropil of the KFN, asymmetrical synaptic contacts were made between these terminals and neurons. We further demonstrated that many neurons labeled with FG injected into the rVRG, PhN, or HGN are immunoreactive for ORX receptor 2. Present data suggest that rVRG-, PhN- and HGN-projecting KFN neurons may be under the excitatory influence of the ORXergic neurons for the state-dependent regulation of respiration.
Collapse
Affiliation(s)
- Shigefumi Yokota
- Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Tatsuro Oka
- Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Hirohiko Asano
- Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Yukihiko Yasui
- Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo 693-8501, Japan.
| |
Collapse
|
22
|
Orexin Neurons Respond Differentially to Auditory Cues Associated with Appetitive versus Aversive Outcomes. J Neurosci 2016; 36:1747-57. [PMID: 26843654 DOI: 10.1523/jneurosci.3903-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Orexin (Orx) neurons are known to be involved in the promotion and maintenance of waking because they discharge in association with cortical activation and muscle tone during waking and because, in their absence, waking with muscle tone cannot be maintained and narcolepsy with cataplexy ensues. Whether Orx neurons discharge during waking in association with particular conditions, notably with appetitive versus aversive stimuli or positive versus negative emotions, is debated and considered important in understanding their role in supporting particular waking behaviors. Here, we used the technique of juxtacellular recording and labeling in head-fixed rats to characterize the discharge of Orx neurons during the performance of an associative discrimination task with auditory cues for appetitive versus aversive outcomes. Of 57 active, recorded, and neurobiotin-labeled neurons in the lateral hypothalamus, 11 were immunohistochemically identified as Orx-positive (Orx(+)), whereas none were identified as melanin-concentrating hormone-positive. Orx(+) neurons discharged at significantly higher rates during the tone associated with sucrose than during the tone associated with quinine delivered upon licking. They also discharged at high rates after the tone associated with sucrose. Across periods and outcomes, their discharge was positively correlated with EEG gamma activity and EMG activity, which is indicative of cortical activation and behavioral arousal. These results suggest that Orx neurons discharge in a manner characteristic of reward neurons yet also characteristic of arousal neurons. Accordingly, the Orx neurons may respond to and participate in reward processes while modulating cortical activity and muscle tone to promote and maintain arousal along with learned adaptive behavioral responses. SIGNIFICANCE STATEMENT Orexin neurons play a critical role in promoting and maintaining a waking state because, in their absence, narcolepsy with cataplexy ensues. Known to discharge during waking and not during sleep, they have also been proposed to be selectively active during appetitive behaviors. Here, we recorded and labeled neurons in rats to determine the discharge of immunohistochemically identified orexin neurons during performance of an associative discrimination task. Orexin neurons responded differentially to auditory cues associated with appetitive sucrose versus aversive quinine, indicating that they behave like reward neurons. However, correlated discharge with cortical and muscle activity indicates that they also behave like arousal neurons and can thus promote cortical activation with behavioral arousal and muscle tone during adaptive waking behaviors.
Collapse
|
23
|
Dai YWE, Lee YH, Chen JYS, Lin YK, Hwang LL. Expression of the M3 Muscarinic Receptor on Orexin Neurons that Project to the Rostral Ventrolateral Medulla. Anat Rec (Hoboken) 2016; 299:660-8. [PMID: 26910770 DOI: 10.1002/ar.23329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 11/11/2022]
Abstract
Activation of central cholinergic receptors causes a pressor response in rats, and the hypothalamus is important for this response. Projections from hypothalamic orexin neurons to the rostral ventrolateral medulla (RVLM) are involved in sympatho-excitation of the cardiovascular system. A small population of orexin neurons is regulated by cholinergic inputs through M3 muscarinic acetylcholine receptor (M3 R). To elucidate whether the M3 R on orexin neurons is involved in cardiosympathetic regulation through the RVLM, we examined the presence of the M3 R on retrograde-labeled RVLM-projecting orexin neurons. The retrograde tracer was unilaterally injected into the RVLM. Within the hypothalamus, retrograde-labeled neurons were located predominantly ipsilateral to the injection side. In the anterior hypothalamus (-1.5 to -2.3 mm to the bregma), retrograde-labeled neurons were densely distributed in the paraventricular nuclei and scattered in the retrochiasmatic area. At -2.3 to -3.5 mm from the bregma, labeled neurons were located in the regions where orexin neurons were situated, that is, the tuberal lateral hypothalamic area, perifornical area, and dorsomedial nuclei. Very few retrograde-labeled neurons were observed in the hypothalamus at -3.5 to -4.5 mm from the bregma. About 19.5% ± 1.6% of RVLM-projecting neurons in the tuberal hypothalamus were orexinergic. The M3 R was present on 18.7% ± 3.0% of RVLM-projecting orexin neurons. Injection of a muscarinic agonist, oxotremorine, in the perifornical area resulted in a pressor response, which was attenuated by a pretreatment of atropine. We conclude that cholinergic inputs to orexin neurons may be involved in cardiosympathetic regulation through the M3 R on the orexin neurons that directly project to the RVLM.
