1
|
Aroniadou-Anderjaska V, Figueiredo TH, De Araujo Furtado M, Pidoplichko VI, Lumley LA, Braga MFM. Alterations in GABA A receptor-mediated inhibition triggered by status epilepticus and their role in epileptogenesis and increased anxiety. Neurobiol Dis 2024; 200:106633. [PMID: 39117119 DOI: 10.1016/j.nbd.2024.106633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
The triggers of status epilepticus (SE) in non-epileptic patients can vary widely, from idiopathic causes to exposure to chemoconvulsants. Regardless of its etiology, prolonged SE can cause significant brain damage, commonly resulting in the development of epilepsy, which is often accompanied by increased anxiety. GABAA receptor (GABAAR)-mediated inhibition has a central role among the mechanisms underlying brain damage and the ensuing epilepsy and anxiety. During SE, calcium influx primarily via ionotropic glutamate receptors activates signaling cascades which trigger a rapid internalization of synaptic GABAARs; this weakens inhibition, exacerbating seizures and excitotoxicity. GABAergic interneurons are more susceptible to excitotoxic death than principal neurons. During the latent period of epileptogenesis, the aberrant reorganization in synaptic interactions that follow interneuronal loss in injured brain regions, leads to the formation of hyperexcitable, seizurogenic neuronal circuits, along with disturbances in brain oscillatory rhythms. Reduction in the spontaneous, rhythmic "bursts" of IPSCs in basolateral amygdala neurons is likely to play a central role in anxiogenesis. Protecting interneurons during SE is key to preventing both epilepsy and anxiety. Antiglutamatergic treatments, including antagonism of calcium-permeable AMPA receptors, can be expected to control seizures and reduce excitotoxicity not only by directly suppressing hyperexcitation, but also by counteracting the internalization of synaptic GABAARs. Benzodiazepines, as delayed treatment of SE, have low efficacy due to the reduction and dispersion of their targets (the synaptic GABAARs), but also because themselves contribute to further reduction of available GABAARs at the synapse; furthermore, benzodiazepines may be completely ineffective in the immature brain.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Marcio De Araujo Furtado
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Volodymyr I Pidoplichko
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Lucille A Lumley
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen, Proving Ground, MD, USA.
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
2
|
Leifeld J, Förster E, Reiss G, Hamad MIK. Considering the Role of Extracellular Matrix Molecules, in Particular Reelin, in Granule Cell Dispersion Related to Temporal Lobe Epilepsy. Front Cell Dev Biol 2022; 10:917575. [PMID: 35733853 PMCID: PMC9207388 DOI: 10.3389/fcell.2022.917575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The extracellular matrix (ECM) of the nervous system can be considered as a dynamically adaptable compartment between neuronal cells, in particular neurons and glial cells, that participates in physiological functions of the nervous system. It is mainly composed of carbohydrates and proteins that are secreted by the different kinds of cell types found in the nervous system, in particular neurons and glial cells, but also other cell types, such as pericytes of capillaries, ependymocytes and meningeal cells. ECM molecules participate in developmental processes, synaptic plasticity, neurodegeneration and regenerative processes. As an example, the ECM of the hippocampal formation is involved in degenerative and adaptive processes related to epilepsy. The role of various components of the ECM has been explored extensively. In particular, the ECM protein reelin, well known for orchestrating the formation of neuronal layer formation in the cerebral cortex, is also considered as a player involved in the occurrence of postnatal granule cell dispersion (GCD), a morphologically peculiar feature frequently observed in hippocampal tissue from epileptic patients. Possible causes and consequences of GCD have been studied in various in vivo and in vitro models. The present review discusses different interpretations of GCD and different views on the role of ECM protein reelin in the formation of this morphological peculiarity.
Collapse
Affiliation(s)
- Jennifer Leifeld
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- Department of Biochemistry I—Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Jennifer Leifeld, ; Eckart Förster,
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Jennifer Leifeld, ; Eckart Förster,
| | - Gebhard Reiss
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/ Herdecke University, Witten, Germany
| | - Mohammad I. K. Hamad
- Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/ Herdecke University, Witten, Germany
| |
Collapse
|
3
|
Lattanzi S, Trinka E, Turcato G, Rinaldi C, Cagnetti C, Foschi N, Broggi S, Norata D, Brigo F, Silvestrini M. The latency of post-stroke epilepsy can predict drug resistance. Eur J Neurol 2022; 29:2481-2485. [PMID: 35582937 PMCID: PMC9544525 DOI: 10.1111/ene.15408] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/28/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022]
Abstract
Background and Purpose The progressive nature of epileptogenesis raises the question of whether the latent period may already carry information about the characteristics of the subsequent epilepsy. This study aimed to explore whether the time from stroke to epilepsy onset was related to the risk of drug resistance in patients with poststroke epilepsy (PSE). Methods Patients with epilepsy secondary to cerebral infarct or spontaneous intracerebral hemorrhage were included. Study outcome was the occurrence of drug resistance defined as failure of adequate trials of two tolerated and appropriately chosen and used antiseizure medication schedules to achieve sustained seizure freedom. Results One hundred fifty‐nine patients with PSE and a median follow‐up of 5 (interquartile range [IQR] = 3–9) years were included. In the study cohort, 29 (18.2%) participants were drug resistant. The median length of the time interval between stroke and PSE onset was 13 (IQR = 7–15) months in drug‐resistant patients and 19 (IQR = 14–42) months (p < 0.001) in patients with seizure control. According to multivariable regression analysis, the time from stroke to PSE was an independent predictor of drug resistance (p < 0.001). The risk of drug resistance was highest when the onset of PSE occurred within the first months from stroke and decreased progressively with a steeper decline over the first 12 months. Conclusions Substantial variability may exist in the pathways leading to PSE and distinguish patients with a variable risk of drug resistance.
Collapse
Affiliation(s)
- Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria.,Center for Cognitive Neuroscience, Salzburg, Austria.,Public Health, Health Services Research and HTA, University for Health Sciences, Medical Informatics and Technology, Hall i.T, Austria
| | - Gianni Turcato
- Emergency Department, "Franz Tappeiner" Hospital, Merano (BZ), Italy
| | - Claudia Rinaldi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Claudia Cagnetti
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Nicoletta Foschi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Serena Broggi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Davide Norata
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Francesco Brigo
- Division of Neurology, "Franz Tappeiner" Hospital, Merano (BZ), Italy
| | - Mauro Silvestrini
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
4
|
Shen Y, Gong Y, Ruan Y, Chen Z, Xu C. Secondary Epileptogenesis: Common to See, but Possible to Treat? Front Neurol 2021; 12:747372. [PMID: 34938259 PMCID: PMC8686764 DOI: 10.3389/fneur.2021.747372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023] Open
Abstract
Secondary epileptogenesis is a common phenomenon in epilepsy, characterized by epileptiform discharges from the regions outside the primary focus. It is one of the major reasons for pharmacoresistance and surgical failure. Compared with primary epileptogenesis, the mechanism of secondary epileptogenesis is usually more complex and diverse. In this review, we aim to summarize the characteristics of secondary epileptogenesis from both clinical and laboratory studies in a historical view. Mechanisms of secondary epileptogenesis in molecular, cellular, and circuity levels are further presented. Potential treatments targeting the process are discussed as well. At last, we highlight the importance of circuitry studies, which would further illustrate precise treatments of secondary epileptogenesis in the future.
Collapse
Affiliation(s)
- Yujia Shen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Shahpari M, Hajji M, Mirnajafi-Zadeh J, Setoodeh P. Modeling plasticity during epileptogenesis by long short term memory neural networks. Cogn Neurodyn 2021; 16:401-409. [PMID: 35401870 PMCID: PMC8934824 DOI: 10.1007/s11571-021-09698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 05/30/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022] Open
Abstract
Understanding the pathogenesis of epilepsy including changes in synaptic pathways can improve our knowledge about epilepsy and development of new treatments. In this regard, data-driven models such as artificial neural networks, which are able to capture the effects of synaptic plasticity, can play an important role. This paper proposes long short term memory (LSTM) as the ideal architecture for modeling plasticity changes, and validates this proposal via experimental data. As a special class of recurrent neural networks (RNNs), LSTM is able to track information through time and control its flow via several gating mechanisms, which allow for maintaining the relevant and forgetting the irrelevant information. In our experiments, potentiation and depotentiation of motor circuit and perforant pathway as two forms of plasticity were respectively induced by kindled and kindled + transcranial magnetic stimulation of animal groups. In kindling, both procedure duration and gradual synaptic changes play critical roles. The stimulation of both groups continued for six days. Both after-discharge (AD) and seizure behavior as two biologically measurable effects of plasticity were recorded immediately post each stimulation. Three classes of artificial neural networks-LSTM, RNN, and feedforward neural network (FFNN)-were trained to predict AD and seizure behavior as indicators of plasticity during these six days. Results obtained from the collected data confirm the superiority of LSTM. For seizure behavior, the prediction accuracies achieved by these three models were 0.91 ± 0.01, 0.77 ± 0.02, and 0.59 ± 0.02%, respectively, and for AD, the prediction accuracies were 0.82 ± 0.01, 0.74 ± 0.08 and 0.42 ± 0.1, respectively.
Collapse
|
6
|
de Curtis M, Rossetti AO, Verde DV, van Vliet EA, Ekdahl CT. Brain pathology in focal status epilepticus: evidence from experimental models. Neurosci Biobehav Rev 2021; 131:834-846. [PMID: 34517036 DOI: 10.1016/j.neubiorev.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/01/2022]
Abstract
Status Epilepticus (SE) is often a neurological emergency characterized by abnormally sustained, longer than habitual seizures. The new ILAE classification reports that SE "…can have long-term consequences including neuronal death, neuronal injury…depending on the type and duration of seizures". While it is accepted that generalized convulsive SE exerts detrimental effects on the brain, it is not clear if other forms of SE, such as focal non-convulsive SE, leads to brain pathology and contributes to long-term deficits in patients. With the available clinical and experimental data, it is hard to discriminate the specific action of the underlying SE etiologies from that exerted by epileptiform activity. This information is highly relevant in the clinic for better treatment stratification, which may include both medical and surgical intervention for seizure control. Here we review experimental studies of focal SE, with an emphasis on focal non-convulsive SE. We present a repertoire of brain pathologies observed in the most commonly used animal models and attempt to establish a link between experimental findings and human condition(s). The extensive literature on focal SE animal models suggest that the current approaches have significant limitations in terms of translatability of the findings to the clinic. We highlight the need for a more stringent description of SE features and brain pathology in experimental studies in animal models, to improve the accuracy in predicting clinical translation.
