1
|
Bal N, Şengül Y, Behmen MB, Powell A, Louis ED. Vestibular reflexes in essential tremor: abnormalities of ocular and cervical vestibular-evoked myogenic potentials are associated with the cerebellum and brainstem involvement. J Neural Transm (Vienna) 2023; 130:1553-1559. [PMID: 37199795 DOI: 10.1007/s00702-023-02652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
This study utilized cervical vestibular-evoked myogenic potentials tests (cVEMP) and ocular vestibular-evoked myogenic potentials tests (oVEMP) to investigate the vestibulocollic and vestibuloocular reflex arcs and to evaluate cerebellar and brainstem involvement) in essential tremor (ET). Eighteen cases with ET and 16 age- and gender-matched healthy control subjects (HCS) were included in the present study. Otoscopic and neurologic examinations were performed on all participants, and both cervical and ocular VEMP tests were performed. Pathological cVEMP results were increased in the ET group (64.7%) compared to the HCS (41,2%; p > 0.05). The latencies of P1 and N1 waves were shorter in the ET group than in HCS (p = 0.01 and p = 0.001). Pathological oVEMP responses were significantly higher in the ET group (72.2%) compared to the HCS (37.5%; p = 0.01). There was no statistically significant difference in oVEMP N1-P1 latencies between groups (p > 0.05). Because the ET group had high pathological responses to the oVEMP, but not the cVEMP, the upper brainstem pathways may be more affected by ET.
Collapse
Affiliation(s)
- Nilüfer Bal
- Department of Audiology, Faculty of Health Sciences, Bezmialem Vakıf University, Istanbul, Turkey.
- Subdepartment of Audiology, Department of Otolarygology, Faculty of Medicine, Subdepartment of Audiology, Marmara University, Istanbul, Turkey.
| | - Yıldızhan Şengül
- Department of Neurology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Meliha Başöz Behmen
- Department of Audiology, Faculty of Health Sciences, Bezmialem Vakıf University, Istanbul, Turkey
| | - Allison Powell
- Department of Neurology, University Texas Southwestern Med. Center, Dallas, Texas, USA
| | - Elan D Louis
- Department of Neurology, University Texas Southwestern Med. Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Fiorenza MT, La Rosa P, Canterini S, Erickson RP. The Cerebellum in Niemann-Pick C1 Disease: Mouse Versus Man. CEREBELLUM (LONDON, ENGLAND) 2023; 22:102-119. [PMID: 35040097 PMCID: PMC7617266 DOI: 10.1007/s12311-021-01347-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 02/01/2023]
Abstract
Selective neuronal vulnerability is common to most degenerative disorders, including Niemann-Pick C (NPC), a rare genetic disease with altered intracellular trafficking of cholesterol. Purkinje cell dysfunction and loss are responsible for cerebellar ataxia, which is among the prevailing neurological signs of the NPC disease. In this review, we focus on some questions that are still unresolved. First, we frame the cerebellar vulnerability in the context of the extended postnatal time length by which the development of this structure is completed in mammals. In line with this thought, the much later development of cerebellar symptoms in humans is due to the later development and/or maturation of the cerebellum. Hence, the occurrence of developmental events under a protracted condition of defective intracellular cholesterol mobilization hits the functional maturation of the various cell types generating the ground of increased vulnerability. This is particularly consistent with the high cholesterol demand required for cell proliferation, migration, differentiation, and synapse formation/remodeling. Other major questions we address are why the progression of Purkinje cells loss is always from the anterior to the posterior lobes and why cerebellar defects persist in the mouse model even when genetic manipulations can lead to nearly normal survival.
Collapse
Affiliation(s)
- Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy.
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179, Rome, Italy.