Collapse
Affiliation(s)
- Yu-Wen E Dai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hsien Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jennifer Y S Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yen-Kuang Lin
- Biostatistic Center, Taipei Medical University, Taipei, Taiwan
| | - Ling-Ling Hwang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
24
|
Davoudi M, Azizi H, Mirnajafi-Zadeh J, Semnanian S. The blockade of GABAA receptors attenuates the inhibitory effect of orexin type 1 receptors antagonist on morphine withdrawal syndrome in rats. Neurosci Lett 2016; 617:201-6. [DOI: 10.1016/j.neulet.2016.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 11/25/2022]
|
25
|
Dell LA, Karlsson KA, Patzke N, Spocter MA, Siegel JM, Manger PR. Organization of the sleep-related neural systems in the brain of the minke whale (Balaenoptera acutorostrata). J Comp Neurol 2015; 524:2018-35. [PMID: 26588800 DOI: 10.1002/cne.23931] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022]
Abstract
The current study analyzed the nuclear organization of the neural systems related to the control and regulation of sleep and wake in the basal forebrain, diencephalon, midbrain, and pons of the minke whale, a mysticete cetacean. While odontocete cetaceans sleep in an unusual manner, with unihemispheric slow wave sleep (USWS) and suppressed REM sleep, it is unclear whether the mysticete whales show a similar sleep pattern. Previously, we detailed a range of features in the odontocete brain that appear to be related to odontocete-type sleep, and here present our analysis of these features in the minke whale brain. All neural elements involved in sleep regulation and control found in bihemispheric sleeping mammals and the harbor porpoise were present in the minke whale, with no specific nuclei being absent, and no novel nuclei being present. This qualitative similarity relates to the cholinergic, noradrenergic, serotonergic and orexinergic systems, and the GABAergic elements of these nuclei. Quantitative analysis revealed that the numbers of pontine cholinergic (274,242) and noradrenergic (203,686) neurons, and hypothalamic orexinergic neurons (277,604), are markedly higher than other large-brained bihemispheric sleeping mammals. Small telencephalic commissures (anterior, corpus callosum, and hippocampal), an enlarged posterior commissure, supernumerary pontine cholinergic and noradrenergic cells, and an enlarged peripheral division of the dorsal raphe nuclear complex of the minke whale, all indicate that the suite of neural characteristics thought to be involved in the control of USWS and the suppression of REM in the odontocete cetaceans are present in the minke whale. J. Comp. Neurol. 524:2018-2035, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leigh-Anne Dell
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Karl Ae Karlsson
- Biomedical Engineering, Reykjavik University, Reykjavik, Iceland
| | - Nina Patzke
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Muhammad A Spocter
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Department of Anatomy, Des Moines University, Des Moines, Iowa, USA
| | - Jerome M Siegel
- Department of Psychiatry, University of California, Los Angeles, Neurobiology Research 151A3, Sepulveda VAMC, North Hills, California, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
26
|
Basal forebrain control of wakefulness and cortical rhythms. Nat Commun 2015; 6:8744. [PMID: 26524973 PMCID: PMC4659943 DOI: 10.1038/ncomms9744] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/25/2015] [Indexed: 02/07/2023] Open
Abstract
Wakefulness, along with fast cortical rhythms and associated cognition, depend on the basal forebrain (BF). BF cholinergic cell loss in dementia and the sedative effect of anti-cholinergic drugs have long implicated these neurons as important for cognition and wakefulness. The BF also contains intermingled inhibitory GABAergic and excitatory glutamatergic cell groups whose exact neurobiological roles are unclear. Here we show that genetically targeted chemogenetic activation of BF cholinergic or glutamatergic neurons in behaving mice produced significant effects on state consolidation and/or the electroencephalogram but had no effect on total wake. Similar activation of BF GABAergic neurons produced sustained wakefulness and high-frequency cortical rhythms, whereas chemogenetic inhibition increased sleep. Our findings reveal a major contribution of BF GABAergic neurons to wakefulness and the fast cortical rhythms associated with cognition. These findings may be clinically applicable to manipulations aimed at increasing forebrain activation in dementia and the minimally conscious state. The mammalian basal forebrain controls cortical rhythm and wake-sleep. Anaclet et al. use genetically-targeted chemogenetic systems to activate or inhibit cholinergic, glutamatergic or GABAergic neurons in this region, and reveal their contributions to behavioral and electrocortical arousal in behaving mice.
Collapse
|
27
|
Gao XB, Hermes G. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals. Front Syst Neurosci 2015; 9:142. [PMID: 26539086 PMCID: PMC4612503 DOI: 10.3389/fnsys.2015.00142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022] Open
Abstract
The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH) and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc.) and long-term behavioral changes (such as reward seeking and addiction, stress response, etc.) in animals. The most recent evidence suggests that the hypocretin system undergoes substantial plastic changes in response to both daily fluctuations (such as food intake and sleep-wake regulation) and long-term changes (such as cocaine seeking) in neuronal activity in the brain. The understanding of these changes in the hypocretin system is essential in addressing the role of the hypocretin system in normal physiological functions and pathological conditions in animals and humans. In this review, the evidence demonstrating that neural plasticity occurs in hypocretin-containing neurons in the Pf/LH will be presented and possible physiological, behavioral, and mental health implications of these findings will be discussed.
Collapse
Affiliation(s)
- Xiao-Bing Gao
- Section of Comparative Medicine, Yale University School of Medicine New Haven, CT, USA ; Program on Integrative Cell Signaling and Neurobiology of Metabolism (ICSNM), Yale University School of Medicine New Haven, CT, USA
| | - Gretchen Hermes
- Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
28
|
Pickard GE, So KF, Pu M. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells? Neurosci Biobehav Rev 2015; 57:118-31. [PMID: 26363667 PMCID: PMC4646079 DOI: 10.1016/j.neubiorev.2015.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 06/30/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Abstract
Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells.
Collapse
Affiliation(s)
- Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, 68583, United States; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, United States; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Department of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Ophthalmology, The University of Hong Kong, Hong Kong, China; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China; State Key Laboratory for Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| | - Mingliang Pu
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, China; Key Laboratory for Visual Impairment and Restoration (Ministry of Education), Peking University, Beijing, China.
| |
Collapse
|
29
|
Graebner AK, Iyer M, Carter ME. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015; 9:111. [PMID: 26300745 PMCID: PMC4523943 DOI: 10.3389/fnsys.2015.00111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 07/16/2015] [Indexed: 01/01/2023] Open
Abstract
A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt) neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP) can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT) can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools has greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections.
