1
|
Brunert D, Quintela RM, Rothermel M. The anterior olfactory nucleus revisited - an emerging role for neuropathological conditions? Prog Neurobiol 2023:102486. [PMID: 37343762 DOI: 10.1016/j.pneurobio.2023.102486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Olfaction is an important sensory modality for many species and greatly influences animal and human behavior. Still, much about olfactory perception remains unknown. The anterior olfactory nucleus is one of the brain's central early olfactory processing areas. Located directly posterior to the olfactory bulb in the olfactory peduncle with extensive in- and output connections and unique cellular composition, it connects olfactory processing centers of the left and right hemispheres. Almost 20 years have passed since the last comprehensive review on the anterior olfactory nucleus has been published and significant advances regarding its anatomy, function, and pathophysiology have been made in the meantime. Here we briefly summarize previous knowledge on the anterior olfactory nucleus, give detailed insights into the progress that has been made in recent years, and map out its emerging importance in translational research of neurological diseases.
Collapse
Affiliation(s)
- Daniela Brunert
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | | | - Markus Rothermel
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| |
Collapse
|
2
|
Clabough E, Ingersoll J, Reekes T, Gleichsner A, Ryan A. Acute Ethanol Exposure during Synaptogenesis Rapidly Alters Medium Spiny Neuron Morphology and Synaptic Protein Expression in the Dorsal Striatum. Int J Mol Sci 2021; 23:290. [PMID: 35008713 PMCID: PMC8745582 DOI: 10.3390/ijms23010290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Fetal alcohol spectrum disorders are caused by the disruption of normal brain development in utero. The severity and range of symptoms is dictated by both the dosage and timing of ethanol administration, and the resulting developmental processes that are impacted. In order to investigate the effects of an acute, high-dose intoxication event on the development of medium spiny neurons (MSNs) in the striatum, mice were injected with ethanol on P6, and neuronal morphology was assessed after 24 h, or at 1 month or 5 months of age. Data indicate an immediate increase in MSN dendritic length and branching, a rapid decrease in spine number, and increased levels of the synaptic protein PSD-95 as a consequence of this neonatal exposure to ethanol, but these differences do not persist into adulthood. These results demonstrate a rapid neuronal response to ethanol exposure and characterize the dynamic nature of neuronal architecture in the MSNs. Although differences in neuronal branching and spine density induced by ethanol resolve with time, early changes in the caudate/putamen region have a potential impact on the execution of complex motor skills, as well as aspects of long-term learning and addictive behavior.
Collapse
Affiliation(s)
- Erin Clabough
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - James Ingersoll
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA; (J.I.); (T.R.)
| | - Tyler Reekes
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA; (J.I.); (T.R.)
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71104, USA
| | - Alyssa Gleichsner
- Department of Biological Science, SUNY Plattsburgh, Plattsburgh, NY 12901, USA; (A.G.); (A.R.)
| | - Amy Ryan
- Department of Biological Science, SUNY Plattsburgh, Plattsburgh, NY 12901, USA; (A.G.); (A.R.)
| |
Collapse
|
3
|
Brunjes PC. Pyramidal Cells in Olfactory Cortex. Chem Senses 2021; 46:6089162. [PMID: 33433589 DOI: 10.1093/chemse/bjab002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The neocortex and olfactory cortices share many features including their laminar organization, developmental sequences, and cell types. Previous work indicates that neocortical pyramidal cells exhibit a gradient of dendritic size: cells involved in the initial processing of information are less complex than those in subsequent, higher processing areas. Results presented here confirm that the same is true for the olfactory cortex: pyramidal cells in the region closest to the olfactory bulb, the anterior olfactory nucleus, have smaller total dendritic length and occupy less neural space than those in the posterior piriform cortex. These findings add to the evidence for general rules of development, organization, and function across forebrain cortices.
