1
|
Culbert BM, Regish AM, Hall DJ, McCormick SD, Bernier NJ. Neuroendocrine Regulation of Plasma Cortisol Levels During Smoltification and Seawater Acclimation of Atlantic Salmon. Front Endocrinol (Lausanne) 2022; 13:859817. [PMID: 35528002 PMCID: PMC9069684 DOI: 10.3389/fendo.2022.859817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Diadromous fishes undergo dramatic changes in osmoregulatory capacity in preparation for migration between freshwater and seawater. One of the primary hormones involved in coordinating these changes is the glucocorticoid hormone, cortisol. In Atlantic salmon (Salmo salar), cortisol levels increase during the spring smoltification period prior to seawater migration; however, the neuroendocrine factors responsible for regulating the hypothalamic-pituitary-interrenal (HPI) axis and plasma cortisol levels during smoltification remain unclear. Therefore, we evaluated seasonal changes in circulating levels of cortisol and its primary secretagogue-adrenocorticotropic hormone (ACTH)-as well as transcript abundance of the major regulators of HPI axis activity in the preoptic area, hypothalamus, and pituitary between migratory smolts and pre-migratory parr. Smolts exhibited higher plasma cortisol levels compared to parr across all timepoints but circulating ACTH levels were only elevated in May. Transcript abundance of preoptic area corticotropin-releasing factor b1 and arginine vasotocin were ~2-fold higher in smolts compared to parr in February through May. Smolts also had ~7-fold greater hypothalamic transcript abundance of urotensin 1 (uts-1a) compared to parr in May through July. When transferred to seawater during peak smolting in May smolts rapidly upregulated hypothalamic uts-1a transcript levels within 24 h, while parr only transiently upregulated uts-1a 96 h post-transfer. In situ hybridization revealed that uts-1a is highly abundant in the lateral tuberal nucleus (NLT) of the hypothalamus, consistent with a role in regulating the HPI axis. Overall, our results highlight the complex, multifactorial regulation of cortisol and provide novel insight into the neuroendocrine mechanisms controlling osmoregulation in teleosts.
Collapse
Affiliation(s)
- Brett M. Culbert
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
- *Correspondence: Brett M. Culbert,
| | - Amy M. Regish
- U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, United States
| | - Daniel J. Hall
- U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, United States
| | - Stephen D. McCormick
- U.S. Geological Survey, Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, Turners Falls, MA, United States
- Department of Biology, University of Massachusetts, Amherst, Amherst, MA, United States
| | | |
Collapse
|
2
|
Mikloska KV, Zrini ZA, Bernier NJ. Severe hypoxia exposure inhibits larval brain development but does not affect the capacity to mount a cortisol stress response in zebrafish. J Exp Biol 2021; 225:274120. [PMID: 34931659 DOI: 10.1242/jeb.243335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022]
Abstract
Fish nursery habitats are increasingly hypoxic and the brain is recognized as highly hypoxia-sensitive, yet there is a lack of information on the effects of hypoxia on the development and function of the larval fish brain. Here, we tested the hypothesis that by inhibiting brain development, larval exposure to severe hypoxia has persistent functional effects on the cortisol stress response in zebrafish (Danio rerio). Exposing 5 days post-fertilization (dpf) larvae to 10% dissolved O2 (DO) for 16 h only marginally reduced survival, but it decreased forebrain neural proliferation by 55%, and reduced the expression of neurod1, gfap, and mbpa, markers of determined neurons, glia, and oligodendrocytes, respectively. The 5 dpf hypoxic exposure also elicited transient increases in whole body cortisol and in crf, uts1, and hsd20b2 expression, key regulators of the endocrine stress response. Hypoxia exposure at 5 dpf also inhibited the cortisol stress response to hypoxia in 10 dpf larvae and increased hypoxia tolerance. However, 10% DO exposure at 5 dpf for 16h did not affect the cortisol stress response to a novel stressor in 10 dpf larvae or the cortisol stress response to hypoxia in adult fish. Therefore, while larval exposure to severe hypoxia can inhibit brain development, it also increases hypoxia tolerance. These effects may transiently reduce the impact of hypoxia on the cortisol stress response but not its functional capacity to respond to novel stressors. We conclude that the larval cortisol stress response in zebrafish has a high capacity to cope with severe hypoxia-induced neurogenic impairment.
Collapse
Affiliation(s)
- Kristina V Mikloska
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Zoe A Zrini
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
3
|
Sobrido-Cameán D, Anadón R, Barreiro-Iglesias A. Expression of Urocortin 3 mRNA in the Central Nervous System of the Sea Lamprey Petromyzon marinus. BIOLOGY 2021; 10:biology10100978. [PMID: 34681077 PMCID: PMC8533218 DOI: 10.3390/biology10100978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/24/2021] [Indexed: 01/12/2023]
Abstract
In this study, we analyzed the organization of urocortin 3 (Ucn3)-expressing neuronal populations in the brain of the adult sea lamprey by means of in situ hybridization. We also studied the brain of larval sea lampreys to establish whether this prosocial neuropeptide is expressed differentially in two widely different phases of the sea lamprey life cycle. In adult sea lampreys, Ucn3 transcript expression was observed in neurons of the striatum, prethalamus, nucleus of the medial longitudinal fascicle, torus semicircularis, isthmic reticular formation, interpeduncular nucleus, posterior rhombencephalic reticular formation and nucleus of the solitary tract. Interestingly, in larval sea lampreys, only three regions showed Ucn3 expression, namely the prethalamus, the nucleus of the medial longitudinal fascicle and the posterior rhombencephalic reticular formation. A comparison with distributions of Ucn3 in other vertebrates revealed poor conservation of Ucn3 expression during vertebrate evolution. The large qualitative differences in Ucn3 expression observed between larval and adult phases suggest that the maturation of neuroregulatory circuits in the striatum, torus semicircularis and hindbrain chemosensory systems is closely related to profound life-style changes occurring after the transformation from larval to adult life.
