1
|
Boussaine K, Taha M, Nìng C, Cartereau A, Rakotobe S, Mateos-Hernandez L, Taillebois E, Šimo L, Thany SH. Isolation and electrophysiological recording of Ixodes ricinus synganglion neurons. J Pharmacol Toxicol Methods 2023; 124:107473. [PMID: 37866797 DOI: 10.1016/j.vascn.2023.107473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The central nervous system of hard ticks (Ixodidae) consists of a concentrated merged nerve mass known as the synganglion. Although knowledge of tick neurobiology has dramatically improved over the last two decades, this is the first time that isolation and electrophysiological recordings have been carried out on tick neurons from the synganglion. Method: We developed a simple protocol for synganglion neuron isolation and used a whole-cell patch clamp to measure ionic currents induced by acetylcholine, nicotine and muscarine. Relatively large neurons (∼ 25 μm and ∼ 35 μm) were isolated and 1 mM acetylcholine was used to induce strong inward currents of -0.38 ± 0.1 nA and - 1.04 ± 0.1 nA, respectively, with the corresponding cell capacitances being at around 142 pF and 188 pF. In addition, successive application of 1 mM acetylcholine through ∼25 μm and ∼ 35 μm cells for increasing amounts of time resulted in a rapid reduction in current amplitudes. We also found that acetylcholine-evoked currents were associated with a reversible increase in intracellular calcium levels for each neuronal type. In contrast, 1 mM muscarine and nicotine induced a strong and non-reversible increase in intracellular calcium levels. This study serves as a proof of concept for the mechanical isolation of tick synganglion neurons followed by their electrophysiological recording. This approach will aid investigations into the pharmacological properties of tick neurons and provides the tools needed for the identification of drug-targeted sites and effective tick control measures.
Collapse
Affiliation(s)
- Khalid Boussaine
- University of Orleans, Laboratory Physiology, Ecology and Environment (P2E) USC-INRAE 1328, 1 rue de Chartres, Orléans Cedex, France; ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 22 rue Pierre et Marie Curie, Maisons-Alfort, France
| | - Maria Taha
- University of Orleans, Laboratory Physiology, Ecology and Environment (P2E) USC-INRAE 1328, 1 rue de Chartres, Orléans Cedex, France
| | - Cáinà Nìng
- University of Orleans, Laboratory Physiology, Ecology and Environment (P2E) USC-INRAE 1328, 1 rue de Chartres, Orléans Cedex, France; ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 22 rue Pierre et Marie Curie, Maisons-Alfort, France
| | - Alison Cartereau
- University of Orleans, Laboratory Physiology, Ecology and Environment (P2E) USC-INRAE 1328, 1 rue de Chartres, Orléans Cedex, France
| | - Sabine Rakotobe
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 22 rue Pierre et Marie Curie, Maisons-Alfort, France
| | - Lourdes Mateos-Hernandez
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 22 rue Pierre et Marie Curie, Maisons-Alfort, France
| | - Emiliane Taillebois
- University of Orleans, Laboratory Physiology, Ecology and Environment (P2E) USC-INRAE 1328, 1 rue de Chartres, Orléans Cedex, France
| | - Ladislav Šimo
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 22 rue Pierre et Marie Curie, Maisons-Alfort, France
| | - Steeve H Thany
- University of Orleans, Laboratory Physiology, Ecology and Environment (P2E) USC-INRAE 1328, 1 rue de Chartres, Orléans Cedex, France.
| |
Collapse
|
2
|
Lyu B, Li J, Niemeyer B, Stanley D, Song Q. Identification and characterization of ecdysis-related neuropeptides in the lone star tick Amblyomma americanum. Front Endocrinol (Lausanne) 2023; 14:1256618. [PMID: 37693356 PMCID: PMC10490126 DOI: 10.3389/fendo.2023.1256618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction The lone star tick, Amblyomma americanum, is an important ectoparasite known for transmitting diseases to humans and animals. Ecdysis-related neuropeptides (ERNs) control behaviors crucial for arthropods to shed exoskeletons. However, ERN identification and characterization in A. americanum remain incomplete. Methods We investigated ERNs in A. americanum, assessing their evolutionary relationships, protein properties, and functions. Phylogeny, sequence alignment, and domain structures of ERNs were analyzed. ERN functionality was explored using enrichment analysis, and developmental and tissue-specific ERN expression profiles were examined using qPCR and RNAi experiments. Results and discussion The study shows that ERN catalogs (i.e., eclosion hormone, corazonin, and bursicon) are found in most arachnids, and these ERNs in A. americanum have high evolutionary relatedness with other tick species. Protein modeling analysis indicates that ERNs primarily consist of secondary structures and protein stabilizing forces (i.e., hydrophobic clusters, hydrogen bond networks, and salt bridges). Gene functional analysis shows that ENRs are involved in many ecdysis-related functions, including ecdysis-triggering hormone activity, neuropeptide signaling pathway, and corazonin receptor binding. Bursicon proteins have functions in chitin binding and G protein-coupled receptor activity and strong interactions with leucine-rich repeat-containing G-protein coupled receptor 5. ERNs were expressed in higher levels in newly molted adults and synganglia. RNAi-mediated knockdown of burs α and burs β expression led to a significant decrease in the expression of an antimicrobial peptide, defensin, suggesting they might act in signaling or regulatory pathways that control the expression of immune-related genes. Arthropods are vulnerable immediately after molting because new cuticles are soft and susceptible to injury and pathogen infections. Bursicon homodimers act in prophylactic immunity during this vulnerable period by increasing the synthesis of transcripts encoding antimicrobial peptides to protect them from microbial invasion. Collectively, the expression pattern and characterization of ERNs in this study contribute to a deeper understanding of the physiological processes in A. americanum.
Collapse
Affiliation(s)
- Bo Lyu
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Jingjing Li
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Brigid Niemeyer
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - David Stanley
- Biological Control of Insect Research Laboratory, United States Department of Agriculture-Agricultural Research Station (USDA/ARS), Columbia, MO, United States
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
Guerrib F, Ning C, Mateos-Hernandéz L, Rakotobe S, Park Y, Hajdusek O, Perner J, Vancová M, Valdés JJ, Šimo L. Dual SIFamide receptors in Ixodes salivary glands. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023:103963. [PMID: 37257628 DOI: 10.1016/j.ibmb.2023.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/02/2023]
Abstract
Salivary glands are vital to tick feeding success and also play a crucial role in tick-borne pathogen transmission. In previous studies of Ixodes scapularis salivary glands, we demonstrated that saliva-producing type II and III acini are innervated by neuropeptidergic axons which release different classes of neuropeptides via their terminals (Šimo et al., 2009b, 2013). Among these, the neuropeptide SIFamide-along with its cognate receptor-were postulated to control the basally located acinar valve via basal epithelial and myoepithelial cells (Vancová et al., 2019). Here, we functionally characterized a second SIFamide receptor (SIFa_R2) from the I. scapularis genome and proved that it senses a low nanomolar level of its corresponding ligand. Insect SIFamide paralogs, SMYamides, also activated the receptor but less effectively compared to SIFamide. Bioinformatic and molecular dynamic analyses suggested that I. scapularis SIFamide receptors are class A GPCRs where the peptide amidated carboxy-terminus is oriented within the receptor binding cavity. The receptor was found to be expressed in Ixodes ricinus salivary glands, synganglia, midguts, trachea, and ovaries, but not in Malpighian tubules. Investigation of the temporal expression patterns suggests that the receptor transcript is highly expressed in unfed I. ricinus female salivary glands and then decreases during feeding. In synganglia, a significant transcript increase was detected in replete ticks. In salivary gland acini, an antibody targeting the second SIFamide receptor recognized basal epithelial cells, myoepithelial cells, and basal granular cells in close proximity to the SIFamide-releasing axon terminals. Immunoreactivity was also detected in specific neurons distributed throughout various I. ricinus synganglion locations. The current findings, alongside previous reports from our group, indicate that the neuropeptide SIFamide acts via two different receptors that regulate distinct or common cell types in the basal region of type II and III acini in I. ricinus salivary glands. The current study investigates the peptidergic regulation of the I. ricinus salivary gland in detail, emphasizing the complexity of this system.
Collapse
Affiliation(s)
- Fetta Guerrib
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Caina Ning
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Lourdes Mateos-Hernandéz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Sabine Rakotobe
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Yoonseong Park
- Entomolgy department, Kansas State University, 123 Waters Hall, 66506-4004, Manhattan, KS, USA
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, 37005, Czech Republic
| | - James J Valdés
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Ladislav Šimo
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
4
|
Šimo L. 50 Years since Kaufman and Phillips’ Groundbreaking Trilogy Elucidating Ion and Water Homeostasis in Ixodid Ticks. Pathogens 2023; 12:pathogens12030385. [PMID: 36986307 PMCID: PMC10052448 DOI: 10.3390/pathogens12030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The enormous volume of blood ingested by hard ticks during their long attachment period is without a doubt the hallmark of their biology. Maintaining a homeostatic balance between ion and water intake and loss during their feeding is critical to preventing osmotic stress and death. Exactly 50 years ago, Kaufman and Phillips published a series of three consecutive papers on “Ion and water balance in the ixodid tick Dermacentor andersoni”, Journal of Experimental Biology (1973): I. Routes of ion and water excretion, 58: 523–36; II. Mechanism and control of salivary secretion 58: 537–547; and III. Influence of monovalent ions and osmotic pressure on salivary secretion 58: 549–564. This classic series significantly expanded our knowledge of the unique regulatory processes governing ion and water balance in fed ixodid ticks, highlighting its uniqueness among the blood-feeding arthropods. Their pioneer work had an enormous impact on understanding the vital role of salivary glands in these actions, and ultimately provided a consequential stepping stone for a new era of hard tick salivary gland physiological research.
Collapse
Affiliation(s)
- Ladislav Šimo
- Laboratoire de Santé Animale, UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, INRAE, ANSES, F-94700 Maisons-Alfort, France
| |
Collapse
|
5
|
Maldonado-Ruiz LP, Urban J, Davis BN, Park JJ, Zurek L, Park Y. Dermal secretion physiology and thermoregulation in the lone star tick, Amblyomma americanum. Ticks Tick Borne Dis 2022; 13:101962. [PMID: 35525214 DOI: 10.1016/j.ttbdis.2022.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/21/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
Abstract
Ticks are hematophagous ectoparasites that transmit a wide range of pathogens. The lone star tick, Amblyomma americanum, is one of the most widely distributed ticks in the Midwest and Eastern United States. Lone star ticks, as other three-host ixodid ticks, can survive in harsh environments for extended periods without a blood meal. Physiological mechanisms that allow them to survive during hot and dry seasons include thermal tolerance and water homeostasis. Dermal fluid secretions have been described in metastriate ticks including A. americanum. We hypothesized that tick dermal secretion in the unfed tick plays a role in thermoregulation, as described in other hematophagous arthropods during blood feeding. In this study, we found that physical contact with a heat probe at 45 °C or high environmental temperature at ∼50 °C can trigger dermal secretion in A. americanum and other metastriate ticks in the off-host period. We demonstrated that dermal secretion plays a role in evaporative cooling when ticks are exposed to high temperatures. We find that type II dermal glands, having paired two cells and forming large glandular structures, are the source of dermal secretion. The secretion was triggered by an injection of serotonin, and the serotonin-mediated secretion was suppressed by a pretreatment with ouabain, a Na/K-ATPase blocker, implying that the secretion is controlled by serotonin and the downstream Na/K-ATPase.