Collapse
Affiliation(s)
- Peter C Brunjes
- Department Psychology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
4
|
Dynamic Impairment of Olfactory Behavior and Signaling Mediated by an Olfactory Corticofugal System. J Neurosci 2020; 40:7269-7285. [PMID: 32817250 DOI: 10.1523/jneurosci.2667-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 01/16/2023] Open
Abstract
Processing of olfactory information is modulated by centrifugal projections from cortical areas, yet their behavioral relevance and underlying neural mechanisms remain unclear in most cases. The anterior olfactory nucleus (AON) is part of the olfactory cortex, and its extensive connections to multiple upstream and downstream brain centers place it in a prime position to modulate early sensory information in the olfactory system. Here, we show that optogenetic activation of AON neurons in awake male and female mice was not perceived as an odorant equivalent cue. However, AON activation during odorant presentation reliably suppressed behavioral odor responses. This AON-mediated effect was fast and constant across odors and concentrations. Likewise, activation of glutamatergic AON projections to the olfactory bulb (OB) transiently inhibited the excitability of mitral/tufted cells (MTCs) that relay olfactory input to the cortex. Single-unit MTC recordings revealed that optogenetic activation of glutamatergic AON terminals in the OB transiently decreased sensory-evoked MTC spiking, regardless of the strength or polarity of the sensory response. The reduction in MTC firing during optogenetic stimulation was confirmed in recordings in awake mice. These findings suggest that glutamatergic AON projections to the OB impede early olfactory signaling by inhibiting OB output neurons, thereby dynamically gating sensory throughput to the cortex.SIGNIFICANCE STATEMENT The anterior olfactory nucleus (AON) as an olfactory information processing area sends extensive projections to multiple brain centers, but the behavioral consequences of its activation have been scarcely investigated. Using behavioral tests in combination with optogenetic manipulation, we show that, in contrast to what has been suggested previously, the AON does not seem to form odor percepts but instead suppresses behavioral odor responses across odorants and concentrations. Furthermore, this study shows that AON activation inhibits olfactory bulb output neurons in both anesthetized as well as awake mice, pointing to a potential mechanism by which the olfactory cortex can actively and dynamically gate sensory throughput to higher brain centers.
Collapse
|
5
|
Abstract
Axons from the olfactory bulb (OB) project to multiple central structures of the brain, many of which, in turn, send axons back into the OB and/or to one another. These secondary sensory regions underlie many aspects of odor representation, valence, and learning, as well as serving some nonolfactory functions, though many details remain unclear. We here describe the connectivity and essential structural and functional properties of these postbulbar olfactory regions in the mammalian brain.
Collapse
Affiliation(s)
- Thomas A Cleland
- Department of Psychology, Cornell University, Ithaca, NY, United States.
| | - Christiane Linster
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
| |
Collapse
|
6
|
Collins LN, Brunjes PC. The mouse olfactory peduncle 4: Development of synapses, perineuronal nets, and capillaries. J Comp Neurol 2020; 528:637-649. [PMID: 31571216 PMCID: PMC6944759 DOI: 10.1002/cne.24778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 11/09/2022]
Abstract
Olfaction is critical for survival in neonatal mammals. However, little is known about the neural substrate for this ability as few studies of synaptic development in several olfactory processing regions have been reported. Odor information detected in the nasal cavity is first processed by the olfactory bulb and then sent via the lateral olfactory tract to a series of olfactory cortical areas. The first of these, the anterior olfactory nucleus pars principalis (AONpP), is a simple, two layered cortex with an outer plexiform and inner cell zone (Layers 1 and 2, respectively). Five sets of studies examined age-related changes in the AONpP. First, immunocytochemistry for glutamatergic (VGlut1 and VGlut2) and GABAergic (VGAT) synapses demonstrated that overall synaptic patterns remained uniform with age. The second set quantified synaptic development with electron microscopy and found different developmental patterns between Layers 1 and 2. As many of the interhemispheric connections in the olfactory system arise from AONpP, the third set examined the development of crossed projections using anterograde tracers and electron microscopy to explore the maturation of this pathway. A fourth study examined ontogenetic changes in immunostaining for the proteoglycans aggrecan and brevican, markers of mesh-like extracellular structures known as perineuronal nets whose maturation is associated with the end of early critical periods of synaptogenesis. A final study found no age-related changes in the density of vasculature in the peduncle from P5 to P30. This work is among the first to examine early postnatal changes in this initial cortical region of the olfactory system.