Collapse
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (D.S.-C.); (R.A.)
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Ramón Anadón
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (D.S.-C.); (R.A.)
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (D.S.-C.); (R.A.)
- Correspondence:
| |
Collapse
|
4
|
Zhou H, Chen A, Lu W. Corticotropin-releasing hormone reduces basal estradiol production in zebrafish follicular cells. Mol Cell Endocrinol 2021; 527:111222. [PMID: 33652099 DOI: 10.1016/j.mce.2021.111222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 12/21/2022]
Abstract
Corticotropin-releasing hormone (CRH) plays a key regulatory role in coordinating the regulation of endocrine, autonomic nervous, immune, and reproductive systems. Two CRH (CRHα and CRHβ) and their receptors (CRHR1 and CRHR2) had been identified in zebrafish. However, their functions remained uncovered in the ovary of zebrafish. Therefore, this study aimed to determine whether CRH acts directly on the ovary to regulate steroidogenesis in cultured zebrafish follicular cells. Firstly, CRH and its receptors are expressed in the zebrafish ovary. The expression profile of CRHβ fluctuated during ovarian development in zebrafish, and the highest CRHα mRNA levels were observed at the mature follicle. The highest CRHR1 and CRHR2 mRNA levels existed in mid-vitellogenic (MV) and early vitellogenic (EV) stages, respectively. In primary cultured zebrafish follicular cells, both of the CRHα and CRHβ inhibited expression of hsd17b3 mRNA levels and decreased content of estradiol (E2) in the medium. Furthermore, CRH activated p38 MAPK and p38 MAPK inhibitor SB203580 attenuated the phosphorylation of p38 MAPK induced by CRHα. Simultaneously, SB203580 changed the effect of CRH on cyp19a1a expression but not hsd17b1 and hsd17b3. SB203580 alone or combined with CRH inhibited the E2 content. Finally, the CRHR inhibitor α-helical 9-41 also blocked the phosphorylation of p38 MAPK induced by CRHα but did not change the inhibitory effect of CRH on the mRNA expression of the steroidogenic gene and the content of E2 in the culture medium. Taken together, our findings suggest that the anti-steroidogenic effects of CRH may be mediated partly through activation of the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Hong Zhou
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Aqin Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China.
| |
Collapse
|
5
|
Jiang R, Lu XJ, Lu JF, Chen J. Characterization of ayu (Plecoglossus altivelis) urocortin: The function of an endocrine factor in monocyte/macrophage regulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103978. [PMID: 33338518 DOI: 10.1016/j.dci.2020.103978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Urocortin (UCN) is a hormone in the hypothalamic-pituitary-adrenal axis that is expressed in various immune cells. However, the function of teleost UCN in the immune system remains unclear. In this study, we cloned the cDNA sequence of UCN from ayu Plecoglossus altivelis (PaUCN). Sequence and phylogenetic tree analyses showed that PaUCN clustered within the fish UCN 1 group and was most related to the rainbow trout (Oncorhynchus mykiss) UCN. PaUCN was expressed in all tested tissues and its expression increased in the liver, spleen, head kidney, and gill upon Vibrio anguillarum infection. Mature PaUCN protein (mPaUCN) treatment affected the phagocytosis and bacterial killing of monocytes/macrophages (MO/MФ). mPaUCN reduced pro-inflammatory cytokine expression in MO/MФ, which was partially mediated via interaction with ayu interleukin-6. mPaUCN reduced bacterial load and increased the survival of V. anguillarum-infected ayu. Overall, UCN as an endocrine factor regulates the immune response of ayu after infection by activating MO/MФ, thus contributing to enhance fish survival.
Collapse
Affiliation(s)
- Rui Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
6
|
Grone BP, Butler JM, Wayne CR, Maruska KP. Expression patterns and evolution of urocortin and corticotropin‐releasing hormone genes in a cichlid fish. J Comp Neurol 2021; 529:2596-2619. [DOI: 10.1002/cne.25113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/20/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Julie M. Butler
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
- Department of Biology Stanford University Stanford California USA
| | - Christy R. Wayne
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Karen P. Maruska
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| |
Collapse
|
7
|
Qi J, Xu S, Wang M, Chen H, Tang N, Wang B, Li Y, Zhang X, Chen D, Zhou B, Zhao L, Wang Y, Li Z. Changes in corticotropin releasing factor system transcript levels in relation to feeding condition in Acipenser dabryanus. Peptides 2020; 128:170309. [PMID: 32259550 DOI: 10.1016/j.peptides.2020.170309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
Abstract
CRF system, structural conservation, has an association with feeding regulation in mammals. However, mammals and fish have different physiological mechanisms, the potential role of CRF system for feeding regulation in teleost fish are most unknown. To better explore possible feeding mechanisms of CRF system in Acipenser dabryanus, the gene expression patterns of CRF system have been investigated after different energy status. CRF and two receptors have been studied in Acipenser dabryanus in previous study, thus, four components of CRF system (UI, UCN2, UCN3 and CRF-BP) have been studied in this study. Results showed post-prandial increased UCNs mRNA expressions, and 10 days fasting decreased UCNs mRNA expressions, and the mRNA abundance of CRF-BP has no significant differences. Above, this study confirmed the CRF system has potential role for feeding regulation in Acipenser dabryanus.