Collapse
Affiliation(s)
| | - Joshua Urban
- Department of Entomology, Kansas State University, Manhattan KS66506, USA
| | - Brianna N Davis
- Department of Entomology, Kansas State University, Manhattan KS66506, USA
| | - Jessica J Park
- Department of Entomology, Kansas State University, Manhattan KS66506, USA
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic; Department of Microbiology, Nutrition and Dietetics, Czech Agricultural University, Prague, Czech Republic
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan KS66506, USA.
| |
Collapse
|
6
|
Waldman J, Xavier MA, Vieira LR, Logullo R, Braz GRC, Tirloni L, Ribeiro JMC, Veenstra JA, Silva Vaz ID. Neuropeptides in Rhipicephalus microplus and other hard ticks. Ticks Tick Borne Dis 2022; 13:101910. [PMID: 35121230 PMCID: PMC9477089 DOI: 10.1016/j.ttbdis.2022.101910] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
The synganglion is the central nervous system of ticks and, as such, controls tick physiology. It does so through the production and release of signaling molecules, many of which are neuropeptides. These peptides can function as neurotransmitters, neuromodulators and/or neurohormones, although in most cases their functions remain to be established. We identified and performed in silico characterization of neuropeptides present in different life stages and organs of Rhipicephalus microplus, generating transcriptomes from ovary, salivary glands, fat body, midgut and embryo. Annotation of synganglion transcripts led to the identification of 32 functional categories of proteins, of which the most abundant were: secreted, energetic metabolism and oxidant metabolism/detoxification. Neuropeptide precursors are among the sequences over-represented in R. microplus synganglion, with at least 5-fold higher transcription compared with other stages/organs. A total of 52 neuropeptide precursors were identified: ACP, achatin, allatostatins A, CC and CCC, allatotropin, bursicon A/B, calcitonin A and B, CCAP, CCHamide, CCRFamide, CCH/ITP, corazonin, DH31, DH44, eclosion hormone, EFLamide, EFLGGPamide, elevenin, ETH, FMRFamide myosuppressin-like, glycoprotein A2/B5, gonadulin, IGF, inotocin, insulin-like peptides, iPTH, leucokinin, myoinhibitory peptide, NPF 1 and 2, orcokinin, proctolin, pyrokinin/periviscerokinin, relaxin, RYamide, SIFamide, sNPF, sulfakinin, tachykinin and trissin. Several of these neuropeptides have not been previously reported in ticks, as the presence of ETH that was first clearly identified in Parasitiformes, which include ticks and mites. Prediction of the mature neuropeptides from precursor sequences was performed using available information about these peptides from other species, conserved domains and motifs. Almost all neuropeptides identified are also present in other tick species. Characterizing the role of neuropeptides and their respective receptors in tick physiology can aid the evaluation of their potential as drug targets.
Collapse
Affiliation(s)
- Jéssica Waldman
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Rezende Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raquel Logullo
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gloria Regina Cardoso Braz
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - José Marcos C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Jan A Veenstra
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 CNRS, Université de Bordeaux, Bordeaux, France
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Hromníková D, Furka D, Furka S, Santana JAD, Ravingerová T, Klöcklerová V, Žitňan D. Prevention of tick-borne diseases: challenge to recent medicine. Biologia (Bratisl) 2022; 77:1533-1554. [PMID: 35283489 PMCID: PMC8905283 DOI: 10.1007/s11756-021-00966-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
Abstract Ticks represent important vectors and reservoirs of pathogens, causing a number of diseases in humans and animals, and significant damage to livestock every year. Modern research into protection against ticks and tick-borne diseases focuses mainly on the feeding stage, i.e. the period when ticks take their blood meal from their hosts during which pathogens are transmitted. Physiological functions in ticks, such as food intake, saliva production, reproduction, development, and others are under control of neuropeptides and peptide hormones which may be involved in pathogen transmission that cause Lyme borreliosis or tick-borne encephalitis. According to current knowledge, ticks are not reservoirs or vectors for the spread of COVID-19 disease. The search for new vaccination methods to protect against ticks and their transmissible pathogens is a challenge for current science in view of global changes, including the increasing migration of the human population. Highlights • Tick-borne diseases have an increasing incidence due to climate change and increased human migration • To date, there is no evidence of transmission of coronavirus COVID-19 by tick as a vector • To date, there are only a few modern, effective, and actively- used vaccines against ticks or tick-borne diseases • Neuropeptides and their receptors expressed in ticks may be potentially used for vaccine design
Collapse
Affiliation(s)
- Dominika Hromníková
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Daniel Furka
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84104 Bratislava, SK Slovakia
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Samuel Furka
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84104 Bratislava, SK Slovakia
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Julio Ariel Dueñas Santana
- Chemical Engineering Department, University of Matanzas, Km 3 Carretera a Varadero, 44740 Matanzas, CU Cuba
| | - Táňa Ravingerová
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Vanda Klöcklerová
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Dušan Žitňan
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| |
Collapse
|
8
|
Ayub M, Lange AB, Orchard I. Identification and characterization of the SIFamide receptor in the hemimetabolous Chagas disease vector, Rhodnius prolixus Stål, 1859, (Hemiptera, Reduviidae, Triatominae). Peptides 2021; 143:170600. [PMID: 34175354 DOI: 10.1016/j.peptides.2021.170600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
Within arthropods, the SIFamide family of neuropeptides appears to be involved in the modulation of a range of physiological and behavioral events. In Rhodnius prolixus, we have previously shown the presence of SIFamidergic-like processes in neurohemal release sites and provided evidence for a role for Rhopr-SIFa in modulating heartbeat frequency and feeding behaviors. Here, the R. prolixus SIFamide receptor (RhoprSIFR) has been identified, cloned, and sequenced. Sequence analyses show high similarity and identity between the RhoprSIFR and other cloned SIFamide receptors. Quantitative PCR shows that the RhoprSIFR transcript is found in a variety of tissues, including those involved in feeding and reproduction. In unfed insects, high transcript expression is observed in the central nervous system and midgut, suggesting a role of Rhopr-SIFa in various processes related to feeding and digestion. Expression of the RhoprSIFR transcript changes between unfed, 24 h post-fed, and 7 d post-fed conditions. Expression of the RhoprSIFR transcript significantly increases in the anterior midgut and posterior midgut 7 d post-feeding and knockdown of the RhoprSIFR transcript significantly reduces the size of blood meal consumed. This data suggests a possible role for Rhopr-SIFa in regulating long-term post-feeding osmotic balance and digestion of the blood meal. Lastly, transcript expression of Rhopr-SIFa and RhoprSIFR also varies temporally in relation to the reproductive stage, suggesting an involvement of this signaling pathway in reproductive activities. Identification of the RhoprSIFR and its expression profile now provide tools for a more detailed understanding into the precise coordination of feeding and other physiological processes in R. prolixus.
Collapse
Affiliation(s)
- Mahnoor Ayub
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
9
|
Veenstra JA. The neuropeptide SMYamide, a SIFamide paralog, is expressed by salivary gland innervating neurons in the American cockroach and likely functions as a hormone. Peptides 2021; 136:170466. [PMID: 33253775 DOI: 10.1016/j.peptides.2020.170466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/05/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023]
Abstract
The SMYamide genes are paralogs of the SIFamide genes and code for neuropeptides that are structurally similar to SIFamide. In the American cockroach, Periplanea americana, the SMYamide gene is specifically expressed in the SN2 neurons that innervate the salivary glands and are known to produce action potentials during feeding. The SN2 axon terminals surround rather than directly innervate the salivary gland acini. Therefore one may expect that on activation of these neurons significant amounts of SMYamide will be released into the hemolymph, thus suggesting that SMYamide may also have a hormonal function. In the Periplaneta genome there are two putative SIFamide receptors and these are both expressed not only in the central nervous system and the salivary gland, but also in the gonads and other peripheral tissues. This reinforces the hypothesis that SMYamide also has an endocrine function in this species.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA, UMR 5287, CNRS, Université de Bordeaux, Allée Geoffroy St Hillaire, CS 50023, 33 615, Pessac Cedex, France.
| |
Collapse
|
10
|
Mateos-Hernández L, Pipová N, Allain E, Henry C, Rouxel C, Lagrée AC, Haddad N, Boulouis HJ, Valdés JJ, Alberdi P, de la Fuente J, Cabezas-Cruz A, Šimo L. Enlisting the Ixodes scapularis Embryonic ISE6 Cell Line to Investigate the Neuronal Basis of Tick-Pathogen Interactions. Pathogens 2021; 10:pathogens10010070. [PMID: 33466622 PMCID: PMC7828734 DOI: 10.3390/pathogens10010070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/03/2023] Open
Abstract
Neuropeptides are small signaling molecules expressed in the tick central nervous system, i.e., the synganglion. The neuronal-like Ixodes scapularis embryonic cell line, ISE6, is an effective tool frequently used for examining tick–pathogen interactions. We detected 37 neuropeptide transcripts in the I. scapularis ISE6 cell line using in silico methods, and six of these neuropeptide genes were used for experimental validation. Among these six neuropeptide genes, the tachykinin-related peptide (TRP) of ISE6 cells varied in transcript expression depending on the infection strain of the tick-borne pathogen, Anaplasma phagocytophilum. The immunocytochemistry of TRP revealed cytoplasmic expression in a prominent ISE6 cell subpopulation. The presence of TRP was also confirmed in A. phagocytophilum-infected ISE6 cells. The in situ hybridization and immunohistochemistry of TRP of I. scapularis synganglion revealed expression in distinct neuronal cells. In addition, TRP immunoreaction was detected in axons exiting the synganglion via peripheral nerves as well as in hemal nerve-associated lateral segmental organs. The characterization of a complete Ixodes neuropeptidome in ISE6 cells may serve as an effective in vitro tool to study how tick-borne pathogens interact with synganglion components that are vital to tick physiology. Therefore, our current study is a potential stepping stone for in vivo experiments to further examine the neuronal basis of tick–pathogen interactions.