Collapse
Affiliation(s)
- Lindsay N. Collins
- Department Psychology, University of Virginia, Charlottesville, Virginia 22904 USA
| | - Peter C. Brunjes
- Department Psychology, University of Virginia, Charlottesville, Virginia 22904 USA
| |
Collapse
|
7
|
Bathini P, Brai E, Auber LA. Olfactory dysfunction in the pathophysiological continuum of dementia. Ageing Res Rev 2019; 55:100956. [PMID: 31479764 DOI: 10.1016/j.arr.2019.100956] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/29/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022]
Abstract
Sensory capacities like smell, taste, hearing, vision decline with aging, but increasing evidence show that sensory dysfunctions are one of the early signs diagnosing the conversion from physiological to pathological brain state. Smell loss represents the best characterized sense in clinical practice and is considered as one of the first preclinical signs of Alzheimer's and Parkinson's disease, occurring a decade or more before the onset of cognitive and motor symptoms. Despite the numerous scientific reports and the adoption in clinical practice, the etiology of sensory damage as prodromal of dementia remains largely unexplored and more studies are needed to resolve the mechanisms underlying sensory network dysfunction. Although both cognitive and sensory domains are progressively affected, loss of sensory experience in early stages plays a major role in reducing the autonomy of demented people in their daily tasks or even possibly contributing to their cognitive decline. Interestingly, the chemosensory circuitry is devoid of a blood brain barrier, representing a vulnerable port of entry for neurotoxic species that can spread to the brain. Furthermore, the exposure of the olfactory system to the external environment make it more susceptible to mechanical injury and trauma, which can cause degenerative neuroinflammation. In this review, we will summarize several findings about chemosensory impairment signing the conversion from healthy to pathological brain aging and we will try to connect those observations to the promising research linking environmental influences to sporadic dementia. The scientific body of knowledge will support the use of chemosensory diagnostics in the presymptomatic stages of AD and other biomarkers with the scope of finding treatment strategies before the onset of the disease.
Collapse
Affiliation(s)
- Praveen Bathini
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Emanuele Brai
- VIB-KU Leuven Center for Brain & Disease Research, Laboratory for the Research of Neurodegenerative Diseases, Leuven, Belgium
| | - Lavinia Alberi Auber
- Department of Medicine, University of Fribourg, Fribourg, Switzerland; Swiss Integrative Center of Human Health, Fribourg, Switzerland.
| |
Collapse
|
8
|
Aliaga Maraver JJ, Mata S, Benavides-Piccione R, DeFelipe J, Pastor L. A Method for the Symbolic Representation of Neurons. Front Neuroanat 2018; 12:106. [PMID: 30618651 PMCID: PMC6305400 DOI: 10.3389/fnana.2018.00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/20/2018] [Indexed: 11/13/2022] Open
Abstract
The field of neuroanatomy has progressed considerably in recent decades, thanks to the emergence of novel methods which provide new insights into the organization of the nervous system. These new methods have produced a wealth of data that needs to be analyzed, shifting the bottleneck from the acquisition to the analysis of data. In other disciplines, such as in many engineering areas, scientists and engineers are dealing with increasingly complex systems, using hierarchical decompositions, graphical models and simplified schematic diagrams for analysis and design processes. This approach makes it possible for users to simultaneously combine global system views and very detailed representations of specific areas of interest, by selecting appropriate representations for each of these views. In this way, users can concentrate on specific details while also maintaining a general system overview - a capability that is essential for understanding structure and function whenever complexity is an issue. Following this approach, this paper focuses on a graphical tool designed to help neuroanatomists to better understand and detect morphological characteristics of neuronal cells. The method presented here, based on a symbolic representation that can be tailored to enhance a particular range of features of a neuron or neuron set, has proven to be useful for highlighting particular geometries that may be hidden due to the complexity of the analysis tasks and the richness of neuronal morphologies. A software tool has been developed to generate graphical representations of neurons from 3D computer-aided reconstruction files.