Collapse
Affiliation(s)
- Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto NeurologicoCarlo Besta, Milano, Italy.
| | - Andrea O Rossetti
- Department of Clinical Neuroscience, University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Diogo Vila Verde
- Epilepsy Unit, Fondazione IRCCS Istituto NeurologicoCarlo Besta, Milano, Italy
| | - Erwin A van Vliet
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, P.O. Box 94246, 1090 GE, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Christine T Ekdahl
- Division of Clinical Neurophysiology, Lund University, Sweden; Lund Epilepsy Center, Dept Clinical Sciences, Lund University, Sweden
| |
Collapse
|
7
|
Pitkänen A, Paananen T, Kyyriäinen J, Das Gupta S, Heiskanen M, Vuokila N, Bañuelos-Cabrera I, Lapinlampi N, Kajevu N, Andrade P, Ciszek R, Lara-Valderrábano L, Ekolle Ndode-Ekane X, Puhakka N. Biomarkers for posttraumatic epilepsy. Epilepsy Behav 2021; 121:107080. [PMID: 32317161 DOI: 10.1016/j.yebeh.2020.107080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
A biomarker is a characteristic that can be objectively measured as an indicator of normal biologic processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions. Biomarker modalities include molecular, histologic, radiographic, or physiologic characteristics. To improve the understanding and use of biomarker terminology in biomedical research, clinical practice, and medical product development, the Food and Drug Administration (FDA)-National Institutes of Health (NIH) Joint Leadership Council developed the BEST Resource (Biomarkers, EndpointS, and other Tools). The seven BEST biomarker categories include the following: (a) susceptibility/risk biomarkers, (b) diagnostic biomarkers, (c) monitoring biomarkers, (d) prognostic biomarkers, (e) predictive biomarkers, (f) pharmacodynamic/response biomarkers, and (g) safety biomarkers. We hypothesize some potential overlap between the reported biomarkers of traumatic brain injury (TBI), epilepsy, and posttraumatic epilepsy (PTE). Here, we tested this hypothesis by reviewing studies focusing on biomarker discovery for posttraumatic epileptogenesis and epilepsy. The biomarker modalities reviewed here include plasma/serum and cerebrospinal fluid molecular biomarkers, imaging biomarkers, and electrophysiologic biomarkers. Most of the reported biomarkers have an area under the receiver operating characteristic curve greater than 0.800, suggesting both high sensitivity and high specificity. Our results revealed little overlap in the biomarker candidates between TBI, epilepsy, and PTE. In addition to using single parameters as biomarkers, machine learning approaches have highlighted the potential for utilizing patterns of markers as biomarkers. Although published data suggest the possibility of identifying biomarkers for PTE, we are still in the early phase of the development curve. Many of the seven biomarker categories lack PTE-related biomarkers. Thus, further exploration using proper, statistically powered, and standardized study designs with validation cohorts, and by developing and applying novel analytical methods, is needed for PTE biomarker discovery.
Collapse
Affiliation(s)
- Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Tomi Paananen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Jenni Kyyriäinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Shalini Das Gupta
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Mette Heiskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Niina Vuokila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Ivette Bañuelos-Cabrera
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Niina Lapinlampi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Natallie Kajevu
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Pedro Andrade
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Robert Ciszek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Leonardo Lara-Valderrábano
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Xavier Ekolle Ndode-Ekane
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Noora Puhakka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
8
|
Pisani F, Spagnoli C, Falsaperla R, Nagarajan L, Ramantani G. Seizures in the neonate: A review of etiologies and outcomes. Seizure 2021; 85:48-56. [PMID: 33418166 DOI: 10.1016/j.seizure.2020.12.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/21/2022] Open
Abstract
Neonatal seizures occur in their majority in close temporal relation to an acute brain injury or systemic insult, and are accordingly defined as acute symptomatic or provoked seizures. However less frequently, unprovoked seizures may also present in the neonatal period as secondary to structural brain abnormalities, thus corresponding to structural epilepsies, or to genetic conditions, thus corresponding to genetic epilepsies. Unprovoked neonatal seizures should be thus considered as the clinical manifestation of early onset structural or genetic epilepsies that often have the characteristics of early onset epileptic encephalopathies. In this review, we address the conundrum of neonatal seizures including acute symptomatic, remote symptomatic, provoked, and unprovoked seizures, evolving to post-neonatal epilepsies, and neonatal onset epilepsies. The different clinical scenarios involving neonatal seizures, each with their distinct post-neonatal evolution are presented. The structural and functional impact of neonatal seizures on brain development and the concept of secondary epileptogenesis, with or without a following latent period after the acute seizures, are addressed. Finally, we underline the need for an early differential diagnosis between an acute symptomatic seizure and an unprovoked seizure, since it is associated with fundamental differences in clinical evolution. These are crucial aspects for neonatal management, counselling and prognostication. In view of the above aspects, we provide an outlook on future strategies and potential lines of research in this field.
Collapse
Affiliation(s)
- Francesco Pisani
- Child Neuropsychiatry Unit, Medicine and Surgery Department, University of Parma, Italy
| | - Carlotta Spagnoli
- Child Neurology Unit, Department of Pediatrics, Azienda USL-IRCCS, Reggio Emilia, Italy
| | - Raffaele Falsaperla
- Neonatal Intensive Care Unit, University-Hospital Policlinico Vittorio Emanuele, Catania, Italy
| | - Lakshmi Nagarajan
- Children's Neuroscience Service, Department of Neurology, Perth Children's Hospital, Australia
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children's Hospital Zurich, Switzerland.
| |
Collapse
|
9
|
Miyata H, Sudo S, Kuwashige H, Miyao S, Nakamoto H, Kubota Y, Yoshida Y. Dual pathology in a patient with temporal lobe epilepsy associated with neocortical glial scar after brain abscess and end folium sclerosis/hippocampal sclerosis type 3. Neuropathology 2020; 41:42-48. [PMID: 33094499 DOI: 10.1111/neup.12696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/01/2022]
Abstract
End folium sclerosis or hippocampal sclerosis (HS) type 3 is often associated with another coexisting epileptogenic lesion (dual pathology); however, the pathogenesis of HS type 3 remains elusive. A 46-year-old man presented with medically intractable focal aware seizures and focal impaired awareness seizures (FIAS) with occasional focal to bilateral tonic-clonic seizures (FBTCS) two years after surgical treatment with extensive cranial reconstruction for a brain abscess in the right temporal lobe associated with intracranial extension of ipsilateral cholesteatoma. Head magnetic resonance imaging (MRI) at age 49 revealed atrophy of the right cerebral hemisphere including the hippocampus and amygdala. The patient's first epilepsy surgery was a lateral temporal lobectomy, in which the mesial temporal structures were preserved because no epileptiform discharge was detected on the intraoperative electrocorticogram. However, FIAS with FBTCS started 15 months after the operation. The second surgery, amygdalohippocampectomy, at age 52, resulted in the patient being seizure-free again for one year before seizures of the right lateral temporal origin recurred. He underwent a third surgery, resection of the Heschl's and supramarginal gyri, at age 53, but he continued to have drug-resistant epilepsy over two years after that. Histopathological examination revealed dual pathology consisting of glial scar in the lateral temporal lobe and ipsilateral HS type 3 with an unusually severe lesion in the subiculum. No significant inflammatory change was observed. The clinicopathological features in the present case indicate that HS developed secondarily in the context of neocortical epilepsy due to glial scar, suggesting a role of repetitive abnormal electrical input from neocortical epileptogenic lesions into the hippocampus finally via the perforant pathway in the pathogenesis of HS type 3. Severe hippocampal atrophy on preoperative MRI together with its silent electrocorticogram recording at initial epilepsy surgery may represent clinically pre-epileptogenic HS in a seizure-free "silent or latent period" before completion of hippocampal epileptogenesis to the extent that clinical epileptic seizures occur.
Collapse
Affiliation(s)
- Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Saeko Sudo
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan.,Akita University School of Medicine, Akita, Japan
| | - Haruka Kuwashige
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan.,Akita University School of Medicine, Akita, Japan
| | - Satoru Miyao
- Department of Neurosurgery, TMG Asaka Medical Center, Saitama, Japan.,Department of Neurosurgery, Saiseikai Kurihashi Hospital, Saitama, Japan
| | | | - Yuichi Kubota
- Department of Neurosurgery, TMG Asaka Medical Center, Saitama, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, Medical Center East, Tokyo, Japan
| | - Yasuji Yoshida
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| |
Collapse
|
10
|
Botterill JJ, Lu YL, LaFrancois JJ, Bernstein HL, Alcantara-Gonzalez D, Jain S, Leary P, Scharfman HE. An Excitatory and Epileptogenic Effect of Dentate Gyrus Mossy Cells in a Mouse Model of Epilepsy. Cell Rep 2020; 29:2875-2889.e6. [PMID: 31775052 PMCID: PMC6905501 DOI: 10.1016/j.celrep.2019.10.100] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/25/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022] Open
Abstract
The sparse activity of hippocampal dentate gyrus (DG) granule cells (GCs) is thought to be critical for cognition and behavior, whereas excessive DG activity may contribute to disorders such as temporal lobe epilepsy (TLE). Glutamatergic mossy cells (MCs) of the DG are potentially critical to normal and pathological functions of the DG because they can regulate GC activity through innervation of GCs or indirectly through GABAergic neurons. Here, we test the hypothesis that MC excitation of GCs is normally weak, but under pathological conditions, MC excitation of GCs is dramatically strengthened. We show that selectively inhibiting MCs during severe seizures reduced manifestations of those seizures, hippocampal injury, and chronic epilepsy. In contrast, selectively activating MCs was pro-convulsant. Mechanistic in vitro studies using optogenetics further demonstrated the unanticipated ability of MC axons to excite GCs under pathological conditions. These results demonstrate an excitatory and epileptogenic effect of MCs in the DG.
