1
|
Wang W, Wang C, Nan Y, Zhou Y, Wei R, Ling S, Wu H, Deng L, Gao J, He Q, Huang X, Zhang C, Li D, Pu M. Morphological Characteristics of Retinal Ganglion Cells in the Retinas of Giant Pandas (Ailuropoda melanoleuca). J Comp Neurol 2024; 532:e25661. [PMID: 39139013 DOI: 10.1002/cne.25661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 08/15/2024]
Abstract
Vision plays a crucial role in the survival of animals, and the visual system has particularly selectively evolved in response to the visual environment, ecological niche, and species habitats in vertebrate species. To date, a horizontal streak of retinal ganglion cell (RGC) distribution pattern is observed across mammal species. Here, we report that the giant panda's vertically oriented visual streak, combined with current evidence of the animal's forward-placed eyes, ocular structure, and retinal neural topographic distribution patterns, presents the emergence of a well-adapted binocular visual system. Our results suggest that the giant panda may use a unique way to processing binocular visual information. Results of mathematical simulation are in favor of this hypothesis. The topographic distribution properties of RGCs reported here could be essential for understanding the visual adaptation and evolution of this living fossil.
Collapse
Affiliation(s)
- Wenyao Wang
- School of Basic Medical Sciences, Peking University, Beijing, China
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Yan Nan
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ronping Wei
- China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Shanshan Ling
- China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Linhua Deng
- China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Jie Gao
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qihua He
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xin Huang
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Peking University Eye Center, Beijing, China
| | - Desheng Li
- China Conservation and Research Center for the Giant Panda (CCRCGP), Chengdu, China
| | - Mingliang Pu
- School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Newman BA, D’Angelo GJ. A Review of Cervidae Visual Ecology. Animals (Basel) 2024; 14:420. [PMID: 38338063 PMCID: PMC10854973 DOI: 10.3390/ani14030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
This review examines the visual systems of cervids in relation to their ability to meet their ecological needs and how their visual systems are specialized for particular tasks. Cervidae encompasses a diverse group of mammals that serve as important ecological drivers within their ecosystems. Despite evidence of highly specialized visual systems, a large portion of cervid research ignores or fails to consider the realities of cervid vision as it relates to their ecology. Failure to account for an animal's visual ecology during research can lead to unintentional biases and uninformed conclusions regarding the decision making and behaviors for a species or population. Our review addresses core behaviors and their interrelationship with cervid visual characteristics. Historically, the study of cervid visual characteristics has been restricted to specific areas of inquiry such as color vision and contains limited integration into broader ecological and behavioral research. The purpose of our review is to bridge these gaps by offering a comprehensive review of cervid visual ecology that emphasizes the interplay between the visual adaptations of cervids and their interactions with habitats and other species. Ultimately, a better understanding of cervid visual ecology allows researchers to gain deeper insights into their behavior and ecology, providing critical information for conservation and management efforts.
Collapse
Affiliation(s)
- Blaise A. Newman
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
3
|
Hahn J, Monavarfeshani A, Qiao M, Kao A, Kölsch Y, Kumar A, Kunze VP, Rasys AM, Richardson R, Baier H, Lucas RJ, Li W, Meister M, Trachtenberg JT, Yan W, Peng YR, Sanes JR, Shekhar K. Evolution of neuronal cell classes and types in the vertebrate retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536039. [PMID: 37066415 PMCID: PMC10104162 DOI: 10.1101/2023.04.07.536039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs (Baden et al., 2020). One might expect that retinal cell types evolved to accommodate these varied needs, but this has not been systematically studied. Here, we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a teleost fish, a bird, a reptile and a lamprey. Molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells [RGCs] and Muller glia) is striking, with transcriptomic differences across species correlated with evolutionary distance. Major subclasses are also conserved, whereas variation among types within classes or subclasses is more pronounced. However, an integrative analysis revealed that numerous types are shared across species based on conserved gene expression programs that likely trace back to the common ancestor of jawed vertebrates. The degree of variation among types increases from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified mammalian orthologs of midget RGCs, which comprise >80% of RGCs in the human retina, subserve high-acuity vision, and were believed to be primate-specific (Berson, 2008); in contrast, the mouse orthologs comprise <2% of mouse RGCs. Projections both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.
Collapse
Affiliation(s)
- Joshua Hahn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Mu Qiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Allison Kao
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Yvonne Kölsch
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ayush Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vincent P Kunze
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashley M. Rasys
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Rose Richardson
- Division of Neuroscience and Centre for Biological Timing, Faculty of Biology Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Robert J. Lucas
- Division of Neuroscience and Centre for Biological Timing, Faculty of Biology Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Markus Meister
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joshua T. Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Yi-Rong Peng
- Department of Ophthalmology, Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095 United States
| | - Joshua R. Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, Vision Science Graduate Group, Center for Computational Biology, Biophysics Graduate Group, California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley CA 94720, USA
- Faculty Scientist, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Jung YJ, Almasi A, Sun SH, Yunzab M, Cloherty SL, Bauquier SH, Renfree M, Meffin H, Ibbotson MR. Orientation pinwheels in primary visual cortex of a highly visual marsupial. SCIENCE ADVANCES 2022; 8:eabn0954. [PMID: 36179020 PMCID: PMC9524828 DOI: 10.1126/sciadv.abn0954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Primary visual cortices in many mammalian species exhibit modular and periodic orientation preference maps arranged in pinwheel-like layouts. The role of inherited traits as opposed to environmental influences in determining this organization remains unclear. Here, we characterize the cortical organization of an Australian marsupial, revealing pinwheel organization resembling that of eutherian carnivores and primates but distinctly different from the simpler salt-and-pepper arrangement of eutherian rodents and rabbits. The divergence of marsupials from eutherians 160 million years ago and the later emergence of rodents and rabbits suggest that the salt-and-pepper structure is not the primitive ancestral form. Rather, the genetic code that enables complex pinwheel formation is likely widespread, perhaps extending back to the common therian ancestors of modern mammals.