Collapse
Affiliation(s)
- Allison K Graebner
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Manasi Iyer
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Matthew E Carter
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| |
Collapse
|
30
|
Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Brain Struct Funct 2015; 221:2619-73. [PMID: 26159773 DOI: 10.1007/s00429-015-1062-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/07/2015] [Indexed: 02/04/2023]
Abstract
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA.
| | - Amanda R Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Toru Takahata
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA
| | | | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Linehan V, Trask RB, Briggs C, Rowe TM, Hirasawa M. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons. Eur J Neurosci 2015; 42:1976-83. [PMID: 26036709 DOI: 10.1111/ejn.12967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/28/2015] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours.
Collapse
Affiliation(s)
- Victoria Linehan
- Division of Biomedical Sciences, Memorial University, St. John's, Newfoundland, Canada, A1B3V6
| | - Robert B Trask
- Division of Biomedical Sciences, Memorial University, St. John's, Newfoundland, Canada, A1B3V6
| | - Chantalle Briggs
- Division of Biomedical Sciences, Memorial University, St. John's, Newfoundland, Canada, A1B3V6.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada, B3H4R2
| | - Todd M Rowe
- Division of Biomedical Sciences, Memorial University, St. John's, Newfoundland, Canada, A1B3V6
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Memorial University, St. John's, Newfoundland, Canada, A1B3V6
| |
Collapse
|
32
|
Bocian R, Kazmierska P, Kłos-Wojtczak P, Kowalczyk T, Konopacki J. Orexinergic theta rhythm in the rat hippocampal formation: In vitro and in vivo findings. Hippocampus 2015; 25:1393-406. [PMID: 25820995 DOI: 10.1002/hipo.22459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 02/02/2023]
Abstract
Previous in vivo data suggested that orexin neuropeptides (ORX(A) and ORX(B) ) synthetized in hypothalamic neurons were involved in the mechanism of generation of the hippocampal formation theta rhythm. Surprisingly, this suggestion has never been directly proved by experiments using intraseptal or intrahippocampal administration of orexins. In this study, involving the use of in vitro hippocampal formation slices and in vivo model of anesthetized rat, we provide the first convergent electropharmacological evidence that in the presence of both ORX(A) and ORX(B) the hippocampal formation neuronal network is capable of producing oscillations in the theta band. This effect of orexin peptides was antagonized by selective blockers of orexin receptors (OX1 R and OX2 R), SB 334867 and TCS OX2 29, respectively. These results provide evidence for a novel, orexinergic mechanism responsible for the production of theta rhythm in the hippocampal formation neuronal network.
Collapse
Affiliation(s)
- Renata Bocian
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Paulina Kazmierska
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Paulina Kłos-Wojtczak
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Jan Konopacki
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| |
Collapse
|
33
|
Reyes C, Fong AY, Milsom WK. Distribution and innervation of putative peripheral arterial chemoreceptors in the red-eared slider (Trachemys scripta elegans). J Comp Neurol 2015; 523:1399-418. [DOI: 10.1002/cne.23743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Catalina Reyes
- Department of Zoology; University of British Columbia; Vancouver British Columbia, Vancouver Canada V6T 1Z4
| | - Angelina Y. Fong
- Department of Physiology; University of Melbourne; Parkville Victoria 3010 Australia
| | - William K. Milsom
- Department of Zoology; University of British Columbia; Vancouver British Columbia, Vancouver Canada V6T 1Z4
| |
Collapse
|
34
|
Acetylcholine Acts through Nicotinic Receptors to Enhance the Firing Rate of a Subset of Hypocretin Neurons in the Mouse Hypothalamus through Distinct Presynaptic and Postsynaptic Mechanisms .. eNeuro 2015; 2. [PMID: 26322330 PMCID: PMC4551500 DOI: 10.1523/eneuro.0052-14.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons expressing the neuropeptide hypocretin regulate many behavioral functions, including sleep, motivation, and behaviors related to addiction. The ability of nicotine to stimulate nicotinic acetylcholine receptors (nAChRs) is essential for its addictive properties, but little is known about whether, and how, nicotine and the endogenous neurotransmitter acetylcholine affect hypocretin neurons. Hypocretin/orexin neurons regulate many behavioral functions, including addiction. Nicotine acts through nicotinic acetylcholine receptors (nAChRs) to alter firing rate of neurons throughout the brain, leading to addiction-related behaviors. While nAChRs are expressed in the hypothalamus and cholinergic fibers project to this structure, it is unclear how acetylcholine modulates the activity of hypocretin neurons. In this study, we stimulated hypocretin neurons in mouse brain slices with ACh in the presence of atropine to dissect presynaptic and postsynaptic modulation of these neurons through nAChRs. Approximately one-third of tested hypocretin neurons responded to pressure application of ACh (1 mM) with an increase in firing frequency. Stimulation of postsynaptic nAChRs with ACh or nicotine resulted in a highly variable inward current in approximately one-third of hypocretin neurons. In contrast, ACh or nicotine (1 µM) reliably decreased the frequency of miniature EPSCs (mEPSCs). Antagonism of nAChRs with mecamylamine also suppressed mEPSC frequency, suggesting that an endogenous, tonic activation of presynaptic nAChRs might be required for maintaining functional mEPSC frequency. Antagonism of heteromeric (α4β2) or homomeric (α7) nAChRs alone suppressed mEPSCs to a lesser extent. Finally, blocking internal calcium release reduced the frequency of mEPSCs, occluding the suppressive effect of presynaptic ACh. Taken together, these data provide a mechanism by which phasic ACh release enhances the firing of a subset of hypocretin neurons through postsynaptic nAChRs, but disrupts tonic, presynaptic nAChR-mediated glutamatergic inputs to the overall population of hypocretin neurons, potentially enhancing the signal-to-noise ratio during the response of the nAChR-positive subset of neurons.