Collapse
Affiliation(s)
- Jose Juan Aliaga Maraver
- Departamento de Aeronaves y Vehículos Espaciales, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Susana Mata
- Department of Computer Engineering, Universidad Rey Juan Carlos, Madrid, Spain.,Center for Computational Simulation, Universidad Politécnica de Madrid, Madrid, Spain
| | - Ruth Benavides-Piccione
- Cajal Institute (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Javier DeFelipe
- Cajal Institute (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Luis Pastor
- Department of Computer Engineering, Universidad Rey Juan Carlos, Madrid, Spain.,Center for Computational Simulation, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Libbrecht S, Hoffman L, Welkenhuysen M, Van den Haute C, Baekelandt V, Braeken D, Haesler S. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode. J Neurophysiol 2018; 120:149-161. [PMID: 29589813 DOI: 10.1152/jn.00888.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Optogenetic manipulations are widely used for investigating the contribution of genetically identified cell types to behavior. Simultaneous electrophysiological recordings are less common, although they are critical for characterizing the specific impact of optogenetic manipulations on neural circuits in vivo. This is at least in part because combining photostimulation with large-scale electrophysiological recordings remains technically challenging, which also poses a limitation for performing extracellular identification experiments. Currently available interfaces that guide light of the appropriate wavelength into the brain combined with an electrophysiological modality suffer from various drawbacks such as a bulky size, low spatial resolution, heat dissipation, or photovoltaic artifacts. To address these challenges, we have designed and fabricated an integrated ultrathin neural interface with 12 optical outputs and 24 electrodes. We used the device to measure the effect of localized stimulation in the anterior olfactory cortex, a paleocortical structure involved in olfactory processing. Our experiments in adult mice demonstrate that because of its small dimensions, our novel tool causes far less tissue damage than commercially available devices. Moreover, optical stimulation and recording can be performed simultaneously, with no measurable electrical artifact during optical stimulation. Importantly, optical stimulation can be confined to small volumes with approximately single-cortical layer thickness. Finally, we find that even highly localized optical stimulation causes inhibition at more distant sites. NEW & NOTEWORTHY In this study, we establish a novel tool for simultaneous extracellular recording and optogenetic photostimulation. Because the device is built using established microchip technology, it can be fabricated with high reproducibility and reliability. We further show that even very localized stimulation affects neural firing far beyond the stimulation site. This demonstrates the difficulty in predicting circuit-level effects of optogenetic manipulations and highlights the importance of closely monitoring neural activity in optogenetic experiments.
Collapse
Affiliation(s)
- Sarah Libbrecht
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven , Belgium
| | - Luis Hoffman
- Life Science Technologies and Imaging Department, Imec, Leuven , Belgium.,Neuroelectronics Research Flanders, Leuven , Belgium
| | | | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven , Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven , Belgium
| | - Dries Braeken
- Life Science Technologies and Imaging Department, Imec, Leuven , Belgium
| | - Sebastian Haesler
- Research Group Neurophysiology, Department of Neurosciences, KU Leuven, Leuven , Belgium.,VIB, Leuven , Belgium.,Neuroelectronics Research Flanders, Leuven , Belgium
| |
Collapse
|
10
|
Abstract
Despite the fact that pigs are reputed to have excellent olfactory abilities, few studies have examined regions of the pig brain involved in the sense of smell. The present study provides an overview of the olfactory bulb, anterior olfactory nucleus, and piriform cortex of adult pigs using several approaches. Nissl, myelin, and Golgi stains were used to produce a general overview of the organization of the regions and confocal microscopy was employed to examine 1) projection neurons, 2) GABAergic local circuit neurons that express somatostatin, parvalbumin, vasoactive intestinal polypeptide, or calretinin, 3) neuromodulatory fibers (cholinergic and serotonergic), and 4) glia (astrocytes and microglia). The findings revealed that pig olfactory structures are quite large, highly organized and follow the general patterns observed in mammals.