Collapse
Affiliation(s)
- Young Jun Jung
- National Vision Research Institute, Melbourne, VIC, Australia
| | - Ali Almasi
- Optalert Limited, Melbourne, VIC, Australia
| | - Shi H. Sun
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Molis Yunzab
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Sebastien H. Bauquier
- Veterinary Hospital, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Marilyn Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Hamish Meffin
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, Melbourne, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
The primary visual cortex of Cetartiodactyls: organization, cytoarchitectonics and comparison with perissodactyls and primates. Brain Struct Funct 2021; 227:1195-1225. [PMID: 34604923 PMCID: PMC9046356 DOI: 10.1007/s00429-021-02392-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022]
Abstract
Cetartiodactyls include terrestrial and marine species, all generally endowed with a comparatively lateral position of their eyes and a relatively limited binocular field of vision. To this day, our understanding of the visual system in mammals beyond the few studied animal models remains limited. In the present study, we examined the primary visual cortex of Cetartiodactyls that live on land (sheep, Père David deer, giraffe); in the sea (bottlenose dolphin, Risso’s dolphin, long-finned pilot whale, Cuvier’s beaked whale, sperm whale and fin whale); or in an amphibious environment (hippopotamus). We also sampled and studied the visual cortex of the horse (a closely related perissodactyl) and two primates (chimpanzee and pig-tailed macaque) for comparison. Our histochemical and immunohistochemical results indicate that the visual cortex of Cetartiodactyls is characterized by a peculiar organization, structure, and complexity of the cortical column. We noted a general lesser lamination compared to simians, with diminished density, and an apparent simplification of the intra- and extra-columnar connections. The presence and distribution of calcium-binding proteins indicated a notable absence of parvalbumin in water species and a strong reduction of layer 4, usually enlarged in the striated cortex, seemingly replaced by a more diffuse distribution in neighboring layers. Consequently, thalamo-cortical inputs are apparently directed to the higher layers of the column. Computer analyses and statistical evaluation of the data confirmed the results and indicated a substantial correlation between eye placement and cortical structure, with a markedly segregated pattern in cetaceans compared to other mammals. Furthermore, cetacean species showed several types of cortical lamination which may reflect differences in function, possibly related to depth of foraging and consequent progressive disappearance of light, and increased importance of echolocation.
Collapse
|
6
|
Murray SJ, Russell KN, Melzer TR, Gray SJ, Heap SJ, Palmer DN, Mitchell NL. Intravitreal gene therapy protects against retinal dysfunction and degeneration in sheep with CLN5 Batten disease. Exp Eye Res 2021; 207:108600. [PMID: 33930398 DOI: 10.1016/j.exer.2021.108600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 01/01/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL; Batten disease) are a group of inherited neurodegenerative diseases primarily affecting children. A common feature across most NCLs is the progressive loss of vision. We performed intravitreal injections of self-complementary AAV9 vectors packaged with either ovine CLN5 or CLN6 into one eye of 3-month-old CLN5-/- or CLN6-/- animals, respectively. Electroretinography (ERG) was performed every month following treatment, and retinal histology was assessed post-mortem in the treated compared to untreated eye. In CLN5-/- animals, ERG amplitudes were normalised in the treated eye whilst the untreated eye declined in a similar manner to CLN5 affected controls. In CLN6-/- animals, ERG amplitudes in both eyes declined over time although the treated eye showed a slower decline. Post-mortem examination revealed significant attenuation of retinal atrophy and lysosomal storage body accumulation in the treated eye compared with the untreated eye in CLN5-/- animals. This proof-of-concept study provides the first observation of efficacious intravitreal gene therapy in a large animal model of NCL. In particular, the single administration of AAV9-mediated intravitreal gene therapy can successfully ameliorate retinal deficits in CLN5-/- sheep. Combining ocular gene therapy with brain-directed therapy presents a promising treatment strategy to be used in future sheep trials aiming to halt neurological and retinal disease in CLN5 Batten disease.
Collapse
Affiliation(s)
- Samantha J Murray
- Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Katharina N Russell
- Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch and the New Zealand Brain Research Institute, Christchurch, 8011, New Zealand
| | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Stephen J Heap
- McMaster & Heap Veterinary Practice, Christchurch, 8025, New Zealand
| | - David N Palmer
- Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand; Department of Radiology, University of Otago, Christchurch, 8140, New Zealand
| | - Nadia L Mitchell
- Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand; Department of Radiology, University of Otago, Christchurch, 8140, New Zealand.
| |
Collapse
|
7
|
Ross M, Ofri R, Aizenberg I, Abu-Siam M, Pe'er O, Arad D, Rosov A, Gootwine E, Dvir H, Honig H, Obolensky A, Averbukh E, Banin E, Gantz L. Naturally-occurring myopia and loss of cone function in a sheep model of achromatopsia. Sci Rep 2020; 10:19314. [PMID: 33168939 PMCID: PMC7653946 DOI: 10.1038/s41598-020-76205-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/23/2020] [Indexed: 01/01/2023] Open
Abstract
Achromatopsia is an inherited retinal disease characterized by loss of cone photoreceptor function. Day blind CNGA3 mutant Improved Awassi sheep provide a large animal model for achromatopsia. This study measured refractive error and axial length parameters of the eye in this model and evaluated chromatic pupillary light reflex (cPLR) testing as a potential screening test for loss of cone function. Twenty-one CNGA3 mutant, Improved Awassi, 12 control Afec-Assaf and 12 control breed-matched wild-type (WT) Awassi sheep were examined using streak retinoscopy and B-mode ocular ultrasonography. Four CNGA3 mutant and four Afec-Assaf control sheep underwent cPLR testing. Statistical tests showed that day-blind sheep are significantly more myopic than both Afec-Assaf and WT Awassi controls. Day-blind sheep had significantly longer vitreous axial length compared to WT Awassi (1.43 ± 0.13 and 1.23 ± 0.06 cm, respectively, p < 0.0002) and no response to bright red light compared to both controls. Lack of response to bright red light is consistent with cone dysfunction, demonstrating that cPLR can be used to diagnose day blindness in sheep. Day-blind sheep were found to exhibit myopia and increased vitreous chamber depth, providing a naturally occurring large animal model of myopia.