Collapse
Affiliation(s)
- Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shaoqi Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Mei Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ya Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bo Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, 156# Gaozhuang Bridge Community, Yibin, Sichuan, China.
| | - Liulan Zhao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yan Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Qi J, Zhang X, Li Y, Xu S, Wang M, Chen H, Tang N, Wang S, Wang B, Chen D, Zhou B, Li Z. The suppression effects of feeding and mechanisms in CRF system of animals. Gene 2020; 733:144363. [PMID: 31935510 DOI: 10.1016/j.gene.2020.144363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/27/2023]
Abstract
CRF system is comprised of 4 homologous lineages, 2 main receptors (CRF-R1 and CRF-R2), and a binding protein CRF-BP. The homologous lineages are corticotropin-releasing factor (CRF), urotensin I (UI)/sauvagine (SVG)/urocortin 1 (UCN1), urocortin 2 (UCN2), and urocortin 3 (UCN3), and UI, SVG, UCN1 are orthologous genes. CRF system genes are widely distributed in the brain and gastrointestinal tract, which may relate to feeding regulation. According the research progress about CRF system on mammals and non-mammals, this paper summarized the discovery, structure, tissue distribution, appetite regulation and mechanism of CRF system in animals, which can provide the reference for further research and production of feeding regulation and growth in mammals and fish species.
Collapse
Affiliation(s)
- Jinwen Qi
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, 156# Gaozhuang Bridge Community, Yibin, Sichuan, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Ya Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shaoqi Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Mei Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shuyao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bo Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, 156# Gaozhuang Bridge Community, Yibin, Sichuan, China.
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Williams TA, Bernier NJ. Corticotropin-releasing factor protects against ammonia neurotoxicity in isolated larval zebrafish brains. J Exp Biol 2020; 223:jeb211540. [PMID: 31988165 DOI: 10.1242/jeb.211540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/20/2020] [Indexed: 08/26/2023]
Abstract
The physiological roles of corticotropin-releasing factor (CRF) have recently been extended to cytoprotection. Here, to determine whether CRF is neuroprotective in fish, the effects of CRF against high environmental ammonia (HEA)-mediated neurogenic impairment and cell death were investigated in zebrafish. In vivo, exposure of 1 day post-fertilization (dpf) embryos to HEA only reduced the expression of the determined neuron marker neurod1 In contrast, in 5 dpf larvae, HEA increased the expression of nes and sox2, neural progenitor cell markers, and reduced the expression of neurog1, gfap and mbpa, proneuronal cell, radial glia and oligodendrocyte markers, respectively, and neurod1 The N-methyl-d-aspartate (NMDA) receptor inhibitor MK801 rescued the HEA-induced reduction in neurod1 in 5 dpf larvae but did not affect the HEA-induced transcriptional changes in other neural cell types, suggesting that hyperactivation of NMDA receptors specifically contributes to the deleterious effects of HEA in determined neurons. As observed in vivo, HEA exposure elicited marked changes in the expression of cell type-specific markers in isolated 5 dpf larval brains. The addition of CRF reversed the in vitro effects of HEA on neurod1 expression and prevented an HEA-induced increase in cell death. Finally, the protective effects of CRF against HEA-mediated neurogenic impairment and cell death were prevented by the CRF type 1 receptor selective antagonist antalarmin. Together, these results provide novel evidence that HEA has developmental time- and cell type-specific neurotoxic effects, that NMDA receptor hyperactivation contributes to HEA-mediated impairment of determined neurons, and that CRF has neuroprotective properties in the larval zebrafish brain.
Collapse
Affiliation(s)
- Tegan A Williams
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
10
|
Zhang X, Liu Y, Qi J, Tian Z, Tang N, Chen D, Li Z. Progress in understanding the roles of Urocortin3 (UCN3) in the control of appetite from studies using animal models. Peptides 2019; 121:170124. [PMID: 31415798 DOI: 10.1016/j.peptides.2019.170124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022]
Abstract
Urocortin3 (UCN3), the newest member of corticotrophin releasing hormone (CRH) family polypeptides, is an anorexic factor discovered in 2001, which has a strong inhibitory effect on animal appetite regulation. UCN3 is widely distributed in various tissues of animals and has many biological functions. Based on the research progress of UCN3 on mammals and non-mammals, this paper summarized the discovery, tissue distribution, appetite regulation and mechanism of UCN3 in animals, in order to provide a reference for feeding regulation and growth in mammals and fish in further research and production.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Yanling Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhengzhi Tian
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Tang N, Zhang X, Wang S, Qi J, Tian Z, Wang B, Chen H, Wu Y, Wang M, Xu S, Chen D, Li Z. UCN3 suppresses food intake in coordination with CCK and the CCK2R in Siberian sturgeon (Acipenser baerii). Comp Biochem Physiol A Mol Integr Physiol 2019; 234:106-113. [PMID: 31051262 DOI: 10.1016/j.cbpa.2019.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Abstract
Urocortin-3 (UCN3) as a brain-gut peptide inhibits food intake of animal, but the underlying mechanism is not clear. To explore the appetite mechanism about the action of UCN3 in fish, intraperitoneal injection of UCN3 with CCK8, Lorglumide (CCK1R antagonist) or LY225910 (CCK2R antagonist) were conducted. Siberian sturgeon administrated with UCN3 and CCK8 showed a drastic reduction in food intake. The anorectic effect of UCN3 was significantly blocked by LY225910, but not affected by Lorglumide. Furthermore, LY225910 could effectively reverse appetite factor mRNA expressions, including cck, pyy, cart, npy, ucn3, apelin and nucb2 in the whole brain, stomach and intestinum valvula, but Lorglumide could only partially reverse these effects, suggesting the anorectic effect of UCN3 may be primarily mediated CCK2R in Siberian sturgeon. This study indicates for the first time in fish that UCN3 may inhibit food intake in coordination with CCK and CCK2R.
