1
|
Yazaki-Sugiyama Y. Tutor auditory memory for guiding sensorimotor learning in birdsong. Front Neural Circuits 2024; 18:1431119. [PMID: 39011279 PMCID: PMC11246853 DOI: 10.3389/fncir.2024.1431119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Memory-guided motor shaping is necessary for sensorimotor learning. Vocal learning, such as speech development in human babies and song learning in bird juveniles, begins with the formation of an auditory template by hearing adult voices followed by vocally matching to the memorized template using auditory feedback. In zebra finches, the widely used songbird model system, only males develop individually unique stereotyped songs. The production of normal songs relies on auditory experience of tutor's songs (commonly their father's songs) during a critical period in development that consists of orchestrated auditory and sensorimotor phases. "Auditory templates" of tutor songs are thought to form in the brain to guide later vocal learning, while formation of "motor templates" of own song has been suggested to be necessary for the maintenance of stereotyped adult songs. Where these templates are formed in the brain and how they interact with other brain areas to guide song learning, presumably with template-matching error correction, remains to be clarified. Here, we review and discuss studies on auditory and motor templates in the avian brain. We suggest that distinct auditory and motor template systems exist that switch their functions during development.
Collapse
Affiliation(s)
- Yoko Yazaki-Sugiyama
- Neuronal Mechanism for Critical Period Unit, OIST Graduate University, Okinawa, Japan
| |
Collapse
|
2
|
Toji N, Sawai A, Wang H, Ji Y, Sugioka R, Go Y, Wada K. A predisposed motor bias shapes individuality in vocal learning. Proc Natl Acad Sci U S A 2024; 121:e2308837121. [PMID: 38198530 PMCID: PMC10801888 DOI: 10.1073/pnas.2308837121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
The development of individuality during learned behavior is a common trait observed across animal species; however, the underlying biological mechanisms remain understood. Similar to human speech, songbirds develop individually unique songs with species-specific traits through vocal learning. In this study, we investigate the developmental and molecular mechanisms underlying individuality in vocal learning by utilizing F1 hybrid songbirds (Taeniopygia guttata cross with Taeniopygia bichenovii), taking an integrating approach combining experimentally controlled systematic song tutoring, unbiased discriminant analysis of song features, and single-cell transcriptomics. When tutoring with songs from both parental species, F1 hybrid individuals exhibit evident diversity in their acquired songs. Approximately 30% of F1 hybrids selectively learn either song of the two parental species, while others develop merged songs that combine traits from both species. Vocal acoustic biases during vocal babbling initially appear as individual differences in songs among F1 juveniles and are maintained through the sensitive period of song vocal learning. These vocal acoustic biases emerge independently of the initial auditory experience of hearing the biological father's and passive tutored songs. We identify individual differences in transcriptional signatures in a subset of cell types, including the glutamatergic neurons projecting from the cortical vocal output nucleus to the hypoglossal nuclei, which are associated with variations of vocal acoustic features. These findings suggest that a genetically predisposed vocal motor bias serves as the initial origin of individual variation in vocal learning, influencing learning constraints and preferences.
Collapse
Affiliation(s)
- Noriyuki Toji
- Biological Sciences, Faculty of Science, Hokkaido University, Sapporo060-0810, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Sapporo060-0810, Japan
| | - Azusa Sawai
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | - Hongdi Wang
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | - Yu Ji
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | - Rintaro Sugioka
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki444-8585, Japan
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki444-8585, Japan
| | - Kazuhiro Wada
- Biological Sciences, Faculty of Science, Hokkaido University, Sapporo060-0810, Japan
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
- Research and Education Center for Brain Science, Hokkaido University, Sapporo060-8638, Japan
| |
Collapse
|
3
|
Anderson KL, Colón L, Doolittle V, Rosario Martinez R, Uraga J, Whitney O. Context-dependent activation of a social behavior brain network during learned vocal production. Brain Struct Funct 2023; 228:1785-1797. [PMID: 37615758 DOI: 10.1007/s00429-023-02693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
Neural activation in brain regions for vocal control is social context dependent. This context-dependent brain activation reflects social context-appropriate vocal behavior but has unresolved mechanisms. Studies of non-vocal social behaviors in multiple organisms suggest a functional role for several evolutionarily conserved and highly interconnected brain regions. Here, we use neural activity-dependent gene expression to evaluate the functional connectivity of this social behavior network within zebra finches in non-social and social singing contexts. We found that activity in one social behavior network region, the medial preoptic area (POM), was strongly associated with the amount of non-social undirected singing in zebra finches. In addition, in all regions of the social behavior network and the paraventricular nucleus (PVN), a higher percentage of EGR1 expression was observed during a social female-directed singing context compared to a non-social undirected singing context. Furthermore, we observed distinct patterns of significantly correlated activity between regions of the social behavior network during non-social undirected and social female-directed singing. Our results suggest that non-social vs. social contexts differentially activate this social behavior network and PVN. Moreover, neuronal activity within this social behavior network, PVN, and POM may alter context-appropriate vocal production.
Collapse
Affiliation(s)
- Katherine L Anderson
- Biology Department, City College, City University of New York, New York, NY, USA
- Graduate Center, Molecular, Cellular, and Developmental Biology Program, City University of New York, New York, NY, USA
| | - Lionel Colón
- Biology Department, City College, City University of New York, New York, NY, USA
| | - Violet Doolittle
- Biology Department, City College, City University of New York, New York, NY, USA
| | | | - Joseph Uraga
- Biology Department, City College, City University of New York, New York, NY, USA
| | - Osceola Whitney
- Biology Department, City College, City University of New York, New York, NY, USA.
- Graduate Center, Molecular, Cellular, and Developmental Biology Program, City University of New York, New York, NY, USA.
| |
Collapse
|
4
|
Anderson KL, Colón L, Doolittle V, Martinez RR, Uraga J, Whitney O. Context-dependent activation of a social behavior brain network associates with learned vocal production. RESEARCH SQUARE 2023:rs.3.rs-2587773. [PMID: 36824963 PMCID: PMC9949236 DOI: 10.21203/rs.3.rs-2587773/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In zebra finches, an avian brain network for vocal control undergoes context-dependent patterning of song-dependent activation. Previous studies in zebra finches also implicate the importance of dopaminergic input in producing context-appropriate singing behavior. In mice, it has been shown that oxytocinergic neurons originated in the paraventricular nucleus of the hypothalamus (PVN) synapse directly onto dopamine neurons in the ventral tegmental area (VTA), implicating the necessity of oxytocin signaling from the PVN for producing a context-appropriate song. Both avian and non-avian axonal tract-tracing studies indicate high levels of PVN innervation by the social behavior network. Here, we hypothesize that the motivation for PVN oxytocin neurons to trigger dopamine release originates in the social behavior network, a highly conserved and interconnected collection of six regions implicated in various social and homeostatic behaviors. We found that expression of the neuronal activity marker EGR1 was not strongly correlated with song production in any of the regions of the social behavior network. However, when EGR1 expression levels were normalized to the singing rate, we found significantly higher levels of expression in the social behavior network regions except the medial preoptic area during a social female-directed singing context compared to a non-social undirected singing context. Our results suggest neuronal activity within the male zebra finch social behavior network influences the synaptic release of oxytocin from PVN onto dopaminergic projection neurons in the VTA, which in turn signals to the vocal control network to allow for context-appropriate song production.
Collapse
|
5
|
Aldhafiri A, Dodu JC, Alalawi A, Soderstrom K. Developmental treatments with Δ 9- tetrahydrocannabinol and the MAGL inhibitor JZL184 persistently alter adult cocaine conditioning in contrasting ways. Pharmacol Biochem Behav 2023; 223:173524. [PMID: 36740023 DOI: 10.1016/j.pbb.2023.173524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
Using a songbird, zebra finches, as a developmental drug abuse model we found previously that cannabinoid agonists administered during the sensorimotor period of vocal learning (50-75 days of age) persistently alter song patterns and cocaine responsiveness in adulthood. However, these effects were not produced in adults exposed to similar treatment regimens. Currently, we have used the MAGL inhibitor, JZL184, to test whether enhanced endocannabinoid signaling may similarly alter cocaine responsiveness. We found that, as expected and consistent with prior results, repeated developmental (but not adult) treatments with Δ9-tetrahydrocannabinol (THC, 3 mg/kg QD IM) resulted in increased time spent in cocaine-paired chambers. Unexpectedly and in contrast, repeated developmental JZL184 (4 mg/kg QD IM) treatments decreased time spent in cocaine-conditioned chambers. That is, young finches repeatedly treated with JZL184 avoided cocaine-paired chambers later in adulthood, while similar development treatments with THC had the opposite effect. To begin to identify brain regions that may underly this differential responsiveness we used c-Fos expression as a marker of neuronal activity. Differences in c-Fos expression patterns following placement of cocaine-conditioned finches into vehicle- vs. cocaine-paired chambers suggest distinct involvement of circuits through striatal and amygdaloid regions in respective effects of THC and JZL184. Results demonstrate that, like exogenous cannabinoid exposure, inhibition of MAGL activity during late post-natal development persistently alters behavior in adulthood. Contrasting effects of THC vs. MAGL inhibition with JZL184 suggests the latter alters development of brain regions to favor promotion of aversive rather than appetitive cocaine responsiveness later in adulthood.