Collapse
Affiliation(s)
- Maya Ross
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Itzhak Aizenberg
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Oren Pe'er
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Dikla Arad
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexander Rosov
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Elisha Gootwine
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Hay Dvir
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Hen Honig
- Institute of Animal Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Edward Averbukh
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Liat Gantz
- Department of Optometry and Vision Science, Hadassah Academic College, 37 Haneviim St., Jerusalem, 9101001, Israel.
| |
Collapse
|
8
|
Costa KHA, Gomes BD, Silveira LCDL, Souza GDS, Martins ICVDS, Lacerda EMDCB, Rocha FADF. Ganglion cells and displaced amacrine cells density in the retina of the collared peccary (Pecari tajacu). PLoS One 2020; 15:e0239719. [PMID: 33002017 PMCID: PMC7529232 DOI: 10.1371/journal.pone.0239719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/11/2020] [Indexed: 11/18/2022] Open
Abstract
In the present study, we investigated the topographical distribution of ganglion cells and displaced amacrine cells in the retina of the collared peccary (Pecari tajacu), a diurnal neotropical mammal of the suborder Suina (Order Artiodactyla) widely distributed across central and mainly South America. Retinas were prepared and processed following the Nissl staining method. The number and distribution of retinal ganglion cells and displaced amacrine cells were determined in six flat-mounted retinas from three animals. The average density of ganglion cells was 351.822 ± 31.434 GC/mm2. The peccary shows a well-developed visual streak. The average peak density was 6,767 GC/mm2 and located within the visual range and displaced temporally as an area temporalis. Displaced amacrine cells have an average density of 300 DAC/mm2, but the density was not homogeneous along the retina, closer to the center of the retina the number of cells decreases and when approaching the periphery the density increases, in addition, amacrine cells do not form retinal specialization like ganglion cells. Outside the area temporalis, amacrine cells reach up to 80% in the ganglion cell layer. However, in the region of the area temporalis, the proportion of amacrine cells drops to 32%. Thus, three retinal specializations were found in peccary’s retina by ganglion cells: visual streak, area temporalis and dorsotemporal extension. The topography of the ganglion cells layer in the retina of the peccary resembles other species of Order Artiodactyla already described and is directly related to its evolutionary history and ecology of the species.
Collapse
Affiliation(s)
- Kelly Helorany Alves Costa
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Bruno Duarte Gomes
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
| | - Luiz Carlos de Lima Silveira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brasil
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brasil
- Universidade CEUMA, São Luís, Maranhão, Brasil
| | | | | | | | | |
Collapse
|
9
|
Abstract
A retina completely devoid of topographic variations would be homogenous, encoding any given feature uniformly across the visual field. In a naive view, such homogeneity would appear advantageous. However, it is now clear that retinal topographic variations exist across mammalian species in a variety of forms and patterns. We briefly review some of the more established topographic variations in retinas of different mammalian species and focus on the recent discovery that cells belonging to a single neuronal subtype may exhibit distinct topographic variations in distribution, morphology, and even function. We concentrate on the mouse retina-originally viewed as homogenous-in which genetic labeling of distinct neuronal subtypes and other advanced techniques have revealed unexpected anatomical and physiological topographic variations. Notably, different subtypes reveal different patterns of nonuniformity, which may even be opposite or orthogonal to one another. These topographic variations in the encoding of visual space should be considered when studying visual processing in the retina and beyond.