Collapse
Affiliation(s)
- Justin J Botterill
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Yi-Ling Lu
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - John J LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Hannah L Bernstein
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Neuroscience & Physiology, New York University Langone Health, New York, NY 10016, USA
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Swati Jain
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Paige Leary
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Neuroscience & Physiology, New York University Langone Health, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
11
|
McCarren HS, Eisen MR, Nguyen DL, Dubée PB, Ardinger CE, Dunn EN, Haines KM, Santoro AN, Bodner PM, Ondeck CA, Honnold CL, McDonough JH, Beske PH, McNutt PM. Characterization and treatment of spontaneous recurrent seizures following nerve agent-induced status epilepticus in mice. Epilepsy Res 2020; 162:106320. [PMID: 32182542 PMCID: PMC7156324 DOI: 10.1016/j.eplepsyres.2020.106320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/21/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To develop and characterize a mouse model of spontaneous recurrent seizures following nerve agent-induced status epilepticus (SE) and test the efficacy of existing antiepileptic drugs. METHODS SE was induced in telemeterized male C57Bl6/J mice by soman exposure, and electroencephalographic activity was recorded for 4-6 weeks. Mice were treated with antiepileptic drugs (levetiracetam, valproic acid, phenobarbital) or corresponding vehicles for 14 d after exposure, followed by 14 d of drug washout. Survival, body weight, seizure characteristics, and histopathology were used to characterize the acute and chronic effects of nerve agent exposure and to evaluate the efficacy of treatments in mitigating or preventing neurological effects. RESULTS Spontaneous recurrent seizures manifested in all survivors, but the number and frequency of seizures varied considerably among mice. In untreated mice, seizures became longer over time. Moderate to severe histopathology was observed in the amygdala, piriform cortex, and CA1. Levetiracetam provided modest improvements in neurological parameters such as reduced spike rate and improved histopathology scores, whereas valproic acid and phenobarbital were largely ineffective. CONCLUSIONS This model of post-SE spontaneous recurrent seizures differs from other experimental models in the brief latency to seizure development, the occurrence of seizures in 100 % of exposed animals, and the lack of damage to CA4/dentate gyrus. It may serve as a useful tool for rapidly and efficiently screening novel therapies that would be effective against severe epilepsy cases.
Collapse
Affiliation(s)
- Hilary S McCarren
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States.
| | - Margaret R Eisen
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Dominique L Nguyen
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Parker B Dubée
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Cherish E Ardinger
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Emily N Dunn
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Kari M Haines
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Antonia N Santoro
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Paige M Bodner
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Celinia A Ondeck
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Cary L Honnold
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - John H McDonough
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Phillip H Beske
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| | - Patrick M McNutt
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd Aberdeen Proving Ground, MD, 21010, United States
| |
Collapse
|
12
|
Zhu L, Chen L, Xu P, Lu D, Dai S, Zhong L, Han Y, Zhang M, Xiao B, Chang L, Wu Q. Genetic and molecular basis of epilepsy-related cognitive dysfunction. Epilepsy Behav 2020; 104:106848. [PMID: 32028124 DOI: 10.1016/j.yebeh.2019.106848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
Epilepsy is a common neurological disease characterized by recurrent seizures. About 70 million people were affected by epilepsy or epileptic seizures. Epilepsy is a complicated complex or symptomatic syndromes induced by structural, functional, and genetic causes. Meanwhile, several comorbidities are accompanied by epileptic seizures. Cognitive dysfunction is a long-standing complication associated with epileptic seizures, which severely impairs quality of life. Although the definitive pathogenic mechanisms underlying epilepsy-related cognitive dysfunction remain unclear, accumulating evidence indicates that multiple risk factors are probably involved in the development and progression of cognitive dysfunction in patients with epilepsy. These factors include the underlying etiology, recurrent seizures or status epilepticus, structural damage that induced secondary epilepsy, genetic variants, and molecular alterations. In this review, we summarize several theories that may explain the genetic and molecular basis of epilepsy-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Di Lu
- Biomedicine Engineering Research Center, Kunming Medical University, 1168 Chun Rong West Road, Kunming, Yunnan 650500, PR China
| | - Shujuan Dai
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
13
|
|
14
|
Costard LS, Neubert V, Venø MT, Su J, Kjems J, Connolly NM, Prehn JH, Schratt G, Henshall DC, Rosenow F, Bauer S. Electrical stimulation of the ventral hippocampal commissure delays experimental epilepsy and is associated with altered microRNA expression. Brain Stimul 2019; 12:1390-1401. [DOI: 10.1016/j.brs.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/18/2019] [Accepted: 06/05/2019] [Indexed: 12/31/2022] Open
|
15
|
Bumanglag AV, Sloviter RS. No latency to dentate granule cell epileptogenesis in experimental temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 2018; 59:2019-2034. [PMID: 30338519 DOI: 10.1111/epi.14580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To determine when spontaneous granule cell epileptiform discharges first occur after hippocampal injury, and to identify the postinjury "latent" period as either a "silent" gestational state of epileptogenesis or a subtle epileptic state in gradual transition to a more obvious epileptic state. METHODS Nonconvulsive status epilepticus evoked by perforant path stimulation in urethane-sedated rats produced selective and extensive hippocampal injury and a "latent" period that preceded the onset of the first clinically obvious epileptic seizures. Continuous granule cell layer depth recording and video monitoring assessed the time course of granule cell hyperexcitability and the onset/offset times of spontaneous epileptiform discharges and behavioral seizures. RESULTS One day postinjury, granule cells in awake rats were hyperexcitable to afferent input, and continuously generated spontaneous population spikes. During the ~2-4 week "latent" period, granule cell epileptiform discharges lasting ~30 seconds caused subtle focal seizures characterized by immobilization and facial automatisms that were undetected by behavioral assessment alone but identified post hoc. Granule cell layer epileptiform discharge duration eventually tripled, which caused the first clinically obvious seizure, ending the "latent" period. Behavioral seizure duration was linked tightly to spontaneous granule cell layer events. Granule cell epileptiform discharges preceded all behavioral seizure onsets, and clonic behaviors ended abruptly within seconds of the termination of each granule cell epileptiform discharge. Noninjurious hippocampal excitation produced no evidence of granule cell hyperexcitability or epileptogenesis. SIGNIFICANCE The latent period in this model is a subtle epileptic state in transition to a more clinically obvious epileptic state, not a seizure-free "gestational" state when an unidentified epileptogenic mechanism gradually develops. Based on the onset/offset times of electrographic and behavioral events, granule cell behavior may be the prime determinant of seizure onset, phenotype, duration, and offset in this model of hippocampal-onset epilepsy. Extensive hippocampal neuron loss could be the primary epileptogenic mechanism.
Collapse
Affiliation(s)
| | - Robert S Sloviter
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia.,Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia.,Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, Georgia
| |
Collapse
|
16
|
Carpenter-Hyland E, Bichler EK, Smith M, Sloviter RS, Benveniste M. Epileptic pilocarpine-treated rats exhibit aberrant hippocampal EPSP-spike potentiation but retain long-term potentiation. Physiol Rep 2018; 5:5/21/e13490. [PMID: 29138358 PMCID: PMC5688781 DOI: 10.14814/phy2.13490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 01/14/2023] Open
Abstract
Hippocampal neuron plasticity is strongly associated with learning, memory, and cognition. In addition to modification of synaptic function and connectivity, the capacity of hippocampal neurons to undergo plasticity involves the ability to change nonsynaptic excitability. This includes altering the probability that EPSPs will generate action potentials (E‐S plasticity). Epilepsy is a prevalent neurological disorder commonly associated with neuronal hyperexcitability and cognitive dysfunction. We examined E‐S plasticity in chronically epileptic Sprague–Dawley rats 3–10 weeks after pilocarpine‐induced status epilepticus. CA1 neurons in hippocampal slices were assayed by whole‐cell current clamp to measure EPSPs evoked by Schaffer collateral stimulation. Using a weak spike‐timing‐dependent protocol to induce plasticity, we found robust E‐S potentiation in conjunction with weak long‐term potentiation (LTP) in saline‐treated rats. In pilocarpine‐treated rats, a similar degree of LTP was found, but E‐S potentiation was reduced. Additionally, the degree of E‐S potentiation was not correlated with the degree of LTP for either group, suggesting that they independently contribute to neuronal plasticity. E‐S potentiation also differed from LTP in that E‐S plasticity could be induced solely from action potentials generated by postsynaptic current injection. The calcium chelating agent BAPTA in the intracellular solution blocked LTP and E‐S potentiation, revealing the calcium dependence of both processes. These findings suggest that LTP and E‐S potentiation have overlapping but nonidentical mechanisms of inducing neuronal plasticity that may independently contribute to cognitive disruptions observed in the chronic epileptic state.
Collapse
Affiliation(s)
| | - Edyta K Bichler
- Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia
| | - Mathew Smith
- Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia
| | - Robert S Sloviter
- Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia
| | - Morris Benveniste
- Neuroscience Institute Morehouse School of Medicine, Atlanta, Georgia
| |
Collapse
|
17
|
Nirwan N, Vyas P, Vohora D. Animal models of status epilepticus and temporal lobe epilepsy: a narrative review. Rev Neurosci 2018; 29:757-770. [DOI: 10.1515/revneuro-2017-0086] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/26/2018] [Indexed: 11/15/2022]
Abstract
Abstract
Temporal lobe epilepsy (TLE) is the chronic and pharmacoresistant form of epilepsy observed in humans. The current literature is insufficient in explicating the comprehensive mechanisms underlying its pathogenesis and advancement. Consequently, the development of a suitable animal model mimicking the clinical characteristics is required. Further, the relevance of status epilepticus (SE) to animal models is dubious. SE occurs rarely in people; most epilepsy patients never experience it. The present review summarizes the established animal models of SE and TLE, along with a brief discussion of the animal models that have the distinctiveness and carries the possibility to be developed as effective models for TLE. The review not only covers the basic requirements, mechanisms, and methods of induction of each model but also focuses upon their major limitations and possible modifications for their future use. A detailed discussion on chemical, electrical, and hypoxic/ischemic models as well as a brief explanation on the genetic models, most of which are characterized by development of SE followed by neurodegeneration, is presented.
Collapse
Affiliation(s)
- Nikita Nirwan
- Neurobehavioral Pharmacology Laboratory , Department of Pharmacology , School of Pharmaceutical Education and Research, Jamia Hamdard , New Delhi 110062 , India
| | - Preeti Vyas
- Neurobehavioral Pharmacology Laboratory , Department of Pharmacology , School of Pharmaceutical Education and Research, Jamia Hamdard , New Delhi 110062 , India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory , Department of Pharmacology , School of Pharmaceutical Education and Research, Jamia Hamdard , New Delhi 110062 , India
| |
Collapse
|
18
|
Shah AK, Fuerst D, Mittal S. Intraoperative hippocampal electrocorticography frequently captures electrographic seizures and correlates with hippocampal pathology. Clin Neurophysiol 2018; 129:717-723. [PMID: 29438820 DOI: 10.1016/j.clinph.2018.01.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/05/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Relationship between electrographic seizures on hippocampal electrocorticography (IH-ECoG) and presence/type of hippocampal pathology remains unclear. METHODS IH-ECoG was recorded for 10-20 min from the ventricular surface of the hippocampus following removal of the temporal neocortex in 40 consecutive patients. Correlation between intraoperative hippocampal seizures and preoperative MRI, hippocampal histopathology, and EEG from invasive monitoring was determined. RESULTS IH-ECoG captured electrographic seizures in 15/40 patients (in 8/23 with abnormal hippocampal signal on MRI and 7/17 patients without MRI abnormality). Hippocampal neuronal loss was observed in 22/40 (Group 1), while 18/40 had no significant neuronal loss (Group 2). In Group 1, 4/22 had seizures on IH-ECoG, while 11/18 had electrographic seizures in Group 2. In 24/40 patients who underwent prolonged extraoperative intracranial EEG (IC-EEG) recording, hippocampal seizures were captured in 14. Of these, 7 also had seizures during IH-ECoG. In 10/24 IC-EEG patients without seizures, 3 had seizures on IH-ECoG. CONCLUSIONS IH-ECoG frequently captures spontaneous electrographic seizures. These are more likely to occur in patients with pathologic processes that do not disrupt/infiltrate hippocampus compared to patients with intractable epilepsy associated with disrupted hippocampal architecture. SIGNIFICANCE Intraoperative hippocampal seizures may result from deafferentation from the temporal neocortex and disinhibition of the perforant pathway.