Collapse
Affiliation(s)
- Ahmed Aldhafiri
- Department of Pharmacology and Toxicology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834, United States of America
| | - Julien C Dodu
- Department of Pharmacology and Toxicology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834, United States of America
| | - Ali Alalawi
- Department of Pharmacology and Toxicology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834, United States of America
| | - Ken Soderstrom
- Department of Pharmacology and Toxicology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834, United States of America.
| |
Collapse
|
6
|
Ekström AG. Motor constellation theory: A model of infants' phonological development. Front Psychol 2022; 13:996894. [PMID: 36405212 PMCID: PMC9669916 DOI: 10.3389/fpsyg.2022.996894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/17/2022] [Indexed: 04/24/2024] Open
Abstract
Every normally developing human infant solves the difficult problem of mapping their native-language phonology, but the neural mechanisms underpinning this behavior remain poorly understood. Here, motor constellation theory, an integrative neurophonological model, is presented, with the goal of explicating this issue. It is assumed that infants' motor-auditory phonological mapping takes place through infants' orosensory "reaching" for phonological elements observed in the language-specific ambient phonology, via reference to kinesthetic feedback from motor systems (e.g., articulators), and auditory feedback from resulting speech and speech-like sounds. Attempts are regulated by basal ganglion-cerebellar speech neural circuitry, and successful attempts at reproduction are enforced through dopaminergic signaling. Early in life, the pace of anatomical development constrains mapping such that complete language-specific phonological mapping is prohibited by infants' undeveloped supralaryngeal vocal tract and undescended larynx; constraints gradually dissolve with age, enabling adult phonology. Where appropriate, reference is made to findings from animal and clinical models. Some implications for future modeling and simulation efforts, as well as clinical settings, are also discussed.
Collapse
Affiliation(s)
- Axel G. Ekström
- Speech, Music and Hearing, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
7
|
Bottjer SW, Le Moing C, Li E, Yuan R. Responses to Song Playback Differ in Sleeping versus Anesthetized Songbirds. eNeuro 2022; 9:ENEURO.0015-22.2022. [PMID: 35545423 PMCID: PMC9131720 DOI: 10.1523/eneuro.0015-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/03/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Vocal learning in songbirds is mediated by a highly localized system of interconnected forebrain regions, including recurrent loops that traverse the cortex, basal ganglia, and thalamus. This brain-behavior system provides a powerful model for elucidating mechanisms of vocal learning, with implications for learning speech in human infants, as well as for advancing our understanding of skill learning in general. A long history of experiments in this area has tested neural responses to playback of different song stimuli in anesthetized birds at different stages of vocal development. These studies have demonstrated selectivity for different song types that provide neural signatures of learning. In contrast to the ease of obtaining responses to song playback in anesthetized birds, song-evoked responses in awake birds are greatly reduced or absent, indicating that behavioral state is an important determinant of neural responsivity. Song-evoked responses can be elicited during sleep as well as anesthesia, and the selectivity of responses to song playback in adult birds is highly similar between anesthetized and sleeping states, encouraging the idea that anesthesia and sleep are similar. In contrast to that idea, we report evidence that cortical responses to song playback in juvenile zebra finches (Taeniopygia guttata) differ greatly between sleep and urethane anesthesia. This finding indicates that behavioral states differ in sleep versus anesthesia and raises questions about relationships between developmental changes in sleep activity, selectivity for different song types, and the neural substrate for vocal learning.
Collapse
Affiliation(s)
- Sarah W Bottjer
- Section of Neurobiology, University of Southern California, Los Angeles, CA 90089
| | - Chloé Le Moing
- Section of Neurobiology, University of Southern California, Los Angeles, CA 90089
| | - Ellysia Li
- Section of Neurobiology, University of Southern California, Los Angeles, CA 90089
| | - Rachel Yuan
- Section of Neurobiology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
8
|
Singh UA, Iyengar S. The Role of the Endogenous Opioid System in the Vocal Behavior of Songbirds and Its Possible Role in Vocal Learning. Front Physiol 2022; 13:823152. [PMID: 35273519 PMCID: PMC8902293 DOI: 10.3389/fphys.2022.823152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
The opioid system in the brain is responsible for processing affective states such as pain, pleasure, and reward. It consists of three main receptors, mu- (μ-ORs), delta- (δ-ORs), and kappa- (κ-ORs), and their ligands – the endogenous opioid peptides. Despite their involvement in the reward pathway, and a signaling mechanism operating in synergy with the dopaminergic system, fewer reports focus on the role of these receptors in higher cognitive processes. Whereas research on opioids is predominated by studies on their addictive properties and role in pain pathways, recent studies suggest that these receptors may be involved in learning. Rodents deficient in δ-ORs were poor at recognizing the location of novel objects in their surroundings. Furthermore, in chicken, learning to avoid beads coated with a bitter chemical from those without the coating was modulated by δ-ORs. Similarly, μ-ORs facilitate long term potentiation in hippocampal CA3 neurons in mammals, thereby having a positive impact on spatial learning. Whereas these studies have explored the role of opioid receptors on learning using reward/punishment-based paradigms, the role of these receptors in natural learning processes, such as vocal learning, are yet unexplored. In this review, we explore studies that have established the expression pattern of these receptors in different brain regions of birds, with an emphasis on songbirds which are model systems for vocal learning. We also review the role of opioid receptors in modulating the cognitive processes associated with vocalizations in birds. Finally, we discuss the role of these receptors in regulating the motivation to vocalize, and a possible role in modulating vocal learning.
Collapse
|
9
|
Das A, Goldberg JH. Songbird subthalamic neurons project to dopaminergic midbrain and exhibit singing-related activity. J Neurophysiol 2022; 127:373-383. [PMID: 34965747 PMCID: PMC8896995 DOI: 10.1152/jn.00254.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Skill learning requires motor output to be evaluated against internal performance benchmarks. In songbirds, ventral tegmental area (VTA) dopamine neurons (DA) signal performance errors important for learning, but it remains unclear which brain regions project to VTA and how these inputs may contribute to DA error signaling. Here, we find that the songbird subthalamic nucleus (STN) projects to VTA and that STN microstimulation can excite VTA neurons. We also discover that STN receives inputs from motor cortical, auditory cortical, and ventral pallidal brain regions previously implicated in song evaluation. In the first neural recordings from songbird STN, we discover that the activity of most STN neurons is associated with body movements and not singing, but a small fraction of neurons exhibits precise song timing and performance error signals. Our results place the STN in a pathway important for song learning, but not song production, and expand the territories of songbird brain potentially associated with song learning.NEW & NOTEWORTHY Songbird subthalamic (STN) neurons exhibit singing-related signals and are interconnected with the motor cortical nucleus, auditory pallium, ventral pallidum, and ventral tegmental area, areas important for song generation and learning.
Collapse
Affiliation(s)
- Anindita Das
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Jesse H. Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| |
Collapse
|
10
|
Zhou X, Chen Y, Peng J, Zuo M, Sun Y. Deafening-induced rapid changes to spine synaptic connectivity in the adult avian vocal basal ganglia. Integr Zool 2021; 17:1136-1146. [PMID: 34599554 DOI: 10.1111/1749-4877.12593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The basal ganglia have been implicated in auditory-dependent vocal learning and plasticity in human and songbirds, but the underlying neural phenotype remains to be clarified. Here, using confocal imaging and three-dimensional electron microscopy, we investigated striatal structural plasticity in response to hearing loss in Area X, the avian vocal basal ganglia, in adult male zebra finch (Taeniopygia guttata). We observed a rapid elongation of dendritic spines, by approximately 13%, by day 3 after deafening, and a considerable increase in spine synapse density, by approximately 61%, by day 14 after deafening, compared with the controls with an intact cochlea. These findings reveal structural sensitivity of Area X to auditory deprivation and suggest that this striatal plasticity might contribute to deafening-induced changes to learned vocal behavior.
Collapse
Affiliation(s)
- Xiaojuan Zhou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Bejiing Normal University, Beijing, China.,Chinese Institute for Brain Research (CIBR), Beijing, China
| | - Yalan Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Bejiing Normal University, Beijing, China.,Technology Center for Protein Sciences, Tsinghua University, Beijing, China
| | - Jikan Peng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Bejiing Normal University, Beijing, China.,School of Life Sciences, Westlake University, Hangzhou, China
| | - Mingxue Zuo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Bejiing Normal University, Beijing, China
| | - Yingyu Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Bejiing Normal University, Beijing, China
| |
Collapse
|
11
|
Aronowitz JV, Perez A, O’Brien C, Aziz S, Rodriguez E, Wasner K, Ribeiro S, Green D, Faruk F, Pytte CL. Unilateral vocal nerve resection alters neurogenesis in the avian song system in a region-specific manner. PLoS One 2021; 16:e0256709. [PMID: 34464400 PMCID: PMC8407570 DOI: 10.1371/journal.pone.0256709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Abstract
New neurons born in the adult brain undergo a critical period soon after migration to their site of incorporation. During this time, the behavior of the animal may influence the survival or culling of these cells. In the songbird song system, earlier work suggested that adult-born neurons may be retained in the song motor pathway nucleus HVC with respect to motor progression toward a target song during juvenile song learning, seasonal song restructuring, and experimentally manipulated song variability. However, it is not known whether the quality of song per se, without progressive improvement, may also influence new neuron survival. To test this idea, we experimentally altered song acoustic structure by unilateral denervation of the syrinx, causing a poor quality song. We found no effect of aberrant song on numbers of new neurons in HVC, suggesting that song quality does not influence new neuron culling in this region. However, aberrant song resulted in the loss of left-side dominance in new neurons in the auditory region caudomedial nidopallium (NCM), and a bilateral decrease in new neurons in the basal ganglia nucleus Area X. Thus new neuron culling may be influenced by behavioral feedback in accordance with the function of new neurons within that region. We propose that studying the effects of singing behaviors on new neurons across multiple brain regions that differentially subserve singing may give rise to general rules underlying the regulation of new neuron survival across taxa and brain regions more broadly.