Collapse
Affiliation(s)
- Alina Sophie Heukamp
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; , ,
| | - Rebekah Anne Warwick
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; , ,
| | - Michal Rivlin-Etzion
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; , ,
| |
Collapse
|
10
|
Nadal-Nicolás FM, Kunze VP, Ball JM, Peng BT, Krishnan A, Zhou G, Dong L, Li W. True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field. eLife 2020; 9:e56840. [PMID: 32463363 PMCID: PMC7308094 DOI: 10.7554/elife.56840] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Color, an important visual cue for survival, is encoded by comparing signals from photoreceptors with different spectral sensitivities. The mouse retina expresses a short wavelength-sensitive and a middle/long wavelength-sensitive opsin (S- and M-opsin), forming opposing, overlapping gradients along the dorsal-ventral axis. Here, we analyzed the distribution of all cone types across the entire retina for two commonly used mouse strains. We found, unexpectedly, that 'true S-cones' (S-opsin only) are highly concentrated (up to 30% of cones) in ventral retina. Moreover, S-cone bipolar cells (SCBCs) are also skewed towards ventral retina, with wiring patterns matching the distribution of true S-cones. In addition, true S-cones in the ventral retina form clusters, which may augment synaptic input to SCBCs. Such a unique true S-cone and SCBC connecting pattern forms a basis for mouse color vision, likely reflecting evolutionary adaptation to enhance color coding for the upper visual field suitable for mice's habitat and behavior.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Vincent P Kunze
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - John M Ball
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Brian T Peng
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Akshay Krishnan
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Gaohui Zhou
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
11
|
Ibbotson M, Jung YJ. Origins of Functional Organization in the Visual Cortex. Front Syst Neurosci 2020; 14:10. [PMID: 32194379 PMCID: PMC7063058 DOI: 10.3389/fnsys.2020.00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 01/25/2023] Open
Abstract
How are the complex maps for orientation selectivity (OS) created in the primary visual cortex (V1)? Rodents and rabbits have a random distribution of OS preferences across V1 while in cats, ferrets, and all primates cells with similar OS preferences cluster together into relatively wide cortical columns. Given other clear similarities in the organization of the visual pathways, why is it that maps coding OS preferences are so radically different? Prominent models have been created of cortical OS mapping that incorporate Hebbian plasticity, intracortical interactions, and the properties of growing axons. However, these models suggest that the maps arise primarily through intracortical interactions. Here we focus on several other features of the visual system and brain that may influence V1 structure. These are: eye divergence, the total number of cells in V1, the thalamocortical networks, the topography of the retina and phylogeny. We outline the evidence for and against these factors contributing to map formation. One promising theory is that the central-to-peripheral ratio (CP ratio) of retinal cell density can be used to predict whether or not a species has pinwheel maps. Animals with high CP ratios (>7) have orientation columns while those with low CP ratios (<4) have random OS maps. The CP ratio is related to the total number of cells in cortex, which also appears to be a reasonable contributing factor. However, while these factors correlate with map structure to some extent, there is a gray area where certain species do not fit elegantly into the theory. A problem with the existing literature is that OS maps have been investigated in only a small number of mammals, from a small fraction of the mammalian phylogenetic tree. We suggest four species (agouti, fruit bat, sheep, and wallaby) that have a range of interesting characteristics, which sit at intermediate locations between primates and rodents, that make them good targets for filling in the missing gaps in the literature. We make predictions about the map structures of these species based on the organization of their brains and visual systems and, in doing so, set possible paths for future research.
Collapse
Affiliation(s)
- Michael Ibbotson
- Australian College of Optometry, National Vision Research Institute, Carlton, VIC, Australia.,Department of Optometry and Vision Science, The University of Melbourne, Parkville, VIC, Australia
| | - Young Jun Jung
- Australian College of Optometry, National Vision Research Institute, Carlton, VIC, Australia.,Department of Optometry and Vision Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Coimbra JP, Alagaili AN, Bennett NC, Mohammed OB, Manger PR. Unusual topographic specializations of retinal ganglion cell density and spatial resolution in a cliff-dwelling artiodactyl, the Nubian ibex (Capra nubiana). J Comp Neurol 2019; 527:2813-2825. [PMID: 31045240 DOI: 10.1002/cne.24709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 11/12/2022]
Abstract
The Nubian ibex (Capra nubiana) occurs in information-rich visual habitats including the edges of cliffs and escarpments. In addition to needing enhanced spatial resolution to find food and detect predators, enhanced visual sampling of the lower visual field would be advantageous for the control of locomotion in such precarious terrains. Using retinal wholemounts and stereology, we sought to measure how the ganglion cell density varies across the retina of the Nubian ibex to reveal which portions of its surroundings are sampled with high resolution. We estimated a total of ~1 million ganglion cells in the Nubian ibex retinal ganglion cell layer. Topographic variations of ganglion cell density reveal a temporal area, a horizontal streak, and a dorsotemporal extension, which are topographic retinal features also found in other artiodactyls. In contrast to savannah-dwelling artiodactyls, the horizontal streak of the Nubian ibex appears loosely organized possibly reflecting a reduced predation risk in mountainous habitats. Estimates of spatial resolving power (~17 cycles/degree) for the temporal area would be reasonable to facilitate foraging in the frontal visual field. Embedded in the dorsotemporal extension, we also found an unusual dorsotemporal area not yet reported in any other mammal. Given its location and spatial resolving power (~6 cycles/degree), this specialization enhances visual sampling toward the lower visual field, which would be advantageous for visually guided locomotion. This study expands our understanding of the retinal organization in artiodactyls and offers insights on the importance of vision for the Nubian ibex ecology.
Collapse
Affiliation(s)
- João Paulo Coimbra
- School of Anatomical Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Abdulaziz N Alagaili
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Nigel C Bennett
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh, Saudi Arabia.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Osama B Mohammed
- KSU Mammals Research Chair, Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Paul R Manger
- School of Anatomical Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| |
Collapse
|
13
|
Lindenau W, Kuhrt H, Ulbricht E, Körner K, Bringmann A, Reichenbach A. Cone-to-Müller cell ratio in the mammalian retina: A survey of seven mammals with different lifestyle. Exp Eye Res 2019; 181:38-48. [PMID: 30641045 DOI: 10.1016/j.exer.2019.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 11/25/2022]
Abstract
Mammalian retinal glial (Müller) cells are known to guide light through the inner retina to photoreceptors (Franze et al., 2007; Proc Natl Acad Sci U S A 104:8287-8292). It was shown that Müller cells transmit predominantly red-green and less violet-blue light (Labin et al., 2014; Nat Commun 5:4319). It is not known whether this optical function is reflected in the cone-to-Müller cell ratio. To determine this ratio in the retinas of mammals with different lifestyle, we evaluated the local densities of cones and Müller cells in the retinas of guinea pigs, rabbits, sheep, red deer, roe deer, domestic pigs, and wild boars. Retinal wholemounts were labeled with peanut agglutinin to mark cones and anti-vimentin antibodies to identify Müller cells. Wholemounts of guinea pig and rabbit retinas were also labeled with anti-S-opsin-antibodies. With the exceptions of guinea pig and pig retinas that had cone-to-Müller cell ratios of above one, the local densities of cones and Müller cells in the retinas of the species investigated were roughly equal. Because the proportion of S-cones is usually low (for example, 5.3% of all cones in the dorsal guinea pig retina expressed S-opsin), it is suggested that Müller cells are mainly coupled to M-cones. Exceptions are the ventral peripheries of guinea pig and rabbit retinas which are specialized areas with high S-cone densities. Here, up to 50% of Müller cells may be coupled to S-cones, and 40% of S-cones may be not coupled to Müller cells. Among the species investigated, the density of Müller cells in the central retina was inversely correlated with the axial length of the eyes. It is suggested that (with the exception of specialized S-cone areas) Müller cells support high acuity vision by predominant guidance of red-green light to M-opsin expressing cones.