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona School of Medicine, Tucson, AZ, 85724-5073, USA.
| |
Collapse
|
3
|
Identification of Novel Pathways Associated with Patterned Cerebellar Purkinje Neuron Degeneration in Niemann-Pick Disease, Type C1. Int J Mol Sci 2019; 21:ijms21010292. [PMID: 31906248 PMCID: PMC6981888 DOI: 10.3390/ijms21010292] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 01/22/2023] Open
Abstract
Niemann-Pick disease, type C1 (NPC1) is a lysosomal disease characterized by progressive cerebellar ataxia. In NPC1, a defect in cholesterol transport leads to endolysosomal storage of cholesterol and decreased cholesterol bioavailability. Purkinje neurons are sensitive to the loss of NPC1 function. However, degeneration of Purkinje neurons is not uniform. They are typically lost in an anterior-to-posterior gradient with neurons in lobule X being resistant to neurodegeneration. To gain mechanistic insight into factors that protect or potentiate Purkinje neuron loss, we compared RNA expression in cerebellar lobules III, VI, and X from control and mutant mice. An unexpected finding was that the gene expression differences between lobules III/VI and X were more pronounced than those observed between mutant and control mice. Functional analysis of genes with anterior to posterior gene expression differences revealed an enrichment of genes related to neuronal cell survival within the posterior cerebellum. This finding is consistent with the observation, in multiple diseases, that posterior Purkinje neurons are, in general, resistant to neurodegeneration. To our knowledge, this is the first study to evaluate anterior to posterior transcriptome-wide changes in gene expression in the cerebellum. Our data can be used to not only explore potential pathological mechanisms in NPC1, but also to further understand cerebellar biology.
Collapse
|
4
|
Cendelin J, Purkartova Z, Kubik J, Ulbricht E, Tichanek F, Kolinko Y. Long-Term Development of Embryonic Cerebellar Grafts in Two Strains of Lurcher Mice. THE CEREBELLUM 2019; 17:428-437. [PMID: 29450804 DOI: 10.1007/s12311-018-0928-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
For many degenerative cerebellar diseases, currently, no effective treatment that would substantially restore cerebellar functions is available. Neurotransplantation could be a promising therapy for such cases. Nevertheless, there are still severe limitations for routine clinical use. The aim of the work was to assess volume and morphology and functional impact on motor skills of an embryonic cerebellar graft injected in the form of cell suspension in Lurcher mutant and wild-type mice of the B6CBA and C3H strains after a 6-month survival period. The grafts survived in the majority of the mice. In both B6CBA and C3H Lurcher mice, most of the grafts were strictly delimited with no tendency to invade the host cerebellum, while in wild-type mice, graft-derived Purkinje cells colonized the host's cerebellum. In C3H Lurcher mice, but not in B6CBA Lurchers, the grafts had smaller volume than in their wild-type counterparts. C3H wild-type mice had significantly larger grafts than B6CBA wild-type mice. No positive effect of the transplantation on performance in the rotarod test was observed. The findings suggest that the niche of the Lurcher mutant cerebellum has a negative impact on integration of grafted cells. This factor seems to be limiting for specific functional effects of the transplantation therapy in this mouse model of cerebellar degeneration.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
| | - Zdenka Purkartova
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Jakub Kubik
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Erik Ulbricht
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Filip Tichanek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Yaroslav Kolinko
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66, Plzen, Czech Republic
- Laboratory of Quantitative Histology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66, Plzen, Czech Republic
| |
Collapse
|
5
|
Beckinghausen J, Sillitoe RV. Insights into cerebellar development and connectivity. Neurosci Lett 2018; 688:2-13. [PMID: 29746896 DOI: 10.1016/j.neulet.2018.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
The cerebellum has a well-established role in controlling motor functions such coordination, balance, posture, and skilled learning. There is mounting evidence that it might also play a critical role in non-motor functions such as cognition and emotion. It is therefore not surprising that cerebellar defects are associated with a wide array of diseases including ataxia, dystonia, tremor, schizophrenia, dyslexia, and autism spectrum disorder. What is intriguing is that a seemingly uniform circuit that is often described as being "simple" should carry out all of these behaviors. Analyses of how cerebellar circuits develop have revealed that such descriptions massively underestimate the complexity of the cerebellum. The cerebellum is in fact highly patterned and organized around a series of parasagittal stripes and transverse zones. This topographic architecture partitions all cerebellar circuits into functional modules that are thought to enhance processing power during cerebellar dependent behaviors. What are arguably the most remarkable features of cerebellar topography are the developmental processes that produce them. This review is concerned with the genetic and cellular mechanisms that orchestrate cerebellar patterning. We place a major focus on how Purkinje cells control multiple aspects of cerebellar circuit assembly. Using this model, we discuss evidence for how "zebra-like" patterns in Purkinje cells sculpt the cerebellum, how specific genetic cues mediate the process, and how activity refines the patterns into an adult map that is capable of executing various functions. We also discuss how defective Purkinje cell patterning might impact the pathogenesis of neurological conditions.