Collapse
Affiliation(s)
- Lourdes Mateos-Hernández
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (L.M.-H.); (E.A.); (C.R.); (A.-C.L.); (N.H.); (H.-J.B.)
| | - Natália Pipová
- Faculty of Science, Pavol Jozef Šafarik University in Košice, 04180 Košice, Slovakia;
| | - Eléonore Allain
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (L.M.-H.); (E.A.); (C.R.); (A.-C.L.); (N.H.); (H.-J.B.)
| | - Céline Henry
- AgroParisTech, Micalis Institute, Université Paris-Saclay, PAPPSO, INRAE, 78350 Jouy-en-Josas, France;
| | - Clotilde Rouxel
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (L.M.-H.); (E.A.); (C.R.); (A.-C.L.); (N.H.); (H.-J.B.)
| | - Anne-Claire Lagrée
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (L.M.-H.); (E.A.); (C.R.); (A.-C.L.); (N.H.); (H.-J.B.)
| | - Nadia Haddad
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (L.M.-H.); (E.A.); (C.R.); (A.-C.L.); (N.H.); (H.-J.B.)
| | - Henri-Jean Boulouis
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (L.M.-H.); (E.A.); (C.R.); (A.-C.L.); (N.H.); (H.-J.B.)
| | - James J. Valdés
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic;
- Department of Virology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Pilar Alberdi
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (J.d.l.F.)
- Neuroplasticity and Neurodegeneration Group, Regional Centre for Biomedical Research (CRIB), Ciu-dad Real Medical School, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - José de la Fuente
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (J.d.l.F.)
- Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (L.M.-H.); (E.A.); (C.R.); (A.-C.L.); (N.H.); (H.-J.B.)
- Correspondence: (A.C.-C.); (L.Š.); Tel.: +33-6-31-23-51-91 (A.C.-C.); +33-1-49-77-46-52 (L.Š.)
| | - Ladislav Šimo
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (L.M.-H.); (E.A.); (C.R.); (A.-C.L.); (N.H.); (H.-J.B.)
- Correspondence: (A.C.-C.); (L.Š.); Tel.: +33-6-31-23-51-91 (A.C.-C.); +33-1-49-77-46-52 (L.Š.)
| |
Collapse
|
11
|
Almazán C, Šimo L, Fourniol L, Rakotobe S, Borneres J, Cote M, Peltier S, Mayé J, Versillé N, Richardson J, Bonnet SI. Multiple Antigenic Peptide-Based Vaccines Targeting Ixodes ricinus Neuropeptides Induce a Specific Antibody Response but Do Not Impact Tick Infestation. Pathogens 2020; 9:pathogens9110900. [PMID: 33126686 PMCID: PMC7693490 DOI: 10.3390/pathogens9110900] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Synthetic peptide vaccines were designed to target the neuropeptides innervating Ixodes ricinus salivary glands and hindgut and they were tested for their capacity to afford protective immunity against nymphs or larvae and Anaplasma phagocytophilum-infected nymph infestation, in mice and sheep, respectively. In both models, the assembly of SIFamide (SIFa) or myoinhibitory peptide (MIP) neuropeptides into multiple antigenic peptide constructs (MAPs) elicited a robust IgG antibody response following immunization. Nevertheless, no observable detrimental impact on nymphs was evidenced in mice, and, unfortunately, the number of engorged nymphs on sheep was insufficient for firm conclusions to be drawn, including for bacterial transmission. Regarding larvae, while vaccination of the sheep did not globally diminish tick feeding success or development, analyses of animals at the individual level revealed a negative correlation between anti-SIFa and MIP antibody levels and larva-to-nymph molting success for both antigens. Our results provide a proof of principle and precedent for the use of MAPs for the induction of immunity against tick peptide molecules. Although the present study did not provide the expected level of protection, it inaugurates a new strategy for protection against ticks based on the immunological targeting of key components of their nervous system.
Collapse
Affiliation(s)
- Consuelo Almazán
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
| | - Ladislav Šimo
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
| | - Lisa Fourniol
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
| | - Sabine Rakotobe
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
| | - Jérémie Borneres
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.B.); (S.P.); (J.M.); (N.V.)
| | - Martine Cote
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
| | - Sandy Peltier
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.B.); (S.P.); (J.M.); (N.V.)
| | - Jennifer Mayé
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.B.); (S.P.); (J.M.); (N.V.)
| | - Nicolas Versillé
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.B.); (S.P.); (J.M.); (N.V.)
| | - Jennifer Richardson
- UMR Virologie 1161, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France;
| | - Sarah I. Bonnet
- UMR BIPAR 0956, INRAE, National Veterinary School of Alfort, ANSES, Paris-Est University, 94700 Maisons-Alfort, France; (C.A.); (L.Š.); (L.F.); (S.R.); (M.C.)
- Correspondence:
| |
Collapse
|
12
|
Mateos-Hernandéz L, Defaye B, Vancová M, Hajdusek O, Sima R, Park Y, Attoui H, Šimo L. Cholinergic axons regulate type I acini in salivary glands of Ixodes ricinus and Ixodes scapularis ticks. Sci Rep 2020; 10:16054. [PMID: 32994503 PMCID: PMC7524744 DOI: 10.1038/s41598-020-73077-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/10/2020] [Indexed: 12/03/2022] Open
Abstract
Regulatory factors controlling tick salivary glands (SGs) are direct upstream neural signaling pathways arising from the tick's central nervous system. Here we investigated the cholinergic signaling pathway in the SG of two hard tick species. We reconstructed the organization of the cholinergic gene locus, and then used in situ hybridization to localize mRNA encoding choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) in specific neural cells in the Ixodes synganglion. Immunohistochemical staining revealed that cholinergic axonal projections exclusively reached type I acini in the SG of both Ixodes species. In type I acini, the rich network of cholinergic axons terminate within the basolateral infoldings of the lamellate cells. We also characterized two types (A and B) of muscarinic acetylcholine receptors (mAChRs), which were expressed in Ixodes SG. We pharmacologically assessed mAChR-A to monitor intracellular calcium mobilization upon receptor activation. In vivo injection of vesamicol-a VAChT blocker-at the cholinergic synapse, suppressed forced water uptake by desiccated ticks, while injection of atropine, an mAChR-A antagonist, did not show any effect on water volume uptake. This study has uncovered a novel neurotransmitter signaling pathway in Ixodes SG, and suggests its role in water uptake by type I acini in desiccated ticks.
Collapse
Affiliation(s)
- Lourdes Mateos-Hernandéz
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Baptiste Defaye
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
- Faculté de Pharmacie, Université de Limoges, Limoges, France
- UMR SPE 6134 CNRS, Université de Corte Pascal Paoli, Corse, France
| | - Marie Vancová
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budejovice, Czech Republic
| | - Ondrej Hajdusek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice, Czech Republic
| | - Radek Sima
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice, Czech Republic
| | - Yoonseong Park
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS, USA
| | - Houssam Attoui
- UMR Virologie, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Ladislav Šimo
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France.
| |
Collapse
|
13
|
Williams EA. Function and Distribution of the Wamide Neuropeptide Superfamily in Metazoans. Front Endocrinol (Lausanne) 2020; 11:344. [PMID: 32547494 PMCID: PMC7270403 DOI: 10.3389/fendo.2020.00344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/01/2020] [Indexed: 01/19/2023] Open
Abstract
The Wamide neuropeptide superfamily is of interest due to its distinctive functions in regulating life cycle transitions, metamorphic hormone signaling, and several aspects of digestive system function, from gut muscle contraction to satiety and fat storage. Due to variation among researchers in naming conventions, a global view of Wamide signaling in animals in terms of conservation or diversification of function is currently lacking. Here, I summarize the phylogenetic distribution of Wamide neuropeptides based on current data and describe recent findings in the areas of Wamide receptors and biological functions. Common trends that emerge across Cnidarians and protostomes are the presence of multiple Wamide receptors within a single organism, and the fact that Wamide signaling likely functions across an extensive variety of biological systems, including visual, circadian, and reproductive systems. Important areas of focus for future research are the further identification of Wamide-receptor pairs, confirmation of the phylogenetic distribution of Wamides through largescale sequencing and mass spectrometry, and assignment of different functions to specific subsets of Wamide-expressing neurons. More extensive study of Wamide signaling throughout larval development in a greater number of phyla is also important in order to understand the role of Wamides in hormonal regulation. Defining the evolution and function of neuropeptide signaling in animal nervous systems will benefit from an increased understanding of Wamide function and signaling mechanisms in a wider variety of organisms, beyond the traditional model systems.
Collapse
|
14
|
Ayub M, Hermiz M, Lange AB, Orchard I. SIFamide Influences Feeding in the Chagas Disease Vector, Rhodnius prolixus. Front Neurosci 2020; 14:134. [PMID: 32153356 PMCID: PMC7047498 DOI: 10.3389/fnins.2020.00134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/03/2020] [Indexed: 11/13/2022] Open
Abstract
SIFamides are a family of highly conserved neuropeptides in arthropods, and in insects are mainly expressed in four medial neurons in the pars intercerebralis of the brain. Although SIFamide has been shown to influence sexual behavior, feeding, and sleep regulation in holometabolous insects such as Drosophila melanogaster, little is known about its role in hemimetabolous insects, including the blood-sucking bug, Rhodnius prolixus. In this study, we confirm the nucleotide sequence for R. prolixus SIFamide (Rhopr-SIFa) and find characteristic phenotypic expression of SIFamide in four cells of the pars intercerebralis in the brain. In addition to extensive SIFa projections throughout the entire central nervous system, SIFamidergic processes also enter into the corpus cardiacum, and project along the dorsal vessel, suggestive of Rhopr-SIFa acting as a neurohormone. Physiologically, Rhopr-SIFamide induces dose-dependent increases in heartbeat frequency in vitro suggesting the presence of peripheral receptors, and thereby indicating Rhopr-SIFa is released to act upon peripheral targets. We also explore the function of Rhopr-SIFa in R. prolixus, specifically in relation to feeding, since R. prolixus is a blood-gorging insect and a vector for Chagas disease. The intensity of SIFamide-like staining in the neurons in the brain is diminished 2 h following feeding, and restocking of those cells is finished 24 h later, indicating Rhopr-SIFa may be released at feeding. The results of temporal qPCR analysis were consistent with the immunohistochemical findings, showing an increase in Rhopr-SIFa transcript expression in the brain 2 h after feeding. We also observed enhanced feeding (size of meal) in insects injected with Rhopr-SIFa whereas insects with RNAi-mediated knockdown of the Rhopr-SIFa transcript consumed a significantly smaller blood meal relative to controls. These data suggest that the four SIFamidergic neurons and associated arborizations may play an important function in the neuronal circuitry controlling R. prolixus feeding, with Rhopr-SIFa acting as a central and peripheral neuromodulator/neurohormone.