Collapse
Affiliation(s)
- Wilhelm Lindenau
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Heidrun Kuhrt
- Institute of Anatomy, Medical Faculty, University of Leipzig, Germany
| | - Elke Ulbricht
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Katrin Körner
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, Medical Faculty, University of Leipzig, Leipzig, Germany.
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Kuniyoshi N, Yoshida Y, Itoh Y, Yokota SI, Kuraishi T, Hattori S, Kondo T, Yoshizawa M, Kai C, Kiso Y, Kusakabe KT. Morphological analyses of the retinal photoreceptor cells in the nocturnally adapted owl monkeys. J Vet Med Sci 2018; 80:413-420. [PMID: 29375079 PMCID: PMC5880819 DOI: 10.1292/jvms.17-0418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Owl monkeys are the only one species possessing the nocturnal lifestyles among the simian monkeys. Their eyes and retinas have been interested associating with the nocturnal adaptation. We examined the cellular
specificity and electroretinogram (ERG) reactivity in the retina of the owl monkeys by comparison with the squirrel monkeys, taxonomically close-species and expressing diurnal behavior. Owl monkeys did not have clear
structure of the foveal pit by the funduscope, whereas the retinal wholemount specimens indicated a small-condensed spot of the ganglion cells. There were abundant numbers of the rod photoreceptor cells in owl monkeys
than those of the squirrel monkeys. However, the owl monkeys’ retina did not possess superiority for rod cell-reactivity in the scotopic ERG responses. Scanning electron microscopic observation revealed that the rod
cells in owl monkeys’ retina had very small-sized inner and outer segments as compared with squirrel monkeys. Owl monkeys showed typical nocturnal traits such as rod-cell dominance. However, the individual photoreceptor
cells seemed to be functionally weak for visual capacity, caused from the morphological immaturity at the inner and outer segments.
Collapse
Affiliation(s)
- Nobue Kuniyoshi
- Laboratory of Basic Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Yuji Yoshida
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Yoshiki Itoh
- Laboratory of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Shin-Ichi Yokota
- Amami Laboratory of Injurious Animals, Institute of Medical Science, The University of Tokyo, Kagoshima 894-1531, Japan
| | - Takeshi Kuraishi
- Amami Laboratory of Injurious Animals, Institute of Medical Science, The University of Tokyo, Kagoshima 894-1531, Japan.,Present affiliation: HAMURI Co., Ltd., Ibaraki 306-0101, Japan
| | - Shosaku Hattori
- Amami Laboratory of Injurious Animals, Institute of Medical Science, The University of Tokyo, Kagoshima 894-1531, Japan
| | - Tomohiro Kondo
- Laboratory of Laboratory Animal Science, Division of Veterinary Science, Graduate School of Life and Environmental Science, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Midori Yoshizawa
- Graduate School of Agricultural Science, Utsunomiya University, Tochigi 321-8505, Japan
| | - Chieko Kai
- Amami Laboratory of Injurious Animals, Institute of Medical Science, The University of Tokyo, Kagoshima 894-1531, Japan
| | - Yasuo Kiso
- Laboratory of Basic Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Ken Takeshi Kusakabe
- Laboratory of Basic Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
15
|
Coimbra JP, Bertelsen MF, Manger PR. Retinal ganglion cell topography and spatial resolving power in the river hippopotamus (Hippopotamus amphibius
). J Comp Neurol 2017; 525:2499-2513. [DOI: 10.1002/cne.24179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/10/2022]
Affiliation(s)
- João Paulo Coimbra
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg South Africa
| | - Mads F. Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo; Fredericksberg Denmark
| | - Paul R. Manger
- School of Anatomical Sciences; University of the Witwatersrand; Johannesburg South Africa
| |
Collapse
|
16
|
Fornazari GA, Montiani-Ferreira F, Filho IRDB, Somma AT, Moore B. The eye of the Barbary sheep or aoudad (Ammotragus lervia): reference values for selected ophthalmic diagnostic tests, morphologic and biometric observations. Open Vet J 2016; 6:102-13. [PMID: 27419103 PMCID: PMC4935764 DOI: 10.4314/ovj.v6i2.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/18/2016] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to describe the normal ocular anatomy and establish reference values for ophthalmic tests in the Barbary sheep or aoudad (Ammotragus lervia). Aoudad eyes are large and laterally positioned in the head with several specialized anatomic features attributed to evolutionary adaptations for grazing. Normal values for commonly used ophthalmic tests were established, Schirmer tear test (STT) - 27.22 ± 3.6 mm/min; Predominant ocular surface bacterial microbiota - Staphylococcus sp.; Corneal esthesiometry- 1.3 ± 0.4 cm; Intraocular pressure by rebound tonometry- 19.47 ± 3.9 mmHg; Corneal thickness- 630.07 ± 20.67 µm, B-mode ultrasonography of the globe-axial eye globe length 29.94 ± 0.96 mm, anterior chamber depth 5.03 ± 0.17 mm, lens thickness 9.4 ± 0.33 mm, vitreous chamber depth 14.1 ± 0.53 mm; Corneal diameter-horizontal corneal diameter 25.05 ± 2.18 mm, vertical corneal diameter 17.95 ± 1.68 mm; Horizontal palpebral fissure length- 34.8 ± 3.12 mm. Knowledge of these normal anatomic variations, biometric findings and normal parameters for ocular diagnostic tests may assist veterinary ophthalmologists in the diagnosis of ocular diseases in this and other similar species.