Collapse
Affiliation(s)
- Jaclyn Beckinghausen
- Department of Pathology and Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Department of Neuroscience, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute of TX Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Department of Neuroscience, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA; Jan and Dan Duncan Neurological Research Institute of TX Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
De Munter S, Bamps D, Malheiro AR, Kumar Baboota R, Brites P, Baes M. Autonomous Purkinje cell axonal dystrophy causes ataxia in peroxisomal multifunctional protein-2 deficiency. Brain Pathol 2018; 28:631-643. [PMID: 29341299 DOI: 10.1111/bpa.12586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/22/2017] [Accepted: 12/27/2017] [Indexed: 01/01/2023] Open
Abstract
Peroxisomes play a crucial role in normal neurodevelopment and in the maintenance of the adult brain. This depends largely on intact peroxisomal β-oxidation given the similarities in pathologies between peroxisome biogenesis disorders and deficiency of multifunctional protein-2 (MFP2), the central enzyme of this pathway. Recently, adult patients diagnosed with cerebellar ataxia were shown to have mild mutations in the MFP2 gene, hydroxy-steroid dehydrogenase (17 beta) type 4 (HSD17B4). Cerebellar atrophy also develops in MFP2 deficient mice but the cellular origin of the degeneration is unexplored. In order to investigate whether peroxisomal β-oxidation is essential within Purkinje cells, the sole output neurons of the cerebellum, we generated and characterized a mouse model with Purkinje cell selective deletion of the MFP2 gene. We show that selective loss of MFP2 from mature cerebellar Purkinje neurons causes a late-onset motor phenotype and progressive Purkinje cell degeneration, thereby mimicking ataxia and cerebellar deterioration in patients with mild HSD17B4 mutations. We demonstrate that swellings on Purkinje cell axons coincide with ataxic behavior and precede neurodegeneration. Loss of Purkinje cells occurs in a characteristic banded pattern, proceeds in an anterior to posterior fashion and is accompanied by progressive astro- and microgliosis. These data prove that the peroxisomal β-oxidation pathway is required within Purkinje neurons to maintain their axonal integrity, independent of glial dysfunction.