Collapse
Affiliation(s)
- Peter C Brunjes
- Department Psychology, University of Virginia, 102 Gilmer Hall, PO Box 400400, Charlottesville, VA 22904, USA and
| | - Sanford Feldman
- Department of Comparative Medicine, University of Virginia, 102 Gilmer Hall, PO Box 400400, Charlottesville, VA 22904, USA
| | - Stephen K Osterberg
- Department Psychology, University of Virginia, 102 Gilmer Hall, PO Box 400400, Charlottesville, VA 22904, USA and
| |
Collapse
|
11
|
McDougal RA, Shepherd GM. 3D-printer visualization of neuron models. Front Neuroinform 2015; 9:18. [PMID: 26175684 PMCID: PMC4485057 DOI: 10.3389/fninf.2015.00018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/15/2015] [Indexed: 01/05/2023] Open
Abstract
Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG). We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases.
Collapse
|
12
|
García-Cabezas MÁ, Barbas H. A direct anterior cingulate pathway to the primate primary olfactory cortex may control attention to olfaction. Brain Struct Funct 2015; 219:1735-54. [PMID: 23797208 DOI: 10.1007/s00429-013-0598-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/05/2013] [Indexed: 11/25/2022]
Abstract
Behavioral and functional studies in humans suggest that attention plays a key role in activating the primary olfactory cortex through an unknown circuit mechanism. We report that a novel pathway from the anterior cingulate cortex, an area which has a key role in attention, projects directly to the primary olfactory cortex in rhesus monkeys, innervating mostly the anterior olfactory nucleus. Axons from the anterior cingulate cortex formed synapses mostly with spines of putative excitatory pyramidal neurons and with a small proportion of a neurochemical class of inhibitory neurons that are thought to have disinhibitory effect on excitatory neurons. This novel pathway from the anterior cingulate is poised to exert a powerful excitatory effect on the anterior olfactory nucleus, which is a critical hub for odorant processing via extensive bilateral connections with primary olfactory cortices and the olfactory bulb. Acting on the anterior olfactory nucleus, the anterior cingulate may activate the entire primary olfactory cortex to mediate the process of rapid attention to olfactory stimuli.
Collapse
|
13
|
Rothermel M, Wachowiak M. Functional imaging of cortical feedback projections to the olfactory bulb. Front Neural Circuits 2014; 8:73. [PMID: 25071454 PMCID: PMC4080262 DOI: 10.3389/fncir.2014.00073] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/12/2014] [Indexed: 11/16/2022] Open
Abstract
Processing of sensory information is substantially shaped by centrifugal, or feedback, projections from higher cortical areas, yet the functional properties of these projections are poorly characterized. Here, we used genetically-encoded calcium sensors (GCaMPs) to functionally image activation of centrifugal projections targeting the olfactory bulb (OB). The OB receives massive centrifugal input from cortical areas but there has been as yet no characterization of their activity in vivo. We focused on projections to the OB from the anterior olfactory nucleus (AON), a major source of cortical feedback to the OB. We expressed GCaMP selectively in AON projection neurons using a mouse line expressing Cre recombinase (Cre) in these neurons and Cre-dependent viral vectors injected into AON, allowing us to image GCaMP fluorescence signals from their axon terminals in the OB. Electrical stimulation of AON evoked large fluorescence signals that could be imaged from the dorsal OB surface in vivo. Surprisingly, odorants also evoked large signals that were transient and coupled to odorant inhalation both in the anesthetized and awake mouse, suggesting that feedback from AON to the OB is rapid and robust across different brain states. The strength of AON feedback signals increased during wakefulness, suggesting a state-dependent modulation of cortical feedback to the OB. Two-photon GCaMP imaging revealed that different odorants activated different subsets of centrifugal AON axons and could elicit both excitation and suppression in different axons, indicating a surprising richness in the representation of odor information by cortical feedback to the OB. Finally, we found that activating neuromodulatory centers such as basal forebrain drove AON inputs to the OB independent of odorant stimulation. Our results point to the AON as a multifunctional cortical area that provides ongoing feedback to the OB and also serves as a descending relay for other neuromodulatory systems.