Collapse
Affiliation(s)
- G A Fornazari
- Universidade Federal do Paraná, Programa de Pós-Graduação em Ciências Veterinárias, Rua dos Funcionários 1540, 8035-050, Curitiba, PR. Brazil
| | - F Montiani-Ferreira
- Universidade Federal do Paraná, Programa de Pós-Graduação em Ciências Veterinárias, Rua dos Funcionários 1540, 8035-050, Curitiba, PR. Brazil
| | - I R de Barros Filho
- Universidade Federal do Paraná, Programa de Pós-Graduação em Ciências Veterinárias, Rua dos Funcionários 1540, 8035-050, Curitiba, PR. Brazil
| | - A T Somma
- Universidade Federal do Paraná, Programa de Pós-Graduação em Ciências Veterinárias, Rua dos Funcionários 1540, 8035-050, Curitiba, PR. Brazil
| | - B Moore
- Veterinary Specialty Hospital of San Diego, 10435 Sorrento Valley Road, San Diego, CA 92121, USA
| |
Collapse
|
17
|
Kostic C, Arsenijevic Y. Animal modelling for inherited central vision loss. J Pathol 2015; 238:300-10. [PMID: 26387748 PMCID: PMC5063185 DOI: 10.1002/path.4641] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 01/01/2023]
Abstract
Disease-causing variants of a large number of genes trigger inherited retinal degeneration leading to photoreceptor loss. Because cones are essential for daylight and central vision such as reading, mobility, and face recognition, this review focuses on a variety of animal models for cone diseases. The pertinence of using these models to reveal genotype/phenotype correlations and to evaluate new therapeutic strategies is discussed. Interestingly, several large animal models recapitulate human diseases and can serve as a strong base from which to study the biology of disease and to assess the scale-up of new therapies. Examples of innovative approaches will be presented such as lentiviral-based transgenesis in pigs and adeno-associated virus (AAV)-gene transfer into the monkey eye to investigate the neural circuitry plasticity of the visual system. The models reported herein permit the exploration of common mechanisms that exist between different species and the identification and highlighting of pathways that may be specific to primates, including humans.
Collapse
Affiliation(s)
- Corinne Kostic
- Unit of Gene Therapy and Stem Cell Biology, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Switzerland
| | - Yvan Arsenijevic
- Unit of Gene Therapy and Stem Cell Biology, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Switzerland
| |
Collapse
|
18
|
The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Prog Retin Eye Res 2015; 48:137-59. [DOI: 10.1016/j.preteyeres.2015.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/12/2015] [Accepted: 04/16/2015] [Indexed: 01/19/2023]
|
19
|
Banin E, Gootwine E, Obolensky A, Ezra-Elia R, Ejzenberg A, Zelinger L, Honig H, Rosov A, Yamin E, Sharon D, Averbukh E, Hauswirth WW, Ofri R. Gene Augmentation Therapy Restores Retinal Function and Visual Behavior in a Sheep Model of CNGA3 Achromatopsia. Mol Ther 2015; 23:1423-33. [PMID: 26087757 DOI: 10.1038/mt.2015.114] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/05/2015] [Indexed: 12/15/2022] Open
Abstract
Achromatopsia is a hereditary form of day blindness caused by cone photoreceptor dysfunction. Affected patients suffer from congenital color blindness, photosensitivity, and low visual acuity. Mutations in the CNGA3 gene are a major cause of achromatopsia, and a sheep model of this disease was recently characterized by our group. Here, we report that unilateral subretinal delivery of an adeno-associated virus serotype 5 (AAV5) vector carrying either the mouse or the human intact CNGA3 gene under the control of the red/green opsin promoter results in long-term recovery of visual function in CNGA3-mutant sheep. Treated animals demonstrated shorter maze passage times and a reduced number of collisions with obstacles compared with their pretreatment status, with values close to those of unaffected sheep. This effect was abolished when the treated eye was patched. Electroretinography (ERG) showed marked improvement in cone function. Retinal expression of the transfected human and mouse CNGA3 genes at the mRNA level was shown by polymerase chain reaction (PCR), and cone-specific expression of CNGA3 protein was demonstrated by immunohistochemisrty. The rescue effect has so far been maintained for over 3 years in the first-treated animals, with no obvious ocular or systemic side effects. The results support future application of subretinal AAV5-mediated gene-augmentation therapy in CNGA3 achromatopsia patients.
Collapse
Affiliation(s)
- Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elisha Gootwine
- Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Raaya Ezra-Elia
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Ayala Ejzenberg
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lina Zelinger
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hen Honig
- Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Alexander Rosov
- Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Esther Yamin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Edward Averbukh
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
20
|
Yamaue Y, Hosaka YZ, Uehara M. Spatial relationships among the cellular tapetum, visual streak and rod density in dogs. J Vet Med Sci 2014; 77:175-9. [PMID: 25728250 PMCID: PMC4363019 DOI: 10.1292/jvms.14-0447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The dog visual system is well suited to dim light conditions due to rod-dominated retina and the reflective tapetum. The topographical distributions of rods and thickness of the tapetum of the dog were quantified in retinal whole mounts stained with thionine, and spatial relationships among the tapetum, rod density and visual streak of high ganglion cell density were elucidated. The relationship between the retina and tapetum was analyzed in parasagittal sections stained with thionine or hematoxylin-eosin. The tapetum was thick in its center, and the thickest part consisted of 9 to 12 tapetal cell layers. Rod density ranged from 200,000 to 540,000/mm2. Maximum rod density was found in the area dorsal to the visual streak, and the density in that area was significantly higher than the rod density in the visual streak and accorded spatially with the thickest part of the tapetum. The horizontal visual streak was found over the horizontal line through the optic disc
in the temporal half and extended slightly into the nasal half. The central area of the highest density of ganglion cells was approximately located midway between the nasal and temporal ends of the visual streak. The visual streak was located within the tapetal area, but ventrally to the thick part of the tapetum.