Collapse
Affiliation(s)
- Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Shuyao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhengzhi Tian
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Mei Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shaoqi Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Different developmental histories of beta-cells generate functional and proliferative heterogeneity during islet growth. Nat Commun 2017; 8:664. [PMID: 28939870 PMCID: PMC5610262 DOI: 10.1038/s41467-017-00461-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
The proliferative and functional heterogeneity among seemingly uniform cells is a universal phenomenon. Identifying the underlying factors requires single-cell analysis of function and proliferation. Here we show that the pancreatic beta-cells in zebrafish exhibit different growth-promoting and functional properties, which in part reflect differences in the time elapsed since birth of the cells. Calcium imaging shows that the beta-cells in the embryonic islet become functional during early zebrafish development. At later stages, younger beta-cells join the islet following differentiation from post-embryonic progenitors. Notably, the older and younger beta-cells occupy different regions within the islet, which generates topological asymmetries in glucose responsiveness and proliferation. Specifically, the older beta-cells exhibit robust glucose responsiveness, whereas younger beta-cells are more proliferative but less functional. As the islet approaches its mature state, heterogeneity diminishes and beta-cells synchronize function and proliferation. Our work illustrates a dynamic model of heterogeneity based on evolving proliferative and functional beta-cell states. Βeta-cells have recently been shown to be heterogeneous with regard to morphology and function. Here, the authors show that β-cells in zebrafish switch from proliferative to functional states with increasing time since β-cell birth, leading to functional and proliferative heterogeneity.
Collapse
|
13
|
Williams TA, Bergstrome JC, Scott J, Bernier NJ. CRF and urocortin 3 protect the heart from hypoxia/reoxygenation-induced apoptosis in zebrafish. Am J Physiol Regul Integr Comp Physiol 2017; 313:R91-R100. [PMID: 28539353 PMCID: PMC5582954 DOI: 10.1152/ajpregu.00045.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/08/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022]
Abstract
Fish routinely experience environmental hypoxia and have evolved various strategies to tolerate this challenge. Given the key role of the CRF system in coordinating the response to stressors and its cardioprotective actions against ischemia in mammals, we sought to characterize the cardiac CRF system in zebrafish and its role in hypoxia tolerance. We established that all genes of the CRF system, the ligands CRFa, CRFb, urotensin 1 (UTS1), and urocortin 3 (UCN3); the two receptor subtypes (CRFR1 and CRFR2); and the binding protein (CRFBP) are expressed in the heart of zebrafish: crfr1 > crfr2 = crfbp > crfa > ucn3 > crfb > uts1 In vivo, exposure to 5% O2 saturation for 15 min and 90 min of recovery resulted in four- to five-fold increases in whole heart crfb and ucn3 mRNA levels but did not affect the gene expression of other CRF system components. In vitro, as assessed by monitoring caspase 3 activity and the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells, pretreatment of excised whole hearts with CRF or UCN3 for 30 min prevented the increase in apoptosis associated with exposure to 1% O2 saturation for 30 min with a 24-h recovery. Lastly, the addition of the nonselective CRF receptor antagonist αh-CRF(9-41) prevented the cytoprotective effects of CRF. We show that the CRF system is expressed in fish heart, is upregulated by hypoxia, and is cytoprotective. These findings identify a novel role for the CRF system in fish and a new strategy to tolerate hypoxia.
Collapse
Affiliation(s)
- Tegan A Williams
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jillian C Bergstrome
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Juliana Scott
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
14
|
Grommen SVH, Scott MK, Darras VM, De Groef B. Spatial and temporal expression profiles of urocortin 3 mRNA in the brain of the chicken (Gallus gallus). J Comp Neurol 2017; 525:2583-2591. [PMID: 28395119 DOI: 10.1002/cne.24223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/20/2017] [Accepted: 04/03/2017] [Indexed: 01/15/2023]
Abstract
Urocortin 3 (UCN3) is a neuropeptide believed to regulate stress-coping responses by binding to type 2 corticotropin-releasing hormone receptors. Here, we report the cloning and brain distribution of UCN3 mRNA in a sauropsid-the chicken, Gallus gallus. Mature chicken UCN3 is predicted to be a 40-amino acid peptide showing high sequence similarity to human (93%), mouse (93%), and Xenopus (88%) UCN3. During the last third of embryonic development, UCN3 mRNA levels changed differentially in the various brain parts. In all brain parts, UCN3 mRNA levels tended to increase toward hatching, except for caudal brainstem, where a gradual decrease was observed during the last week of embryonic development. In cerebellum, a rapid increase in gene expression occurred between embryonic days 17 and 19. Using in situ hybridization, UCN3 mRNA was found to be expressed predominantly in the hypothalamus, pons, and medulla of posthatch chick brains, but not in some areas that are among the main expression sites in rodents, such as the brain areas where in mammals the median preoptic nucleus and the medial amygdala are located. This suggests that the roles of UCN3 in chicken, and perhaps sauropsids in general, are not all identical to those in rodents.