Collapse
|
35
|
Kostin A, Siegel JM, Alam MN. Lack of hypocretin attenuates behavioral changes produced by glutamatergic activation of the perifornical-lateral hypothalamic area. Sleep 2014; 37:1011-20. [PMID: 24790280 DOI: 10.5665/sleep.3680] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES The hypocretins (HCRTs) are two hypothalamic peptides predominantly localized to neurons in the perifornical, dorsomedial, and lateral hypothalamic area (PF-LHA). Evidence suggests that HCRT signaling is critical for the promotion and stabilization of active-arousal and its loss or malfunction leads to symptoms of narcolepsy. In the PF-LHA, HCRT neurons are intermingled with glutamate-expressing neurons and also co-express glutamate. Evidence suggests that HCRT-glutamate interactions within the PF-LHA may play a critical role in maintaining behavioral arousal. However, the relative contributions of the glutamate and HCRT in sleep-wake regulation are not known. DESIGN We determined whether a lack of HCRT signaling in the prepro-orexin-knockout (HCRT-KO) mouse attenuates/compromises the wake-promoting ability of glutamatergic activation of the PF-LHA region. We used reverse microdialysis to deliver N-methyl-D-aspartate (NMDA) into the HCRT zone of the PF-LHA in HCRT-KO and wild-type (WT) mice to evaluate the contributions of glutamatergic vs. HCRT signaling in sleep-wake regulation. MEASUREMENTS AND RESULTS As compared to respective controls, local perfusion of NMDA into the PF-LHA, dose-dependently increased active-waking with concomitant reductions in nonREM and REM sleep in spontaneously sleeping WT as well as HCRT-KO mice. However, compared to WT, the NMDA-induced behavioral changes in HCRT-KO mice were significantly attenuated, as evidenced by the higher dose of NMDA needed and lower magnitude of changes induced in sleep-wake parameters. Although not observed in WT mice, the number of cataplectic events increased significantly during NMDA-induced behavioral arousal in HCRT-KO mice. CONCLUSIONS The findings of this study are consistent with a hypothesis that synergistic interactions between hypocretin and glutamatergic mechanisms within the perifornical, dorsomedial, and lateral hypothalamic area are critical for maintaining behavioral arousal, especially arousal involving elevated muscle tone.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA
| | - Jerome M Siegel
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA ; Department of Psychiatry and Brain Research Institute, University of California, Los Angeles, CA
| | - Md Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA ; Department of Medicine, School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
36
|
Jalewa J, Joshi A, McGinnity TM, Prasad G, Wong-Lin K, Hölscher C. Neural circuit interactions between the dorsal raphe nucleus and the lateral hypothalamus: an experimental and computational study. PLoS One 2014; 9:e88003. [PMID: 24516577 PMCID: PMC3916338 DOI: 10.1371/journal.pone.0088003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/02/2014] [Indexed: 12/22/2022] Open
Abstract
Orexinergic/hypocretinergic (Ox) neurotransmission plays an important role in regulating sleep, as well as in anxiety and depression, for which the serotonergic (5-HT) system is also involved in. However, little is known regarding the direct and indirect interactions between 5-HT in the dorsal raphe nucleus (DRN) and Ox neurons in the lateral hypothalamus (LHA). In this study, we report the additional presence of 5-HT1BR, 5-HT2AR, 5-HT2CR and fast ligand-gated 5-HT3AR subtypes on the Ox neurons of transgenic Ox-enhanced green fluorescent protein (Ox-EGFP) and wild type C57Bl/6 mice using single and double immunofluorescence (IF) staining, respectively, and quantify the colocalization for each 5-HT receptor subtype. We further reveal the presence of 5-HT3AR and 5-HT1AR on GABAergic neurons in LHA. We also identify NMDAR1, OX1R and OX2R on Ox neurons, but none on adjacent GABAergic neurons. This suggests a one-way relationship between LHA's GABAergic and Ox neurons, wherein GABAergic neurons exerts an inhibitory effect on Ox neurons under partial DRN's 5-HT control. We also show that Ox axonal projections receive glutamatergic (PSD-95 immunopositive) and GABAergic (Gephyrin immunopositive) inputs in the DRN. We consider these and other available findings into our computational model to explore possible effects of neural circuit connection types and timescales on the DRN-LHA system's dynamics. We find that if the connections from 5-HT to LHA's GABAergic neurons are weakly excitatory or inhibitory, the network exhibits slow oscillations; not observed when the connection is strongly excitatory. Furthermore, if Ox directly excites 5-HT neurons at a fast timescale, phasic Ox activation can lead to an increase in 5-HT activity; no significant effect with slower timescale. Overall, our experimental and computational approaches provide insights towards a more complete understanding of the complex relationship between 5-HT in the DRN and Ox in the LHA.
Collapse
Affiliation(s)
- Jaishree Jalewa
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Alok Joshi
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, Northern Ireland, United Kingdom
| | - T. Martin McGinnity
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, Northern Ireland, United Kingdom
| | - Girijesh Prasad
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, Northern Ireland, United Kingdom
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, Northern Ireland, United Kingdom
- * E-mail: (CH); (KW)
| | - Christian Hölscher
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
- * E-mail: (CH); (KW)
| |
Collapse
|
37
|
Moreno ML, Meza E, Ortega A, Caba M. The median preoptic nucleus exhibits circadian regulation and is involved in food anticipatory activity in rabbit pups. Chronobiol Int 2014; 31:515-22. [PMID: 24417519 DOI: 10.3109/07420528.2013.874354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Rabbit pups are a natural model to study food anticipatory activity (FAA). Recently, we reported that three areas in the forebrain - the organum vasculosum of lamina terminalis, median preoptic nucleus (MnPO) and medial preoptic area - exhibit activation during FAA. Here, we examined the PER1 protein profile of these three forebrain regions in both nursed and fasted subjects. We found robust PER1 oscillations in the MnPO in nursed subjects, with high PER1 levels during FAA that persisted in fasted subjects. In conclusion, our data indicate that periodic nursing is a strong signal for PER1 oscillations in MnPO and future experiments are warranted to explore the specific role of this area in FAA.