Collapse
Affiliation(s)
- Jake V. Aronowitz
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Alice Perez
- Psychology Department, The Graduate Center, City University of New York, New York, NY, United States of America
| | - Christopher O’Brien
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Siaresh Aziz
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Erica Rodriguez
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Kobi Wasner
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Sissi Ribeiro
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Dovounnae Green
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Farhana Faruk
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Carolyn L. Pytte
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
- Psychology Department, The Graduate Center, City University of New York, New York, NY, United States of America
- Biology Department, The Graduate Center, City University of New York, New York, NY, United States of America
| |
Collapse
|
12
|
Seo S, Sizemore RJ, Reader KL, Smither RA, Wicky HE, Hughes SM, Bilkey DK, Parr-Brownlie LC, Oorschot DE. A schizophrenia risk factor induces marked anatomical deficits at GABAergic-dopaminergic synapses in the rat ventral tegmental area: Essential evidence for new targeted therapies. J Comp Neurol 2021; 529:3946-3973. [PMID: 34338311 DOI: 10.1002/cne.25225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/07/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022]
Abstract
To develop new therapies for schizophrenia, evidence accumulated over decades highlights the essential need to investigate the GABAergic synapses that presynaptically influence midbrain dopaminergic neurons. Since current technology restricts these studies to animals, and evidence accumulated in recent decades indicates a developmental origin of schizophrenia, we investigated synaptic changes in male rat offspring exposed to maternal immune activation (MIA), a schizophrenia risk factor. Using a novel combination of lentiviruses, peroxidase-immunogold double labeling, three-dimensional serial section transmission electron microscopy and stereology, we observed clear anatomical alterations in synaptic inputs on dopaminergic neurons in the midbrain posterior ventral tegmental area (pVTA). These changes relate directly to a characteristic feature of schizophrenia: increased dopamine release. In 3-month-old and 14-month-old MIA rats, we found a marked decrease in the volume of presynaptic GABAergic terminals from the rostromedial tegmental nucleus (RMTg) and in the length of the synapses they made, when innervating pVTA dopaminergic neurons. In MIA rats in the long-term, we also discovered a decrease in the volume of the postsynaptic density (PSD) and in the maximum thickness of the PSD at the same synapses. These marked deficits were evident in conventional GABA-dopamine synapses and in synaptic triads that we discovered involving asymmetric synapses that innervated RMTg GABAergic presynaptic terminals, which in turn innervated pVTA dopaminergic neurons. In triads, the PSD thickness of asymmetric synapses was significantly decreased in MIA rats in the long-term cohort. The extensive anatomical deficits provide a potential basis for new therapies targeted at synaptic inputs on midbrain pVTA dopaminergic neurons, in contrast to current striatum-targeted antipsychotic drugs.
Collapse
Affiliation(s)
- Steve Seo
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Rachel J Sizemore
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Karen L Reader
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Roseanna A Smither
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research, New Zealand
| | - Hollie E Wicky
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research, New Zealand.,Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Stephanie M Hughes
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research, New Zealand.,Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David K Bilkey
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Louise C Parr-Brownlie
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Brain Research, New Zealand
| | - Dorothy E Oorschot
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Chen R, Goldberg JH. Actor-critic reinforcement learning in the songbird. Curr Opin Neurobiol 2020; 65:1-9. [PMID: 32898752 PMCID: PMC7769887 DOI: 10.1016/j.conb.2020.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/18/2022]
Abstract
It feels rewarding to ace your opponent on match point. Here, we propose common mechanisms underlie reward and performance learning. First, when a singing bird unexpectedly hits the right note, its dopamine (DA) neurons are activated as when a thirsty monkey receives an unexpected juice reward. Second, these DA signals reinforce vocal variations much as they reinforce stimulus-response associations. Third, limbic inputs to DA neurons signal the predicted quality of song syllables much like they signal the predicted reward value of a place or a stimulus during foraging. Finally, songbirds may solve difficult problems in reinforcement learning - such as credit assignment and catastrophic forgetting - with node perturbation and consolidation of reinforced vocal patterns in motor cortical circuits. Consolidation occurs downstream of a canonical 'actor-critic' circuit motif that learns to maximize performance quality in essentially the same way it learns to maximize reward: by computing and learning from prediction errors.
Collapse
Affiliation(s)
- Ruidong Chen
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, United States
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
14
|
Düring DN, Dittrich F, Rocha MD, Tachibana RO, Mori C, Okanoya K, Boehringer R, Ehret B, Grewe BF, Gerber S, Ma S, Rauch M, Paterna JC, Kasper R, Gahr M, Hahnloser RHR. Fast Retrograde Access to Projection Neuron Circuits Underlying Vocal Learning in Songbirds. Cell Rep 2020; 33:108364. [PMID: 33176132 PMCID: PMC8236207 DOI: 10.1016/j.celrep.2020.108364] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/29/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding the structure and function of neural circuits underlying speech and language is a vital step toward better treatments for diseases of these systems. Songbirds, among the few animal orders that share with humans the ability to learn vocalizations from a conspecific, have provided many insights into the neural mechanisms of vocal development. However, research into vocal learning circuits has been hindered by a lack of tools for rapid genetic targeting of specific neuron populations to meet the quick pace of developmental learning. Here, we present a viral tool that enables fast and efficient retrograde access to projection neuron populations. In zebra finches, Bengalese finches, canaries, and mice, we demonstrate fast retrograde labeling of cortical or dopaminergic neurons. We further demonstrate the suitability of our construct for detailed morphological analysis, for in vivo imaging of calcium activity, and for multi-color brainbow labeling. Düring et al. describe a fast and efficient viral vector to dissect structure and function of neural circuits underlying learned vocalizations in songbirds. The AAV variant provides retrograde access to projection neuron circuits, including dopaminergic pathways in songbirds and additionally in mice, and allows for retrograde calcium imaging and multispectral brainbow labeling.
Collapse
Affiliation(s)
- Daniel N Düring
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland; Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany.
| | - Falk Dittrich
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Mariana D Rocha
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | | | - Chihiro Mori
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Roman Boehringer
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Benjamin Ehret
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Benjamin F Grewe
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Stefan Gerber
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Shouwen Ma
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Melanie Rauch
- Viral Vector Facility, Neuroscience Center Zurich, Zurich, Switzerland
| | | | - Robert Kasper
- Imaging Facility at the Max Planck Institute of Neurobiology, Munich, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Richard H R Hahnloser
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Kumar S, Mohapatra AN, Pundir AS, Kumari M, Din U, Sharma S, Datta A, Arora V, Iyengar S. Blocking Opioid Receptors in a Songbird Cortical Region Modulates the Acoustic Features and Levels of Female-Directed Singing. Front Neurosci 2020; 14:554094. [PMID: 33071736 PMCID: PMC7533562 DOI: 10.3389/fnins.2020.554094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
The organization of the anterior forebrain pathway (AFP) of songbirds important for context-dependent singing is similar to that of cortical basal ganglia loops (CBG) in mammals, which underlie motor behaviors including vocalization. Since different components of the AFP express high levels of μ-opioid receptors (μ-ORs) as do CBG loops, songbirds act as model systems to study the role of opioid modulation on vocalization and the motivation to sing. The AFP in songbirds includes the cortical/pallial region LMAN (lateral magnocellular nucleus of the anterior nidopallium) which projects to Area X, a nucleus of the avian basal ganglia. In the present study, microdialysis was used to infuse different doses of the opioid antagonist naloxone in LMAN of adult male zebra finches. Whereas all doses of naloxone led to significant decreases in the number of FD (female-directed) songs, only 100 and 200 ng/ml of naloxone affected their acoustic properties. The decrease in FD song was not accompanied by changes in levels of attention toward females or those of neurotransmitters (dopamine, glutamate, and GABA) in LMAN. An earlier study had shown that similar manipulations in Area X did not lead to alterations in the number of FD songs but had significantly greater effects on their acoustic properties. Taken together, our results suggest that there are reciprocal effects of OR modulation on cortical and basal ganglia components of the AFP in songbirds.
Collapse
Affiliation(s)
| | | | | | | | - Uzma Din
- National Brain Research Centre, Manesar, India
| | | | - Atanu Datta
- National Brain Research Centre, Manesar, India
| | - Vasav Arora
- National Brain Research Centre, Manesar, India
| | | |
Collapse
|
16
|
Yip PK, Schmitzberger M, Al-Hasan M, George J, Tripoliti E, Michael-Titus AT, Clayton D, Priestley JV. Serotonin Expression in the Song Circuitry of Adult Male Zebra Finches. Neuroscience 2020; 444:170-182. [PMID: 32590039 DOI: 10.1016/j.neuroscience.2020.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022]
Abstract
Serotonin is an important neurotransmitter of the brain, but its role in song control remains to be fully demonstrated. Using male zebra finches (Taeniopygia guttata) that have song learning and production capabilities, we analysed the serotonin expression levels in the song nuclei and adjacent areas (peri-song nuclei) using immunohistochemistry. Key song nuclei were identified using combinations of Hoechst, choline acetyltransferase, and a neurofilament (NN18) marker in reference to the ZEBrA atlas. Mean serotonin expression was highest in interfacial nucleus (Nif) and lower in the other song nuclei in the following order (in order of highest first): interfacial nucleus (Nif) > Area X > dorsomedial part of the intercollicular nucelus (DM) > robust nucleus of the archistriatum (RA) > lateral magnocellular nucleus of the anterior neostriatum (LMAN) > ventral respiratory group (VRG) > dorsolateral nucleus of the medial thalamus (DLM) > the nucleus HVC (proper name) > tracheosyringeal motor nucleus (nXIIts). However, the mean serotonin expression (in order of highest first) in the peri-song nuclei regions was: peri-DM > peri-nXIIts > supra-peri-HVC > peri-RA > peri-DLM > peri-Area X > infra-peri-HVC > peri-VRG > peri-LMAN > peri-Nif. Interestingly, serotoninergic fibers immunostained for serotonin or the serotonin transporter can be found as a basket-like peri-neuronal structure surrounding cholinergic cell bodies, and appear to form contacts onto dopaminergic neurones. In summary, serotonin fibers are present at discrete song nuclei, and peri-song nuclei regions, which suggest serotonin may have a direct and/or modulatory role in song control.