Collapse
Affiliation(s)
- Sylvia V H Grommen
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Melissa K Scott
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, B-3000, Leuven, Belgium
| | - Bert De Groef
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
15
|
Hanyang L, Xuanzhe L, Xuyang C, Yujia Q, Jiarong F, Jun S, Zhihua R. Application of Zebrafish Models in Inflammatory Bowel Disease. Front Immunol 2017; 8:501. [PMID: 28515725 PMCID: PMC5413514 DOI: 10.3389/fimmu.2017.00501] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent, and remitting inflammatory disease with unclear etiology. As a clinically frequent disease, it can affect individuals throughout their lives, with multiple complications. Unfortunately, traditional murine models are not efficient for the further study of IBD. Thus, effective and convenient animal models are needed. Zebrafish have been used as model organisms to investigate IBD because of their suggested highly genetic similarity to humans and their superiority as laboratory models. The zebrafish model has been used to study the composition of intestinal microbiota, novel genes, and therapeutic approaches. The pathogenesis of IBD is still unclear and many risk factors remain unidentified. In this review, we compare traditional murine models and zebrafish models in terms of advantages, pathogenesis, and drug discovery screening for IBD. We also review the progress and deficiencies of the zebrafish model for scientific applications.
Collapse
Affiliation(s)
- Li Hanyang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Liu Xuanzhe
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Chen Xuyang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qiu Yujia
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Fu Jiarong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Shen Jun
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ran Zhihua
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
16
|
Hosono K, Yamashita J, Kikuchi Y, Hiraki-Kajiyama T, Okubo K. Three urocortins in medaka: identification and spatial expression in the central nervous system. J Neuroendocrinol 2017; 29. [PMID: 28370873 DOI: 10.1111/jne.12472] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/10/2017] [Accepted: 03/25/2017] [Indexed: 12/19/2022]
Abstract
The urocortin (UCN) group of neuropeptides includes urocortin 1/sauvagine/urotensin 1 (UTS1), urocortin 2 (UCN2) and urocortin 3 (UCN3). In recent years, evidence has accumulated showing that UCNs play pivotal roles in mediating stress response and anxiety in mammals. Evidence has also emerged regarding the evolutionary conservation of UCNs in vertebrates, but very little information is available about UCNs in non-mammalian vertebrates. Indeed, at present, there are no reports of the empirical identification of ucn2 in non-mammalian vertebrates or of the distribution of ucn2 and ucn3 expression in the adult central nervous system (CNS) of these animals. To gain insight into the evolutionary nature of UCNs in vertebrates, we cloned uts1, ucn2 and ucn3 in a teleost fish, medaka and examined the spatial expression of these genes in the adult brain and spinal cord. Although all known UCN2 genes except those in rodents have been reported to likely lack the necessary structural features to produce a functional pre-pro-protein, all three UCN genes in medaka, including ucn2, displayed all of these features, suggesting their functionality. The three UCN genes exhibited distinct spatial expression patterns in the medaka brain: uts1 was primarily expressed in broad regions of the dorsal telencephalon, ucn2 was expressed in restricted regions of the thalamus and brainstem and ucn3 was expressed in discrete nuclei throughout many regions of the brain. We also found that these genes were all expressed throughout the medaka spinal cord, each with a distinct spatial pattern. Given that many of these regions have been implicated in stress responses and anxiety, the three UCNs may serve distinct physiological roles in the medaka CNS, including those involved in stress and anxiety, as shown in the mammalian CNS.
Collapse
Affiliation(s)
- K Hosono
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - J Yamashita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Y Kikuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - T Hiraki-Kajiyama
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - K Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
17
|
Zhang X, Wu Y, Hao J, Zhu J, Tang N, Qi J, Wang S, Wang H, Peng S, Liu J, Gao Y, Chen D, Li Z. Intraperitoneal injection urocortin-3 reduces the food intake of Siberian sturgeon (Acipenser baerii). Peptides 2016; 85:80-88. [PMID: 27667703 DOI: 10.1016/j.peptides.2016.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/02/2016] [Accepted: 09/16/2016] [Indexed: 02/06/2023]
Abstract
Urocortin-3 (UCN3), one of the corticotropin releasing factor (CRF) family peptides, which was discovered in 2001, has a variety of biological functions. However, the researches of UCN3 in fish were scarce. In order to understand whether UCN3 play a role in regulating food intake in fish, we first cloned the ucn3 cDNAs sequence of Siberian sturgeon (Acipenser baerii Brandt), and investigated the ucn3 mRNA levels in 11 tissues. The Siberian sturgeon ucn3 cDNA sequence was 1044bp, including an open reading frame (ORF) of 447bp that encoded 148 amino acids with a mature peptide of 40 amino acids, a 5'-terminal untranslated region (5'-UTR) of 162bp and a 3'-terminal untranslated region (3'-UTR) of 435bp. The result of tissue distribution showed that ucn3 widely distributed in 11 tissues with highest expression in brain. We also assessed the effects of periprandial (pre- and post-feeding), fasting and re-feeding on ucn3 mRNAs abundance in brain. The results showed the expression of ucn3 mRNA in brain was significantly elevated after feeding, decreased after fasting 17 days and increased after re-feeding. To further investigate the food intake role of UCN3 in Siberian sturgeon, we performed intraperitoneal (i.p.) injection of Siberian sturgeon UCN3 (SsUCN3) with three doses (60, 120 or 240ng/g) and recorded the food intake. Acute and chronic i.p. injection SsUCN3 reduced the food intake in a dose-dependent pattern. In conclusion, this study indicates that SsUCN3 acts as a satiety factor to inhibit the food intake of Siberian sturgeon.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Jin Hao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Jieyao Zhu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Shuyao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Hong Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Shuang Peng
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Ju Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Yundi Gao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, China.