Collapse
Affiliation(s)
- Aashit K Shah
- Department of Neurology, Wayne State University, Detroit, MI, USA; Comprehensive Epilepsy Center, Detroit Medical Center, Wayne State University, Detroit, MI, USA
| | - Darren Fuerst
- Comprehensive Epilepsy Center, Detroit Medical Center, Wayne State University, Detroit, MI, USA
| | - Sandeep Mittal
- Comprehensive Epilepsy Center, Detroit Medical Center, Wayne State University, Detroit, MI, USA; Department of Neurosurgery, Wayne State University, Detroit, MI, USA; Department of Oncology, Wayne State University, Detroit, MI, USA; Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
19
|
Sharma S, Puttachary S, Thippeswamy T. Glial source of nitric oxide in epileptogenesis: A target for disease modification in epilepsy. J Neurosci Res 2017; 97:1363-1377. [PMID: 29230865 DOI: 10.1002/jnr.24205] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/31/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Epileptogenesis is the process of developing an epileptic condition and/or its progression once it is established. The molecules that initiate, promote, and propagate remarkable changes in the brain during epileptogenesis are emerging as targets for prevention/treatment of epilepsy. Epileptogenesis is a continuous process that follows immediately after status epilepticus (SE) in animal models of acquired temporal lobe epilepsy (TLE). Both SE and epileptogenesis are potential therapeutic targets for the discovery of anticonvulsants and antiepileptogenic or disease-modifying agents. For translational studies, SE targets are appropriate for screening anticonvulsive drugs prior to their advancement as therapeutic agents, while targets of epileptogenesis are relevant for identification and development of therapeutic agents that can either prevent or modify the disease or its onset. The acute seizure models do not reveal antiepileptogenic properties of anticonvulsive drugs. This review highlights the important components of epileptogenesis and the long-term impact of intervening one of these components, nitric oxide (NO), in rat and mouse kainate models of TLE. NO is a putative pleotropic gaseous neurotransmitter and an important contributor of nitro-oxidative stress that coexists with neuroinflammation and epileptogenesis. The long-term impact of inhibiting the glial source of NO during early epileptogenesis in the rat model of TLE is reviewed. The importance of sex as a biological variable in disease modification strategies in epilepsy is also briefly discussed.
Collapse
Affiliation(s)
- Shaunik Sharma
- Epilepsy Research Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | | | - Thimmasettappa Thippeswamy
- Epilepsy Research Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
20
|
Bittencourt S, Ferrazoli E, Valente MF, Romariz S, Janisset NR, Macedo CE, Antonio BDB, Barros V, Mundim M, Porcionatto M, Aarão MC, Miranda MF, Rodrigues AM, de Almeida ACG, Longo BM, Mello LE. Modification of the natural progression of epileptogenesis by means of biperiden in the pilocarpine model of epilepsy. Epilepsy Res 2017; 138:88-97. [DOI: 10.1016/j.eplepsyres.2017.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 10/11/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
21
|
Neumann AR, Raedt R, Steenland HW, Sprengers M, Bzymek K, Navratilova Z, Mesina L, Xie J, Lapointe V, Kloosterman F, Vonck K, Boon PAJM, Soltesz I, McNaughton BL, Luczak A. Involvement of fast-spiking cells in ictal sequences during spontaneous seizures in rats with chronic temporal lobe epilepsy. Brain 2017; 140:2355-2369. [PMID: 29050390 PMCID: PMC6248724 DOI: 10.1093/brain/awx179] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/25/2017] [Accepted: 06/08/2017] [Indexed: 11/14/2022] Open
Abstract
See Lenck-Santini (doi:10.1093/awx205) for a scientific commentary on this article. Epileptic seizures represent altered neuronal network dynamics, but the temporal evolution and cellular substrates of the neuronal activity patterns associated with spontaneous seizures are not fully understood. We used simultaneous recordings from multiple neurons in the hippocampus and neocortex of rats with chronic temporal lobe epilepsy to demonstrate that subsets of cells discharge in a highly stereotypical sequential pattern during ictal events, and that these stereotypical patterns were reproducible across consecutive seizures. In contrast to the canonical view that principal cell discharges dominate ictal events, the ictal sequences were predominantly composed of fast-spiking, putative inhibitory neurons, which displayed unusually strong coupling to local field potential even before seizures. The temporal evolution of activity was characterized by unique dynamics where the most correlated neuronal pairs before seizure onset displayed the largest increases in correlation strength during the seizures. These results demonstrate the selective involvement of fast spiking interneurons in structured temporal sequences during spontaneous ictal events in hippocampal and neocortical circuits in experimental models of chronic temporal lobe epilepsy.
Collapse
Affiliation(s)
- Adam R Neumann
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
| | - Robrecht Raedt
- Department of Neurology, Ghent University, Gent, Belgium
| | - Hendrik W Steenland
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
| | | | - Katarzyna Bzymek
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
| | - Zaneta Navratilova
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
- Neuro-Electronics Research Flanders, Leuven, Belgium
| | - Lilia Mesina
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
| | - Jeanne Xie
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
| | - Valerie Lapointe
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
| | - Fabian Kloosterman
- Neuro-Electronics Research Flanders, Leuven, Belgium
- VIB, Leuven, Belgium
- Brain and Cognition Research unit, KU Leuven, Leuven, Belgium
| | - Kristl Vonck
- Department of Neurology, Ghent University, Gent, Belgium
| | | | - Ivan Soltesz
- Department of Neurosurgery, and Stanford Neurosciences Institute,
Stanford University, Stanford, CA, USA
| | - Bruce L McNaughton
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
- Department of Neurobiology and Behavior, University of California at
Irvine, Center for the Neurobiology of Learning and Memory, Irvine, CA, USA
| | - Artur Luczak
- Department of Neuroscience, Canadian Centre for Behavioural
Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 3M4,
Canada
- Department of Neurosurgery, and Stanford Neurosciences Institute,
Stanford University, Stanford, CA, USA
| |
Collapse
|
22
|
Epileptogenesis meets Occam's Razor. Curr Opin Pharmacol 2017; 35:105-110. [PMID: 28781107 DOI: 10.1016/j.coph.2017.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/23/2017] [Accepted: 07/23/2017] [Indexed: 01/01/2023]
Abstract
Pharmacological treatment to prevent brain injury-induced temporal lobe epileptogenesis has been generally unsuccessful, raising the issues of exactly when the conversion process to an epileptic brain state occurs and reaches completion, and which cellular or network processes might be the most promising therapeutic targets. The time course of epileptogenesis is a central issue, with recent results suggesting that injury-induced epileptogenesis can be a much more rapid process than previously thought, and may be inconsistent with a delayed epileptogenic mechanism. Simplification of the seemingly complex issues involved in the use of epilepsy animal models might lead to a better understanding of the nature of injury-induced epileptogenesis, the significance of the 'latent' period, and whether current strategies should focus on preventing or modifying epilepsy.
Collapse
|
23
|
Soares JI, Valente MC, Andrade PA, Maia GH, Lukoyanov NV. Reorganization of the septohippocampal cholinergic fiber system in experimental epilepsy. J Comp Neurol 2017; 525:2690-2705. [PMID: 28472854 DOI: 10.1002/cne.24235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022]
Abstract
The septohippocampal cholinergic neurotransmission has long been implicated in seizures, but little is known about the structural features of this projection system in epileptic brain. We evaluated the effects of experimental epilepsy on the areal density of cholinergic terminals (fiber varicosities) in the dentate gyrus. For this purpose, we used two distinct post-status epilepticus rat models, in which epilepsy was induced with injections of either kainic acid or pilocarpine. To visualize the cholinergic fibers, we used brain sections immunostained for the vesicular acetylcholine transporter. It was found that the density of cholinergic fiber varicosities was higher in epileptic rats versus control rats in the inner and outer zones of the dentate molecular layer, but it was reduced in the dentate hilus. We further evaluated the effects of kainate treatment on the total number, density, and soma volume of septal cholinergic cells, which were visualized in brain sections stained for either vesicular acetylcholine transporter or choline acetyltransferase (ChAT). Both the number of septal cells with cholinergic phenotype and their density were increased in epileptic rats when compared to control rats. The septal cells stained for vesicular acetylcholine transporter, but not for ChAT, have enlarged perikarya in epileptic rats. These results revealed previously unknown details of structural reorganization of the septohippocampal cholinergic system in experimental epilepsy, involving fiber sprouting into the dentate molecular layer and a parallel fiber retraction from the dentate hilus. We hypothesize that epilepsy-related neuroplasticity of septohippocampal cholinergic neurons is capable of increasing neuronal excitability of the dentate gyrus.