Collapse
Affiliation(s)
- Markus Rothermel
- Brain Institute and Department of Neurobiology and Anatomy, University of Utah Salt Lake City, UT, USA
| | - Matt Wachowiak
- Brain Institute and Department of Neurobiology and Anatomy, University of Utah Salt Lake City, UT, USA
| |
Collapse
|
14
|
Kay RB, Brunjes PC. Diversity among principal and GABAergic neurons of the anterior olfactory nucleus. Front Cell Neurosci 2014; 8:111. [PMID: 24808826 PMCID: PMC4010738 DOI: 10.3389/fncel.2014.00111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/01/2014] [Indexed: 11/13/2022] Open
Abstract
Understanding the cellular components of neural circuits is an essential step in discerning regional function. The anterior olfactory nucleus (AON) is reciprocally connected to both the ipsi- and contralateral olfactory bulb (OB) and piriform cortex (PC), and, as a result, can broadly influence the central processing of odor information. While both the AON and PC are simple cortical structures, the regions differ in many ways including their general organization, internal wiring and synaptic connections with other brain areas. The present work used targeted whole-cell patch clamping to investigate the morphological and electrophysiological properties of the AON's two main neuronal populations: excitatory projection neurons and inhibitory interneurons. Retrograde fluorescent tracers placed into either the OB or PC identified projection neurons. Two classes were observed with different physiological signatures and locations (superficial and deep pyramidal neurons), suggesting the AON contains independent efferent channels. Transgenic mice in which GABA-containing cells expressed green fluorescent protein were used to assess inhibitory neurons. These cells were further identified as containing one or more of seven molecular markers including three calcium-binding proteins (calbindin, calretinin, parvalbumin) or four neuropeptides (somatostatin, vasoactive intestinal peptide, neuropeptide Y, cholecystokinin). The proportion of GABAergic cells containing these markers varied across subregions reinforcing notions that the AON has local functional subunits. At least five classes of inhibitory cells were observed: fast-spiking multipolar, regular-spiking multipolar, superficial neurogliaform, deep neurogliaform, and horizontal neurons. While some of these cell types are similar to those reported in the PC and other cortical regions, the AON also has unique populations. These studies provide the first examination of the cellular components of this simple cortical system.
Collapse
Affiliation(s)
- Rachel B Kay
- Department of Psychology, University of Virginia Charlottesville, VA, USA
| | - Peter C Brunjes
- Department of Psychology, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
15
|
Abstract
The olfactory peduncle, the region connecting the olfactory bulb with the basal forebrain, contains several neural areas that have received relatively little attention. The present work includes studies that provide an overview of the region in the mouse. An analysis of cell soma size in pars principalis (pP) of the anterior olfactory nucleus (AON) revealed considerable differences in tissue organization between mice and rats. An unbiased stereological study of neuron number in the cell-dense regions of pars externa (pE) and pP of the AON of 3-, 12-, and 24-month-old mice indicated that pE has about 16,500 cells in 0.043 mm(3) and pP about 58,300 cells in 0.307 mm(3) . Quantitative Golgi studies of pyramidal neurons in pP suggested that mouse neurons are similar to although smaller than those of the rat. An immunohistochemical analysis demonstrated that all peduncular regions (pE, pP, the dorsal peduncular cortex, ventral tenia tecta, and anterior olfactory tubercle and piriform cortex) have cells that express either calbindin, calretinin, parvalbumin, somatostatin, vasoactive intestinal polypeptide, neuropeptide Y, or cholecystokinin (antigens commonly co-expressed by subspecies of γ-aminobutyric acid [GABA]ergic neurons), although the relative numbers of each cell type differ between zones. Finally, an electron microscopic comparison of the organization of myelinated fibers in lateral olfactory tract in the anterior and posterior peduncle indicated that the region is less orderly in mice than in rats. The results provide a caveat for investigators who generalize data between species, as both similarities and differences between the laboratory mouse and rat were observed.