| |
Collapse
|
18
|
Hu CK, Southey BR, Romanova EV, Maruska KP, Sweedler JV, Fernald RD. Identification of prohormones and pituitary neuropeptides in the African cichlid, Astatotilapia burtoni. BMC Genomics 2016; 17:660. [PMID: 27543050 PMCID: PMC4992253 DOI: 10.1186/s12864-016-2914-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/06/2016] [Indexed: 12/14/2022] Open
Abstract
Background Cichlid fishes have evolved remarkably diverse reproductive, social, and feeding behaviors. Cell-to-cell signaling molecules, notably neuropeptides and peptide hormones, are known to regulate these behaviors across vertebrates. This class of signaling molecules derives from prohormone genes that have undergone multiple duplications and losses in fishes. Whether and how subfunctionalization, neofunctionalization, or losses of neuropeptides and peptide hormones have contributed to fish behavioral diversity is largely unknown. Information on fish prohormones has been limited and is complicated by the whole genome duplication of the teleost ancestor. We combined bioinformatics, mass spectrometry-enabled peptidomics, and molecular techniques to identify the suite of neuropeptide prohormones and pituitary peptide products in Astatotilapia burtoni, a well-studied member of the diverse African cichlid clade. Results Utilizing the A. burtoni genome, we identified 148 prohormone genes, with 21 identified as a single copy and 39 with at least 2 duplicated copies. Retention of prohormone duplicates was therefore 41 %, which is markedly above previous reports for the genome-wide average in teleosts. Beyond the expected whole genome duplication, differences between cichlids and mammals can be attributed to gene loss in tetrapods and additional duplication after divergence. Mass spectrometric analysis of the pituitary identified 620 unique peptide sequences that were matched to 120 unique proteins. Finally, we used in situ hybridization to localize the expression of galanin, a prohormone with exceptional sequence divergence in cichlids, as well as the expression of a proopiomelanocortin, prohormone that has undergone an additional duplication in some bony fish lineages. Conclusion We characterized the A. burtoni prohormone complement. Two thirds of prohormone families contain duplications either from the teleost whole genome duplication or a more recent duplication. Our bioinformatic and mass spectrometric findings provide information on a major vertebrate clade that will further our understanding of the functional ramifications of these prohormone losses, duplications, and sequence changes across vertebrate evolution. In the context of the cichlid radiation, these findings will also facilitate the exploration of neuropeptide and peptide hormone function in behavioral diversity both within A. burtoni and across cichlid and other fish species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2914-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caroline K Hu
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.,Present address: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Russell D Fernald
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
19
|
Detection and signal amplification in zebrafish RNA FISH. Methods 2016; 98:50-59. [PMID: 26821229 DOI: 10.1016/j.ymeth.2016.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 11/23/2022] Open
Abstract
In situ hybridization (ISH) has become an invaluable tool for the detection of RNA in cells, tissues and organisms. Due to improvements in target and signal amplification and in probe design remarkable progress has been made concerning sensitivity, specificity and resolution of chromogenic and fluorescent ISH (FISH). These advancements allow for exquisite cellular and sub-cellular resolution and for detecting multiple RNA species at a time by multiplexing. In zebrafish (F)ISH non-enzymatic and enzymatic amplification systems have been employed to obtain enhanced signal intensities and signal-to-noise ratios. These amplification strategies include branched DNA-based RNAscope and in situ hybridization chain reaction (HCR) techniques, as well as alkaline phosphatase (AP)- and horseradish peroxidase (PO)-based immunoassays. For practical application, we provide proven multiplex FISH protocols for AP- and PO-based visualization of mRNAs at high resolution. The protocols take advantage of optimized tyramide signal amplification (TSA) conditions of the PO assay and long-lasting high signal-to-noise ratio of the AP reaction, thereby enabling detection of less abundant transcripts.
Collapse
|
20
|
Luo L, Chen A, Hu C, Lu W. Dynamic expression pattern of corticotropin-releasing hormone, urotensin I and II genes under acute salinity and temperature challenge during early development of zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1877-1886. [PMID: 25154920 DOI: 10.1007/s10695-014-9975-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/13/2014] [Indexed: 06/03/2023]
Abstract
Corticotropin-releasing hormone (CRH), urotensin I (UI) and urotensin II (UII) are found throughout vertebrate species from fish to human. To further understand the role of crh, uI and uII in teleosts during development, we investigated the expression pattern of crh, uI, uIIα and uIIβ genes, and their response to acute salinity and temperature challenge during early development of zebrafish, Danio rerio. The results reveal that crh, uI, uIIα and uIIβ mRNA are detected from 0hpf, and the expression levels increase to a maximum at 6 days post fertilization (dpf), with the exception of uIIα that peak at 5dpf. Exposure of zebrafish embryos and larvae to acute osmotic (30ppt) stress for 15 min failed to modify expression levels of crh, uI, uIIα and uIIβ mRNA from levels in control fish except at 6dpf when uIIα and uIIβ were significantly (P < 0.05) modified. Exposure of embryos and larvae to a cold (18 °C) or hot stress (38 °C) generally down-regulated mRNA levels of crh, uI, uIIα and uIIβ apart from at 3dpf. The results indicate that the contribution of crh, uI, uIIα and uIIβ genes to the stress response in zebrafish may be stressor-specific during early development. Overall, the results from this study provide a basis for further research into the developmental and stressor-specific function of crh, uI, uIIα and uIIβ in zebrafish.