Collapse
Affiliation(s)
- María Luisa Moreno
- Centro de Investigaciones Biomédicas, Universidad Veracruzana , Xalapa, Veracruz , Mexico
| | | | | | | |
Collapse
|
38
|
Moreno ML, Meza E, Morgado E, Juárez C, Ramos-Ligonio A, Ortega A, Caba M. Activation of organum vasculosum of lamina terminalis, median preoptic nucleus, and medial preoptic area in anticipation of nursing in rabbit pups. Chronobiol Int 2013; 30:1272-82. [PMID: 24112031 DOI: 10.3109/07420528.2013.823980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rhythmic feeding in rabbit pups is a natural model to study food entrainment because, similar to rodents under a schedule of food restriction, these animals show food-anticipatory activity (FAA) prior to daily nursing. In rodents, several brain systems, including the orexinergic system, shift their activity to the restricted feeding schedule, and remain active when subjects are hungry. As the lamina terminalis and regions of the preoptic area participate in the control of behavioral arousal, it was hypothesized that these brain regions are also activated during FAA. Thus, the effects of daily milk ingestion on FOS protein expression in the organum vasculosum of lamina terminalis (OVLT), median preoptic nucleus (MnPO), and medial preoptic area (MPOA) were examined using immunohistochemistry before and after scheduled time of nursing in nursed and fasted subjects. Additionally, FOS expression was explored in orexin (ORX) cells in the lateral hypothalamic area and in the supraoptic nucleus (SON) because of their involvement in arousal and fluid ingestion, respectively. Pups were entrained by daily nursing, as indicated by a significant increase in locomotor behavior before scheduled time of nursing in both nursed and fasted subjects. FOS was significantly higher in the OVLT, MnPO, and MPOA at the time of nursing, and decreased 8 h later in nursed pups. In fasted subjects, this effect persisted in the OVLT, whereas in the MnPO and MPOA, values did not drop at 8 h later, but remained at the same level or higher than those at the time of scheduled nursing. In addition, FOS was significantly higher in ORX cells during FAA in nursed pups in comparison with 8 h later, but in fasted subjects it remained high during most fasting time points. Additionally, OVLT, SON, and ORX cells were activated 1.5 h after nursing. We conclude that the OVLT, MnPO, and MPOA, but not SON, may participate in FAA, as they show activation before suckling of periodic milk ingestion, and that sustained activation of the OVLT, MnPO, and MPOA by fasting may contribute to the high arousal state associated with food deprivation. In agreement with this, ORX cells also remain active after expected nursing, which is consistent with reports in other species.
Collapse
Affiliation(s)
- María Luisa Moreno
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa , Veracruz , México
| | | | | | | | | | | | | |
Collapse
|
39
|
Deurveilher S, Ryan N, Burns J, Semba K. Social and environmental contexts modulate sleep deprivation-induced c-Fos activation in rats. Behav Brain Res 2013; 256:238-49. [PMID: 23973763 DOI: 10.1016/j.bbr.2013.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 12/28/2022]
Abstract
People often sleep deprive themselves voluntarily for social and lifestyle reasons. Animals also appear to stay awake longer as a result of their natural curiosity to explore novel environments and interact socially with conspecifics. Although multiple arousal systems in the brain are known to act jointly to promote and maintain wakefulness, it remains unclear whether these systems are similarly engaged during voluntary vs. forced wakefulness. Using c-Fos immunohistochemistry, we compared neuronal responses in rats deprived of sleep for 2 h by gentle sensory stimulation, exploration under social isolation, or exploration with social interaction, and rats under undisturbed control conditions. In many arousal, limbic, and autonomic nuclei examined (e.g., anterior cingulate cortex and locus coeruleus), the two sleep deprivation procedures involving exploration were similarly effective, and both were more effective than sleep deprivation with sensory stimulation, in increasing the number of c-Fos immunoreactive neurons. However, some nuclei (e.g., paraventricular hypothalamic nucleus and select amygdala nuclei) were more responsive to exploration with social interaction, while others (e.g., histaminergic tuberomammillary nucleus) responded more strongly to exploration in social isolation. In the rostral basal forebrain, cholinergic and GABAergic neurons responded preferentially to exploration with social interaction, whereas resident neurons in general responded most strongly to exploration without social interaction. These results indicate that voluntary exploration with/without social interaction is more effective than forced sleep deprivation with gentle sensory stimulation for inducing c-Fos in arousal and limbic/autonomic brain regions, and suggest that these nuclei participate in different aspects of arousal during sustained voluntary wakefulness.
Collapse
Affiliation(s)
- Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
40
|
Henny P, Brown MTC, Micklem BR, Magill PJ, Bolam JP. Stereological and ultrastructural quantification of the afferent synaptome of individual neurons. Brain Struct Funct 2013; 219:631-40. [PMID: 23479177 PMCID: PMC3933745 DOI: 10.1007/s00429-013-0523-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 02/08/2013] [Indexed: 02/07/2023]
Abstract
Determining the number and placement of synaptic inputs along the distinct plasma membrane domains of neurons is essential for explaining the basis of neuronal activity and function. We detail a strategy that combines juxtacellular labeling, neuronal reconstructions and stereological sampling of inputs at the ultrastructural level to define key elements of the afferent ‘synaptome’ of a given neuron. This approach provides unbiased estimates of the total number and somato-dendritic distribution of synapses made with individual neurons. These organizational properties can be related to the activity of the same neurons previously recorded in vivo, for direct structure–function correlations at the single-cell level. The approach also provides the quantitative data required to develop biologically realistic models that simulate and predict neuronal activity and function.