Collapse
Affiliation(s)
- Peter C Brunjes
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22904, USA.
| | | | | |
Collapse
|
16
|
Imabayashi E, Matsuda H, Yoshimaru K, Kuji I, Seto A, Shimano Y, Ito K, Kikuta D, Shimazu T, Araki N. Pilot data on telmisartan short-term effects on glucose metabolism in the olfactory tract in Alzheimer's disease. Brain Behav 2011; 1:63-9. [PMID: 22399085 PMCID: PMC3236542 DOI: 10.1002/brb3.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 12/26/2022] Open
Abstract
The possible effect of antihypertensive therapy on Alzheimer's disease (AD) has been studied, and angiotensin II receptor blockers (ARBs) have been suggested to exert an effect on cognitive decline. The purpose of this study is to clarify the functional effects of telmisartan, a long-acting ARB, on AD brain using prospective longitudinal (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) studies. For this purpose, brain glucose metabolism of four hypertensive patients with AD was examined with FDG-PET before and after administration of telmisartan. Studied subjects underwent three FDG-PET studies at intervals of 12 weeks. Antihypertensive treatment except for telmisartan was started after the first FDG-PET and continued for 24 weeks. Then 40-80 mg of telmisartan was added after the second FDG-PET and continued for 12 weeks.Glucose metabolism was significantly decreased during the first 12 weeks without telmisartan use at an area (-10, 21, -22, x, y, z; Z = 3.56) caudal to the left rectal gyrus and the olfactory sulcus corresponding to the left olfactory tract. In contrast, the introduction of telmisartan during the following 12 weeks preserved glucose metabolism at areas (5, 19, -20, x, y, z; Z = 3.09; 6, 19, -22, x, y, z; Z = 2.88) caudal to the bilateral rectal gyri and olfactory sulci corresponding to the bilateral olfactory tracts. No areas showed decreased glucose metabolism after the introduction of telmisartan. In AD, amyloid-β deposition is observed in the anterior olfactory nucleus (AON) of the olfactory tract. Glucose metabolism in AON may be progressively decreased and preserved by telmisartan.
Collapse
Affiliation(s)
- Etsuko Imabayashi
- Department of Nuclear Medicine, Saitama Medical University International Medical Center1397-1 Yamane, Hidaka, Saitama, Japan
| | - Hiroshi Matsuda
- Department of Nuclear Medicine, Saitama Medical University International Medical Center1397-1 Yamane, Hidaka, Saitama, Japan
| | - Kimiko Yoshimaru
- Department of Neurology, Saitama Medial University Hospital38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Ichiei Kuji
- Department of Nuclear Medicine, Saitama Medical University International Medical Center1397-1 Yamane, Hidaka, Saitama, Japan
| | - Akira Seto
- Department of Nuclear Medicine, Saitama Medial University Hospital38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Yasumasa Shimano
- Department of Nuclear Medicine, Saitama Medical University International Medical Center1397-1 Yamane, Hidaka, Saitama, Japan
| | - Kimiteru Ito
- Department of Nuclear Medicine, Saitama Medical University International Medical Center1397-1 Yamane, Hidaka, Saitama, Japan
| | - Daisuke Kikuta
- Department of Nuclear Medicine, Saitama Medical University International Medical Center1397-1 Yamane, Hidaka, Saitama, Japan
| | - Tomokazu Shimazu
- Department of Neurology, Saitama Medial University Hospital38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| | - Nobuo Araki
- Department of Neurology, Saitama Medial University Hospital38 Morohongo, Moroyama, Iruma-gun, Saitama, Japan
| |
Collapse
|
17
|
Ghosh S, Larson SD, Hefzi H, Marnoy Z, Cutforth T, Dokka K, Baldwin KK. Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons. Nature 2011; 472:217-20. [PMID: 21451523 DOI: 10.1038/nature09945] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/18/2011] [Indexed: 11/09/2022]
Abstract