Collapse
Affiliation(s)
- Lei Luo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | | | | | | |
Collapse
|
21
|
Geiger BM, Gras-Miralles B, Ziogas DC, Karagiannis AKA, Zhen A, Fraenkel P, Kokkotou E. Intestinal upregulation of melanin-concentrating hormone in TNBS-induced enterocolitis in adult zebrafish. PLoS One 2013; 8:e83194. [PMID: 24376661 PMCID: PMC3869761 DOI: 10.1371/journal.pone.0083194] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022] Open
Abstract
Background Melanin-concentrating hormone (MCH), an evolutionarily conserved appetite-regulating neuropeptide, has been recently implicated in the pathogenesis of inflammatory bowel disease (IBD). Expression of MCH is upregulated in inflamed intestinal mucosa in humans with colitis and MCH-deficient mice treated with trinitrobenzene-sulfonic acid (TNBS) develop an attenuated form of colitis compared to wild type animals. Zebrafish have emerged as a new animal model of IBD, although the majority of the reported studies concern zebrafish larvae. Regulation MCH expression in the adult zebrafish intestine remains unknown. Methods In the present study we induced enterocolitis in adult zebrafish by intrarectal administration of TNBS. Follow-up included survival analysis, histological assessment of changes in intestinal architecture, and assessment of intestinal infiltration by myeloperoxidase positive cells and cytokine transcript levels. Results Treatment with TNBS dose-dependently reduced fish survival. This response required the presence of an intact microbiome, since fish pre-treated with vancomycin developed less severe enterocolitis. At 6 hours post-challenge, we detected a significant influx of myeloperoxidase positive cells in the intestine and upregulation of both proinflammatory and anti-inflammatory cytokines. Most importantly, and in analogy to human IBD and TNBS-induced mouse experimental colitis, we found increased intestinal expression of MCH and its receptor in TNBS-treated zebrafish. Conclusions Taken together these findings not only establish a model of chemically-induced experimental enterocolitis in adult zebrafish, but point to effects of MCH in intestinal inflammation that are conserved across species.
Collapse
Affiliation(s)
- Brenda M Geiger
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beatriz Gras-Miralles
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dimitrios C Ziogas
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Apostolos K A Karagiannis
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aileen Zhen
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paula Fraenkel
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Efi Kokkotou
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
Ortega VA, Lovejoy DA, Bernier NJ. Appetite-suppressing effects and interactions of centrally administered corticotropin-releasing factor, urotensin I and serotonin in rainbow trout (Oncorhynchus mykiss). Front Neurosci 2013; 7:196. [PMID: 24194695 PMCID: PMC3810612 DOI: 10.3389/fnins.2013.00196] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/08/2013] [Indexed: 01/03/2023] Open
Abstract
Corticotropin-releasing factor (CRF), urotensin I (UI) and serotonin (5-HT) are generally recognized as key regulators of the anorexigenic stress response in vertebrates, yet the proximal effects and potential interactions of these central messengers on food intake in salmonids are not known. Moreover, no study to date in fishes has compared the appetite-suppressing effects of CRF and UI using species-specific peptides. Therefore, the objectives of this study were to (1) assess the individual effects of synthesized rainbow trout CRF (rtCRF), rtUI as well as 5-HT on food intake in rainbow trout, and (2) determine whether the CRF and serotonergic systems interact in the regulation of food intake in this species. Intracerebroventricular (icv) injections of rtCRF and rtUI both suppressed food intake in a dose-related manner but rtUI [ED50 = 17.4 ng/g body weight (BW)] was significantly more potent than rtCRF (ED50 = 105.9 ng/g BW). Co-injection of either rtCRF or rtUI with the CRF receptor antagonist α-hCRF(9–41) blocked the reduction in food intake induced by CRF-related peptides. Icv injections of 5-HT also inhibited feeding in a dose-related manner (ED50 = 14.7 ng/g BW) and these effects were blocked by the serotonergic receptor antagonist methysergide. While the anorexigenic effects of 5-HT were reversed by α-hCRF(9–41) co-injection, the appetite-suppressing effects of either rtCRF or rtUI were not affected by methysergide co-injection. These results identify CRF, UI and 5-HT as anorexigenic agents in rainbow trout, and suggest that 5-HT-induced anorexia may be at least partially mediated by CRF- and/or UI-secreting neurons.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Integrative Biology, University of Guelph Guelph, ON, Canada
| | | | | |
Collapse
|
23
|
Lauter G, Söll I, Hauptmann G. Molecular characterization of prosomeric and intraprosomeric subdivisions of the embryonic zebrafish diencephalon. J Comp Neurol 2013; 521:1093-118. [PMID: 22949352 DOI: 10.1002/cne.23221] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 03/04/2012] [Accepted: 08/14/2012] [Indexed: 02/05/2023]
Abstract
During development of the early neural tube, positional information provided by signaling gradients is translated into a grid of transverse and longitudinal transcription factor expression domains. Transcription factor specification codes defining distinct histogenetic domains within this grid are evolutionarily conserved across vertebrates and may reflect an underlying common vertebrate bauplan. When compared to the rich body of comparative gene expression studies of tetrapods, there is considerably less comparative data available for teleost fish. We used sensitive multicolor fluorescent in situ hybridization to generate a detailed map of regulatory gene expression domains in the embryonic zebrafish diencephalon. The high resolution of this technique allowed us to resolve abutting and overlapping gene expression of different transcripts. We found that the relative topography of gene expression patterns in zebrafish was highly similar to those of orthologous genes in tetrapods and consistent with a three-prosomere organization of the alar and basal diencephalon. Our analysis further demonstrated a conservation of intraprosomeric subdivisions within prosomeres 1, 2, and 3 (p1, p2, and p3). A tripartition of zebrafish p1 was identified reminiscent of precommissural (PcP), juxtacommissural (JcP), and commissural (CoP) pretectal domains of tetrapods. The constructed detailed diencephalic transcription factor gene expression map further identified molecularly distinct thalamic and prethalamic rostral and caudal domains and a prethalamic eminence histogenetic domain in zebrafish. Our comparative gene expression analysis conformed with the idea of a common bauplan for the diencephalon of anamniote and amniote vertebrates from fish to mammals.