Collapse
Affiliation(s)
- Stephanie De Munter
- Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, KU Leuven - University of Leuven, Leuven, Belgium
| | - Dorien Bamps
- Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, KU Leuven - University of Leuven, Leuven, Belgium
| | - Ana Rita Malheiro
- Neurolipid Biology group, Instituto de Biologia Molecular e Celular - IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal
| | - Ritesh Kumar Baboota
- Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, KU Leuven - University of Leuven, Leuven, Belgium
| | - Pedro Brites
- Neurolipid Biology group, Instituto de Biologia Molecular e Celular - IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Afshar P, Ashtari N, Jiao X, Rahimi-Balaei M, Zhang X, Yaganeh B, Del Bigio MR, Kong J, Marzban H. Overexpression of Human SOD1 Leads to Discrete Defects in the Cerebellar Architecture in the Mouse. Front Neuroanat 2017; 11:22. [PMID: 28424594 PMCID: PMC5372795 DOI: 10.3389/fnana.2017.00022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
The human superoxide dismutase 1 (SOD1) gene is responsible for neutralizing supercharged oxygen radicals within the cell. Mutation in SOD1 gene causes amyotrophic lateral sclerosis (ALS). Recent studies have shown involvement of the cerebellum in ALS, although the cerebellar contribution in SOD1 transgenic mice remains unclear. Using immunohistopathology, we investigated the Purkinje cell phenotype in the vermis of the SOD1 transgenic mice cerebellum. Calbindin 1 (Calb1) and three well-known zone and stripe markers, zebrin II, HSP25, and PLCβ4 have been used to explore possible alteration in zone and stripe. Here we show that Calb1 expression is significantly reduced in a subset of the Purkinje cells that is almost aligned with the cerebellar zones and stripes pattern. The Purkinje cells of SOD1 transgenic mice display a pattern of Calb1 down-regulation, which seems to proceed to Purkinje cell degeneration as the mice age. The onset of Calb1 down-regulation in Purkinje cells begins from the central zone and continues into the nodular zone, however it has not been observed in the anterior and posterior zones. In a subgroup of SOD1 transgenic mice in which gait unsteadiness was apparent, down-regulation of Calb1 is seen in a subset of PLCβ4+ Purkinje cells in the anterior zone. These observations suggest that the Calb1- subset of Purkinje cells in the anterior zone, which receives somatosensory input, causes unsteady gait. Our data suggest that human SOD1 overexpression leads to Calb1 down-regulation in the zone and strip pattern and raise the question of whether SOD1 overexpression leads to Purkinje cells degeneration.
Collapse
Affiliation(s)
- Pegah Afshar
- Department of Human Anatomy and Cell Science, The Children's Hospital Foundation University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, MB, Canada
| | - Niloufar Ashtari
- Department of Human Anatomy and Cell Science, The Children's Hospital Foundation University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, MB, Canada
| | - Xiaodan Jiao
- Department of Human Anatomy and Cell Science, The Children's Hospital Foundation University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, MB, Canada
| | - Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, The Children's Hospital Foundation University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, MB, Canada
| | - Xiaosha Zhang
- Department of Human Anatomy and Cell Science, The Children's Hospital Foundation University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, MB, Canada
| | - Behzad Yaganeh
- Program in Physiology and Experimental Medicine, Hospital for Sick Children and University of TorontoToronto, ON, Canada
| | - Marc R Del Bigio
- Department of Human Anatomy and Cell Science, The Children's Hospital Foundation University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, MB, Canada.,Department of Pathology, Faculty of Medicine, University of ManitobaWinnipeg, MB, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, The Children's Hospital Foundation University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, MB, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, The Children's Hospital Foundation University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
8
|
Rahimi Balaei M, Jiao X, Ashtari N, Afsharinezhad P, Ghavami S, Marzban H. Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse. Int J Mol Sci 2016; 17:E115. [PMID: 26784182 PMCID: PMC4730356 DOI: 10.3390/ijms17010115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 01/08/2023] Open
Abstract
Spontaneous mutation in the lysosomal acid phosphatase 2 (Acp2) mouse (nax--naked-ataxia mutant mouse) correlates with severe cerebellar defects including ataxia, reduced size and abnormal lobulation as well as Purkinje cell (Pc) degeneration. Loss of Pcs in the nax cerebellum is compartmentalized and harmonized to the classic pattern of gene expression of the cerebellum in the wild type mouse. Usually, degeneration starts in the anterior and posterior zones and continues to the central and nodular zones of cerebellum. Studies have suggested that the p75 neurotrophin receptor (NTR) plays a role in Pc degeneration; thus, in this study, we investigated the p75NTR pattern and protein expression in the cerebellum of the nax mutant mouse. Despite massive Pc degeneration that was observed in the nax mouse cerebellum, p75NTR pattern expression was similar to the HSP25 pattern in nax mice and comparable with wild type sibling cerebellum. In addition, immunoblot analysis of p75NTR protein expression did not show any significant difference between nax and wild type sibling (p > 0.5). In comparison with wild type counterparts, p75NTR pattern expression is aligned with the fundamental cytoarchitecture organization of the cerebellum and is unchanged in the nax mouse cerebellum despite the severe neurodevelopmental disorder accompanied with Pc degeneration.