Collapse
Affiliation(s)
- Mahnoor Ayub
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Mariam Hermiz
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
15
|
Kim D, Šimo L, Vancová M, Urban J, Park Y. Neural and endocrine regulation of osmoregulatory organs in tick: Recent discoveries and implications. Gen Comp Endocrinol 2019; 278:42-49. [PMID: 30077796 DOI: 10.1016/j.ygcen.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 08/01/2018] [Indexed: 11/17/2022]
Abstract
Ticks can survive in harsh and fluctuating vegetated environments for long durations between blood feedings with highly developed osmoregulatory mechanisms. Like the unique life history of hematophagous ticks, osmoregulatory organs and their regulatory mechanisms are significantly different from those in the closely related insect taxa. Over the last ten years, research has uncovered several neuropeptidergic innervations of the primary osmoregulatory organ, the salivary glands: myoinhibitory peptide (MIP), SIFamide, and elevenin. These neuropeptides are thought to be modulators of dopamine's autocrine or paracrine actions controlling the salivary glands, including the activation of fluid transport into the lumen of salivary acini and the pumping and gating action of salivary acini for expelling fluids out into salivary ducts. These actions are through two different dopamine receptors, D1 receptor and invertebrate D1-like dopamine receptor, respectively. Interestingly, MIP and SIFamide are also involved in the control of another important excretory/osmoregulatory organ, the hindgut, where SIFamide is myostimulatory, with MIP having antagonistic effects. FGLamide related allatostatin is also found to have axonal projections located on the surface of the rectum. Investigations of the osmoregulatory mechanisms of these critical vector species will potentially lead to the development of a measure to control tick species.
Collapse
Affiliation(s)
- Donghun Kim
- Kansas State University, Department of Entomology, Kansas State University, Manhattan, KS 66504, USA
| | - Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Marie Vancová
- Laboratory of EM, Institute of Parasitology, Biology Centre of the ASCR, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Joshua Urban
- Kansas State University, Department of Entomology, Kansas State University, Manhattan, KS 66504, USA
| | - Yoonseong Park
- Kansas State University, Department of Entomology, Kansas State University, Manhattan, KS 66504, USA.
| |
Collapse
|
16
|
Vancová M, Bílý T, Nebesářová J, Grubhoffer L, Bonnet S, Park Y, Šimo L. Ultrastructural mapping of salivary gland innervation in the tick Ixodes ricinus. Sci Rep 2019; 9:6860. [PMID: 31048723 PMCID: PMC6497691 DOI: 10.1038/s41598-019-43284-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/18/2019] [Indexed: 11/21/2022] Open
Abstract
The salivary gland of hard ticks is a highly innervated tissue where multiple intertwined axonal projections enter each individual acini. In the present study, we investigated the ultrastructural architecture of axonal projections within granular salivary gland type II and III acini of Ixodes ricinus female. Using immunogold labeling, we specifically examined the associations of SIFamide neuropeptide, SIFamide receptor (SIFa_R), neuropeptide pigment dispersing factor (PDF), and the invertebrate-specific D1-like dopamine receptor (InvD1L), with acinar cells. In both acini types, SIFamide-positive axons were found to be in direct contact with either basal epithelial cells or a single adlumenal myoepithelial cell in close proximity to the either the acinar duct or its valve, respectively. Accordingly, SIFa_R staining correlated with SIFamide-positive axons in both basal epithelial and myoepithelial cells. Immunoreactivity for both InvD1L and PDF (type II acini exclusively) revealed positive axons radiating along the acinar lumen. These axons were primarily enclosed by the adlumenal myoepithelial cell plasma membrane and interstitial projections of ablumenal epithelial cells. Our study has revealed the detailed ultrastructure of I. ricinus salivary glands, and provides a solid baseline for a comprehensive understanding of the cell-axon interactions and their functions in this essential tick organ.
Collapse
Affiliation(s)
- Marie Vancová
- Laboratory of EM, Institute of Parasitology, Biology Centre of CAS, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Tomáš Bílý
- Laboratory of EM, Institute of Parasitology, Biology Centre of CAS, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jana Nebesářová
- Laboratory of EM, Institute of Parasitology, Biology Centre of CAS, České Budějovice, Czech Republic
- Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Libor Grubhoffer
- Laboratory of EM, Institute of Parasitology, Biology Centre of CAS, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Sarah Bonnet
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Yoonseong Park
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA
| | - Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France.
| |
Collapse
|
17
|
Kim D, Šimo L, Park Y. Molecular characterization of neuropeptide elevenin and two elevenin receptors, IsElevR1 and IsElevR2, from the blacklegged tick, Ixodes scapularis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:66-75. [PMID: 30075240 DOI: 10.1016/j.ibmb.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/23/2018] [Accepted: 07/29/2018] [Indexed: 05/26/2023]
Abstract
Understanding salivation in hematophagous arthropod vectors is crucial to developing novel methods to prevent vector-borne disease transmission. The interactions between the tick, host, and pathogens during salivation are highly complex, and are dynamically regulated by the tick central nervous system (synganglion). Recently, tick salivary modulation via neuropeptides was highlighted by mapping neuropeptidergic cells in the synganglion and salivary glands in hard ticks. In this study, we characterized the role of a novel neuropeptide, elevenin (IsElev), and its receptors (IsElevR1 and IsElevR2) in the innervation of the salivary glands from Ixodes scapularis female ticks. Homology-based BLAST searches of the I. scapularis genome and Sequence Read Archive (SRA), followed by gene cloning, identified candidate genes: IsElev, IsElevR1, and IsElevR2. The IsElev candidate contained common elevenin features: a signal peptide immediately before an elevenin precursor and two cysteines. During functional assays, synthetic IsElev efficiently activated both IsElevR1 and IsElevR2, as indicated by elevated calcium mobilization. IsElevR1 (EC50: 0.01 nM) was about 560 times more sensitive to synthetic IsElev than IsElevR2 (EC50: 5.59 nM). Immunoreactivity (IR) for IsElev and IsElevR1 was detected as a complex neuronal projection and several neurons in the synganglion. In salivary glands, IsElev-IR was detected in an axonal projection on the surface of the main salivary duct and in axon terminals within type II/III salivary gland acini, which are colocalized with SIFamide-IR. IsElevR1-IR was detected on the luminal surface of both type II/III acini. IsElev transcript levels were high in the synganglion and reached a peak at day 5 post-blood feeding. Salivary glands expressed IsElevR1, which gradually increased over the course of blood feeding until repletion. Here, we propose that IsElev and IsElevR1, localized in salivary gland acini types II/III, are likely involved in tick salivary secretion in the rapid engorgement phase of tick feeding. In addition, we also provide the evidences for IsElev action on the ovary by showing IsElevR1-IR and IsElevR2-IR on the surface of ovary.
Collapse
Affiliation(s)
- Donghun Kim
- Kansas State University, 123 Waters Hall, Manhattan, KS66504, USA
| | - Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Yoonseong Park
- Kansas State University, 123 Waters Hall, Manhattan, KS66504, USA.
| |
Collapse
|
18
|
Kim D, Jaworski DC, Cheng C, Nair AD, Ganta RR, Herndon N, Brown S, Park Y. The transcriptome of the lone star tick, Amblyomma americanum, reveals molecular changes in response to infection with the pathogen, Ehrlichia chaffeensis. JOURNAL OF ASIA-PACIFIC ENTOMOLOGY 2018; 21:852-863. [PMID: 34316264 PMCID: PMC8312692 DOI: 10.1016/j.aspen.2018.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The lone star tick, Amblyomma americanum, is an obligatory ectoparasite of many vertebrates and the primary vector of Ehrlichia chaffeensis, the causative agent of human monocytic ehrlichiosis. This study aimed to investigate the comparative transcriptomes of A. americanum underlying the processes of pathogen acquisition and of immunity towards the pathogen. Differential expression of the whole body transcripts in six different treatments were compared: females and males that were E. chaffeensis non-exposed, E. chaffeensis-exposed/uninfected, and E. chaffeensis-exposed/infected. The Trinity assembly pipeline produced 140,574 transcripts from trimmed and filtered total raw sequence reads (approximately 117M reads). The gold transcript set of the transcriptome data was established to minimize noise by retaining only transcripts homologous to official peptide sets of Ixodes scapularis and A. americanum ESTs and transcripts covered with high enough frequency from the raw data. Comparison of the gene ontology term enrichment analyses for the six groups tested here revealed an up-regulation of genes for defense responses against the pathogen and for the supply of intracellular Ca++ for pathogen proliferation in the pathogen-exposed ticks. Analyses of differential expression, focused on functional subcategories including immune, sialome, neuropeptides, and G protein-coupled receptor, revealed that E. chaffeensis-exposed ticks exhibited an upregulation of transcripts involved in the immune deficiency (IMD) pathway, antimicrobial peptides, Kunitz, an insulin-like peptide, and bursicon receptor over unexposed ones, while transcripts for metalloprotease were down-regulated in general. This study found that ticks exhibit enhanced expression of genes responsible for defense against E. chaffeensis.
Collapse
Affiliation(s)
- Donghun Kim
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Deborah C. Jaworski
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Chuanmin Cheng
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Arathy D.S. Nair
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Nic Herndon
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Susan Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
19
|
Martelli C, Pech U, Kobbenbring S, Pauls D, Bahl B, Sommer MV, Pooryasin A, Barth J, Arias CWP, Vassiliou C, Luna AJF, Poppinga H, Richter FG, Wegener C, Fiala A, Riemensperger T. SIFamide Translates Hunger Signals into Appetitive and Feeding Behavior in Drosophila. Cell Rep 2018; 20:464-478. [PMID: 28700946 DOI: 10.1016/j.celrep.2017.06.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/08/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022] Open
Abstract
Animal behavior is, on the one hand, controlled by neuronal circuits that integrate external sensory stimuli and induce appropriate motor responses. On the other hand, stimulus-evoked or internally generated behavior can be influenced by motivational conditions, e.g., the metabolic state. Motivational states are determined by physiological parameters whose homeostatic imbalances are signaled to and processed within the brain, often mediated by modulatory peptides. Here, we investigate the regulation of appetitive and feeding behavior in the fruit fly, Drosophila melanogaster. We report that four neurons in the fly brain that release SIFamide are integral elements of a complex neuropeptide network that regulates feeding. We show that SIFamidergic cells integrate feeding stimulating (orexigenic) and feeding suppressant (anorexigenic) signals to appropriately sensitize sensory circuits, promote appetitive behavior, and enhance food intake. Our study advances the cellular dissection of evolutionarily conserved signaling pathways that convert peripheral metabolic signals into feeding-related behavior.