Collapse
Affiliation(s)
- Ping K Yip
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark St, London E1 2AT, UK.
| | - Magdalena Schmitzberger
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark St, London E1 2AT, UK
| | - Mohammed Al-Hasan
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark St, London E1 2AT, UK
| | - Julia George
- Queen Mary University of London, School of Biological and Chemical Sciences, G.E. Fogg Building, Mile End Road, London E1 4NS, UK
| | - Elina Tripoliti
- UCL, Institute of Neurology, Department of Movement and Clinical Neurosciences, 33 Queen Square, London WC1N 3BG, UK
| | - Adina T Michael-Titus
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark St, London E1 2AT, UK
| | - David Clayton
- Queen Mary University of London, School of Biological and Chemical Sciences, G.E. Fogg Building, Mile End Road, London E1 4NS, UK
| | - John V Priestley
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark St, London E1 2AT, UK
| |
Collapse
|
17
|
Yuan RC, Bottjer SW. Multidimensional Tuning in Motor Cortical Neurons during Active Behavior. eNeuro 2020; 7:ENEURO.0109-20.2020. [PMID: 32661067 PMCID: PMC7396810 DOI: 10.1523/eneuro.0109-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
A region within songbird cortex, dorsal intermediate arcopallium (AId), is functionally analogous to motor cortex in mammals and has been implicated in song learning during development. Non-vocal factors such as visual and social cues are known to mediate song learning and performance, yet previous chronic-recording studies of regions important for song behavior have focused exclusively on neural activity in relation to song production. Thus, we have little understanding of the range of non-vocal information that single neurons may encode. We made chronic recordings in AId of freely behaving juvenile zebra finches and evaluated neural activity during diverse motor behaviors throughout entire recording sessions, including song production as well as hopping, pecking, preening, fluff-ups, beak interactions, scratching, and stretching. These movements are part of natural behavioral repertoires and are important components of both song learning and courtship behavior. A large population of AId neurons showed significant modulation of activity during singing. In addition, single neurons demonstrated heterogeneous response patterns during multiple movements (including excitation during one movement type and suppression during another), and some neurons showed differential activity depending on the context in which movements occurred. Moreover, we found evidence of neurons that did not respond during discrete movements but were nonetheless modulated during active behavioral states compared with quiescence. Our results suggest that AId neurons process both vocal and non-vocal information, highlighting the importance of considering the variety of multimodal factors that can contribute to vocal motor learning during development.
Collapse
Affiliation(s)
- Rachel C Yuan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089
| | - Sarah W Bottjer
- Section of Neurobiology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
18
|
|
19
|
Hamaide J, Lukacova K, Orije J, Keliris GA, Verhoye M, Van der Linden A. In vivo assessment of the neural substrate linked with vocal imitation accuracy. eLife 2020; 9:49941. [PMID: 32196456 PMCID: PMC7083600 DOI: 10.7554/elife.49941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Human speech and bird song are acoustically complex communication signals that are learned by imitation during a sensitive period early in life. Although the brain areas indispensable for speech and song learning are known, the neural circuits important for enhanced or reduced vocal performance remain unclear. By combining in vivo structural Magnetic Resonance Imaging with song analyses in juvenile male zebra finches during song learning and beyond, we reveal that song imitation accuracy correlates with the structural architecture of four distinct brain areas, none of which pertain to the song control system. Furthermore, the structural properties of a secondary auditory area in the left hemisphere, are capable to predict future song copying accuracy, already at the earliest stages of learning, before initiating vocal practicing. These findings appoint novel brain regions important for song learning outcome and inform that ultimate performance in part depends on factors experienced before vocal practicing.
Collapse
Affiliation(s)
- Julie Hamaide
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Kristina Lukacova
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jasmien Orije
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Georgios A Keliris
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
20
|
Mooney R. The neurobiology of innate and learned vocalizations in rodents and songbirds. Curr Opin Neurobiol 2020; 64:24-31. [PMID: 32086177 DOI: 10.1016/j.conb.2020.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/26/2019] [Accepted: 01/08/2020] [Indexed: 12/25/2022]
Abstract
Vocalizations are an important medium for sexual and social signaling in mammals and birds. In most mammals other than humans, vocalizations are specified by innate mechanisms and develop normally in the absence of auditory experience. By contrast, juvenile songbirds memorize and copy the songs of adult tutors, a process with many parallels to human speech learning. Despite the centrality of vocal learning to human speech, vocal production in humans as well as in songbirds exploits ancestral circuitry for innate vocalizations, and effective vocal communication depends on the fluent blending of innate and learned elements. This review covers recent advances in our understanding of central mechanisms for learned and innate vocalizations in birds and mice, including brainstem mechanisms that help to 'gate' vocalizations on or off, cortical involvement in learned and innate vocalizations, and the delineation of circuits that evaluate and reinforce song performance to facilitate vocal learning.
Collapse
Affiliation(s)
- Richard Mooney
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27705, United States.
| |
Collapse
|
21
|
Kearney MG, Warren TL, Hisey E, Qi J, Mooney R. Discrete Evaluative and Premotor Circuits Enable Vocal Learning in Songbirds. Neuron 2019; 104:559-575.e6. [PMID: 31447169 DOI: 10.1016/j.neuron.2019.07.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/24/2019] [Accepted: 07/18/2019] [Indexed: 11/28/2022]
Abstract
Virtuosic motor performance requires the ability to evaluate and modify individual gestures within a complex motor sequence. Where and how the evaluative and premotor circuits operate within the brain to enable such temporally precise learning is poorly understood. Songbirds can learn to modify individual syllables within their complex vocal sequences, providing a system for elucidating the underlying evaluative and premotor circuits. We combined behavioral and optogenetic methods to identify 2 afferents to the ventral tegmental area (VTA) that serve evaluative roles in syllable-specific learning and to establish that downstream cortico-basal ganglia circuits serve a learning role that is only premotor. Furthermore, song performance-contingent optogenetic stimulation of either VTA afferent was sufficient to drive syllable-specific learning, and these learning effects were of opposite valence. Finally, functional, anatomical, and molecular studies support the idea that these evaluative afferents bidirectionally modulate VTA dopamine neurons to enable temporally precise vocal learning.
Collapse
Affiliation(s)
- Matthew Gene Kearney
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Timothy L Warren
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Erin Hisey
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jiaxuan Qi
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Kumar S, Mohapatra AN, Sharma HP, Singh UA, Kambi NA, Velpandian T, Rajan R, Iyengar S. Altering Opioid Neuromodulation in the Songbird Basal Ganglia Modulates Vocalizations. Front Neurosci 2019; 13:671. [PMID: 31333400 PMCID: PMC6618663 DOI: 10.3389/fnins.2019.00671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/11/2019] [Indexed: 11/16/2022] Open
Abstract
Although the interplay between endogenous opioids and dopamine (DA) in the basal ganglia (BG) is known to underlie diverse motor functions, few studies exist on their role in modulating speech and vocalization. Vocal impairment is a common symptom of Parkinson’s disease (PD), wherein DA depletion affects striosomes rich in μ-opioid receptors (μ-ORs). Symptoms of opioid addiction also include deficiencies in verbal functions and speech. To understand the interplay between the opioid system and BG in vocalization, we used adult male songbirds wherein high levels of μ-ORs are expressed in Area X, a BG region which is part of a circuit similar to the mammalian thalamocortical-basal ganglia loop. Changes in DA, glutamate and GABA levels were analyzed during the infusion of different doses of the μ-OR antagonist naloxone (50 and 100 ng/ml) specifically in Area X. Blocking μ-ORs in Area X with 100 ng/ml naloxone led to increased levels of DA in this region without altering the number of songs directed toward females (FD). Interestingly, this manipulation also led to changes in the spectro-temporal properties of FD songs, suggesting that altered opioid modulation in the thalamocortical-basal ganglia circuit can affect vocalization. Our study suggests that songbirds are excellent model systems to explore how the interplay between μ-ORs and DA modulation in the BG affects speech/vocalization.
Collapse
Affiliation(s)
| | | | - Hanuman Prasad Sharma
- Department of Ocular Pharmacology and Pharmacy, Dr. R. P. Centre, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Thirumurthy Velpandian
- Department of Ocular Pharmacology and Pharmacy, Dr. R. P. Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Raghav Rajan
- Indian Institute of Science Education and Research, Pune, Pune, India
| | | |
Collapse
|
23
|
Chen R, Puzerey PA, Roeser AC, Riccelli TE, Podury A, Maher K, Farhang AR, Goldberg JH. Songbird Ventral Pallidum Sends Diverse Performance Error Signals to Dopaminergic Midbrain. Neuron 2019; 103:266-276.e4. [PMID: 31153647 DOI: 10.1016/j.neuron.2019.04.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/30/2019] [Accepted: 04/25/2019] [Indexed: 12/31/2022]
Abstract
Motor skills improve with practice, requiring outcomes to be evaluated against ever-changing performance benchmarks, yet it remains unclear how performance error signals are computed. Here, we show that the songbird ventral pallidum (VP) is required for song learning and sends diverse song timing and performance error signals to the ventral tegmental area (VTA). Viral tracing revealed inputs to VP from auditory and vocal motor thalamus, auditory and vocal motor cortex, and VTA. Our findings show that VP circuits, commonly associated with hedonic functions, signal performance error during motor sequence learning.
Collapse
Affiliation(s)
- Ruidong Chen
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Pavel A Puzerey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Andrea C Roeser
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Tori E Riccelli
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Archana Podury
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Kamal Maher
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Alexander R Farhang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
24
|
So LY, Munger SJ, Miller JE. Social context-dependent singing alters molecular markers of dopaminergic and glutamatergic signaling in finch basal ganglia Area X. Behav Brain Res 2019; 360:103-112. [DOI: 10.1016/j.bbr.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/28/2018] [Accepted: 12/01/2018] [Indexed: 11/25/2022]
|
25
|
Yuan RC, Bottjer SW. Differential developmental changes in cortical representations of auditory-vocal stimuli in songbirds. J Neurophysiol 2018; 121:530-548. [PMID: 30540540 DOI: 10.1152/jn.00714.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Procedural skill learning requires iterative comparisons between feedback of self-generated motor output and a goal sensorimotor pattern. In juvenile songbirds, neural representations of both self-generated behaviors (each bird's own immature song) and the goal motor pattern (each bird's adult tutor song) are essential for vocal learning, yet little is known about how these behaviorally relevant stimuli are encoded. We made extracellular recordings during song playback in anesthetized juvenile and adult zebra finches ( Taeniopygia guttata) in adjacent cortical regions RA (robust nucleus of the arcopallium), AId (dorsal intermediate arcopallium), and RA cup, each of which is well situated to integrate auditory-vocal information: RA is a motor cortical region that drives vocal output, AId is an adjoining cortical region whose projections converge with basal ganglia loops for song learning in the dorsal thalamus, and RA cup surrounds RA and receives inputs from primary and secondary auditory cortex. We found strong developmental differences in neural selectivity within RA, but not in AId or RA cup. Juvenile RA neurons were broadly responsive to multiple songs but preferred juvenile over adult vocal sounds; in addition, spiking responses lacked consistent temporal patterning. By adulthood, RA neurons responded most strongly to each bird's own song with precisely timed spiking activity. In contrast, we observed a complete lack of song responsivity in both juvenile and adult AId, even though this region receives song-responsive inputs. A surprisingly large proportion of sites in RA cup of both juveniles and adults did not respond to song playback, and responsive sites showed little evidence of song selectivity. NEW & NOTEWORTHY Motor skill learning entails changes in selectivity for behaviorally relevant stimuli across cortical regions, yet the neural representation of these stimuli remains understudied. We investigated how information important for vocal learning in zebra finches is represented in regions analogous to infragranular layers of motor and auditory cortices during vs. after the developmentally regulated learning period. The results provide insight into how neurons in higher level stages of cortical processing represent stimuli important for motor skill learning.