Sensory information may be represented in the brain by stereotyped mapping of axonal inputs or by patterning that varies between individuals. In olfaction, a stereotyped map is evident in the first sensory processing centre, the olfactory bulb (OB), where different odours elicit activity in unique combinatorial patterns of spatially invariant glomeruli. Activation of each glomerulus is relayed to higher cortical processing centres by a set of ∼20-50 'homotypic' mitral and tufted (MT) neurons. In the cortex, target neurons integrate information from multiple glomeruli to detect distinct features of chemically diverse odours. How this is accomplished remains unclear, perhaps because the cortical mapping of glomerular information by individual MT neurons has not been described. Here we use new viral tracing and three-dimensional brain reconstruction methods to compare the cortical projections of defined sets of MT neurons. We show that the gross-scale organization of the OB is preserved in the patterns of axonal projections to one processing centre yet reordered in another, suggesting that distinct coding strategies may operate in different targets. However, at the level of individual neurons neither glomerular order nor stereotypy is preserved in either region. Rather, homotypic MT neurons from the same glomerulus innervate broad regions that differ between individuals. Strikingly, even in the same animal, MT neurons exhibit extensive diversity in wiring; axons of homotypic MT pairs diverge from each other, emit primary branches at distinct locations and 70-90% of branches of homotypic and heterotypic pairs are non-overlapping. This pronounced reorganization of sensory maps in the cortex offers an anatomic substrate for expanded combinatorial integration of information from spatially distinct glomeruli and predicts an unanticipated role for diversification of otherwise similar output neurons.
Collapse
Affiliation(s)
- Sulagna Ghosh
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
McGinley MJ, Westbrook GL. Membrane and synaptic properties of pyramidal neurons in the anterior olfactory nucleus. J Neurophysiol 2010; 105:1444-53. [PMID: 21123663 DOI: 10.1152/jn.00715.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anterior olfactory nucleus (AON) is positioned to coordinate activity between the piriform cortex and olfactory bulbs, yet the physiology of AON principal neurons has been little explored. Here, we examined the membrane properties and excitatory synapses of AON principal neurons in brain slices of PND22-28 mice and compared their properties to principal cells in other olfactory cortical areas. AON principal neurons had firing rates, spike rate adaptation, spike widths, and I-V relationships that were generally similar to pyramidal neurons in piriform cortex, and typical of cerebral cortex, consistent with a role for AON in cortical processing. Principal neurons in AON had more hyperpolarized action potential thresholds, smaller afterhyperpolarizations, and tended to fire doublets of action potentials on depolarization compared with ventral anterior piriform cortex and the adjacent epileptogenic region preendopiriform nucleus (pEN). Thus, AON pyramidal neurons have enhanced membrane excitability compared with surrounding subregions. Interestingly, principal neurons in pEN were the least excitable, as measured by a larger input conductance, lower firing rates, and more inward rectification. Afferent and recurrent excitatory synapses onto AON pyramidal neurons had small amplitudes, paired pulse facilitation at afferent synapses, and GABA(B) modulation at recurrent synapses, a pattern similar to piriform cortex. The enhanced membrane excitability and recurrent synaptic excitation within the AON, together with its widespread outputs, suggest that the AON can boost and distribute activity in feedforward and feedback circuits throughout the olfactory system.
Collapse
Affiliation(s)
- Matthew J McGinley
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA.
| | | |
Collapse
|