Collapse
Affiliation(s)
- Carlotta Martelli
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Ulrike Pech
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Simon Kobbenbring
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Dennis Pauls
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Britta Bahl
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Mirjam Vanessa Sommer
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Atefeh Pooryasin
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Jonas Barth
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Carmina Warth Perez Arias
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Chrystalleni Vassiliou
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Abud Jose Farca Luna
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Haiko Poppinga
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Florian Gerhard Richter
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - André Fiala
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany
| | - Thomas Riemensperger
- Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen, Germany.
| |
Collapse
|
20
|
Lismont E, Mortelmans N, Verlinden H, Vanden Broeck J. Molecular cloning and characterization of the SIFamide precursor and receptor in a hymenopteran insect, Bombus terrestris. Gen Comp Endocrinol 2018; 258:39-52. [PMID: 29127004 DOI: 10.1016/j.ygcen.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/10/2017] [Accepted: 10/21/2017] [Indexed: 01/09/2023]
Abstract
SIFamides (SIFa) are a family of neuropeptides that are highly conserved among arthropods. In insects, this peptide is mainly expressed in four medial interneurons in the pars intercerebralis and affects sexual behavior, sleep regulation and pupal mortality. Furthermore, an influence on the hatching rate has been observed. The first SIFa receptor (SIFR) was pharmacologically characterized in Drosophila melanogaster and is homologous to the vertebrate gonadotropin-inhibitory hormone (GnIH) receptor (NPFFR). In this study, we pharmacologically characterized the SIFR of the buff-tailed bumblebee Bombus terrestris. We demonstrated an intracellular increase in calcium ions and cyclic AMP (cAMP) upon ligand binding with an EC50 value in the picomolar and nanomolar range, respectively. In addition, we studied the agonistic properties of a range of related and modified peptides. By means of quantitative real time PCR (qPCR), we examined the relative transcript levels of Bomte-SIFa and Bomte-SIFR in a variety of tissues.
Collapse
Affiliation(s)
- Els Lismont
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Nele Mortelmans
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
21
|
Kim D, Maldonado-Ruiz P, Zurek L, Park Y. Water absorption through salivary gland type I acini in the blacklegged tick, Ixodes scapularis. PeerJ 2017; 5:e3984. [PMID: 29104829 PMCID: PMC5669254 DOI: 10.7717/peerj.3984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/12/2017] [Indexed: 11/29/2022] Open
Abstract
Tick salivary glands play critical roles in maintaining water balance for survival, as they eliminate excess water and ions during blood feeding on hosts. In the long duration of fasting in the off-host period, ticks secrete hygroscopic saliva into the mouth cavity to uptake atmospheric water vapor. Type I acini of tick salivary glands are speculated to be involved in secretion of hygroscopic saliva based on ultrastructure studies. However, we recently proposed that type I acini play a role in resorption of water/ions from the primary saliva produced by other salivary acini (i.e., types II and III) during the tick blood feeding phase. In this study, we tested the function of type I acini in unfed female Ixodes scapularis. The route of ingested water was tracked after forced feeding of water with fluorescent dye rhodamine123. We found that type-I acini of the salivary glands, but not type II and III, are responsible for water uptake. In addition, the ingestion of water through the midgut was also observed. Injection or feeding of ouabain, a Na/K-ATPase inhibitor, suppressed water absorption in type I acini. When I. scapularis was offered a droplet of water, ticks rarely imbibed water directly (5%), while some approached the water droplet to use the high humidity formed in the vicinity of the droplet (23%). We conclude that during both on- and off-host stages, type I acini in salivary glands of female Ixodes scapularis absorb water and ions.
Collapse
Affiliation(s)
- Donghun Kim
- Department of Entomology, Kansas State University, Manhattan, KS, United States of America
| | - Paulina Maldonado-Ruiz
- Department of Entomology, Kansas State University, Manhattan, KS, United States of America
| | - Ludek Zurek
- Department of Entomology, Kansas State University, Manhattan, KS, United States of America
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
22
|
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:281. [PMID: 28690983 PMCID: PMC5479950 DOI: 10.3389/fcimb.2017.00281] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
As long-term pool feeders, ticks have developed myriad strategies to remain discreetly but solidly attached to their hosts for the duration of their blood meal. The critical biological material that dampens host defenses and facilitates the flow of blood-thus assuring adequate feeding-is tick saliva. Saliva exhibits cytolytic, vasodilator, anticoagulant, anti-inflammatory, and immunosuppressive activity. This essential fluid is secreted by the salivary glands, which also mediate several other biological functions, including secretion of cement and hygroscopic components, as well as the watery component of blood as regards hard ticks. When salivary glands are invaded by tick-borne pathogens, pathogens may be transmitted via saliva, which is injected alternately with blood uptake during the tick bite. Both salivary glands and saliva thus play a key role in transmission of pathogenic microorganisms to vertebrate hosts. During their long co-evolution with ticks and vertebrate hosts, microorganisms have indeed developed various strategies to exploit tick salivary molecules to ensure both acquisition by ticks and transmission, local infection and systemic dissemination within the vertebrate host.
Collapse
Affiliation(s)
- Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Jennifer Richardson
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Sarah I. Bonnet
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| |
Collapse
|
23
|
Gondalia K, Qudrat A, Bruno B, Fleites Medina J, Paluzzi JPV. Identification and functional characterization of a pyrokinin neuropeptide receptor in the Lyme disease vector, Ixodes scapularis. Peptides 2016; 86:42-54. [PMID: 27667704 DOI: 10.1016/j.peptides.2016.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 10/21/2022]
Abstract
Pyrokinin-related peptides are pleiotropic factors that are defined by their conserved C-terminal sequence FXPRL-NH2. The pyrokinin nomenclature derives from their originally identified myotropic actions and, as seen in some family members, a blocked amino terminus with pyroglutamate. The black-legged tick, Ixodes scapularis, is well known as a vector of Lyme disease and various other illnesses; however, in comparison to blood-feeding insects, knowledge on its physiology (along with other Ixodid ticks) is rather limited. In this study, we have isolated, examined the expression profile, and functionally deorphanized the pyrokinin peptide receptor in the medically important tick, I. scapularis. Phylogenetic analysis supports that the cloned receptor is indeed a bona fide member of the pyrokinin-related peptide receptor family. The tick pyrokinin receptor transcript expression is most abundant in the central nervous system (i.e. synganglion), but is also detected in trachea, female reproductive tissues, and in a pooled sample comprised of Malpighian (renal) tubules and the hindgut. Finally, functional characterization of the identified receptor confirmed it as a pyrokinin peptide receptor as it was activated equally by four endogenous pyrokinin-related peptides. The receptor was slightly promiscuous as it was also activated by a peptide sharing some structural similarity, namely the CAPA-periviserokinin (CAPA-PVK) peptide. Nonetheless, the I. scapularis pyrokinin receptor required a CAPA-PVK peptide concentration of well over three orders of magnitude to achieve a comparable receptor activation response, which indicates it is quite selective for its native pyrokinin peptide ligands. This study sets the stage for future research to examine the prospective tissue targets identified in order to resolve the physiological roles of this family of peptides in Ixodid ticks.
Collapse
Affiliation(s)
- Kinsi Gondalia
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Anam Qudrat
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Brigida Bruno
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Janet Fleites Medina
- Vivarium Facility, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
24
|
Mans BJ, de Castro MH, Pienaar R, de Klerk D, Gaven P, Genu S, Latif AA. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis 2016; 7:509-35. [DOI: 10.1016/j.ttbdis.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 01/15/2023]
|
25
|
Egekwu N, Sonenshine DE, Garman H, Barshis DJ, Cox N, Bissinger BW, Zhu J, M Roe R. Comparison of synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors and their gene expression in response to feeding in Ixodes scapularis (Ixodidae) vs. Ornithodoros turicata (Argasidae). INSECT MOLECULAR BIOLOGY 2016; 25:72-92. [PMID: 26783017 DOI: 10.1111/imb.12202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Illumina GAII high-throughput sequencing was used to compare expressed genes for female synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors of the soft tick Ornithodoros turicata with the hard tick Ixodes scapularis. Gene ontology molecular level three mapping revealed no significant differences amongst the same categories represented in O. turicata and I. scapularis. Transcripts predicting 22 neuropeptides or their receptors in the O. turicata synganglion were similar to annotations for 23 neuropeptides or receptors previously identified from I scapularis, with minor exceptions. A transcript predicting ecdysis triggering hormone receptor was identified in O. turicata; transcripts encoding for proprotein convertase and glycoprotein B were identified in both species. Transcripts predicting the same neurotransmitter receptors were found in the synganglion of both species. Gene expression of the transcripts showed numerous differences in response to feeding. Major differences were observed in expression of genes believed important in regulating slow vs. rapid feeding, blood water elimination, cuticle synthesis plasticity and in signalling reproductive activity. Although the glutamate receptor was strongly upregulated in both species, the gamma aminobutyric acid receptor, which inhibits glutamate, was upregulated significantly only in I. scapularis. These differences are consistent with the slow vs. rapid action of the pharyngeal pump in the two species.
Collapse
Affiliation(s)
- N Egekwu
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - D E Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - H Garman
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - D J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - N Cox
- Eastern Virginia Medical School, Norfolk, VA, USA
| | - B W Bissinger
- Tyra Tech, R&D, Repellents & Animal Health, Morrisville, NC, USA
| | - J Zhu
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
| | - R M Roe
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
26
|
Arendt A, Neupert S, Schendzielorz J, Predel R, Stengl M. The neuropeptide SIFamide in the brain of three cockroach species. J Comp Neurol 2015; 524:1337-60. [DOI: 10.1002/cne.23910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Andreas Arendt
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| | - Susanne Neupert
- Department of Biology; Institute of Zoology, University of Cologne; 50674 Cologne Germany
| | - Julia Schendzielorz
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| | - Reinhard Predel
- Department of Biology; Institute of Zoology, University of Cologne; 50674 Cologne Germany
| | - Monika Stengl
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| |
Collapse
|
27
|
Verlinden H, Gijbels M, Lismont E, Lenaerts C, Vanden Broeck J, Marchal E. The pleiotropic allatoregulatory neuropeptides and their receptors: A mini-review. JOURNAL OF INSECT PHYSIOLOGY 2015; 80:2-14. [PMID: 25982521 DOI: 10.1016/j.jinsphys.2015.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Juvenile hormones (JH) are highly pleiotropic insect hormones essential for post-embryonic development. The circulating JH titer in the hemolymph of insects is influenced by enzymatic degradation, binding to JH carrier proteins, uptake and storage in target organs, but evidently also by rates of production at its site of synthesis, the corpora allata (CA). The multiple processes in which JH is involved alongside the critical significance of JH in insect development emphasize the importance for elucidating the control of JH production. Production of JH in CA cells is regulated by different factors: by neurotransmitters, such as dopamine and glutamate, but also by allatoregulatory neuropeptides originating from the brain and axonally transported to the CA where they bind to their G protein-coupled receptors (GPCRs). Different classes of allatoregulatory peptides exist which have other functions aside from acting as influencers of JH production. These pleiotropic neuropeptides regulate different processes in different insect orders. In this mini-review, we will give an overview of allatotropins and allatostatins, and their recently characterized GPCRs with a view to better understand their modes of action and different action sites.