Collapse
Affiliation(s)
- Rachel C Yuan
- Neuroscience Graduate Program, University of Southern California , Los Angeles, California
| | - Sarah W Bottjer
- Section of Neurobiology, University of Southern California , Los Angeles, California
| |
Collapse
|
26
|
Breton JM, Charbit AR, Snyder BJ, Fong PTK, Dias EV, Himmels P, Lock H, Margolis EB. Relative contributions and mapping of ventral tegmental area dopamine and GABA neurons by projection target in the rat. J Comp Neurol 2018; 527:916-941. [PMID: 30393861 DOI: 10.1002/cne.24572] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/08/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022]
Abstract
The ventral tegmental area (VTA) is a heterogeneous midbrain structure that contains dopamine (DA), GABA, and glutamate neurons that project to many different brain regions. Here, we combined retrograde tracing with immunocytochemistry against tyrosine hydroxylase (TH) or glutamate decarboxylase (GAD) to systematically compare the proportion of dopaminergic and GABAergic VTA projections to 10 target nuclei: anterior cingulate, prelimbic, and infralimbic cortex; nucleus accumbens core, medial shell, and lateral shell; anterior and posterior basolateral amygdala; ventral pallidum; and periaqueductal gray. Overall, the non-dopaminergic component predominated VTA efferents, accounting for more than 50% of all projecting neurons to each region except the nucleus accumbens core. In addition, GABA neurons contributed no more than 20% to each projection, with the exception of the projection to the ventrolateral periaqueductal gray, where the GABAergic contribution approached 50%. Therefore, there is likely a significant glutamatergic component to many of the VTA's projections. We also found that VTA cell bodies retrogradely labeled from the various target brain regions had distinct distribution patterns within the VTA, including in the locations of DA and GABA neurons. Despite this patterned organization, VTA neurons comprising these different projections were intermingled and never limited to any one subregion. These anatomical results are consistent with the idea that VTA neurons participate in multiple distinct, parallel circuits that differentially contribute to motivation and reward. While attention has largely focused on VTA DA neurons, a better understanding of VTA subpopulations, especially the contribution of non-DA neurons to projections, will be critical for future work.
Collapse
Affiliation(s)
- Jocelyn M Breton
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| | - Annabelle R Charbit
- Department of Neurology and Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, California
| | - Benjamin J Snyder
- Department of Neurology and Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, California
| | - Peter T K Fong
- Department of Neurology and Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, California.,Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California
| | - Elayne V Dias
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California
| | - Patricia Himmels
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California
| | - Hagar Lock
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California
| | - Elyssa B Margolis
- Department of Neurology and Wheeler Center for the Neurobiology of Addiction, University of California, San Francisco, California.,Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California
| |
Collapse
|
27
|
The Avian Basal Ganglia Are a Source of Rapid Behavioral Variation That Enables Vocal Motor Exploration. J Neurosci 2018; 38:9635-9647. [PMID: 30249800 DOI: 10.1523/jneurosci.2915-17.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 11/21/2022] Open
Abstract
The basal ganglia (BG) participate in aspects of reinforcement learning that require evaluation and selection of motor programs associated with improved performance. However, whether the BG additionally contribute to behavioral variation ("motor exploration") that forms the substrate for such learning remains unclear. In songbirds, a tractable system for studying BG-dependent skill learning, a role for the BG in generating exploratory variability, has been challenged by the finding that lesions of Area X, the song-specific component of the BG, have no lasting effects on several forms of vocal variability that have been studied. Here we demonstrate that lesions of Area X in adult male zebra finches (Taeniopygia gutatta) permanently eliminate rapid within-syllable variation in fundamental frequency (FF), which can act as motor exploration to enable reinforcement-driven song learning. In addition, we found that this within-syllable variation is elevated in juveniles and in adults singing alone, conditions that have been linked to enhanced song plasticity and elevated neural variability in Area X. Consistent with a model that variability is relayed from Area X, via its cortical target, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), to influence song motor circuitry, we found that lesions of LMAN also eliminate within-syllable variability. Moreover, we found that electrical perturbation of LMAN can drive fluctuations in FF that mimic naturally occurring within-syllable variability. Together, these results demonstrate that the BG are a central source of rapid behavioral variation that can serve as motor exploration for vocal learning.SIGNIFICANCE STATEMENT Many complex motor skills, such as speech, are not innately programmed but are learned gradually through trial and error. Learning involves generating exploratory variability in action ("motor exploration") and evaluating subsequent performance to acquire motor programs that lead to improved performance. Although it is well established that the basal ganglia (BG) process signals relating to action evaluation and selection, whether and how the BG promote exploratory motor variability remain unclear. We investigated this question in songbirds, which learn to produce complex vocalizations through trial and error. In contrast with previous studies that did not find effects of BG lesions on vocal motor variability, we demonstrate that the BG are an essential source of rapid behavioral variation linked to vocal learning.
Collapse
|
28
|
Puzerey PA, Maher K, Prasad N, Goldberg JH. Vocal learning in songbirds requires cholinergic signaling in a motor cortex-like nucleus. J Neurophysiol 2018; 120:1796-1806. [PMID: 29995601 DOI: 10.1152/jn.00078.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cholinergic inputs to cortex modulate plasticity and sensory processing, yet little is known about their role in motor control. Here, we show that cholinergic signaling in a songbird vocal motor cortical area, the robust nucleus of the arcopallium (RA), is required for song learning. Reverse microdialysis of nicotinic and muscarinic receptor antagonists into RA in juvenile birds did not significantly affect syllable timing or acoustic structure during vocal babbling. However, chronic blockade over weeks reduced singing quantity and impaired learning, resulting in an impoverished song with excess variability, abnormal acoustic features, and reduced similarity to tutor song. The demonstration that cholinergic signaling in a motor cortical area is required for song learning motivates the songbird as a tractable model system to identify roles of the basal forebrain cholinergic system in motor control. NEW & NOTEWORTHY Cholinergic inputs to cortex are evolutionarily conserved and implicated in sensory processing and synaptic plasticity. However, functions of cholinergic signals in motor areas are understudied and poorly understood. Here, we show that cholinergic signaling in a songbird vocal motor cortical area is not required for normal vocal variability during babbling but is essential for developmental song learning. Cholinergic modulation of motor cortex is thus required for learning but not for the ability to sing.
Collapse
Affiliation(s)
- Pavel A Puzerey
- Department of Neurobiology and Behavior, Cornell University , Ithaca, New York
| | - Kamal Maher
- Department of Neurobiology and Behavior, Cornell University , Ithaca, New York
| | - Nikil Prasad
- Department of Neurobiology and Behavior, Cornell University , Ithaca, New York
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University , Ithaca, New York
| |
Collapse
|
29
|
Neuroplasticity in the cerebello-thalamo-basal ganglia pathway: A longitudinal in vivo MRI study in male songbirds. Neuroimage 2018; 181:190-202. [PMID: 29981906 DOI: 10.1016/j.neuroimage.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022] Open
Abstract
Similar to human speech, bird song is controlled by several pathways including a cortico-basal ganglia-thalamo-cortical (C-BG-T-C) loop. Neurotoxic disengagement of the basal ganglia component, i.e. Area X, induces long-term changes in song performance, while most of the lesioned area regenerates within the first months. Importantly however, the timing and spatial extent of structural neuroplastic events potentially affecting other constituents of the C-BG-T-C loop is not clear. We designed a longitudinal MRI study where changes in brain structure were evaluated relative to the time after neurotoxic lesioning or to vocal performance. By acquiring both Diffusion Tensor Imaging and 3-dimensional anatomical scans, we were able to track alterations in respectively intrinsic tissue properties and local volume. Voxel-based statistical analyses revealed structural remodeling remote to the lesion, i.e. in the thalamus and, surprisingly, the cerebellum, both peaking within the first two months after lesioning Area X. Voxel-wise correlations between song performance and MRI parameters uncovered intriguing brain-behavior relationships in several brain areas pertaining to the C-BG-T-C loop supervising vocal motor control. Our results clearly point to structural neuroplasticity in the cerebellum induced by basal ganglia (striatal) damage and might point to the existence of a human-like cerebello-thalamic-basal ganglia pathway capable of modifying vocal motor output.