Collapse
Affiliation(s)
- Pablo Henny
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3TH, UK,
| | | | | | | | | |
Collapse
|
41
|
Fitting S, Ignatowska-Jankowska BM, Bull C, Skoff RP, Lichtman AH, Wise LE, Fox MA, Su J, Medina AE, Krahe TE, Knapp PE, Guido W, Hauser KF. Synaptic dysfunction in the hippocampus accompanies learning and memory deficits in human immunodeficiency virus type-1 Tat transgenic mice. Biol Psychiatry 2013; 73:443-53. [PMID: 23218253 PMCID: PMC3570635 DOI: 10.1016/j.biopsych.2012.09.026] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) associated neurocognitive disorders (HAND), including memory dysfunction, continue to be a major clinical manifestation of HIV type-1 infection. Viral proteins released by infected glia are thought to be the principal triggers of inflammation and bystander neuronal injury and death, thereby driving key symptomatology of HAND. METHODS We used a glial fibrillary acidic protein-driven, doxycycline-inducible HIV type-1 transactivator of transcription (Tat) transgenic mouse model and examined structure-function relationships in hippocampal pyramidal cornu ammonis 1 (CA1) neurons using morphologic, electrophysiological (long-term potentiation [LTP]), and behavioral (Morris water maze, fear-conditioning) approaches. RESULTS Tat induction caused a variety of different inclusions in astrocytes characteristic of lysosomes, autophagic vacuoles, and lamellar bodies, which were typically present within distal cytoplasmic processes. In pyramidal CA1 neurons, Tat induction reduced the number of apical dendritic spines, while disrupting the distribution of synaptic proteins (synaptotagmin 2 and gephyrin) associated with inhibitory transmission but with minimal dendritic pathology and no evidence of pyramidal neuron death. Electrophysiological assessment of excitatory postsynaptic field potential at Schaffer collateral/commissural fiber-CA1 synapses showed near total suppression of LTP in mice expressing Tat. The loss in LTP coincided with disruptions in learning and memory. CONCLUSIONS Tat expression in the brain results in profound functional changes in synaptic physiology and in behavior that are accompanied by only modest structural changes and minimal pathology. Tat likely contributes to HAND by causing molecular changes that disrupt synaptic organization, with inhibitory presynaptic terminals containing synaptotagmin 2 appearing especially vulnerable.
Collapse
Affiliation(s)
- Sylvia Fitting
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, Virginia 23298, USA.
| | - Bogna M. Ignatowska-Jankowska
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Cecilia Bull
- Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Robert P. Skoff
- Department of Anatomy & Cell Biology, Wayne State University, School of Medicine, Detroit, MI 48202
| | - Aron H. Lichtman
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
,Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Laura E. Wise
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Michael A. Fox
- Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Jianmin Su
- Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Alexandre E. Medina
- Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Thomas E. Krahe
- Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Pamela E. Knapp
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
,Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
,Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - William Guido
- Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Kurt F. Hauser
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
,Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| |
Collapse
|
42
|
Becchetti A. Neuronal nicotinic receptors in sleep-related epilepsy: studies in integrative biology. ISRN BIOCHEMISTRY 2012; 2012:262941. [PMID: 25969754 PMCID: PMC4392997 DOI: 10.5402/2012/262941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/21/2012] [Indexed: 11/23/2022]
Abstract
Although Mendelian diseases are rare, when considered one by one, overall they constitute a significant social burden. Besides the medical aspects, they propose us one of the most general biological problems. Given the simplest physiological perturbation of an organism, that is, a single gene mutation, how do its effects percolate through the hierarchical biological levels to determine the pathogenesis? And how robust is the physiological system to this perturbation? To solve these problems, the study of genetic epilepsies caused by mutant ion channels presents special advantages, as it can exploit the full range of modern experimental methods. These allow to extend the functional analysis from single channels to whole brains. An instructive example is autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), which can be caused by mutations in neuronal nicotinic acetylcholine receptors. In vitro, such mutations often produce hyperfunctional receptors, at least in heterozygous condition. However, understanding how this leads to sleep-related frontal epilepsy is all but straightforward. Several available animal models are helping us to determine the effects of ADNFLE mutations on the mammalian brain. Because of the complexity of the cholinergic regulation in both developing and mature brains, several pathogenic mechanisms are possible, which also present different therapeutic implications.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
43
|
Pirooznia SK, Chiu K, Chan MT, Zimmerman JE, Elefant F. Epigenetic regulation of axonal growth of Drosophila pacemaker cells by histone acetyltransferase tip60 controls sleep. Genetics 2012; 192:1327-45. [PMID: 22982579 PMCID: PMC3512142 DOI: 10.1534/genetics.112.144667] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/02/2012] [Indexed: 11/18/2022] Open
Abstract
Tip60 is a histone acetyltransferase (HAT) enzyme that epigenetically regulates genes enriched for neuronal functions through interaction with the amyloid precursor protein (APP) intracellular domain. However, whether Tip60-mediated epigenetic dysregulation affects specific neuronal processes in vivo and contributes to neurodegeneration remains unclear. Here, we show that Tip60 HAT activity mediates axonal growth of the Drosophila pacemaker cells, termed "small ventrolateral neurons" (sLNvs), and their production of the neuropeptide pigment-dispersing factor (PDF) that functions to stabilize Drosophila sleep-wake cycles. Using genetic approaches, we show that loss of Tip60 HAT activity in the presence of the Alzheimer's disease-associated APP affects PDF expression and causes retraction of the sLNv synaptic arbor required for presynaptic release of PDF. Functional consequence of these effects is evidenced by disruption of the sleep-wake cycle in these flies. Notably, overexpression of Tip60 in conjunction with APP rescues these sleep-wake disturbances by inducing overelaboration of the sLNv synaptic terminals and increasing PDF levels, supporting a neuroprotective role for dTip60 in sLNv growth and function under APP-induced neurodegenerative conditions. Our findings reveal a novel mechanism for Tip60 mediated sleep-wake regulation via control of axonal growth and PDF levels within the sLNv-encompassing neural network and provide insight into epigenetic-based regulation of sleep disturbances observed in neurodegenerative diseases like Alzheimer's disease.