Collapse
Affiliation(s)
- Heleen Verlinden
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Marijke Gijbels
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Els Lismont
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Cynthia Lenaerts
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Jozef Vanden Broeck
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Elisabeth Marchal
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
28
|
Gellerer A, Franke A, Neupert S, Predel R, Zhou X, Liu S, Reiher W, Wegener C, Homberg U. Identification and distribution of SIFamide in the nervous system of the desert locust Schistocerca gregaria. J Comp Neurol 2015; 523:108-25. [PMID: 25185792 DOI: 10.1002/cne.23671] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/18/2014] [Accepted: 08/29/2014] [Indexed: 11/06/2022]
Abstract
SIFamides are a family of highly conserved arthropod neuropeptides. To date, nine orthocopies from different arthropods, most of them insects, have been identified, all consisting of 11-12 amino acid residues. The striking conservation in sequence is mirrored by highly similar morphologies of SIFamide-immunoreactive neurons: immunolabeling in various insect species revealed four immunopositive neurons with somata in the pars intercerebralis and arborizations extending throughout the brain and ventral nervous system. In contrast, the functional role of these neurons and their neuropeptide SIFamide is largely obscure. To provide an additional basis for functional analysis, we identified, by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry, a SIFamide peptide in the desert locust Schistocerca gregaria and studied its distribution throughout the nervous system. Identification was supported by analysis of transcriptomic data obtained from another grasshopper, Stenobothrus lineatus. Scg-SIFamide, unlike all SIFamides identified so far, is a pentadecapeptide with an extended and highly modified N-terminus (AAATFRRPPFNGSIFamide). As in other insects, pairs of descending neurons with somata in the pars intercerebralis and ramifications in most areas of the nervous system are SIFamide-immunoreactive. In addition, a small number of local interneurons in the brain and ventral ganglia were immunostained. Double-label experiments showed that the SIFamide-immunoreactive descending neurons are identical to previously characterized primary commissure pioneer (PNP) neurons of the locust brain that pioneer the first commissure in the brain. The data suggest that the descending SIFamide-immunoreactive neurons play a developmental role in organizing the insect central nervous system. J. Comp. Neurol. 523:108-125, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alina Gellerer
- Faculty of Biology, Animal Physiology, Philipps-University Marburg, 35032, Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ladislav R, Ladislav Š, Akira M, Mirko S, Yoonseong P, Dušan Ž. Orcokinin-like immunoreactivity in central neurons innervating the salivary glands and hindgut of ixodid ticks. Cell Tissue Res 2015; 360:209-22. [PMID: 25792509 DOI: 10.1007/s00441-015-2121-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/08/2015] [Indexed: 01/28/2023]
Abstract
Orcokinins are conserved neuropeptides within the Arthropoda but their cellular distribution and functions in ticks are unknown. We use an antibody against the highly conserved N-terminal (NFDEIDR) of mature orcokinin peptides to examine their distribution in six ixodid species: Amblyomma variegatum, Dermacentor reticulatus, Hyalomma anatolicum, Ixodes scapularis, Ixodes ricinus and Rhipicephalus appendiculatus. Numerous immunoreactive neurons (~100) were detected in various regions of the synganglion (central nervous system) in all examined tick species. Immunoreactive projections of two prominent groups of efferent neurons in the post-oesophageal region were examined in detail: (1) neurons innervating the salivary glands; (2) neurons innervating the hindgut. Using matrix-assisted laser desorption/ionisation-time-of-flight (MALDI-TOF), we detected orcokinin peaks in extracts of the synganglia and hindguts but not in the salivary glands of I. scapularis females. Our data provide further evidence of the presence of orcokinin in ixodid ticks and establish a morphological basis for functional studies of identified peptidergic neuronal networks.
Collapse
Affiliation(s)
- Roller Ladislav
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
30
|
Šimo L, Koči J, Kim D, Park Y. Invertebrate specific D1-like dopamine receptor in control of salivary glands in the black-legged tick Ixodes scapularis. J Comp Neurol 2015; 522:2038-52. [PMID: 24307522 DOI: 10.1002/cne.23515] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 11/12/2022]
Abstract
The control of tick salivary secretion, which plays a crucial role in compromising the host immune system, involves complex neural mechanisms. Dopamine is known to be the most potent activator of salivary secretion, as a paracrine/autocrine factor. We describe the invertebrate-specific D1-like dopamine receptor (InvD1L), which is highly expressed in tick salivary glands. The InvD1L phylogenic clade was found only in invertebrates, suggesting that this receptor was lost in vertebrates during evolution. InvD1L expressed in Chinese hamster ovary (CHO)-K1 cells was activated by dopamine with a median effective dose (EC50 ) of 1.34 μM. Immunohistochemistry using the antibody raised against InvD1L revealed two different types of immunoreactivities: basally located axon terminals that are colocalized with myoinhibitory peptide (MIP) and SIFamide neuropeptides, and longer axon-like processes that are positive only for the InvD1L antibody and extended to the apical parts of the acini. Both structures were closely associated with the myoepithelial cell, as visualized by beta-tubulin antibody, lining the acinar lumen in a web-like fashion. Subcellular localizations of InvD1L in the salivary gland suggest that InvD1L modulates the neuronal activities including MIP/SIFamide varicosities, and leads the contraction of myoepithelial cells and/or of the acinar valve to control the efflux of the luminal content. Combining the previously described D1 receptor with its putative function for activating an influx of fluid through the epithelial cells of acini, we propose that complex control of the tick salivary glands is mediated through two different dopamine receptors, D1 and InvD1L, for different downstream responses of the acinar cells.
Collapse
Affiliation(s)
- Ladislav Šimo
- Department of Entomology, Kansas State University, Manhattan, Kansas, 66506
| | | | | | | |
Collapse
|
31
|
Williams EA, Conzelmann M, Jékely G. Myoinhibitory peptide regulates feeding in the marine annelid Platynereis. Front Zool 2015; 12:1. [PMID: 25628752 PMCID: PMC4307165 DOI: 10.1186/s12983-014-0093-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
Background During larval settlement and metamorphosis, marine invertebrates undergo changes in habitat, morphology, behavior and physiology. This change between life-cycle stages is often associated with a change in diet or a transition between a non-feeding and a feeding form. How larvae regulate changes in feeding during this life-cycle transition is not well understood. Neuropeptides are known to regulate several aspects of feeding, such as food search, ingestion and digestion. The marine annelid Platynereis dumerilii has a complex life cycle with a pelagic non-feeding larval stage and a benthic feeding postlarval stage, linked by the process of settlement. The conserved neuropeptide myoinhibitory peptide (MIP) is a key regulator of larval settlement behavior in Platynereis. Whether MIP also regulates the initiation of feeding, another aspect of the pelagic-to-benthic transition in Platynereis, is currently unknown. Results Here, we explore the contribution of MIP to the regulation of feeding behavior in settled Platynereis postlarvae. We find that in addition to expression in the brain, MIP is expressed in the gut of developing larvae in sensory neurons that densely innervate the hindgut, the foregut, and the midgut. Activating MIP signaling by synthetic neuropeptide addition causes increased gut peristalsis and more frequent pharynx extensions leading to increased food intake. Conversely, morpholino-mediated knockdown of MIP expression inhibits feeding. In the long-term, treatment of Platynereis postlarvae with synthetic MIP increases growth rate and results in earlier cephalic metamorphosis. Conclusions Our results show that MIP activates ingestion and gut peristalsis in Platynereis postlarvae. MIP is expressed in enteroendocrine cells of the digestive system suggesting that following larval settlement, feeding may be initiated by a direct sensory-neurosecretory mechanism. This is similar to the mechanism by which MIP induces larval settlement. The pleiotropic roles of MIP may thus have evolved by redeploying the same signaling mechanism in different aspects of a life-cycle transition. Electronic supplementary material The online version of this article (doi:10.1186/s12983-014-0093-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth A Williams
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen, 72076 Germany
| | - Markus Conzelmann
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen, 72076 Germany
| | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen, 72076 Germany
| |
Collapse
|
32
|
Veenstra JA. The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. Front Physiol 2014; 5:454. [PMID: 25477824 PMCID: PMC4237046 DOI: 10.3389/fphys.2014.00454] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/03/2014] [Indexed: 12/29/2022] Open
Abstract
The genomes of the migratory locust Locusta migratoria and the termite Zootermopsis nevadensis were mined for the presence of genes encoding neuropeptides, neurohormones, and their G-protein coupled receptors (GPCRs). Both species have retained a larger number of neuropeptide and neuropeptide GPCRs than the better known holometabolous insect species, while other genes that in holometabolous species appear to have a single transcript produce two different precursors in the locust, the termite or both. Thus, the recently discovered CNMa neuropeptide gene has two transcripts predicted to produce two structurally different CNMa peptides in the termite, while the locust produces two different myosuppressin peptides in the same fashion. Both these species also have a calcitonin gene, which is different from the gene encoding the calcitonin-like insect diuretic hormone. This gene produces two types of calcitonins, calcitonins A and B. It is also present in Lepidoptera and Coleoptera and some Diptera, but absent from mosquitoes and Drosophila. However, in holometabolous insect species, only the B transcript is produced. Their putative receptors were also identified. In contrast, Locusta has a highly unusual gene that codes for a salivation stimulatory peptide. The Locusta genes for neuroparsin and vasopressin are particularly interesting. The neuroparsin gene produces five different transcripts, of which only one codes for the neurohormone identified from the corpora cardiaca. The other four transcripts code for neuroparsin-like proteins, which lack four amino acid residues, and that for that reason we called neoneuroparsins. The number of transcripts for the neoneuroparsins is about 200 times larger than the number of neuroparsin transcripts. The first exon and the putative promoter of the vasopressin genes, of which there are about seven copies in the genome, is very well-conserved, but the remainder of these genes is not. The relevance of these findings is discussed.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux Pessac, France
| |
Collapse
|
33
|
Kim D, Šimo L, Park Y. Orchestration of salivary secretion mediated by two different dopamine receptors in the blacklegged tick Ixodes scapularis. J Exp Biol 2014; 217:3656-63. [PMID: 25320269 PMCID: PMC4198381 DOI: 10.1242/jeb.109462] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/10/2014] [Indexed: 11/20/2022]
Abstract
Salivary secretion is crucial for successful tick feeding, and it is the mediator of pathogen transmission. Salivation functions to inhibit various components of the host immune system and remove excess water and ions during the ingestion of large blood meals. Control of salivary glands involves autocrine/paracrine dopamine, which is the most potent inducer of tick salivation. Previously, we reported the presence of two dopamine receptors in the salivary glands of the blacklegged tick (Ixodes scapularis): dopamine receptor (D1) and invertebrate specific D1-like dopamine receptor (InvD1L). Here, we investigated the different physiological roles of the dopamine receptors in tick salivary glands by using pharmacological tools that discriminate between the two distinct receptors. Heterologous expressions followed by reporter assays of the dopamine receptors identified receptor-specific antagonists and agonists. These pharmacological tools were further used to discriminate the physiological role of each receptor by using in vitro assays: measuring salivary secretions of isolated salivary glands and monitoring dynamic changes in the size of individual salivary gland acini. We propose that the D1 receptor acts on salivary gland acini epithelial cells for inward fluid transport. InvD1L controls (or modulates) each acinus for expelling saliva from the acini to the salivary ducts, presumably through the actions of myoepithelial cells and valves for pumping/gating. We conclude that dopamine acts on the D1 and the InvD1L receptors and leads different physiological actions to orchestrate tick salivary secretion.