Collapse
Affiliation(s)
- Joana I Soares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - Maria C Valente
- Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Pedro A Andrade
- Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal.,Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Gisela H Maia
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - Nikolai V Lukoyanov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Anatomia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
24
|
Liu AH, Wu YT, Wang YP. MicroRNA-129-5p inhibits the development of autoimmune encephalomyelitis-related epilepsy by targeting HMGB1 through the TLR4/NF-kB signaling pathway. Brain Res Bull 2017; 132:139-149. [PMID: 28528202 DOI: 10.1016/j.brainresbull.2017.05.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/22/2022]
Abstract
The study aimed to explore the effects of microRNA-129-5p (miR-129-5p) on the development of autoimmune encephalomyelitis (AE)-related epilepsy by targeting HMGB1 through the TLR4/NF-kB signaling pathway in a rat model. AE-related epilepsy models were established. Sprague-Dawley (SD) rats were randomly divided into control, model, miR-129-5p mimics, miR-129-5p inhibitor, HMGB1 shRNA, TLR4/NF-kB (TLR4/NF-kB signaling pathway was inhibited) and miR-129-5p mimics+HMGB1 shRNA groups respectively. Latency to a first epilepsy seizure attack was recorded. Neuronal injuries in the hippocampus regions were detected using HE, Nissl and FJB staining methods 24h following model establishment. Microglial cells were detected by OX-42 immunohistochemistry. Expressions of miR-129-5p, HMGB1 and TLR4/NF-kB signaling pathway-related proteins were detected by qRT-PCR. Protein expressions of HMGB1 and TLR4/NF-kB signaling pathway-related proteins were detected by Western blotting. Dual luciferase reporter gene assay showed that miR-129-5p was negatively targeting HMGB1. Neurons of hippocampal tissues in rats were heavily injured by an injection of lithium chloride. Compared with the model and control groups, neuronal injury of the hippocampus and AE-related epilepsy decreased and microglial cells increased in the miR-129-5p mimics, HMGB1 shRNA and TLR4/NF-kB groups; however, in the miR-129-5p inhibitor group, miR-129-5p expression decreased, HMGB1 expression increased, TLR4/NF-kB signaling pathway was activated, latency to a first epilepsy seizure attack was shortened, and neuronal injury increased. This study provides evidence that miR-129-5p inhibits the development of AE-related epilepsy by suppressing HMGB1 expression and inhibiting TLR4/NF-kB signaling pathway.
Collapse
Affiliation(s)
- Ai-Hua Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Ya-Ting Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China
| | - Yu-Ping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, PR China.
| |
Collapse
|
25
|
Weissinger F, Wawra M, Fidzinski P, Elsner M, Meierkord H, Holtkamp M, Buchheim K. Dentate gyrus autonomous ictal activity in the status epilepticus rat model of epilepsy. Brain Res 2017; 1658:1-10. [PMID: 28062187 DOI: 10.1016/j.brainres.2016.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 02/01/2023]
Abstract
The dentate gyrus (DG) as part of the hippocampal formation is believed to serve as a gatekeeper with strong inhibitory properties against uncontrolled propagation of neuronal activity from the entorhinal cortex and neocortical structures. In temporal lobe epilepsy, the DG becomes hyperexcitable and loses its gate function, enabling propagation of ictal activity into downstream structures such as CA3 and CA1 areas. Furthermore, the DG, apart from facilitating propagation, may also be able to autonomously generate ictal activity, but this point has remained open so far. To tackle this question, we used intrinsic optical imaging in combination with electrophysiological recordings in brain slice preparations from rats in which status epilepticus had been induced electrically several weeks prior to measurements. Upon omission of Mg++ from the artificial cerebrospinal fluid, in 15 out of 33 slices (45.4%) from 9 out of 13 epileptic animals (69.2%), spontaneous and autonomous ictal activity, mostly seizure-like events (SLE), was observed in the DG. This activity manifested independently from SLE generated in adjacent cortices and never occurred in slices from control animals. SLE generated in the DG differed from those with origin in the entorhinal or temporal cortex by longer latency to the first event after Mg++ omission (p<0.001), a higher SLE frequency (p<0.05), higher amplitude (p<0.001) and a longer SLE duration (p<0.05). We conclude that in epilepsy, the DG, in addition to facilitated gating of activity from upstream structures, can serve as an independent generator of ictal activity.
Collapse
Affiliation(s)
- Florian Weissinger
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Wawra
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Pawel Fidzinski
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mark Elsner
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hartmut Meierkord
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Martin Holtkamp
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Katharina Buchheim
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
26
|
Farrell JS, Wolff MD, Teskey GC. Neurodegeneration and Pathology in Epilepsy: Clinical and Basic Perspectives. ADVANCES IN NEUROBIOLOGY 2017; 15:317-334. [PMID: 28674987 DOI: 10.1007/978-3-319-57193-5_12] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epilepsy is commonly associated with a number of neurodegenerative and pathological alterations in those areas of the brain that are involved in repeated electrographic seizures. These most prominently include neuron loss and an increase in astrocyte number and size but may also include enhanced blood-brain barrier permeability, the formation of new capillaries, axonal sprouting, and central inflammation. In animal models in which seizures are either repeatedly elicited or are self-generated, a similar set of neurodegenerative and pathological alterations in brain anatomy are observed. The primary causal agent responsible for these alterations may be the cascade of events that follow a seizure and lead to an hypoperfusion/hypoxic episode. While epilepsy has long and correctly been considered an electrical disorder, the vascular system likely plays an important causal role in the neurodegeneration and pathology that occur as a consequence of repeated seizures.
Collapse
Affiliation(s)
- Jordan S Farrell
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Marshal D Wolff
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
27
|
The cannabinoid receptor agonist WIN55.212 reduces consequences of status epilepticus in rats. Neuroscience 2016; 334:191-200. [PMID: 27520083 DOI: 10.1016/j.neuroscience.2016.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 12/29/2022]
Abstract
An acute brain insult can cause a spectrum of primary and secondary pathologies including increased risk for epilepsy, mortality and neurodegeneration. The endocannabinoid system, involved in protecting the brain against network hyperexcitability and excitotoxicity, is profoundly dysregulated by acute brain insults. We hypothesize that post-insult dysregulation of the endocannabinoid signaling may contribute to deleterious effects of an acute brain injury and potentiation of endocannabinoid transmission soon after an insult may reduce its pathological outcomes. Effects of an acute post-insult administration of the endocannabinoid receptor agonist WIN55,212-2 on early seizure occurrence, animal mortality and hippocampal cell loss were studied in the lithium-pilocarpine status model. A single dose of WIN55,212-2 (5mg/kg) administered four hours after the end of status epilepticus (SE) reduced the incidence of early seizures during the first two post-SE days though did not change their duration and latency. Brief 4-6-Hz spike-wave discharges appeared de novo in the latent post-SE period and the acute administration of WIN55,212-2 also reduced the incidence of the epileptiform events. A single dose of WIN55,212-2 administered soon after SE improved survival of animals and reduced cell loss in the dentate hilus but did not prevent appearance of spontaneous recurrent seizures in the chronic period. Thus, a brief pharmacological stimulation of the endocannabinoid system soon after a brain insult exerts beneficial effects on its pathological outcome though does not prevent epileptogenesis.
Collapse
|
28
|
Abstract
This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dynamic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With ∼80 potassium channel types, of which ∼10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models.
Collapse
Affiliation(s)
- Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany
| | - Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany
| |
Collapse
|
29
|
Otsuka S, Ohkido T, Itakura M, Watanabe S, Yamamori S, Iida Y, Saito M, Miyaoka H, Takahashi M. Dual mechanisms of rapid expression of anxiety-related behavior in pilocarpine-treated epileptic mice. Epilepsy Res 2016; 123:55-67. [PMID: 27132018 DOI: 10.1016/j.eplepsyres.2016.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 04/13/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
A mouse model of epilepsy was generated by inducing status epilepticus (SE) for either 1.5 or 4.5h with pilocarpine to study anxiety-related behaviors, changes in the electroencephalogram of the cerebral cortex and hippocampus, and expression of hippocampal proteins. The viability and rate of success of SE induction were high in C57BL/6N mice but not in C57BL/6J mice. C57BL/6N mice were immotile during the first 2days after SE; however, by the third day, most mice were recovered and exhibited strong anxiety-related behaviors in response to the light/dark preference test and open field test. There was a striking difference in the temporal appearance of anxiety-related behavior between the two SE durations: 1.5h SE mice exhibited strong anxiety-related behavior 3days after SE that gradually attenuated over the next few weeks, whereas 4.5h SE mice exhibited strong anxiety-related behavior 3days after SE that persisted even at nearly 1year after SE. Mice receiving both SE durations exhibited generalized seizures (GS) after SE; however, there was a marked difference in the timing and duration of GS appearance. Mice in the 4.5h SE group exhibited spontaneous GS from 4days to at least 96days after SE. In contrast, mice in the 1.5h SE group exhibited GS only within the first several days after SE; however, epileptic spike clusters continuously appeared in the cerebral cortex and hippocampus for up to twelve days after SE. Among the hippocampal proteins tested, only brain derived-neurotrophic factor (BDNF) exhibited altered expression in parallel with anxiety-related behavior. These results showed the possibility that BDNF expression in the hippocampus might cause anxiety-related behavior in adulthood.
Collapse
Affiliation(s)
- Shintaro Otsuka
- Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa 252-0374, Japan.
| | - Taro Ohkido
- Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa 252-0374, Japan.
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa 252-0374, Japan.
| | - Shigeru Watanabe
- Department of Psychiatry, Kitasato University School of Medicine, 2-1-1 Asamizodai, Minami-ku, Sagamihara-shi, Kanagawa 252-0380, Japan.
| | - Saori Yamamori
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa 252-0374, Japan.
| | - Yuuki Iida
- Department of Psychiatry, Kitasato University School of Medicine, 2-1-1 Asamizodai, Minami-ku, Sagamihara-shi, Kanagawa 252-0380, Japan.
| | - Masanori Saito
- Department of Psychiatry, Kitasato University School of Medicine, 2-1-1 Asamizodai, Minami-ku, Sagamihara-shi, Kanagawa 252-0380, Japan.
| | - Hitoshi Miyaoka
- Department of Psychiatry, Kitasato University School of Medicine, 2-1-1 Asamizodai, Minami-ku, Sagamihara-shi, Kanagawa 252-0380, Japan.
| | - Masami Takahashi
- Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa 252-0374, Japan; Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa 252-0374, Japan.
| |
Collapse
|
30
|
RNA sequencing reveals region-specific molecular mechanisms associated with epileptogenesis in a model of classical hippocampal sclerosis. Sci Rep 2016; 6:22416. [PMID: 26935982 PMCID: PMC4776103 DOI: 10.1038/srep22416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/15/2016] [Indexed: 01/20/2023] Open
Abstract
We report here the first complete transcriptome analysis of the dorsal (dDG) and ventral dentate gyrus (vDG) of a rat epilepsy model presenting a hippocampal lesion with a strict resemblance to classical hippocampal sclerosis (HS). We collected the dDG and vDG by laser microdissection 15 days after electrical stimulation and performed high-throughput RNA-sequencing. There were many differentially regulated genes, some of which were specific to either of the two sub-regions in stimulated animals. Gene ontology analysis indicated an enrichment of inflammation-related processes in both sub-regions and of axonal guidance and calcium signaling processes exclusively in the vDG. There was also a differential regulation of genes encoding molecules involved in synaptic function, neural electrical activity and neuropeptides in stimulated rats. The data presented here suggests, in the time point analyzed, a remarkable interaction among several molecular components which takes place in the damaged hippocampi. Furthermore, even though similar mechanisms may function in different regions of the DG, the molecular components involved seem to be region specific.