Collapse
|
30
|
Tomaszycki ML, Atchley D. Pairing Increases Activation of V1aR, but not OTR, in Auditory Regions of Zebra Finches: The Importance of Signal Modality in Nonapeptide-Social Behavior Relationships. Integr Comp Biol 2018; 57:878-890. [PMID: 28992311 DOI: 10.1093/icb/icx043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Social relationships are complex, involving the production and comprehension of signals, individual recognition, and close coordination of behavior between two or more individuals. The nonapeptides oxytocin and vasopressin are widely believed to regulate social relationships. These findings come largely from prairie voles, in which nonapeptide receptors in olfactory neural circuits drive pair bonding. This research is assumed to apply to all species. Previous reviews have offered two competing hypotheses. The work of Sarah Newman has implicated a common neural network across species, the Social Behavior Network. In contrast, others have suggested that there are signal modality-specific networks that regulate social behavior. Our research focuses on evaluating these two competing hypotheses in the zebra finch, a species that relies heavily on vocal/auditory signals for communication, specifically the neural circuits underlying singing in males and song perception in females. We have demonstrated that the quality of vocal interactions is highly important for the formation of long-term monogamous bonds in zebra finches. Qualitative evidence at first suggests that nonapeptide receptor distributions are very different between monogamous rodents (olfactory species) and monogamous birds (vocal/auditory species). However, we have demonstrated that social bonding behaviors are not only correlated with activation of nonapeptide receptors in vocal and auditory circuits, but also involve regions of the common Social Behavior Network. Here, we show increased Vasopressin 1a receptor, but not oxytocin receptor, activation in two auditory regions following formation of a pair bond. To our knowledge, this is the first study to suggest a role of nonapeptides in the auditory circuit in pair bonding. Thus, we highlight converging mechanisms of social relationships and also point to the importance of studying multiple species to understand mechanisms of behavior.
Collapse
Affiliation(s)
- Michelle L Tomaszycki
- Department of Psychology, Program in Neuroscience, Lafayette College, Easton, PA 18042, USA
| | - Derek Atchley
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
31
|
Zhou X, Fu X, Lin C, Zhou X, Liu J, Wang L, Zhang X, Zuo M, Fan X, Li D, Sun Y. Remodeling of Dendritic Spines in the Avian Vocal Motor Cortex Following Deafening Depends on the Basal Ganglia Circuit. Cereb Cortex 2018; 27:2820-2830. [PMID: 27166173 DOI: 10.1093/cercor/bhw130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Deafening elicits a deterioration of learned vocalization, in both humans and songbirds. In songbirds, learned vocal plasticity has been shown to depend on the basal ganglia-cortical circuit, but the underlying cellular basis remains to be clarified. Using confocal imaging and electron microscopy, we examined the effect of deafening on dendritic spines in avian vocal motor cortex, the robust nucleus of the arcopallium (RA), and investigated the role of the basal ganglia circuit in motor cortex plasticity. We found rapid structural changes to RA dendritic spines in response to hearing loss, accompanied by learned song degradation. In particular, the morphological characters of RA spine synaptic contacts between 2 major pathways were altered differently. However, experimental disruption of the basal ganglia circuit, through lesions in song-specialized basal ganglia nucleus Area X, largely prevented both the observed changes to RA dendritic spines and the song deterioration after hearing loss. Our results provide cellular evidence to highlight a key role of the basal ganglia circuit in the motor cortical plasticity that underlies learned vocal plasticity.
Collapse
Affiliation(s)
- Xin Zhou
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xin Fu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Chun Lin
- Department of Biology, Hainan Normal University, Haikou 571158, China
| | - Xiaojuan Zhou
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Li Wang
- Center for Biological Imaging (CBI), Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Xinwen Zhang
- Department of Biology, Hainan Normal University, Haikou 571158, China
| | - Mingxue Zuo
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaolong Fan
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Dapeng Li
- State Key Laboratory of Brain and Cognitive Sciences
| | - Yingyu Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
32
|
A common neural circuit mechanism for internally guided and externally reinforced forms of motor learning. Nat Neurosci 2018; 21:589-597. [PMID: 29483664 PMCID: PMC5963939 DOI: 10.1038/s41593-018-0092-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 01/08/2018] [Indexed: 12/30/2022]
Abstract
The complex skills underlying verbal and musical expression can be learned without external punishment or reward, indicating their learning is internally guided. The neural mechanisms that mediate internally guided learning are poorly understood, but a circuit comprising dopamine-releasing neurons in the midbrain ventral tegmental area (VTA) and their targets in the basal ganglia are important to externally reinforced learning. Juvenile zebra finches copy a tutor song in a process that is internally guided and, in adulthood, can learn to modify the fundamental frequency (pitch) of a target syllable in response to external reinforcement with white noise. Here we combined intersectional genetic ablation of VTA neurons, reversible blockade of dopamine receptors in the basal ganglia, and singing-triggered optogenetic stimulation of VTA terminals to establish that a common VTA-basal ganglia circuit enables internally guided song copying and externally reinforced syllable pitch learning.
Collapse
|
33
|
Achiro JM, Shen J, Bottjer SW. Neural activity in cortico-basal ganglia circuits of juvenile songbirds encodes performance during goal-directed learning. eLife 2017; 6:e26973. [PMID: 29256393 PMCID: PMC5762157 DOI: 10.7554/elife.26973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 12/02/2017] [Indexed: 11/13/2022] Open
Abstract
Cortico-basal ganglia circuits are thought to mediate goal-directed learning by a process of outcome evaluation to gradually select appropriate motor actions. We investigated spiking activity in core and shell subregions of the cortical nucleus LMAN during development as juvenile zebra finches are actively engaged in evaluating feedback of self-generated behavior in relation to their memorized tutor song (the goal). Spiking patterns of single neurons in both core and shell subregions during singing correlated with acoustic similarity to tutor syllables, suggesting a process of outcome evaluation. Both core and shell neurons encoded tutor similarity via either increases or decreases in firing rate, although only shell neurons showed a significant association at the population level. Tutor similarity predicted firing rates most strongly during early stages of learning, and shell but not core neurons showed decreases in response variability across development, suggesting that the activity of shell neurons reflects the progression of learning.
Collapse
Affiliation(s)
- Jennifer M Achiro
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesUnited States
| | - John Shen
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesUnited States
| | - Sarah W Bottjer
- Section of NeurobiologyUniversity of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
34
|
Paterson AK, Bottjer SW. Cortical inter-hemispheric circuits for multimodal vocal learning in songbirds. J Comp Neurol 2017; 525:3312-3340. [PMID: 28681379 DOI: 10.1002/cne.24280] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 02/02/2023]
Abstract
Vocal learning in songbirds and humans is strongly influenced by social interactions based on sensory inputs from several modalities. Songbird vocal learning is mediated by cortico-basal ganglia circuits that include the SHELL region of lateral magnocellular nucleus of the anterior nidopallium (LMAN), but little is known concerning neural pathways that could integrate multimodal sensory information with SHELL circuitry. In addition, cortical pathways that mediate the precise coordination between hemispheres required for song production have been little studied. In order to identify candidate mechanisms for multimodal sensory integration and bilateral coordination for vocal learning in zebra finches, we investigated the anatomical organization of two regions that receive input from SHELL: the dorsal caudolateral nidopallium (dNCLSHELL ) and a region within the ventral arcopallium (Av). Anterograde and retrograde tracing experiments revealed a topographically organized inter-hemispheric circuit: SHELL and dNCLSHELL , as well as adjacent nidopallial areas, send axonal projections to ipsilateral Av; Av in turn projects to contralateral SHELL, dNCLSHELL , and regions of nidopallium adjacent to each. Av on each side also projects directly to contralateral Av. dNCLSHELL and Av each integrate inputs from ipsilateral SHELL with inputs from sensory regions in surrounding nidopallium, suggesting that they function to integrate multimodal sensory information with song-related responses within LMAN-SHELL during vocal learning. Av projections share this integrated information from the ipsilateral hemisphere with contralateral sensory and song-learning regions. Our results suggest that the inter-hemispheric pathway through Av may function to integrate multimodal sensory feedback with vocal-learning circuitry and coordinate bilateral vocal behavior.
Collapse
Affiliation(s)
- Amy K Paterson
- Program in Genetic, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sarah W Bottjer
- Section of Neurobiology, University of Southern California, Los Angeles, California
| |
Collapse
|
35
|
Roberts TF, Hisey E, Tanaka M, Kearney M, Chattree G, Yang CF, Shah NM, Mooney R. Identification of a motor-to-auditory pathway important for vocal learning. Nat Neurosci 2017; 20:978-986. [PMID: 28504672 PMCID: PMC5572074 DOI: 10.1038/nn.4563] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
Learning to vocalize depends on the ability to adaptively modify the temporal and spectral features of vocal elements. Neurons that convey motor-related signals to the auditory system are theorized to facilitate vocal learning, but the identity and function of such neurons remain unknown. Here we identify a previously unknown neuron type in the songbird brain that transmits vocal motor signals to the auditory cortex. Genetically ablating these neurons in juveniles disrupted their ability to imitate features of an adult tutor's song. Ablating these neurons in adults had little effect on previously learned songs but interfered with their ability to adaptively modify the duration of vocal elements and largely prevented the degradation of songs' temporal features that is normally caused by deafening. These findings identify a motor to auditory circuit essential to vocal imitation and to the adaptive modification of vocal timing.
Collapse
Affiliation(s)
- Todd F. Roberts
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erin Hisey
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Masashi Tanaka
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew Kearney
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gaurav Chattree
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cindy F. Yang
- Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Nirao M. Shah
- Department of Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
36
|
Frenzilli G, Ryskalin L, Ferrucci M, Cantafora E, Chelazzi S, Giorgi FS, Lenzi P, Scarcelli V, Frati A, Biagioni F, Gambardella S, Falleni A, Fornai F. Loud Noise Exposure Produces DNA, Neurotransmitter and Morphological Damage within Specific Brain Areas. Front Neuroanat 2017; 11:49. [PMID: 28694773 PMCID: PMC5483448 DOI: 10.3389/fnana.2017.00049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum) of Wistar rats. Rats were exposed to loud noise (100 dBA) for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days) after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA) significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA) was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH) combined with increased Bax and glial fibrillary acidic protein (GFAP). Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.