Collapse
Affiliation(s)
- Donghun Kim
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA
| | - Ladislav Šimo
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA
| | - Yoonseong Park
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA
| |
Collapse
|
34
|
Simo L, Park Y. Neuropeptidergic control of the hindgut in the black-legged tick Ixodes scapularis. Int J Parasitol 2014; 44:819-26. [PMID: 25058510 DOI: 10.1016/j.ijpara.2014.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/27/2022]
Abstract
The hindgut, as a part of the tick excretory system, plays an important physiological role in maintaining homoeostases and waste elimination. Immunoreactive projections from the synganglion to the hindgut were found using antibodies against four different neuropeptides: FGLamide related allatostatin, myoinhibitory peptide, SIFamide, and orcokinin. The presence of FGLamide related allatostatin, myoinhibitory peptide and SIFamide in both synganglia (source) and hindgut (target organ) extracts was confirmed by MALDI-TOF. Tissue-specific PCR revealed the expression of four putative FGLamide related allatostatin receptors and an SIFamide receptor in the hindgut. An antibody against Ixodes scapularis SIFamide receptor detected immunoreactive spots in epithelial cells as well as the visceral muscles surrounding the rectal sac, while staining with the antibody against myoinhibitory peptide receptor 1 revealed that the immunoreactivity was only associated with the visceral muscles. In hindgut motility assays, SIFamide activated hindgut motility in a dose-dependent manner. None of other three neuropeptides (FGLamide related allatostatin, myoinhibitory peptide and orcokinin) activated hindgut motility when tested alone. Myoinhibitory peptide antagonised the SIFamide-stimulated hindgut mobility when it was tested in combination with SIFamide.
Collapse
Affiliation(s)
- Ladislav Simo
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA.
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA.
| |
Collapse
|
35
|
Hull JJ, Brent CS. Identification and characterization of a sex peptide receptor-like transcript from the western tarnished plant bug Lygus hesperus. INSECT MOLECULAR BIOLOGY 2014; 23:301-319. [PMID: 24467643 DOI: 10.1111/imb.12082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lygus hesperus females exhibit a post-mating behavioural switch that triggers increased egg laying and decreased sexual interest. In Drosophila melanogaster, these changes are controlled by sex peptide (SP) and the sex peptide receptor (DmSPR). In Helicoverpa armigera, SPR (HaSPR) also regulates some post-mating behaviour; however, myoinhibiting peptides (MIPs) have been identified as the SPR ancestral ligand, indicating that SPR is a pleiotropic receptor. In the present study, we identified a transcript, designated L. hesperus SPR (LhSPR), that is homologous to known SPRs and which is expressed throughout development and in most adult tissues. LhSPR was most abundant in female seminal depositories and heads as well as the hindgut/midgut of both sexes. In vitro analyses revealed that fluorescent chimeras of LhSPR, DmSPR and HaSPR localized to the cell surface of cultured insect cells, but only DmSPR and HaSPR bound carboxytetramethylrhodamine-labelled analogues of DmSP21-36 and DmMIP4. Injected DmSP21-36 also failed to have an effect on L. hesperus mating receptivity. Potential divergence in the LhSPR binding pocket may be linked to receptor-ligand co-evolution as 9 of 13 MIPs encoded by a putative L. hesperus MIP precursor exhibit an atypical W-X7 -Wamide motif vs the W-X6 -Wamide and W-X8 -Wamide motifs of Drosophila MIPs and SP.
Collapse
Affiliation(s)
- J J Hull
- USDA-ARS Arid Land Agricultural Center, Maricopa, AZ, USA
| | | |
Collapse
|
36
|
Koči J, Simo L, Park Y. Autocrine/paracrine dopamine in the salivary glands of the blacklegged tick Ixodes scapularis. JOURNAL OF INSECT PHYSIOLOGY 2014; 62:39-45. [PMID: 24503219 PMCID: PMC4006075 DOI: 10.1016/j.jinsphys.2014.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 05/08/2023]
Abstract
Dopamine (DA) is known to be the most potent activator of tick salivary secretion, which is an essential component of successful tick feeding. We examined the quantitative changes of catecholamines using a method coupling high-pressure liquid chromatography with electrochemical detection (HPLC-ECD). We also investigated the levels of catecholamines conjugated to other molecules utilising appropriate methods to hydrolyse the conjugates. Three different biological samples, salivary glands, synganglia, ovaries and haemolymph were compared, and the largest quantity of DA was detected in salivary gland extracts (up to ∼100pg/tick), supporting the hypothesis that autocrine/paracrine dopamine activates salivary secretion. Quantitative changes of catecholamines in the salivary glands over the entire blood feeding duration were examined. The amount of dopamine in the salivary glands increased until the day 5 of feeding, at which the rapid engorgement phase began. We also detected a small but significant amount of norepinephrine in the salivary glands. Interestingly, saliva collected after induction of salivary secretion by the cholinergic agonist pilocarpine contained a large amount of DA sulphate with a trace amount of DA, suggesting a potential biological role of DA sulphate in tick saliva.
Collapse
Affiliation(s)
- Juraj Koči
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA.
| | - Ladislav Simo
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA.
| | - Yoonseong Park
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS 66506, USA.
| |
Collapse
|
37
|
Yang Y, Bajracharya P, Castillo P, Nachman RJ, Pietrantonio PV. Molecular and functional characterization of the first tick CAP2b (periviscerokinin) receptor from Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Gen Comp Endocrinol 2013; 194:142-51. [PMID: 24055303 DOI: 10.1016/j.ygcen.2013.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/24/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
The cDNA of the receptor for CAP(2b)/periviscerokinin (PVK) neuropeptides, designated Rhimi-CAP(2b)-R, was cloned from synganglia of tick Rhipicephalus (Boophilus) microplus. This receptor is the ortholog of the insect CAP(2b)/PVK receptor, as concluded from analyses of the predicted protein sequence, phylogenetics and functional expression. Expression analyses of synganglion, salivary gland, Malpighian tubule, and ovary revealed Rhimi-CAP(2b)-R transcripts. The expression in mammalian cells of the open reading frame of Rhimi-CAP(2b)-R cDNA fused with a hemagglutinin tag at the receptor N-terminus was confirmed by immunocytochemistry. In a calcium bioluminescence assay the recombinant receptor was activated by the tick Ixodes scapularis CAP(2b)/PVK and a PVK analog with EC₅₀s of 64 nM and 249 nM, respectively. Tick pyrokinins were not active. This is the first report on the functional characterization of the CAP(2b)/PVK receptor from any tick species which will now permit the discovery of the physiological roles of these neuropeptides in ticks, as neurohormones, neuromodulators and/or neurotransmitters.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
38
|
Adamson SW, Browning RE, Chao CC, Bateman RC, Ching WM, Karim S. Molecular characterization of tick salivary gland glutaminyl cyclase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:781-93. [PMID: 23770496 PMCID: PMC3740044 DOI: 10.1016/j.ibmb.2013.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 05/21/2013] [Accepted: 05/26/2013] [Indexed: 05/26/2023]
Abstract
Glutaminyl cyclase (QC) catalyzes the cyclization of N-terminal glutamine residues into pyroglutamate. This post-translational modification extends the half-life of peptides and, in some cases, is essential in binding to their cognate receptor. Due to its potential role in the post-translational modification of tick neuropeptides, we report the molecular, biochemical and physiological characterization of salivary gland QC during the prolonged blood feeding of the black-legged tick (Ixodes scapularis) and the gulf-coast tick (Amblyomma maculatum). QC sequences from I. scapularis and A. maculatum showed a high degree of amino acid identity to each other and other arthropods and residues critical for zinc binding/catalysis (D159, E202, and H330) or intermediate stabilization (E201, W207, D248, D305, F325, and W329) are conserved. Analysis of QC transcriptional gene expression kinetics depicts an upregulation during the bloodmeal of adult female ticks prior to fast-feeding phases in both I. scapularis and A. maculatum suggesting a functional link with bloodmeal uptake. QC enzymatic activity was detected in saliva and extracts of tick salivary glands and midguts. Recombinant QC was shown to be catalytically active. Furthermore, knockdown of QC transcript by RNA interference resulted in lower enzymatic activity, and small, unviable egg masses in both studied tick species as well as lower engorged tick weights for I. scapularis. These results suggest that the post-translational modification of neurotransmitters and other bioactive peptides by QC is critical to oviposition and potentially other physiological processes. Moreover, these data suggest that tick-specific QC-modified neurotransmitters/hormones or other relevant parts of this system could potentially be used as novel physiological targets for tick control.
Collapse
Affiliation(s)
- Steven W. Adamson
- Department of Biological Sciences, the University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS 39406, USA
| | - Rebecca E. Browning
- Department of Biological Sciences, the University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS 39406, USA
| | - Chien-Chung Chao
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20892
| | - Robert C. Bateman
- College of Osteopathic Medicine, William Carey University, 498 Tuscan Avenue, Hattiesburg, MS 39401, USA
| | - Wei-Mei Ching
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD 20892
| | - Shahid Karim
- Department of Biological Sciences, the University of Southern Mississippi, 118 College Drive # 5018, Hattiesburg, MS 39406, USA
| |
Collapse
|
39
|
Vandersmissen HP, Nachman RJ, Vanden Broeck J. Sex peptides and MIPs can activate the same G protein-coupled receptor. Gen Comp Endocrinol 2013; 188:137-43. [PMID: 23453963 DOI: 10.1016/j.ygcen.2013.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/27/2013] [Accepted: 02/10/2013] [Indexed: 11/30/2022]
Abstract
In many animal species, copulation elicits a number of physiological and behavioral changes in the female partner. In Drosophila melanogaster, the main molecular effector of these physiological responses has been identified as sex peptide (SP). The sex peptide receptor (SPR) has been characterized and recently, its activation by Drosophila myoinhibiting peptides (MIPs)-in addition to SP-has been demonstrated. The myoinhibiting peptides are members of a conserved peptide family, also known as B-type allatostatins, which generally feature the C-terminal motif -WX6Wamide.