Collapse
|
31
|
|
32
|
Löscher W, Hirsch LJ, Schmidt D. The enigma of the latent period in the development of symptomatic acquired epilepsy - Traditional view versus new concepts. Epilepsy Behav 2015; 52:78-92. [PMID: 26409135 DOI: 10.1016/j.yebeh.2015.08.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 01/21/2023]
Abstract
A widely accepted hypothesis holds that there is a seizure-free, pre-epileptic state, termed the "latent period", between a brain insult, such as traumatic brain injury or stroke, and the onset of symptomatic epilepsy, during which a cascade of structural, molecular, and functional alterations gradually mediates the process of epileptogenesis. This review, based on recent data from both animal models and patients with different types of brain injury, proposes that epileptogenesis and often subclinical epilepsy can start immediately after brain injury without any appreciable latent period. Even though the latent period has traditionally been the cornerstone concept representing epileptogenesis, we suggest that the evidence for the existence of a latent period is spotty both for animal models and human epilepsy. Knowing whether a latent period exists or not is important for our understanding of epileptogenesis and for the discovery and the trial design of antiepileptogenic agents. The development of antiepileptogenic treatments to prevent epilepsy in patients at risk from a brain insult is a major unmet clinical need.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| | | | | |
Collapse
|
33
|
Abbasi S, Kumar SS. Layer-specific modulation of entorhinal cortical excitability by presubiculum in a rat model of temporal lobe epilepsy. J Neurophysiol 2015; 114:2854-66. [PMID: 26378210 DOI: 10.1152/jn.00823.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/09/2015] [Indexed: 11/22/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of epilepsy in adults and is often refractory to antiepileptic medications. The medial entorhinal area (MEA) is affected in TLE but mechanisms underlying hyperexcitability of MEA neurons require further elucidation. Previous studies suggest that inputs from the presubiculum (PrS) contribute to MEA pathophysiology. We assessed electrophysiologically how PrS influences MEA excitability using the rat pilocarpine model of TLE. PrS-MEA connectivity was confirmed by electrically stimulating PrS afferents while recording from neurons within superficial layers of MEA. Assessment of alterations in PrS-mediated synaptic drive to MEA neurons was made following focal application of either glutamate or NBQX to the PrS in control and epileptic animals. Here, we report that monosynaptic inputs to MEA from PrS neurons are conserved in epileptic rats, and that PrS modulation of MEA excitability is layer-specific. PrS contributes more to synaptic inhibition of LII stellate cells than excitation. Under epileptic conditions, stellate cell inhibition is significantly reduced while excitatory synaptic drive is maintained at levels similar to control. PrS contributes to both synaptic excitation and inhibition of LIII pyramidal cells in control animals. Under epileptic conditions, overall excitatory synaptic drive to these neurons is enhanced while inhibitory synaptic drive is maintained at control levels. Additionally, neither glutamate nor NBQX applied focally to PrS now affected EPSC and IPSC frequency of LIII pyramidal neurons. These layer-specific changes in PrS-MEA interactions are unexpected and of significance in unraveling pathophysiological mechanisms underlying TLE.
Collapse
Affiliation(s)
- Saad Abbasi
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience, Florida State University, Tallahassee, Florida
| |
Collapse
|
34
|
Watanabe S, Yamamori S, Otsuka S, Saito M, Suzuki E, Kataoka M, Miyaoka H, Takahashi M. Epileptogenesis and epileptic maturation in phosphorylation site-specific SNAP-25 mutant mice. Epilepsy Res 2015. [DOI: 10.1016/j.eplepsyres.2015.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Immediate Epileptogenesis after Kainate-Induced Status Epilepticus in C57BL/6J Mice: Evidence from Long Term Continuous Video-EEG Telemetry. PLoS One 2015; 10:e0131705. [PMID: 26161754 PMCID: PMC4498886 DOI: 10.1371/journal.pone.0131705] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/04/2015] [Indexed: 11/19/2022] Open
Abstract
The C57BL/6J mouse as a model of seizure/epilepsy is challenging due to high mortality and huge variability in response to kainate. We have recently demonstrated that repeated administration of a low dose of kainate by intraperitoneal route can induce severe status epilepticus (SE) with 94% survival rate. In the present study, based on continuous video-EEG recording for 4-18 weeks from epidurally implanted electrodes on the cortex, we demonstrate that this method also induces immediate epileptogenesis (<1-5 days post-SE). This finding was based on identification of two types of spontaneous recurrent seizures; behavioral convulsive seizures (CS) and electrographic nonconvulsive seizures (NCS). The identification of the spontaneous CS, stage 3-5 types, was based on the behaviors (video) that were associated with the EEG characteristics (stage 3-5 epileptiform spikes), the power spectrum, and the activity counts. The electrographic NCS identification was based on the stage 1-2 epileptiform spike clusters on the EEG and their associated power spectrum. Severe SE induced immediate epileptogenesis in all the mice. The maximum numbers of spontaneous CS were observed during the first 4-6 weeks of the SE and they decreased thereafter. Mild SE also induced immediate epileptogenesis in some mice but the CS were less frequent. In both the severe and the mild SE groups, the spontaneous electrographic NCS persisted throughout the 18 weeks observation period, and therefore this could serve as a chronic model for complex seizures. However, unlike rat kainate models, the C57BL/6J mouse kainate model is a unique regressive CS model of epilepsy. Further studies are required to understand the mechanism of recovery from spontaneous CS in this model, which could reveal novel therapeutic targets for epilepsy.
Collapse
|
36
|
Status Epilepticus Induced Spontaneous Dentate Gyrus Spikes: In Vivo Current Source Density Analysis. PLoS One 2015; 10:e0132630. [PMID: 26148195 PMCID: PMC4492740 DOI: 10.1371/journal.pone.0132630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/16/2015] [Indexed: 11/20/2022] Open
Abstract
The dentate gyrus is considered to function as an inhibitory gate limiting excitatory input to the hippocampus. Following status epilepticus (SE), this gating function is reduced and granule cells become hyper-excitable. Dentate spikes (DS) are large amplitude potentials observed in the dentate gyrus (DG) of normal animals. DS are associated with membrane depolarization of granule cells, increased activity of hilar interneurons and suppression of CA3 and CA1 pyramidal cell firing. Therefore, DS could act as an anti-excitatory mechanism. Because of the altered gating function of the dentate gyrus following SE, we sought to investigate how DS are affected following pilocarpine-induced SE. Two weeks following lithium-pilocarpine SE induction, hippocampal EEG was recorded in male Sprague-Dawley rats with 16-channel silicon probes under urethane anesthesia. Probes were placed dorso-ventrally to encompass either CA1-CA3 or CA1-DG layers. Large amplitude spikes were detected from EEG recordings and subject to current source density analysis. Probe placement was verified histologically to evaluate the anatomical localization of current sinks and the origin of DS. In 9 of 11 pilocarpine-treated animals and two controls, DS were confirmed with large current sinks in the molecular layer of the dentate gyrus. DS frequency was significantly increased in pilocarpine-treated animals compared to controls. Additionally, in pilocarpine-treated animals, DS displayed current sinks in the outer, middle and/or inner molecular layers. However, there was no difference in the frequency of events when comparing between layers. This suggests that following SE, DS can be generated by input from medial and lateral entorhinal cortex, or within the dentate gyrus. DS were associated with an increase in multiunit activity in the granule cell layer, but no change in CA1. These results suggest that following SE there is an increase in DS activity, potentially arising from hyperexcitability along the hippocampal-entorhinal pathway or within the dentate gyrus itself.
Collapse
|
37
|
Wolfart J, Laker D. Homeostasis or channelopathy? Acquired cell type-specific ion channel changes in temporal lobe epilepsy and their antiepileptic potential. Front Physiol 2015; 6:168. [PMID: 26124723 PMCID: PMC4467176 DOI: 10.3389/fphys.2015.00168] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/19/2015] [Indexed: 01/16/2023] Open
Abstract
Neurons continuously adapt the expression and functionality of their ion channels. For example, exposed to chronic excitotoxicity, neurons homeostatically downscale their intrinsic excitability. In contrast, the “acquired channelopathy” hypothesis suggests that proepileptic channel characteristics develop during epilepsy. We review cell type-specific channel alterations under different epileptic conditions and discuss the potential of channels that undergo homeostatic adaptations, as targets for antiepileptic drugs (AEDs). Most of the relevant studies have been performed on temporal lobe epilepsy (TLE), a widespread AED-refractory, focal epilepsy. The TLE patients, who undergo epilepsy surgery, frequently display hippocampal sclerosis (HS), which is associated with degeneration of cornu ammonis subfield 1 pyramidal cells (CA1 PCs). Although the resected human tissue offers insights, controlled data largely stem from animal models simulating different aspects of TLE and other epilepsies. Most of the cell type-specific information is available for CA1 PCs and dentate gyrus granule cells (DG GCs). Between these two cell types, a dichotomy can be observed: while DG GCs acquire properties decreasing the intrinsic excitability (in TLE models and patients with HS), CA1 PCs develop channel characteristics increasing intrinsic excitability (in TLE models without HS only). However, thorough examination of data on these and other cell types reveals the coexistence of protective and permissive intrinsic plasticity within neurons. These mechanisms appear differentially regulated, depending on the cell type and seizure condition. Interestingly, the same channel molecules that are upregulated in DG GCs during HS-related TLE, appear as promising targets for future AEDs and gene therapies. Hence, GCs provide an example of homeostatic ion channel adaptation which can serve as a primer when designing novel anti-epileptic strategies.