Collapse
Affiliation(s)
- Giada Frenzilli
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Emanuela Cantafora
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Silvia Chelazzi
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Filippo S Giorgi
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Vittoria Scarcelli
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico IRCCS NeuromedIsernia, Italy
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico IRCCS NeuromedIsernia, Italy
| | - Stefano Gambardella
- Istituto di Ricovero e Cura a Carattere Scientifico IRCCS NeuromedIsernia, Italy
| | - Alessandra Falleni
- Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico IRCCS NeuromedIsernia, Italy
| |
Collapse
|
37
|
Kosubek-Langer J, Schulze L, Scharff C. Maturation, Behavioral Activation, and Connectivity of Adult-Born Medium Spiny Neurons in a Striatal Song Nucleus. Front Neurosci 2017. [PMID: 28638318 PMCID: PMC5461290 DOI: 10.3389/fnins.2017.00323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neurogenesis continues in the adult songbird brain. Many telencephalic song control regions incorporate new neurons into their existing circuits in adulthood. One song nucleus that receives many new neurons is Area X. Because this striatal region is crucial for song learning and song maintenance the recruitment of new neurons into Area X could influence these processes. As an entry point into addressing this possibility, we investigated the maturation and connectivity within the song circuit and behavioral activation of newly generated Area X neurons. Using BrdU birth dating and virally mediated GFP expression we followed adult-generated neurons from their place of birth in the ventricle to their place of incorporation into Area X. We show that newborn neurons receive glutamatergic input from pallial/cortical song nuclei. Additionally, backfills revealed that the new neurons connect to pallidal-like projection neurons that innervate the thalamus. Using in situ hybridization, we found that new neurons express the mRNA for D1- and D2-type dopamine receptors. Employing DARPP-32 (dopamine and cAMP-regulated phosphoprotein of 32 kDa) and EGR-1 (early growth response protein 1) as markers for neural maturation and activation, we established that at 42 days after labeling approximately 80% of new neurons were mature medium spiny neurons (MSNs) and could be activated by singing behavior. Finally, we compared the MSN density in Area X of birds up to seven years of age and found a significant increase with age, indicating that new neurons are constantly added to the nucleus. In summary, we provide evidence that newborn MSNs in Area X constantly functionally integrate into the circuit and are thus likely to play a role in the maintenance and regulation of adult song.
Collapse
Affiliation(s)
| | - Lydia Schulze
- Animal Behavior, Freie Universität BerlinBerlin, Germany
| | | |
Collapse
|
38
|
Hahn AH, Merullo DP, Spool JA, Angyal CS, Stevenson SA, Riters LV. Song-associated reward correlates with endocannabinoid-related gene expression in male European starlings (Sturnus vulgaris). Neuroscience 2017; 346:255-266. [PMID: 28147243 DOI: 10.1016/j.neuroscience.2017.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/08/2023]
Abstract
Vocal communication is required for successful social interactions in numerous species. During the breeding season, songbirds produce songs that are reinforced by behavioral consequences (e.g., copulation). However, some songbirds also produce songs not obviously directed at other individuals. The consequences maintaining or reinforcing these songs are less obvious and the neural mechanisms associated with undirected communication are not well-understood. Previous studies indicate that undirected singing is intrinsically rewarding and mediated by opioid or dopaminergic systems; however, endocannabinoids are also involved in regulating reward and singing behavior. We used a conditioned place preference paradigm to examine song-associated reward in European starlings and quantitative real-time PCR to measure expression of endocannabinoid-related neural markers (CB1, FABP7, FABP5, FAAH, DAGLα), in brain regions involved in social behavior, reward and motivation (ventral tegmental area [VTA], periaqueductal gray [PAG], and medial preoptic nucleus [POM]), and a song control region (Area X). Our results indicate that starlings producing high rates of song developed a conditioned place preference, suggesting that undirected song is associated with a positive affective state. We found a significant positive relationship between song-associated reward and CB1 receptors in VTA and a significant negative relationship between song-associated reward and CB1 in PAG. There was a significant positive relationship between reward and the cannabinoid transporter FABP7 in POM and a significant negative relationship between reward and FABP7 in PAG. In Area X, FABP5 and DAGLα correlated positively with singing. These results suggest a role for endocannabinoid signaling in vocal production and reward associated with undirected communication.
Collapse
Affiliation(s)
- Allison H Hahn
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Devin P Merullo
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeremy A Spool
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Caroline S Angyal
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sharon A Stevenson
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lauren V Riters
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
39
|
Gadagkar V, Puzerey PA, Chen R, Baird-Daniel E, Farhang AR, Goldberg JH. Dopamine neurons encode performance error in singing birds. Science 2016; 354:1278-1282. [PMID: 27940871 PMCID: PMC5464363 DOI: 10.1126/science.aah6837] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022]
Abstract
Many behaviors are learned through trial and error by matching performance to internal goals. Yet neural mechanisms of performance evaluation remain poorly understood. We recorded basal ganglia-projecting dopamine neurons in singing zebra finches as we controlled perceived song quality with distorted auditory feedback. Dopamine activity was phasically suppressed after distorted syllables, consistent with a worse-than-predicted outcome, and was phasically activated at the precise moment of the song when a predicted distortion did not occur, consistent with a better-than-predicted outcome. Error response magnitude depended on distortion probability. Thus, dopaminergic error signals can evaluate behaviors that are not learned for reward and are instead learned by matching performance outcomes to internal goals.
Collapse
Affiliation(s)
- Vikram Gadagkar
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Pavel A Puzerey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Ruidong Chen
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Eliza Baird-Daniel
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Alexander R Farhang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
40
|
Riters LV, Cordes MA, Stevenson SA. Prodynorphin and kappa opioid receptor mRNA expression in the brain relates to social status and behavior in male European starlings. Behav Brain Res 2016; 320:37-47. [PMID: 27913257 DOI: 10.1016/j.bbr.2016.11.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022]
Abstract
Numerous animal species display behavioral changes in response to changes in social status or territory possession. For example, in male European starlings only males that acquire nesting sites display high rates of sexual and agonistic behavior. Past studies show that mu and delta opioid receptors regulate behaviors associated with social ascension or defeat. Opioids also act at kappa receptors, with dynorphin binding with the highest affinity; however, the role of these opioids in social behavior has not been well studied. We observed flocks of male starlings during the breeding season and ran quantitative real-time polymerase chain reaction (qPCR) to measure expression of kappa opioid receptors (OPRK1) and prodynorphin (PDYN) in brain regions involved in social behavior and motivation (ventral tegmental area [VTA], medial preoptic nucleus [mPOA]) and vocal behavior (Area X). Males with nesting territories displayed more sexual/agonistic behavior than males without nesting territories. They also had lower OPRK1 expression in VTA and mPOA. OPRK1 expression in VTA correlated negatively with sexual/agonistic behaviors, consistent with past studies showing kappa receptors in VTA to inhibit sociosexual behaviors. PDYN in mPOA correlated negatively with a measure of nesting behavior that may also reflect sexual motivation. PDYN in Area X related positively to song. Distinct patterns of OPRK1 and PDYN expression in VTA, mPOA, and Area X related to gonad volume, suggesting that breeding condition may modify (or be modified by) OPRK1 and PDYN expression. Studies are now needed to further characterize the role of OPRK1 and PDYN in status-appropriate social behaviors.
Collapse
Affiliation(s)
- Lauren V Riters
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706, USA.
| | - Melissa A Cordes
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706, USA
| | - Sharon A Stevenson
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
41
|
Sizemore RJ, Zhang R, Lin N, Goddard L, Wastney T, Parr-Brownlie LC, Reynolds JNJ, Oorschot DE. Marked differences in the number and type of synapses innervating the somata and primary dendrites of midbrain dopaminergic neurons, striatal cholinergic interneurons, and striatal spiny projection neurons in the rat. J Comp Neurol 2015; 524:1062-80. [PMID: 26355230 DOI: 10.1002/cne.23891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 08/17/2015] [Accepted: 09/02/2015] [Indexed: 12/24/2022]
Abstract
Elucidating the link between cellular activity and goal-directed behavior requires a fuller understanding of the mechanisms underlying burst firing in midbrain dopaminergic neurons and those that suppress activity during aversive or non-rewarding events. We have characterized the afferent synaptic connections onto these neurons in the rat substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA), and compared these findings with cholinergic interneurons and spiny projection neurons in the striatum. We found that the average absolute number of synapses was three to three and one-half times greater onto the somata of dorsal striatal spiny projection neurons than onto the somata of dopaminergic neurons in the SNpc or dorsal striatal cholinergic interneurons. A similar comparison between populations of dopamine neurons revealed a two times greater number of somatic synapses on VTA dopaminergic neurons than SNpc dopaminergic neurons. The percentage of symmetrical, presumably inhibitory, synaptic inputs on somata was significantly higher on spiny projection neurons and cholinergic interneurons compared with SNpc dopaminergic neurons. Synaptic data on the primary dendrites yielded similar significant differences for the percentage of symmetrical synapses for VTA dopaminergic vs. striatal neurons. No differences in the absolute number or type of somatic synapses were evident for dopaminergic neurons in the SNpc of Wistar vs. Sprague-Dawley rat strains. These data from identified neurons are pivotal for interpreting their electrophysiological responses to afferent activity and for generating realistic computer models of neuronal networks of striatal and midbrain dopaminergic function.
Collapse
Affiliation(s)
- Rachel J Sizemore
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Rong Zhang
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Naili Lin
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Liping Goddard
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Timothy Wastney
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Louise C Parr-Brownlie
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - John N J Reynolds
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| | - Dorothy E Oorschot
- Department of Anatomy, Otago School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|
42
|
Woolley S, Kao M. Variability in action: Contributions of a songbird cortical-basal ganglia circuit to vocal motor learning and control. Neuroscience 2015; 296:39-47. [DOI: 10.1016/j.neuroscience.2014.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
43
|
Ihle EC, van der Hart M, Jongsma M, Tecott LH, Doupe AJ. Dopamine physiology in the basal ganglia of male zebra finches during social stimulation. Eur J Neurosci 2015; 41:1506-14. [PMID: 25872575 PMCID: PMC4542065 DOI: 10.1111/ejn.12887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 11/30/2022]
Abstract
Accumulating evidence suggests that dopamine (DA) is involved in altering neural activity and gene expression in a zebra finch cortical–basal ganglia circuit specialized for singing, upon the shift between solitary singing and singing as a part of courtship. Our objective here was to sample changes in the extracellular concentrations of DA in Area X of adult and juvenile birds, to test the hypothesis that DA levels would change similarly during presentation of a socially salient stimulus in both age groups. We used microdialysis to sample the extracellular milieu of Area X in awake, behaving adult and juvenile male zebra finches, and analysed the dialysate using high-performance liquid chromatography coupled with electrochemical detection. The extracellular levels of DA in Area X increased significantly during both female presentation to adult males and tutor presentation to juvenile males. DA levels were not correlated with the time spent singing. We also reverse-dialysed Area X with pharmacologic agents that act either on DA systems directly or on norepinephrine, and found that all of these agents significantly increased DA levels (3- to 10-fold) in Area X. These findings suggest that changes in extracellular DA levels can be stimulated similarly by very different social contexts (courtship and interaction with tutor), and influenced potently by dopaminergic and noradrenergic drugs. These results raise the possibility that the arousal level or attentional state of the subject (rather than singing behavior) is the common feature eliciting changes in extracellular DA concentration.