Collapse
|
40
|
Simo L, Koči J, Park Y. Receptors for the neuropeptides, myoinhibitory peptide and SIFamide, in control of the salivary glands of the blacklegged tick Ixodes scapularis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:376-87. [PMID: 23357681 PMCID: PMC3602366 DOI: 10.1016/j.ibmb.2013.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/03/2013] [Accepted: 01/10/2013] [Indexed: 05/08/2023]
Abstract
Tick salivary glands are important organs that enable the hematophagous feeding of the tick. We previously described the innervation of the salivary gland acini types II and III by a pair of protocerebral salivary gland neurons that produce both myoinhibitory peptide (MIP) and SIFamide (Šimo et al., 2009b). In this study we identified authentic receptors expressed in the salivary glands for these neuropeptides. Homology-based searches for these receptors in the Ixodes scapularis genome sequence were followed by gene cloning and functional expression of the receptors. Both receptors were activated by low nanomolar concentrations of their respective ligands. The temporal expression patterns of the two ligands and their respective receptors suggest that the SIFamide signaling system pre-exists in unfed salivary glands, while the MIP system is activated upon initiation of feeding. Immunoreactivity for the SIFamide receptor in the salivary gland was detected in acini types II and III, surrounding the acinar valve and extending to the basal region of the acinar lumen. The location of the SIFamide receptor in the salivary glands suggests three potential target cell types and their probable functions: myoepithelial cell that may function in the contraction of the acini and/or the control of the valve; large, basally located dopaminergic granular cells for regulation of paracrine dopamine; and neck cells that may be involved in the control of the acinar duct and its valve.
Collapse
Affiliation(s)
- Ladislav Simo
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA
| | | | | |
Collapse
|
41
|
Lange AB, Alim U, Vandersmissen HP, Mizoguchi A, Vanden Broeck J, Orchard I. The distribution and physiological effects of the myoinhibiting peptides in the kissing bug, rhodnius prolixus. Front Neurosci 2012; 6:98. [PMID: 22783161 PMCID: PMC3390896 DOI: 10.3389/fnins.2012.00098] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/13/2012] [Indexed: 11/13/2022] Open
Abstract
The myoinhibiting peptides (MIPs), also designated as allatostatin-Bs or prothoracicostatic peptides in some insects, are neuropeptides that are characterized by two tryptophan (W) residues at the C-terminal, denoted as the W(X6)Wamide motif. They are believed to be the ancestral ligands for the Drosophila sex peptide (SP) receptor. Physiological functions of MIPs include the inhibition of contraction of insect visceral muscles, in addition to allatostatic and prothoracicostatic activities. The MIP precursor in Rhodnius prolixus encodes MIPs that have an unusual W(X7)Wamide motif. In the present study, MIP-like immunoreactivity was detected within neurons in the central nervous system and within the innervation to the salivary glands, hindgut, and female and male reproductive systems of adult R. prolixus. The effects of peptides with the unusual W(X7)Wamide motif (Rhopr-MIP-4) and with the typical W(X6)Wamide motif (Rhopr-MIP-7) were tested for physiological activity on R. prolixus hindgut contractions. Both peptides reduce the frequency and amplitude of hindgut contractions in a dose-dependent manner. In addition, both peptides activate the Drosophila SP receptor. The MIP/SP receptors are therefore activated by peptides with the unusual W(X7)Wamide motif.
Collapse
Affiliation(s)
- Angela B Lange
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Veenstra JA, Rombauts S, Grbić M. In silico cloning of genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors in a spider mite. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:277-95. [PMID: 22214827 DOI: 10.1016/j.ibmb.2011.12.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/17/2011] [Accepted: 12/18/2011] [Indexed: 05/11/2023]
Abstract
The genome of the spider mite was prospected for the presence of genes coding neuropeptides, neurohormones and their putative G-protein coupled receptors. Fifty one candidate genes were found to encode neuropeptides or neurohormones. These include all known insect neuropeptides and neurohormones, with the exception of sulfakinin, corazonin, neuroparsin and PTTH. True orthologs of adipokinetic hormone (AKH) were neither found, but there are three genes encoding peptides similar in structure to both AKH and the AKH-corazonin-related peptide. We were also unable to identify the precursors for pigment dispersing factor (PDF) or the recently discovered trissin. However, the spider mite probably does have such genes, as we found their putative receptors. A novel arthropod neuropeptide gene was identified that shows similarity to previously described molluscan neuropeptide genes and was called EFLamide. A total of 65 putative neuropeptide GPCR genes were also identified, of these 58 belong to the A-family and 7 to the B-family. Phylogenetic analysis showed that 50 of them are closely related to insect GPCRs, which allowed the identification of their putative ligand in 39 cases with varying degrees of certainty. Other spider mite GPCRs however have no identifiable orthologs in the genomes of the four holometabolous insect species best analyzed. Whereas some of the latter have orthologs in hemimetabolous insect species, crustaceans or ticks, for others such arthropod homologs are currently unknown.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université Bordeaux, Avenue des Facultés, INCIA UMR 5287 CNRS, 33405 Talence Cedex, France.
| | | | | |
Collapse
|
43
|
Šimo L, Žitňan D, Park Y. Neural control of salivary glands in ixodid ticks. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:459-66. [PMID: 22119563 PMCID: PMC3295888 DOI: 10.1016/j.jinsphys.2011.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 05/24/2023]
Abstract
Studies of tick salivary glands (SGs) and their components have produced a number of interesting discoveries over the last four decades. However, the precise neural and physiological mechanisms controlling SG secretion remain enigmatic. Major studies of SG control have identified and characterized many pharmacological and biological compounds that activate salivary secretion, including dopamine (DA), octopamine, γ-aminobutyric acid (GABA), ergot alkaloids, pilocarpine (PC), and their pharmacological relatives. Specifically, DA has shown the most robust activities in various tick species, and its effect on downstream actions in the SGs has been extensively studied. Our recent work on a SG dopamine receptor has aided new interpretations of previous pharmacological studies and provided new concepts for SG control mechanisms. Furthermore, our recent studies have suggested that multiple neuropeptides are involved in SG control. Myoinhibitory peptide (MIP) and SIFamide have been identified in the neural projections reaching the basal cells of acini types II and III. Pigment-dispersing factor (PDF)-immunoreactive neural projections reach type II acini, and RFamide- and tachykinin-immunoreactive projections reach the SG ducts, but the chemical nature of the latter three immunoreactive substances are unidentified yet. Here, we briefly review previous pharmacological studies and provide a revised summary of SG control mechanisms in ticks.
Collapse
Affiliation(s)
- Ladislav Šimo
- Department of Entomology, Kansas State University, Manhattan, KS USA
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS USA
| |
Collapse
|
44
|
Šimo L, Koči J, Žitňan D, Park Y. Evidence for D1 dopamine receptor activation by a paracrine signal of dopamine in tick salivary glands. PLoS One 2011; 6:e16158. [PMID: 21297964 PMCID: PMC3031531 DOI: 10.1371/journal.pone.0016158] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 12/13/2010] [Indexed: 12/03/2022] Open
Abstract
Ticks that feed on vertebrate hosts use their salivary secretion, which contains various bioactive components, to manipulate the host's responses. The mechanisms controlling the tick salivary gland in this dynamic process are not well understood. We identified the tick D1 receptor activated by dopamine, a potent inducer of the salivary secretion of ticks. Temporal and spatial expression patterns examined by immunohistochemistry and reverse transcription polymerase chain reaction suggest that the dopamine produced in the basal cells of salivary gland acini is secreted into the lumen and activates the D1 receptors on the luminal surface of the cells lining the acini. Therefore, we propose a paracrine function of dopamine that is mediated by the D1 receptor in the salivary gland at an early phase of feeding. The molecular and pharmacological characterization of the D1 receptor in this study provides the foundation for understanding the functions of dopamine in the blood-feeding of ticks.
Collapse
Affiliation(s)
- Ladislav Šimo
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Juraj Koči
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Christie AE, Nolan DH, Ohno P, Hartline N, Lenz PH. Identification of chelicerate neuropeptides using bioinformatics of publicly accessible expressed sequence tags. Gen Comp Endocrinol 2011; 170:144-55. [PMID: 20888826 DOI: 10.1016/j.ygcen.2010.09.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/15/2010] [Accepted: 09/24/2010] [Indexed: 11/18/2022]
Abstract
While numerous investigations have focused on the identification of neuropeptides in arthropods, most have been conducted on members of the Hexapoda or Crustacea, and little is currently known about those in the Chelicerata. Here, publicly accessible expressed sequence tags (ESTs) were mined for putative chelicerate neuropeptide-encoding transcripts; the peptides encoded by the ESTs were deduced using on-line peptide prediction programs and homology to known isoforms. Fifty-eight ESTs representing eight peptide families/subfamilies were identified using this strategy. Of note was the prediction of the first authentic chelicerate C-type allatostatin, pQIRYHQCYFNPISCF, from the mite Tetranychus urticae, as well as the prediction a novel allatostatin CC peptide, GEGKMFWRCYFNAVSCF, from both the tick Amblyomma variegatum and the scorpion Mesobuthus gibbosus. Also identified from T. urticae were authentic crustacean cardioactive peptide (CCAP), several peptides belonging to the crustacean hyperglycemic hormone/ion transport peptide superfamily, members of the calcitonin-like diuretic hormone/diuretic hormone 31 family, and several FMRFamide-like peptides, specifically members of the neuropeptide F (NPF) and short neuropeptide F subfamilies. To the best of our knowledge the identifications of CCAP and NPF in T. urticae are the first for the Chelicerata. In addition, several novel orcokinins were identified from the scorpion Scorpiops jendeki and the spider Loxosceles laeta; in S. jendeki previously unknown isoforms of SIFamide, ESRNPPLNGSMFamide and ESKNPPLNGSMFamide, were also predicted. Taken collectively, the data presented in our study expand the catalog of known chelicerate neuropeptides and provide a foundation for future physiological studies of them in these animals.
Collapse
Affiliation(s)
- Andrew E Christie
- John W and Jean C Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA.
| | | | | | | | | |
Collapse
|
46
|
Kahsai L, Winther ÅM. Chemical neuroanatomy of the Drosophila central complex: Distribution of multiple neuropeptides in relation to neurotransmitters. J Comp Neurol 2010; 519:290-315. [DOI: 10.1002/cne.22520] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|