Collapse
Affiliation(s)
- Yasuhiro Yamaue
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | | | | |
Collapse
|
21
|
Vlahos LM, Knott B, Valter K, Hemmi JM. Photoreceptor topography and spectral sensitivity in the common brushtail possum (Trichosurus vulpecula). J Comp Neurol 2014; 522:3423-36. [PMID: 24737644 DOI: 10.1002/cne.23610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 12/22/2022]
Abstract
Marsupials are believed to be the only non-primate mammals with both trichromatic and dichromatic color vision. The diversity of color vision systems present in marsupials remains mostly unexplored. Marsupials occupy a diverse range of habitats, which may have led to considerable variation in the presence, density, distribution, and spectral sensitivity of retinal photoreceptors. In this study we analyzed the distribution of photoreceptors in the common brushtail possum (Trichosurus vulpecula). Immunohistochemistry in wholemounts revealed three cone subpopulations recognized within two spectrally distinct cone classes. Long-wavelength sensitive (LWS) single cones were the largest cone subgroup (67-86%), and formed a weak horizontal visual streak (peak density 2,106 ± 435/mm2) across the central retina. LWS double cones were strongly concentrated ventrally (569 ± 66/mm2), and created a "negative" visual streak (134 ± 45/mm2) in the central retina. The strong regionalization between LWS cone topographies suggests differing visual functions. Short-wavelength sensitive (SWS) cones were present in much lower densities (3-10%), mostly located ventrally (179 ± 101/mm2). A minority population of cones (0-2.4%) remained unlabeled by both SWS- and LWS-specific antibodies, and may represent another cone population. Microspectrophotometry of LWS cone and rod visual pigments shows peak spectral sensitivities at 544 nm and 500 nm, respectively. Cone to ganglion cell convergences remain low and constant across the retina, thereby maintaining good visual acuity, but poor contrast sensitivity during photopic vision. Given that brushtail possums are so strongly nocturnal, we hypothesize that their acuity is set by the scotopic visual system, and have minimized the number of cones necessary to serve the ganglion cells for photopic vision.
Collapse
Affiliation(s)
- Lisa M Vlahos
- ARC Centre of Excellence in Vision Science, Australian National University, Canberra, ACT 0200, Australia; Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
22
|
Coimbra JP, Collin SP, Hart NS. Topographic specializations in the retinal ganglion cell layer correlate with lateralized visual behavior, ecology, and evolution in cockatoos. J Comp Neurol 2014; 522:3363-85. [DOI: 10.1002/cne.23637] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 11/10/2022]
Affiliation(s)
- João Paulo Coimbra
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
- School of Anatomical Sciences, The University of the Witwatersrand; Parktown 2193 Johannesburg South Africa
| | - Shaun P. Collin
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
| | - Nathan S. Hart
- School of Animal Biology, The University of Western Australia; Crawley Western Australia 6009 Australia
- The Oceans Institute, The University of Western Australia; Crawley Western Australia 6009 Australia
| |
Collapse
|
23
|
Wang HH, Gallagher SK, Byers SR, Madl JE, Gionfriddo JR. Retinal ganglion cell distribution and visual acuity in alpacas (Vicugna pacos). Vet Ophthalmol 2013; 18:35-42. [DOI: 10.1111/vop.12131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hsiao-Hui Wang
- Department of Biomedical Sciences; Colorado State University; Fort Collins CO 80523 USA
| | - Shannon K. Gallagher
- Department of Biomedical Sciences; Colorado State University; Fort Collins CO 80523 USA
| | - Stacey R. Byers
- Department of Clinical Sciences; Colorado State University; Fort Collins CO 80523 USA
| | - James E. Madl
- Department of Biomedical Sciences; Colorado State University; Fort Collins CO 80523 USA
| | - Juliet R. Gionfriddo
- Department of Clinical Sciences; Colorado State University; Fort Collins CO 80523 USA
| |
Collapse
|
24
|
Shinozaki A, Takagi S, Hosaka YZ, Uehara M. The fibrous tapetum of the horse eye. J Anat 2013; 223:509-18. [PMID: 24102505 DOI: 10.1111/joa.12100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2013] [Indexed: 11/30/2022] Open
Abstract
The tapetum lucidum is a light-reflective tissue in the eyes of many animals. Many ungulates have a fibrous tapetum. The horse has one of the largest eyes of any living animal and also has excellent vision in low-light environments. This study aimed to clarify the macroscopic tapetal shape, relationship between the tapetal thickness and the degree of pigmentation of the retinal pigment epithelium (RPE), spatial relationship between the visual streak and the tapetum, and wavelength of the light reflected from the tapetum in the horse. Macroscopically, weak light revealed the tapetum as a horizontal band located dorsal to and away from the optic disc. The tapetum expanded dorsally as the illumination increased. The tapetal tissue consisted of lamellae of collagen fibrils running parallel to the retinal surface; these spread over almost the entire ocular fundus and were thicker in the horizontal band dorsal to the disc. Only the horizontal band of the tapetum was covered by unpigmented RPE, suggesting that this band reflects light and is responsible for mesopic and scotopic vision. The visual streak was located in the ventral part of the horizontal band, ventral to the thickest part of the tapetum. The wavelength of the light reflected from the horizontal band of the tapetum was estimated from the diameter and interfibrous distance of the collagen fibrils to be approximately 468 nm. Therefore, the light reflected from the tapetum should be more effectively absorbed by rods than by cones, and should not interfere with photopic vision.