Collapse
Affiliation(s)
- Maryam Rahimi Balaei
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaodan Jiao
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Niloufar Ashtari
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Pegah Afsharinezhad
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Saeid Ghavami
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Health Policy Research Center, Shiraz University of Medical Science, Shiraz 713484579, Iran.
| | - Hassan Marzban
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
9
|
Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci 2015; 16:79-93. [PMID: 25601779 DOI: 10.1038/nrn3886] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adult mammalian cerebellar cortex is generally assumed to have a uniform cytoarchitecture. Differences in cerebellar function are thought to arise primarily through distinct patterns of input and output connectivity rather than as a result of variations in cortical microcircuitry. However, evidence from anatomical, physiological and genetic studies is increasingly challenging this orthodoxy, and there are now various lines of evidence indicating that the cerebellar cortex is not uniform. Here, we develop the hypothesis that regional differences in properties of cerebellar cortical microcircuits lead to important differences in information processing.
Collapse
|
10
|
A new humanized ataxin-3 knock-in mouse model combines the genetic features, pathogenesis of neurons and glia and late disease onset of SCA3/MJD. Neurobiol Dis 2014; 73:174-88. [PMID: 25301414 DOI: 10.1016/j.nbd.2014.09.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/06/2014] [Accepted: 09/24/2014] [Indexed: 01/21/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3/MJD) is a neurodegenerative disease triggered by the expansion of CAG repeats in the ATXN3 gene. Here, we report the generation of the first humanized ataxin-3 knock-in mouse model (Ki91), which provides insights into the neuronal and glial pathology of SCA3/MJD. First, mutant ataxin-3 accumulated in cell nuclei across the Ki91 brain, showing diffused immunostaining and forming intranuclear inclusions. The humanized allele revealed expansion and contraction of CAG repeats in intergenerational transmissions. CAG mutation also exhibited age-dependent tissue-specific expansion, which was most prominent in the cerebellum, pons and testes of Ki91 animals. Moreover, Ki91 mice displayed neuroinflammatory processes, showing astrogliosis in the cerebellar white matter and the substantia nigra that paralleled the transcriptional deregulation of Serpina3n, a molecular sign of neurodegeneration and brain damage. Simultaneously, the cerebellar Purkinje cells in Ki91 mice showed neurodegeneration, a pronounced decrease in Calbindin D-28k immunoreactivity and a mild decrease in cell number, thereby modeling the degeneration of the cerebellum observed in SCA3. Moreover, these molecular and cellular neuropathologies were accompanied by late behavioral deficits in motor coordination observed in rotarod and static rod tests in heterozygous Ki91 animals. In summary, we created an ataxin-3 knock-in mouse model that combines the molecular and behavioral disease phenotypes with the genetic features of SCA3. This model will be very useful for studying the pathogenesis and responses to therapy of SCA3/MJD and other polyQ disorders.