Collapse
Affiliation(s)
- Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| | - Debora Laker
- Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| |
Collapse
|
38
|
Gorter JA, van Vliet EA, Lopes da Silva FH. Which insights have we gained from the kindling and post-status epilepticus models? J Neurosci Methods 2015; 260:96-108. [PMID: 25842270 DOI: 10.1016/j.jneumeth.2015.03.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/24/2022]
Abstract
Experimental animal epilepsy research got a big boost since the discovery that daily mild and short (seconds) tetanic stimulations in selected brain regions led to seizures with increasing duration and severity. This model that was developed by Goddard (1967) became known as the kindling model for epileptogenesis and has become a widely used model for temporal lobe epilepsy with complex partial seizures. During the late ninety-eighties the number of publications related to electrical kindling reached its maximum. However, since the kindling procedure is rather labor intensive and animals only develop spontaneous seizures (epilepsy) after hundreds of stimulations, research has shifted toward models in which the animals exhibit spontaneous seizures after a relatively short latent period. This led to post-status epilepticus (SE) models in which animals experience SE after injection of pharmacological compounds (e.g. kainate or pilocarpine) or via electrical stimulation of (limbic) brain regions. These post-SE models are the most widely used models in epilepsy research today. However, not all aspects of mesial temporal lobe epilepsy (MTLE) are reproduced and the widespread brain damage is often a caricature of the situation in the patient. Therefore, there is a need for models that can better replicate the disease. Kindling, although already a classic model, can still offer valid clues in this context. In this paper, we review different aspects of the kindling model with emphasis on experiments in the rat. Next, we review characteristic properties of the post-SE models and compare the neuropathological, electrophysiological and molecular differences between kindling and post-SE epilepsy models. Finally, we shortly discuss the advantages and disadvantages of these models.
Collapse
Affiliation(s)
- Jan A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Fernando H Lopes da Silva
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| |
Collapse
|
39
|
Koyama R. [Cellular and molecular mechanisms underlying aberrant network reorganization in the epileptic brain]. YAKUGAKU ZASSHI 2014; 134:1171-7. [PMID: 25366914 DOI: 10.1248/yakushi.14-00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Well-refined wiring of neural circuits is fundamental to proper brain function. Aberrantly formed neural circuits may induce epileptiform discharges of neurons. Therefore, elucidating the cellular and molecular mechanisms that underlie the development of aberrant neural circuitry will advance the understanding and prevention of epilepsy. The dentate gyrus has been suggested to serve as a gate that prevents the propagation of epileptiform activity from the entorhinal cortex to the hippocampus. Within the dentate gyrus is the dentate granule cell layer, which consists of densely packed granule cells that maintain intrinsically low-firing properties and rarely exhibit burst discharges synchronized with other neurons. Additionally, granule cells form abundant synaptic inputs to inhibitory interneurons in the dentate hilus, a fraction of which provide feedback inhibition back to the granule cells. Network reorganization of the dentate gyrus in patients with temporal lobe epilepsy and in corresponding animal models was reported. Specifically, mossy fiber sprouting and the emergence of ectopic granule cells contribute to the observed phenotypes. This paper reviews the expanding literature on the cellular and molecular mechanisms underlying the formation of aberrant hippocampal networks and their role in epileptogenesis.
Collapse
Affiliation(s)
- Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
40
|
White HS, Löscher W. Searching for the ideal antiepileptogenic agent in experimental models: single treatment versus combinatorial treatment strategies. Neurotherapeutics 2014; 11:373-84. [PMID: 24425186 PMCID: PMC3996126 DOI: 10.1007/s13311-013-0250-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A major unmet medical need is the lack of treatments to prevent (or modify) epilepsy in patients at risk, for example, after epileptogenic brain insults such as traumatic brain injury, stroke, or prolonged acute symptomatic seizures like complex febrile seizures or status epilepticus. Typically, following such brain insults there is a seizure-free interval ("latent period"), lasting months to years before the onset of spontaneous recurrent epileptic seizures. The latent period after a brain insult offers a window of opportunity in which an appropriate treatment may prevent or modify the epileptogenic process induced by a brain insult. A similar latent period occurs in patients with epileptogenic gene mutations. Studies using animal models of epilepsy have led to a greater understanding of the factors underlying epileptogenesis and have provided significant insight into potential targets by which the development of epilepsy may be prevented or modified. This review focuses largely on some of the most common animal models of epileptogenesis and their potential utility for evaluating proposed antiepileptogenic therapies and identifying useful biomarkers. The authors also describe some of the limitations of using animal models in the search for therapies that move beyond the symptomatic treatment of epilepsy. Promising results of previous studies designed to evaluate antiepileptogenesis and the role of monotherapy versus polytherapy approaches are also discussed. Recent data from both models of genetic and acquired epilepsies strongly indicate that it is possible to prevent or modify epileptogenesis, and, hopefully, such promising results can ultimately be translated into the clinic.
Collapse
Affiliation(s)
- H. Steve White
- />Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT USA
| | - Wolfgang Löscher
- />Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
- />Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
41
|
Gibbons M, Smeal R, Takahashi D, Vargas J, Wilcox K. Contributions of astrocytes to epileptogenesis following status epilepticus: opportunities for preventive therapy? Neurochem Int 2013; 63:660-9. [PMID: 23266599 PMCID: PMC4353644 DOI: 10.1016/j.neuint.2012.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/09/2012] [Accepted: 12/13/2012] [Indexed: 12/22/2022]
Abstract
Status epilepticus (SE) is a life threatening condition that often precedes the development of epilepsy. Traditional treatments for epilepsy have been focused on targeting neuronal mechanisms contributing to hyperexcitability, however, approximately 30% of patients with epilepsy do not respond to existing neurocentric pharmacotherapies. A growing body of evidence has demonstrated that profound changes in the morphology and function of astrocytes accompany SE and persist in epilepsy. Astrocytes are increasingly recognized for their diverse roles in modulating neuronal activity, and understanding the changes in astrocytes following SE could provide important clues about the mechanisms underlying seizure generation and termination. By understanding the contributions of astrocytes to the network changes underlying epileptogenesis and the development of epilepsy, we will gain a greater appreciation of the contributions of astrocytes to dynamic circuit changes, which will enable us to develop more successful therapies to prevent and treat epilepsy. This review summarizes changes in astrocytes following SE in animal models and human temporal lobe epilepsy and addresses the functional consequences of those changes that may provide clues to the process of epileptogenesis.
Collapse
Affiliation(s)
- M.B. Gibbons
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT
| | - R.M. Smeal
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT
| | - D.K. Takahashi
- Department of Neurology, Stanford University, Palo Alto, CA
| | - J.R. Vargas
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - K.S. Wilcox
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT
| |
Collapse
|
42
|
Biagini G, D'Antuono M, Benini R, de Guzman P, Longo D, Avoli M. Perirhinal cortex and temporal lobe epilepsy. Front Cell Neurosci 2013; 7:130. [PMID: 24009554 PMCID: PMC3756799 DOI: 10.3389/fncel.2013.00130] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/01/2013] [Indexed: 12/30/2022] Open
Abstract
The perirhinal cortex—which is interconnected with several limbic structures and is intimately involved in learning and memory—plays major roles in pathological processes such as the kindling phenomenon of epileptogenesis and the spread of limbic seizures. Both features may be relevant to the pathophysiology of mesial temporal lobe epilepsy that represents the most refractory adult form of epilepsy with up to 30% of patients not achieving adequate seizure control. Compared to other limbic structures such as the hippocampus or the entorhinal cortex, the perirhinal area remains understudied and, in particular, detailed information on its dysfunctional characteristics remains scarce; this lack of information may be due to the fact that the perirhinal cortex is not grossly damaged in mesial temporal lobe epilepsy and in models mimicking this epileptic disorder. However, we have recently identified in pilocarpine-treated epileptic rats the presence of selective losses of interneuron subtypes along with increased synaptic excitability. In this review we: (i) highlight the fundamental electrophysiological properties of perirhinal cortex neurons; (ii) briefly stress the mechanisms underlying epileptiform synchronization in perirhinal cortex networks following epileptogenic pharmacological manipulations; and (iii) focus on the changes in neuronal excitability and cytoarchitecture of the perirhinal cortex occurring in the pilocarpine model of mesial temporal lobe epilepsy. Overall, these data indicate that perirhinal cortex networks are hyperexcitable in an animal model of temporal lobe epilepsy, and that this condition is associated with a selective cellular damage that is characterized by an age-dependent sensitivity of interneurons to precipitating injuries, such as status epilepticus.
Collapse
Affiliation(s)
- Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia Modena, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Henshall DC, Engel T. Contribution of apoptosis-associated signaling pathways to epileptogenesis: lessons from Bcl-2 family knockouts. Front Cell Neurosci 2013; 7:110. [PMID: 23882182 PMCID: PMC3712126 DOI: 10.3389/fncel.2013.00110] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/22/2013] [Indexed: 01/22/2023] Open
Abstract
Neuronal cell death is a pathophysiological consequence of many brain insults that trigger epilepsy and has been implicated as a causal factor in epileptogenesis. Seizure-induced neuronal death features excitotoxic necrosis and apoptosis-associated signaling pathways, including activation of multiple members of the Bcl-2 gene family. The availability of mice in which individual Bcl-2 family members have been deleted has provided the means to determine whether they have causal roles in neuronal death and epileptogenesis in vivo. Studies show that multiple members of the Bcl-2 family are activated following status epilepticus and the seizure and damage phenotypes of eight different knockouts of the Bcl-2 family have now been characterized. Loss of certain pro-apoptotic members, including Puma, protected against seizure-induced neuronal death whereas loss of anti-apoptotic Mcl-1 and Bcl-w enhanced hippocampal damage. Notably, loss of two putatively pro-apoptotic members, Bak and Bmf, resulted in more seizure-damage while deletion of Bid had no effect, indicating the role of certain Bcl-2 family proteins in epileptic brain injury is distinct from their contributions following other stressors or in non-CNS tissue. Notably, Puma-deficient mice develop fewer spontaneous seizures after status epilepticus suggesting neuroprotection may preserve functional inhibition, either directly by preserving neuronal networks or indirectly, for example by limiting reactive gliosis and pro-inflammatory responses to neuronal death. Together, these studies support apoptosis-associated molecular mechanisms controlling neuronal death as a component of epileptogenesis which might be targetable to protect against seizure-damage, cognitive deficits and mitigate the severity of syndrome following epilepsy-precipitating injuries to the brain.
Collapse
Affiliation(s)
- David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St. Stephen's GreenDublin, Ireland
| | | |
Collapse
|
44
|
Will JL, Eckart MT, Rosenow F, Bauer S, Oertel WH, Schwarting RK, Norwood BA. Enhanced sequential reaction time task performance in a rat model of mesial temporal lobe epilepsy with classic hippocampal sclerosis. Behav Brain Res 2013; 247:65-72. [DOI: 10.1016/j.bbr.2013.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/10/2013] [Indexed: 01/08/2023]
|
45
|
Jinde S, Zsiros V, Jiang Z, Nakao K, Pickel J, Kohno K, Belforte JE, Nakazawa K. Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron 2013; 76:1189-200. [PMID: 23259953 DOI: 10.1016/j.neuron.2012.10.036] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2012] [Indexed: 02/08/2023]
Abstract
Although excitatory mossy cells of the hippocampal hilar region are known to project both to dentate granule cells and to interneurons, it is as yet unclear whether mossy cell activity's net effect on granule cells is excitatory or inhibitory. To explore their influence on dentate excitability and hippocampal function, we generated a conditional transgenic mouse line, using the Cre/loxP system, in which diphtheria toxin receptor was selectively expressed in mossy cells. One week after injecting toxin into this line, mossy cells throughout the longitudinal axis were degenerated extensively, theta wave power of dentate local field potentials increased during exploration, and deficits occurred in contextual discrimination. By contrast, we detected no epileptiform activity, spontaneous behavioral seizures, or mossy-fiber sprouting 5-6 weeks after mossy cell degeneration. These results indicate that the net effect of mossy cell excitation is to inhibit granule cell activity and enable dentate pattern separation.