Collapse
Affiliation(s)
- Aya Shinozaki
- Department of Veterinary Medicine, Tottori University, Tottori, Japan
| | | | | | | |
Collapse
|
25
|
Coimbra JP, Hart NS, Collin SP, Manger PR. Scene from above: Retinal ganglion cell topography and spatial resolving power in the giraffe (Giraffa camelopardalis). J Comp Neurol 2013; 521:2042-57. [DOI: 10.1002/cne.23271] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 11/16/2012] [Accepted: 11/20/2012] [Indexed: 01/31/2023]
|
26
|
Amann B, Hirmer S, Hauck SM, Kremmer E, Ueffing M, Deeg CA. True blue: S-opsin is widely expressed in different animal species. J Anim Physiol Anim Nutr (Berl) 2012; 98:32-42. [PMID: 23173557 DOI: 10.1111/jpn.12016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Colour vision in animals is an interesting, fascinating subject. In this study, we examined a wide variety of species for expression of S-opsin (blue sensitive) and M-/L-opsin (green-red sensitive) in retinal cones using two novel monoclonal antibodies specific for peptides from human opsins. Mouse, rat and hare did not express one of the investigated epitopes, but we could clearly prove existence of cones through peanut agglutinin labelling. Retinas of guinea pig, dog, wolf, marten, cat, roe deer, pig and horse were positive for S-opsin, but not for M-/L-opsin. Nevertheless all these species are clearly at least dichromats, because we could detect further S-opsin negative cones by labelling with cone arrestin specific antibody. In contrast, pheasant and char had M-/L-opsin positive cones, but no S-opsin expressing cones. Sheep, cattle, monkey, men, pigeon, duck and chicken were positive for both opsins. Visual acuity analyzed through density of retinal ganglion cells revealed least visual discrimination by horses and highest resolution in pheasant and pigeon. Most mammals studied are dichromats with visual perception similar to red-green blind people.
Collapse
Affiliation(s)
- B Amann
- Institute of Animal Physiology, Department of Veterinary Sciences, LMU Munich, München, Germany Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Moore BA, Baumhardt P, Doppler M, Randolet J, Blackwell BF, DeVault TL, Loew ER, Fernández-Juricic E. Oblique color vision in an open-habitat bird: spectral sensitivity, photoreceptor distribution and behavioral implications. J Exp Biol 2012; 215:3442-52. [PMID: 22956248 DOI: 10.1242/jeb.073957] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Color vision is not uniform across the retina because of differences in photoreceptor density and distribution. Retinal areas with a high density of cone photoreceptors may overlap with those with a high density of ganglion cells, increasing hue discrimination. However, there are some exceptions to this cell distribution pattern, particularly in species with horizontal visual streaks (bands of high ganglion cell density across the retina) that live in open habitats. We studied the spectral sensitivity and distribution of cone photoreceptors involved in chromatic and achromatic vision in the Canada goose (Branta canadiensis), which possesses an oblique rather than horizontal visual streak at the ganglion cell layer. Using microspectrophotometry, we found that the Canada goose has a violet-sensitive visual system with four visual pigments with absorbance peaks at 409, 458, 509 and 580 nm. The density of most cones involved in chromatic and achromatic vision peaked along a band across the retina that matched the oblique orientation of the visual streak. With the information on visual sensitivity, we calculated chromatic and achromatic contrasts of different goose plumage regions. The regions with the highest visual saliency (cheek, crown, neck and upper tail coverts) were the ones involved in visual displays to maintain flock cohesion. The Canada goose oblique visual streak is the retinal center for chromatic and achromatic vision, allowing individuals to sample the sky and the ground simultaneously or the horizon depending on head position. Overall, our results show that the Canada goose visual system has features that make it rather different from that of other vertebrates living in open habitats.
Collapse
Affiliation(s)
- Bret A. Moore
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Patrice Baumhardt
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Megan Doppler
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Jacquelyn Randolet
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | - Bradley F. Blackwell
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Ohio Field Station, Sandusky, OH 44870, USA
| | - Travis L. DeVault
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Ohio Field Station, Sandusky, OH 44870, USA
| | - Ellis R. Loew
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Esteban Fernández-Juricic
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
28
|
Why different regions of the retina have different spectral sensitivities: A review of mechanisms and functional significance of intraretinal variability in spectral sensitivity in vertebrates. Vis Neurosci 2011; 28:281-93. [DOI: 10.1017/s0952523811000113] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractVision is used in nearly all aspects of animal behavior, from prey and predator detection to mate selection and parental care. However, the light environment typically is not uniform in every direction, and visual tasks may be specific to particular parts of an animal’s field of view. These spatial differences may explain the presence of several adaptations in the eyes of vertebrates that alter spectral sensitivity of the eye in different directions. Mechanisms that alter spectral sensitivity across the retina include (but are not limited to) variations in: corneal filters, oil droplets, macula lutea, tapeta, chromophore ratios, photoreceptor classes, and opsin expression. The resultant variations in spectral sensitivity across the retina are referred to as intraretinal variability in spectral sensitivity (IVSS). At first considered an obscure and rare phenomenon, it is becoming clear that IVSS is widespread among all vertebrates, and examples have been found from every major group. This review will describe the mechanisms mediating differences in spectral sensitivity, which are in general well understood, as well as explore the functional significance of intraretinal variability, which for the most part is unclear at best.
Collapse
|