Collapse
|
11
|
Cendelin J. From mice to men: lessons from mutant ataxic mice. CEREBELLUM & ATAXIAS 2014; 1:4. [PMID: 26331028 PMCID: PMC4549131 DOI: 10.1186/2053-8871-1-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/21/2014] [Indexed: 01/01/2023]
Abstract
Ataxic mutant mice can be used to represent models of cerebellar degenerative disorders. They serve for investigation of cerebellar function, pathogenesis of degenerative processes as well as of therapeutic approaches. Lurcher, Hot-foot, Purkinje cell degeneration, Nervous, Staggerer, Weaver, Reeler, and Scrambler mouse models and mouse models of SCA1, SCA2, SCA3, SCA6, SCA7, SCA23, DRPLA, Niemann-Pick disease and Friedreich ataxia are reviewed with special regard to cerebellar pathology, pathogenesis, functional changes and possible therapeutic influences, if any. Finally, benefits and limitations of mouse models are discussed.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University in Prague, Lidicka 1, 301 66 Plzen, Czech Republic ; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Plzen, Czech Republic
| |
Collapse
|
12
|
Changes in the Distribution of the α 3 Na(+)/K(+) ATPase Subunit in Heterozygous Lurcher Purkinje Cells as a Genetic Model of Chronic Depolarization during Development. Int J Cell Biol 2014; 2014:152645. [PMID: 24719618 PMCID: PMC3955620 DOI: 10.1155/2014/152645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/28/2013] [Accepted: 01/13/2014] [Indexed: 11/30/2022] Open
Abstract
A common assumption of excitotoxic mechanisms in the nervous system is that the ionic imbalance resulting from overstimulation of glutamate receptors and increased Na+ and Ca++ influx overwhelms cellular energy metabolic systems leading to cell death. The goal of this study was to examine how a chronic Na+ channel leak current in developing Purkinje cells in the heterozygous Lurcher mutant (+/Lc) affects the expression and distribution of the α3 subunit of the Na+/K+ ATPase pump, a key component of the homeostasis system that maintains ionic equilibrium in neurons. The expression pattern of the catalytic α3 Na+/K+ ATPase subunit was analyzed by immunohistochemistry, histochemistry, and Western Blots in wild type (WT) and +/Lc cerebella at postnatal days P10, P15, and P25 to determine if there are changes in the distribution of active Na+/K+ ATPase subunits in degenerating Purkinje cells. The results suggest that the expression of the catalytic α3 subunit is altered in chronically depolarized +/Lc Purkinje cells, although the density of active Na+/K+ ATPase pumps is not significantly altered compared with WT in the cerebellar cortex at P15, and then declines from P15 to P25 in the +/Lc cerebellum as the +/Lc Purkinje cells degenerate.
Collapse
|
13
|
Zanjani HS, Lohof AM, McFarland R, Vogel MW, Mariani J. Enhanced survival of wild-type and Lurcher Purkinje cells in vitro following inhibition of conventional PKCs or stress-activated MAP kinase pathways. THE CEREBELLUM 2013; 12:377-89. [PMID: 23136008 DOI: 10.1007/s12311-012-0427-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent studies using both dissociated and organotypic cell cultures have shown that heterozygous Lurcher (Lc/+) Purkinje cells (PCs) grown in vitro share many of the same survival and morphological characteristics as Lc/+ PCs in vivo. We have used this established tissue culture system as a valuable model for studying cell death mechanisms in a relatively simple system where neurodegeneration is induced by a constitutive cation leak mediated by the Lurcher mutation in the δ2 glutamate receptor (GluRδ2). In this study, Ca(++) imaging and immunocytochemistry studies indicate that intracellular levels of Ca(++) are chronically increased in Lc/+ PCs and the concentration and/or distribution of the conventional PKCγ isoform is altered in degenerating Lc/+ PCs. To begin to characterize the molecular mechanisms that regulate Lc/+ PC death, the contributions of conventional PKC pathways and of two MAP kinase family members, JNK and p38, were examined in slice cultures from wild-type and Lc/+ mutant mouse cerebellum. Cerebellar slice cultures from P0 pups were treated with either a conventional PKC inhibitor, a JNK inhibitor, or a p38 inhibitor either from 0 to 14 or 7 to 14 DIV. Treatment with either of the three inhibitors from 0 DIV significantly increased wild type and Lc/+ PC survival through 14 DIV, but only Lc/+ PC survival was significantly increased following treatments from 7 to 14 DIV. The results suggest that multiple PC death pathways are induced by the physical trauma of making organotypic slice cultures, naturally-occurring postnatal cell death, and the GluRδ2 (Lc) mutation.