Collapse
Affiliation(s)
- Seiichiro Jinde
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Jinde S, Zsiros V, Nakazawa K. Hilar mossy cell circuitry controlling dentate granule cell excitability. Front Neural Circuits 2013; 7:14. [PMID: 23407806 PMCID: PMC3569840 DOI: 10.3389/fncir.2013.00014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/23/2013] [Indexed: 12/27/2022] Open
Abstract
Glutamatergic hilar mossy cells of the dentate gyrus can either excite or inhibit distant granule cells, depending on whether their direct excitatory projections to granule cells or their projections to local inhibitory interneurons dominate. However, it remains controversial whether the net effect of mossy cell loss is granule cell excitation or inhibition. Clarifying this controversy has particular relevance to temporal lobe epilepsy, which is marked by dentate granule cell hyperexcitability and extensive loss of dentate hilar mossy cells. Two diametrically opposed hypotheses have been advanced to explain this granule cell hyperexcitability—the “dormant basket cell” and the “irritable mossy cell” hypotheses. The “dormant basket cell” hypothesis proposes that mossy cells normally exert a net inhibitory effect on granule cells and therefore their loss causes dentate granule cell hyperexcitability. The “irritable mossy cell” hypothesis takes the opposite view that mossy cells normally excite granule cells and that the surviving mossy cells in epilepsy increase their activity, causing granule cell excitation. The inability to eliminate mossy cells selectively has made it difficult to test these two opposing hypotheses. To this end, we developed a transgenic toxin-mediated, mossy cell-ablation mouse line. Using these mutants, we demonstrated that the extensive elimination of hilar mossy cells causes granule cell hyperexcitability, although the mossy cell loss observed appeared insufficient to cause clinical epilepsy. In this review, we focus on this topic and also suggest that different interneuron populations may mediate mossy cell-induced translamellar lateral inhibition and intralamellar recurrent inhibition. These unique local circuits in the dentate hilar region may be centrally involved in the functional organization of the dentate gyrus.
Collapse
Affiliation(s)
- Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| | | | | |
Collapse
|
47
|
Kubová H, Mareš P. Are morphologic and functional consequences of status epilepticus in infant rats progressive? Neuroscience 2013; 235:232-49. [PMID: 23305765 DOI: 10.1016/j.neuroscience.2012.12.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 12/22/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
Abstract
The present study examined whether status epilepticus (SE) induced by LiCl-pilocarpine in immature rats (postnatal day [P]12) interferes with normal development; leads to progressive epileptogenesis, or cognitive decline and to pathology similar to that seen in human temporal lobe epilepsy. We correlated the extent of pathologic changes with the severity of functional alterations or epilepsy. SE-induced changes were compared with those of rats with SE induced at P25. Animals of both ages were exposed to a battery of behavioral tests for up to 3months after SE. Rats with SE at P12 showed mild retardation of psychomotor development and delayed habituation, whereas rats with SE at P25 showed no habituation. Assessment in adulthood using the Morris water maze test revealed that SE at both P12 and P25 led to cognitive impairment and that the severity of the impairment increased with age. A handling test revealed increased aggression in rats with SE at P25, but not in rats with SE at P12. Epilepsy was diagnosed with continuous video-electroencephalographic (EEG) monitoring for up to 7d. P25 rats were monitored at 5months after SE and seizures were detected in 83.3% of animals. P12 animals were divided into two groups and monitored at 5 or 7months after SE. Both the severity and incidence of spontaneous recurrent seizures tended to progress with time, and their incidence increased from 50% to 87.5% at 5 and 7months, respectively. Morphometric analysis and stereologic assessment of hilar neurons performed after video-EEG monitoring revealed atrophy of temporal brain structures, enlargement of lateral ventricles, and loss of hilar neurons in both age groups. In P12 rats, morphologic damage also tended to progress over time. Performance of animals in the Morris water maze correlated with the severity of damage, but not with seizure parameters.
Collapse
Affiliation(s)
- H Kubová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4, Czech Republic.
| | | |
Collapse
|
48
|
Sloviter RS, Lømo T. Updating the lamellar hypothesis of hippocampal organization. Front Neural Circuits 2012; 6:102. [PMID: 23233836 PMCID: PMC3517983 DOI: 10.3389/fncir.2012.00102] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/21/2012] [Indexed: 11/13/2022] Open
Abstract
Andersen et al. (1971) proposed that excitatory activity in the entorhinal cortex propagates topographically to the dentate gyrus, and on through a "trisynaptic circuit" lying within transverse hippocampal "slices" or "lamellae." In this way, a relatively simple structure might mediate complex functions in a manner analogous to the way independent piano keys can produce a nearly infinite variety of unique outputs. The lamellar hypothesis derives primary support from the "lamellar" distribution of dentate granule cell axons (the mossy fibers), which innervate dentate hilar neurons and area CA3 pyramidal cells and interneurons within the confines of a thin transverse hippocampal segment. Following the initial formulation of the lamellar hypothesis, anatomical studies revealed that unlike granule cells, hilar mossy cells, CA3 pyramidal cells, and Layer II entorhinal cells all form axonal projections that are more divergent along the longitudinal axis than the clearly "lamellar" mossy fiber pathway. The existence of pathways with "translamellar" distribution patterns has been interpreted, incorrectly in our view, as justifying outright rejection of the lamellar hypothesis (Amaral and Witter, 1989). We suggest that the functional implications of longitudinally projecting axons depend not on whether they exist, but on what they do. The observation that focal granule cell layer discharges normally inhibit, rather than excite, distant granule cells suggests that longitudinal axons in the dentate gyrus may mediate "lateral" inhibition and define lamellar function, rather than undermine it. In this review, we attempt a reconsideration of the evidence that most directly impacts the physiological concept of hippocampal lamellar organization.
Collapse
Affiliation(s)
- Robert S Sloviter
- Department of Neurobiology, Morehouse School of Medicine Atlanta, GA, USA
| | | |
Collapse
|
49
|
Li LY, Li JL, Zhang HM, Yang WM, Wang K, Fang Y, Wang Y. TGFβ1 treatment reduces hippocampal damage, spontaneous recurrent seizures, and learning memory deficits in pilocarpine-treated rats. J Mol Neurosci 2012; 50:109-23. [PMID: 22936246 DOI: 10.1007/s12031-012-9879-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 08/15/2012] [Indexed: 11/28/2022]
Abstract
Studies have demonstrated the neuroprotective activity of transforming growth factor beta-1 (TGFβ1), protecting neurons against different kinds of insults. However, the role of exogenous TGFβ1 in the neuronal damage following status epilepticus (SE) and the related spontaneous recurrent seizures (SRS) is unknown. The present study aimed to determine the effect of intranasal TGFβ1 administration on SRS and cognitive function following lithium-pilocarpine-induced SE and associated hippocampal damage. We found that intranasal TGFβ1 significantly attenuated the hippocampal insults marked by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling, and Fluoro-Jade B staining by 24, 48, and 72 h after SE was induced. The expression of the apoptosis-suppressing protein, Bcl-2, was elevated, whereas the expression of the apoptosis-promoting proteins, Bax and Caspase-3, was suppressed in TGFβ1-treated rats compared to rats without TGFβ1 treatment by 24, 48, and 72 h following induction of SE. The seizure number, severity, and duration of SRS over a 1-month period of monitoring starting 15 days after SE induction as well as the cognitive deficits detected 45 days after SE induction were significantly reduced in TGFβ1-treated rats compared to those without TGFβ1 treatment. Our results indicate that intranasal delivery of TGFβ1 immediately after SE induction not only protected against SRS but also improved cognitive function. The anti-epileptogenic properties of TGFβ1 may be related to its effect of neuroprotection or to its effect of apoptosis pathway changes.
Collapse
Affiliation(s)
- Liang-Yong Li
- Epilepsy and Headache Group, Department of Neurology, the First Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Sloviter RS, Bumanglag AV. Defining "epileptogenesis" and identifying "antiepileptogenic targets" in animal models of acquired temporal lobe epilepsy is not as simple as it might seem. Neuropharmacology 2012; 69:3-15. [PMID: 22342985 DOI: 10.1016/j.neuropharm.2012.01.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/20/2012] [Accepted: 01/25/2012] [Indexed: 11/17/2022]
Abstract
The "latent period" between brain injury and clinical epilepsy is widely regarded to be a seizure-free, pre-epileptic state during which a time-consuming cascade of molecular events and structural changes gradually mediates the process of "epileptogenesis." The concept of the "latent period" as the duration of "epileptogenesis" implies that epilepsy is not an immediate result of brain injury, and that anti-epileptogenic strategies need to target delayed secondary mechanisms that develop sometime after an initial injury. However, depth recordings made directly from the dentate granule cell layers in awake rats after convulsive status epilepticus-induced injury have now shown that whenever perforant pathway stimulation-induced status epilepticus produces extensive hilar neuron loss and entorhinal cortical injury, hyperexcitable granule cells immediately generate spontaneous epileptiform discharges and focal or generalized behavioral seizures. This indicates that hippocampal injury caused by convulsive status epilepticus is immediately epileptogenic and that hippocampal epileptogenesis requires no delayed secondary mechanism. When latent periods do exist after injury, we hypothesize that less extensive cell loss causes an extended period during which initially subclinical focal seizures gradually increase in duration to produce the first clinical seizure. Thus, the "latent period" is suggested to be a state of "epileptic maturation," rather than a prolonged period of "epileptogenesis," and therefore the antiepileptogenic therapeutic window may only remain open during the first week after injury, when some delayed cell death may still be preventable. Following the perhaps unavoidable development of the first focal seizures ("epileptogenesis"), the most fruitful therapeutic strategy may be to interrupt the process of "epileptic maturation," thereby keeping focal seizures focal. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Robert S Sloviter
- Department of Pharmacology, University of Arizona College of Medicine, 1501 N. Campbell Avenue, Tucson, AZ 85724-5050, USA.
| | | |
Collapse
|