Collapse
Affiliation(s)
| | - Kellie Chiu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - May T. Chan
- Center for Sleep and Respiratory Neurobiology, University of Pennsylvania School of Medicine,Philadelphia, Pennsylvania 19104
| | - John E. Zimmerman
- Center for Sleep and Respiratory Neurobiology, University of Pennsylvania School of Medicine,Philadelphia, Pennsylvania 19104
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| |
Collapse
|
44
|
Stettner GM, Kubin L. Antagonism of orexin receptors in the posterior hypothalamus reduces hypoglossal and cardiorespiratory excitation from the perifornical hypothalamus. J Appl Physiol (1985) 2012; 114:119-30. [PMID: 23104701 DOI: 10.1152/japplphysiol.00965.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The perifornical (PF) region of the posterior hypothalamus promotes wakefulness and facilitates motor activity. In anesthetized rats, local disinhibition of PF neurons by GABA(A) receptor antagonists activates orexin (OX) neurons and elicits a systemic response, including increases of hypoglossal nerve activity (XIIa), respiratory rate, heart rate, and blood pressure. The increase of XIIa is mediated to hypoglossal (XII) motoneurons by pathways that do not require noradrenergic or serotonergic projections. We hypothesized that the pathway might include OX-dependent activation locally within the PF region or direct projections of OX neurons to the XII nucleus. Adult, male Sprague-Dawley rats were urethane anesthetized, vagotomized, paralyzed, and ventilated. Gabazine (GABA(A) receptor antagonist, 0.18 mM, 20 nl) was injected into the PF region, and ~2 h later, a second gabazine injection was performed preceded by injection of a dual OX1/2 receptor antagonist (almorexant; 90 mM) either into the XII nucleus (40-60 nl at 2-3 rostrocaudal levels; n = 6 rats), or into the PF region (40-60 nl; n = 6 rats). XIIa, respiratory rate, heart rate, and arterial blood pressure were analyzed for 70 min after each gabazine injection. The excitatory effects of PF gabazine on XIIa, respiratory, and heart rates were significantly reduced by up to 44-82% when gabazine injections were preceded by PF almorexant injections, but not when almorexant was injected into the XII nucleus. These data suggest that a significant portion of XII motoneuronal and cardiorespiratory activation evoked by disinhibition of PF neurons is mediated by local OX-dependent mechanisms within the posterior hypothalamus.
Collapse
Affiliation(s)
- Georg M Stettner
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6046, USA.
| | | |
Collapse
|
45
|
Kukkonen JP. Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. Am J Physiol Cell Physiol 2012; 304:C2-32. [PMID: 23034387 DOI: 10.1152/ajpcell.00227.2012] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The neuropeptides orexins and their G protein-coupled receptors, OX(1) and OX(2), were discovered in 1998, and since then, their role has been investigated in many functions mediated by the central nervous system, including sleep and wakefulness, appetite/metabolism, stress response, reward/addiction, and analgesia. Orexins also have peripheral actions of less clear physiological significance still. Cellular responses to the orexin receptor activity are highly diverse. The receptors couple to at least three families of heterotrimeric G proteins and other proteins that ultimately regulate entities such as phospholipases and kinases, which impact on neuronal excitation, synaptic plasticity, and cell death. This article is a 10-year update of my previous review on the physiology of the orexinergic/hypocretinergic system. I seek to provide a comprehensive update of orexin physiology that spans from the molecular players in orexin receptor signaling to the systemic responses yet emphasizing the cellular physiological aspects of this system.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Dept. of Veterinary Biosciences, University of Helsinki, Finland.
| |
Collapse
|
46
|
α GABAA subunit-orexin receptor interactions activate learning/motivational pathways in the goldfish. Behav Brain Res 2012; 234:349-56. [DOI: 10.1016/j.bbr.2012.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/04/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
|
47
|
Toossi H, Del Cid-Pellitero E, Stroh T, Jones BE. Somatostatin varicosities contain the vesicular GABA transporter and contact orexin neurons in the hypothalamus. Eur J Neurosci 2012; 36:3388-95. [PMID: 22925106 DOI: 10.1111/j.1460-9568.2012.08253.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Somatostatin (SST) is a neuropeptide with known inhibitory actions in the hypothalamus, where it inhibits release of growth hormone-releasing hormone (GHRH), while also influencing the sleep-wake cycle. Here we investigated in the rat whether SST neurons might additionally release GABA (gamma-aminobutyric acid) or glutamate in different regions and whether they might contact orexin neurons that play an important role in the maintenance of wakefulness. In dual-immunostained sections viewed by epifluorescence microscopy, we examined if SST varicosities were immunopositive for the vesicular transporter for GABA (VGAT) or glutamate (VGLUT2) in the posterolateral hypothalamus and neighboring arcuate nucleus and median eminence. Of the SST varicosities in the posterolateral hypothalamus, 18% were immunopositive for VGAT, whereas ≤ 1% were immunopositive for VGLUT2. In the arcuate and median eminence, 26 and 64% were VGAT+ and < 3% VGLUT2 + , respectively. In triple-immunostained sections viewed by epifluorescence and confocal microscopy, SST varicosities were seen in contact with orexin somata, and of these varicosities, a significant proportion (23%) contained VGAT along with synaptophysin, the presynaptic marker for small synaptic vesicles, and a similar proportion (25%) abutted puncta that were immunostained for gephyrin, the postsynaptic marker for GABAergic synapses. Our results indicate that a significant proportion of SST varicosities in the hypothalamus have the capacity to release GABA, to form inhibitory synapses upon orexin neurons, and accordingly through their peptide and/or amino acid, to inhibit orexin neurons, as well as GHRH neurons. Thus while regulating GHRH release, SST neurons could serve to attenuate arousal and permit progression through the sleep cycle.