Collapse
Affiliation(s)
- Hadi S Zanjani
- UMR 7102, CNRSet Université Pierre et Marie Curie, 9 Quai St. Bernard, Paris, France.
| | | | | | | | | |
Collapse
|
14
|
Paine MG, Che D, Li L, Neumar RW. Cerebellar Purkinje cell neurodegeneration after cardiac arrest: Effect of therapeutic hypothermia. Resuscitation 2012; 83:1511-6. [DOI: 10.1016/j.resuscitation.2012.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/06/2012] [Accepted: 05/21/2012] [Indexed: 12/31/2022]
|
15
|
Armstrong CL, Duffin CA, McFarland R, Vogel MW. Mechanisms of compartmental purkinje cell death and survival in the lurcher mutant mouse. THE CEREBELLUM 2012; 10:504-14. [PMID: 21104177 DOI: 10.1007/s12311-010-0231-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Lurcher mutant mouse is characterized by its ataxic gait and loss of cerebellar Purkinje cells and their afferents, granule cells and olivary neurons, during the first weeks of postnatal development. For the 50 years since its discovery, the heterozygous Lurcher mutant has served as an important model system for studying neuron-target interactions in the developing cerebellum and cerebellar function. The identification of the Lurcher (Lc) gene over 10 years ago as a gain-of-function mutation in the δ2 glutamate receptor (GluRδ2) led to extensive studies of cell death mechanisms in the Lc/+ cerebellum. The advantage of this model system is that GluRδ2(+) receptors and GluRδ2(Lc) channels are expressed predominantly in Purkinje cells, making it possible to study the effects of a well-characterized leak current in a well-defined cell type during a critical phase of neuronal development. Yet there is still controversy surrounding the mechanisms of neuronal death in Lc/+ Purkinje cells with competing hypotheses for necrotic, apoptotic, and autophagic cell death pathways as a consequence of the excitotoxic stress caused by the GluRδ2(Lc) leak current. The goal of this review is to summarize recent studies that critically test the role of various cell death pathways in Lc/+ Purkinje cell degeneration with respect to evidence for the molecular heterogeneity of Purkinje cells. We propose that the expression of putative survival factors, such as heat shock proteins, in a subset of cerebellar Purkinje cells may affect cell death pathways and account for the pattern and diverse mechanisms of Lc/+ Purkinje degeneration.
Collapse
Affiliation(s)
- Carol L Armstrong
- Department of Chemical and Biological Sciences, Mt Royal University, Calgary, AB, Canada, T3E 6K6
| | | | | | | |
Collapse
|
16
|
|
17
|
Abstract
PURPOSE OF REVIEW This article reviews recent studies that have provided experimental evidence for mechanisms of neural and synaptic plasticity in the brain during vestibular compensation, the behavioural recovery that takes place following peripheral vestibular lesions. RECENT FINDINGS First, experimental evidence from animal studies indicates that an unbalanced vestibular commissural system is a fundamental cause of the syndrome of oculomotor and postural deficits after unilateral labyrinthectomy. Second, recent studies suggest the involvement of both GABAergic and glycinergic commissural neurons. In addition gliosis and reactive neurogenesis in the ipsilesional vestibular nuclei appear to be involved in compensation. Third, evidence from cerebellar-deficient mutant mice demonstrates an important role for cerebellum-dependent motor learning in the longer term. Factors such as stress steroids and neuromodulators such as histamine influence these plasticity mechanisms and may thus contribute to the development of compensation in patients. SUMMARY Vestibular compensation involves multiple, parallel plastic processes at various sites in the brain. Experimental evidence suggests that adaptive changes in the sensitivity of ipsilesional vestibular neurons to the inhibitory neurotransmitters GABA and glycine, changes in the electrophysiological excitability of vestibular neurons, changes in the inhibitory control of the brainstem vestibular networks by the cerebellum, gliosis and neurogenesis in the ipsilesional vestibular nuclei, and activity-dependent reorganization of the synaptic connectivity of the vestibular pathways are mechanisms involved in compensation.
Collapse
|
18
|
Cell Death as a Regulator of Cerebellar Histogenesis and Compartmentation. THE CEREBELLUM 2010; 10:373-92. [DOI: 10.1007/s12311-010-0222-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Current Opinion in Otolaryngology & Head and Neck Surgery. Current world literature. Curr Opin Otolaryngol Head Neck Surg 2010; 18:466-74. [PMID: 20827086 DOI: 10.1097/moo.0b013e32833f3865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|