Collapse
Affiliation(s)
- Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | | | | |
Collapse
|
24
|
Lauter G, Söll I, Hauptmann G. Two-color fluorescent in situ hybridization in the embryonic zebrafish brain using differential detection systems. BMC DEVELOPMENTAL BIOLOGY 2011; 11:43. [PMID: 21726453 PMCID: PMC3141750 DOI: 10.1186/1471-213x-11-43] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/04/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Whole-mount in situ hybridization (WISH) is extensively used to characterize gene expression patterns in developing and adult brain and other tissues. To obtain an idea whether a novel gene might be involved in specification of a distinct brain subdivision, nucleus or neuronal lineage, it is often useful to correlate its expression with that of a known regional or neuronal marker gene. Two-color fluorescent in situ hybridization (FISH) can be used to compare different transcript distributions at cellular resolution. Conventional two-color FISH protocols require two separate rounds of horseradish peroxidase (POD)-based transcript detection, which involves tyramide signal amplification (TSA) and inactivation of the first applied antibody-enzyme conjugate before the second detection round. RESULTS We show here that the alkaline phosphatase (AP) substrates Fast Red and Fast Blue can be used for chromogenic as well as fluorescent visualization of transcripts. To achieve high signal intensities we optimized embryo permeabilization properties by hydrogen peroxide treatment and hybridization conditions by application of the viscosity-increasing polymer dextran sulfate. The obtained signal enhancement allowed us to develop a sensitive two-color FISH protocol by combining AP and POD reporter systems. We show that the combination of AP-Fast Blue and POD-TSA-carboxyfluorescein (FAM) detection provides a powerful tool for simultaneous fluorescent visualization of two different transcripts in the zebrafish brain. The application of different detection systems allowed for a one-step antibody detection procedure for visualization of transcripts, which significantly reduced working steps and hands-on time shortening the protocol by one day. Inactivation of the first applied reporter enzyme became unnecessary, so that false-positive detection of co-localization by insufficient inactivation, a problem of conventional two-color FISH, could be eliminated. CONCLUSION Since POD activity is rather quickly quenched by substrate excess, less abundant transcripts can often not be efficiently visualized even when applying TSA. The use of AP-Fast Blue fluorescent detection may provide a helpful alternative for fluorescent transcript visualization, as the AP reaction can proceed for extended times with a high signal-to-noise ratio. Our protocol thus provides a novel alternative for comparison of two different gene expression patterns in the embryonic zebrafish brain at a cellular level. The principles of our method were developed for use in zebrafish but may be easily included in whole-mount FISH protocols of other model organisms.
Collapse
Affiliation(s)
- Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | | | | |
Collapse
|
25
|
Löhr H, Hammerschmidt M. Zebrafish in Endocrine Systems: Recent Advances and Implications for Human Disease. Annu Rev Physiol 2011; 73:183-211. [DOI: 10.1146/annurev-physiol-012110-142320] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Heiko Löhr
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
| | - Matthias Hammerschmidt
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CEDAD), University of Cologne, D-50923 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50923 Cologne, Germany;
| |
Collapse
|
26
|
Fuzzen MLM, Alderman SL, Bristow EN, Bernier NJ. Ontogeny of the corticotropin-releasing factor system in rainbow trout and differential effects of hypoxia on the endocrine and cellular stress responses during development. Gen Comp Endocrinol 2011; 170:604-12. [PMID: 21130089 DOI: 10.1016/j.ygcen.2010.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/23/2010] [Accepted: 11/24/2010] [Indexed: 12/20/2022]
Abstract
To further our understanding of the development of the stress axis and the responsiveness of embryonic and larval fish to environmental stressors, this study examined the ontogeny of whole-body cortisol levels and of the corticotropin-releasing factor (CRF) system in rainbow trout, as well as the endocrine and cellular stress responses to hypoxia. After depletion of a maternal deposit, de novo synthesis of cortisol increased exponentially between the 'eyed' stage and first feeding. Whole body CRF mRNA levels dominated over those of the related peptide urotensin I (UI) from hatch through complete yolk sac absorption. The mRNA levels of CRF-binding protein (CRF-BP) closely paralleled those of CRF and UI throughout ontogeny except at first feeding when an increase in CRF gene expression was not matched by change in CRF-BP transcript abundance. In the hypoxia challenge, fish were exposed to 15% O(2) saturation for either 90 min or 24h at three key developmental stages: hatch, swim up and first feeding. While the embryos were unaffected, chronic hypoxia elicited a transient 2-fold increase in whole-body cortisol levels in the larval stages. The hypoxia challenge also generally suppressed the mRNA levels of CRF and CRF-BP, had no effect on the expression of UI, but had a marked stimulatory effect on heat shock protein 70 (Hsp70) gene expression. Taken together, these results suggest a role for the CRF system in the ontogenic regulation of corticosteroidogenesis and show that hypoxia has developmental stage-specific effects on the endocrine and cellular stress responses in rainbow trout.
Collapse
Affiliation(s)
- Meghan L M Fuzzen
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | | | | | |
Collapse
|