Collapse
Affiliation(s)
- Hanieh Toossi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | | | |
Collapse
|
48
|
Immunohistochemical evidence for synaptic release of GABA from melanin-concentrating hormone containing varicosities in the locus coeruleus. Neuroscience 2012; 223:269-76. [PMID: 22890079 DOI: 10.1016/j.neuroscience.2012.07.072] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 11/22/2022]
Abstract
Melanin-concentrating hormone (MCH) is synthesized by neurons located in the hypothalamus and projecting to widespread regions of the brain, including the locus coeruleus (LC), through which MCH could modulate sleep-wake states. Yet MCH does not appear to exert direct postsynaptic effects on target neurons, including the noradrenergic LC neurons. Previous studies using in situ hybridization showed that MCH neurons synthesize glutamic acid decarboxylase (GAD) and could thus utilize GABA as a neurotransmitter. To determine whether MCH varicosities can release GABA, we examined by fluorescent microscopy in the LC, whether their terminals also contain the vesicular transporter for GABA (VGAT). In dual-immunostained sections, we found that approximately 6% of MCH varicosities was immunopositive for VGAT and a similar proportion for synaptophysin, the presynaptic marker for small synaptic vesicles, whereas <1% was positive for the vesicular glutamate transporter (VGluT2). Moreover, of the MCH varicosities, ∼5% abutted puncta that were immunostained for gephyrin, the postsynaptic marker for GABAergic synapses. In triple-immunostained sections viewed with confocal laser scanning microscopy, we established that MCH varicosities that also contained VGAT or abutted upon gephyrin puncta contacted the tyrosine hydroxylase-immunostained neurons of the LC. Our results suggest that although MCH neurons can influence noradrenergic LC neurons through paracrine release and indirect effects of their peptide, they can also do so through synaptic release and direct postsynaptic effects of GABA and thus serve to inhibit the LC neurons during sleep, when they are silent, and the MCH neurons discharge.
Collapse
|
49
|
Chen YW, Barson JR, Chen A, Hoebel BG, Leibowitz SF. Glutamatergic input to the lateral hypothalamus stimulates ethanol intake: role of orexin and melanin-concentrating hormone. Alcohol Clin Exp Res 2012; 37:123-31. [PMID: 22823322 DOI: 10.1111/j.1530-0277.2012.01854.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 04/05/2012] [Indexed: 01/25/2023]
Abstract
BACKGROUND Glutamate (GLUT) in the lateral hypothalamus (LH) has been suggested to mediate reward behaviors and may promote the ingestion of drugs of abuse. This study tested the hypothesis that GLUT in the LH stimulates consumption of ethanol ( EtOH ) and that this effect occurs, in part, via its interaction with local peptides, hypocretin/orexin (OX), and melanin-concentrating hormone (MCH). METHODS In Experiments 1 and 2, male Sprague-Dawley rats, after being trained to drink 9% EtOH , were microinjected in the LH with N-methyl-d-aspartate (NMDA) or its antagonist, D-AP5, or with alpha-amino-5-methyl-3-hydroxy-4-isoxazole propionic acid (AMPA) or its antagonist, CNQX-ds. Consumption of EtOH , chow, and water was then measured. To provide an anatomical control, a separate set of rats was injected 2 mm dorsal to the LH. In Experiment 3, the effect of LH injection of NMDA and AMPA on the expression of OX and MCH was measured using radiolabeled in situ hybridization (ISH) and also using digoxigenin-labeled ISH, to distinguish effects on OX and MCH cells in the LH and the nearby perifornical area (PF) and zona incerta (ZI). RESULTS When injected into the LH, NMDA and AMPA both significantly increased EtOH intake while having no effect on chow or water intake. The GLUT receptor antagonists had the opposite effect, significantly reducing EtOH consumption. No effects were observed with injections 2 mm dorsal to the LH. In addition to these behavioral effects, LH injection of NMDA significantly stimulated expression of OX in both the LH and PF while reducing MCH in the ZI, whereas AMPA increased OX only in the LH and had no effect on MCH. CONCLUSIONS Glutamatergic inputs to the LH, acting through NMDA and AMPA receptors, appear to have a stimulatory effect on EtOH consumption, mediated in part by increased OX in LH and PF and reduced MCH in ZI.
Collapse
Affiliation(s)
- Yu-Wei Chen
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | | | | | | | | |
Collapse
|
50
|
Affleck VS, Coote JH, Pyner S. The projection and synaptic organisation of NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in the paraventricular nucleus of the hypothalamus. Neuroscience 2012; 219:48-61. [PMID: 22698695 PMCID: PMC3409377 DOI: 10.1016/j.neuroscience.2012.05.070] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 01/17/2023]
Abstract
Elevated sympathetic nerve activity, strongly associated with cardiovascular disease, is partly generated from the presympathetic neurons of the paraventricular nucleus of the hypothalamus (PVN). The PVN-presympathetic neurons regulating cardiac and vasomotor sympathetic activity receive information about cardiovascular status from receptors in the heart and circulation. These receptors signal changes via afferent neurons terminating in the nucleus tractus solitarius (NTS), some of which may result in excitation or inhibition of PVN-presympathetic neurons. Understanding the anatomy and neurochemistry of NTS afferent connections within the PVN could provide important clues to the impairment in homeostasis cardiovascular control associated with disease. Transynaptic labelling has shown the presence of neuronal nitric oxide synthase (nNOS)-containing neurons and GABA interneurons that terminate on presympathetic PVN neurons any of which may be the target for NTS afferents. So far NTS connections to these diverse neuronal pools have not been demonstrated and were investigated in this study. Anterograde (biotin dextran amine – BDA) labelling of the ascending projection from the NTS and retrograde (fluorogold – FG or cholera toxin B subunit – CTB) labelling of PVN presympathetic neurons combined with immunohistochemistry for GABA and nNOS was used to identify the terminal neuronal targets of the ascending projection from the NTS. It was shown that NTS afferent terminals are apposed to either PVN-GABA interneurons or to nitric oxide producing neurons or even directly to presympathetic neurons. Furthermore, there was evidence that some NTS axons were positive for vesicular glutamate transporter 2 (vGLUT2). The data provide an anatomical basis for the different functions of cardiovascular receptors that mediate their actions via the NTS–PVN pathways.
Collapse
Affiliation(s)
- V S Affleck
- School of Biological & Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | | | | |
Collapse
|