Collapse
Affiliation(s)
- Eva C Ihle
- University of California, San Francisco (UCSF), 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Marieke van der Hart
- University of California, San Francisco (UCSF), 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Minke Jongsma
- University of California, San Francisco (UCSF), 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Larry H Tecott
- University of California, San Francisco (UCSF), 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Allison J Doupe
- University of California, San Francisco (UCSF), 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
44
|
The lamprey pallium provides a blueprint of the mammalian motor projections from cortex. Curr Biol 2015; 25:413-23. [PMID: 25619762 DOI: 10.1016/j.cub.2014.12.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND The frontal lobe control of movement in mammals has been thought to be a specific function primarily related to the layered neocortex with its efferent connections. In contrast, we now show that the same basic organization is present even in one of the phylogenetically oldest vertebrates, the lamprey. RESULTS Stimulation of specific sites in the pallium/cortex evokes eye, trunk, locomotor, or oral movements. The pallial projection neurons target brainstem motor centers and basal ganglia subnuclei and have prominent dendrites extending into the outer molecular layer. They exhibit the characteristic features of pyramidal neurons and elicit monosynaptic glutamatergic excitatory postsynaptic potentials in output neurons of the optic tectum, reticulospinal neurons, and, as shown earlier, basal ganglia neurons. CONCLUSIONS Our results demonstrate marked similarities in the efferent functional connectivity and control of motor behavior between the lamprey pallium and mammalian neocortex. Thus, the lamprey motor pallium/cortex represents an evolutionary blueprint of the corresponding mammalian system.
Collapse
|
45
|
Mandelblat-Cerf Y, Las L, Denisenko N, Fee MS. A role for descending auditory cortical projections in songbird vocal learning. eLife 2014; 3. [PMID: 24935934 PMCID: PMC4113997 DOI: 10.7554/elife.02152] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 06/12/2014] [Indexed: 11/13/2022] Open
Abstract
Many learned motor behaviors are acquired by comparing ongoing behavior with an internal representation of correct performance, rather than using an explicit external reward. For example, juvenile songbirds learn to sing by comparing their song with the memory of a tutor song. At present, the brain regions subserving song evaluation are not known. In this study, we report several findings suggesting that song evaluation involves an avian 'cortical' area previously shown to project to the dopaminergic midbrain and other downstream targets. We find that this ventral portion of the intermediate arcopallium (AIV) receives inputs from auditory cortical areas, and that lesions of AIV result in significant deficits in vocal learning. Additionally, AIV neurons exhibit fast responses to disruptive auditory feedback presented during singing, but not during nonsinging periods. Our findings suggest that auditory cortical areas may guide learning by transmitting song evaluation signals to the dopaminergic midbrain and/or other subcortical targets.
Collapse
Affiliation(s)
- Yael Mandelblat-Cerf
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Liora Las
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Natalia Denisenko
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Michale S Fee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
46
|
Evidence for a causal inverse model in an avian cortico-basal ganglia circuit. Proc Natl Acad Sci U S A 2014; 111:6063-8. [PMID: 24711417 DOI: 10.1073/pnas.1317087111] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Learning by imitation is fundamental to both communication and social behavior and requires the conversion of complex, nonlinear sensory codes for perception into similarly complex motor codes for generating action. To understand the neural substrates underlying this conversion, we study sensorimotor transformations in songbird cortical output neurons of a basal-ganglia pathway involved in song learning. Despite the complexity of sensory and motor codes, we find a simple, temporally specific, causal correspondence between them. Sensory neural responses to song playback mirror motor-related activity recorded during singing, with a temporal offset of roughly 40 ms, in agreement with short feedback loop delays estimated using electrical and auditory stimulation. Such matching of mirroring offsets and loop delays is consistent with a recent Hebbian theory of motor learning and suggests that cortico-basal ganglia pathways could support motor control via causal inverse models that can invert the rich correspondence between motor exploration and sensory feedback.
Collapse
|
47
|
Prather JF. Auditory signal processing in communication: perception and performance of vocal sounds. Hear Res 2013; 305:144-55. [PMID: 23827717 DOI: 10.1016/j.heares.2013.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 06/13/2013] [Accepted: 06/20/2013] [Indexed: 01/21/2023]
Abstract
Learning and maintaining the sounds we use in vocal communication require accurate perception of the sounds we hear performed by others and feedback-dependent imitation of those sounds to produce our own vocalizations. Understanding how the central nervous system integrates auditory and vocal-motor information to enable communication is a fundamental goal of systems neuroscience, and insights into the mechanisms of those processes will profoundly enhance clinical therapies for communication disorders. Gaining the high-resolution insight necessary to define the circuits and cellular mechanisms underlying human vocal communication is presently impractical. Songbirds are the best animal model of human speech, and this review highlights recent insights into the neural basis of auditory perception and feedback-dependent imitation in those animals. Neural correlates of song perception are present in auditory areas, and those correlates are preserved in the auditory responses of downstream neurons that are also active when the bird sings. Initial tests indicate that singing-related activity in those downstream neurons is associated with vocal-motor performance as opposed to the bird simply hearing itself sing. Therefore, action potentials related to auditory perception and action potentials related to vocal performance are co-localized in individual neurons. Conceptual models of song learning involve comparison of vocal commands and the associated auditory feedback to compute an error signal that is used to guide refinement of subsequent song performances, yet the sites of that comparison remain unknown. Convergence of sensory and motor activity onto individual neurons points to a possible mechanism through which auditory and vocal-motor signals may be linked to enable learning and maintenance of the sounds used in vocal communication. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
Affiliation(s)
- Jonathan F Prather
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, 1000 E. University Avenue - Dept. 3166, Laramie, WY 82071, USA.
| |
Collapse
|
48
|
Social modulation of learned behavior by dopamine in the basal ganglia: Insights from songbirds. ACTA ACUST UNITED AC 2013; 107:219-29. [DOI: 10.1016/j.jphysparis.2012.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/22/2012] [Accepted: 09/18/2012] [Indexed: 01/25/2023]
|
49
|
Sewall KB, Caro SP, Sockman KW. Song competition affects monoamine levels in sensory and motor forebrain regions of male Lincoln's sparrows (Melospiza lincolnii). PLoS One 2013; 8:e59857. [PMID: 23555809 PMCID: PMC3608548 DOI: 10.1371/journal.pone.0059857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/22/2013] [Indexed: 11/24/2022] Open
Abstract
Male animals often change their behavior in response to the level of competition for mates. Male Lincoln's sparrows (Melospiza lincolnii) modulate their competitive singing over the period of a week as a function of the level of challenge associated with competitors' songs. Differences in song challenge and associated shifts in competitive state should be accompanied by neural changes, potentially in regions that regulate perception and song production. The monoamines mediate neural plasticity in response to environmental cues to achieve shifts in behavioral state. Therefore, using high pressure liquid chromatography with electrochemical detection, we compared levels of monoamines and their metabolites from male Lincoln's sparrows exposed to songs categorized as more or less challenging. We compared levels of norepinephrine and its principal metabolite in two perceptual regions of the auditory telencephalon, the caudomedial nidopallium and the caudomedial mesopallium (CMM), because this chemical is implicated in modulating auditory sensitivity to song. We also measured the levels of dopamine and its principal metabolite in two song control nuclei, area X and the robust nucleus of the arcopallium (RA), because dopamine is implicated in regulating song output. We measured the levels of serotonin and its principal metabolite in all four brain regions because this monoamine is implicated in perception and behavioral output and is found throughout the avian forebrain. After controlling for recent singing, we found that males exposed to more challenging song had higher levels of norepinephrine metabolite in the CMM and lower levels of serotonin in the RA. Collectively, these findings are consistent with norepinephrine in perceptual brain regions and serotonin in song control regions contributing to neuroplasticity that underlies socially-induced changes in behavioral state.
Collapse
Affiliation(s)
- Kendra B. Sewall
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail: (KBS); (KWS)
| | - Samuel P. Caro
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Keith W. Sockman
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail: (KBS); (KWS)
| |
Collapse
|
50
|
Roberts TF, Mooney R. Motor circuits help encode auditory memories of vocal models used to guide vocal learning. Hear Res 2013; 303:48-57. [PMID: 23353871 DOI: 10.1016/j.heares.2013.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/26/2012] [Accepted: 01/10/2013] [Indexed: 11/30/2022]
Abstract
Early auditory experience can leave a lasting imprint on brain and behavior. This lasting imprint is most notably manifested in culturally transmitted vocal behaviors, including speech and birdsong, where a vocal model heard early in postnatal life exerts a lifelong influence on the individual's vocal repertoire. Because auditory experience of the vocal model can precede accurate vocal imitation by months or even years, a longstanding idea is that a memory of the model is initially stored in auditory centers, and accessed by vocal motor circuits only later in development. This review considers recent evidence from studies in songbirds supporting the idea that vocal motor circuits also participate in the encoding of auditory experience of the vocal model. The encoding of auditory memories by vocal motor networks may represent an efficient strategy for vocal learning that generalizes to other vocal learning species, including humans. This article is part of a Special Issue entitled "Annual Reviews 2013".
Collapse
Affiliation(s)
- Todd F Roberts
- Department of Neurobiology, Duke University Medical Center, 310 Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|