1
|
Fukata Y, Fukata M, MacGillavry HD, Nair D, Hosy E. Celebrating the Birthday of AMPA Receptor Nanodomains: Illuminating the Nanoscale Organization of Excitatory Synapses with 10 Nanocandles. J Neurosci 2024; 44:e2104232024. [PMID: 38839340 PMCID: PMC11154862 DOI: 10.1523/jneurosci.2104-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 06/07/2024] Open
Abstract
A decade ago, in 2013, and over the course of 4 summer months, three separate observations were reported that each shed light independently on a new molecular organization that fundamentally reshaped our perception of excitatory synaptic transmission (Fukata et al., 2013; MacGillavry et al., 2013; Nair et al., 2013). This discovery unveiled an intricate arrangement of AMPA-type glutamate receptors and their principal scaffolding protein PSD-95, at synapses. This breakthrough was made possible, thanks to advanced super-resolution imaging techniques. It fundamentally changed our understanding of excitatory synaptic architecture and paved the way for a brand-new area of research. In this Progressions article, the primary investigators of the nanoscale organization of synapses have come together to chronicle the tale of their discovery. We recount the initial inquiry that prompted our research, the preceding studies that inspired our work, the technical obstacles that were encountered, and the breakthroughs that were made in the subsequent decade in the realm of nanoscale synaptic transmission. We review the new discoveries made possible by the democratization of super-resolution imaging techniques in the field of excitatory synaptic physiology and architecture, first by the extension to other glutamate receptors and to presynaptic proteins and then by the notion of trans-synaptic organization. After describing the organizational modifications occurring in various pathologies, we discuss briefly the latest technical developments made possible by super-resolution imaging and emerging concepts in synaptic physiology.
Collapse
Affiliation(s)
- Yuko Fukata
- Division of Molecular and Cellular Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Harold D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Eric Hosy
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR5297, Bordeaux F-33000, France
| |
Collapse
|
2
|
Karbowski J, Urban P. Information encoded in volumes and areas of dendritic spines is nearly maximal across mammalian brains. Sci Rep 2023; 13:22207. [PMID: 38097675 PMCID: PMC10721930 DOI: 10.1038/s41598-023-49321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Many experiments suggest that long-term information associated with neuronal memory resides collectively in dendritic spines. However, spines can have a limited size due to metabolic and neuroanatomical constraints, which should effectively limit the amount of encoded information in excitatory synapses. This study investigates how much information can be stored in the population of sizes of dendritic spines, and whether it is optimal in any sense. It is shown here, using empirical data for several mammalian brains across different regions and physiological conditions, that dendritic spines nearly maximize entropy contained in their volumes and surface areas for a given mean size in cortical and hippocampal regions. Although both short- and heavy-tailed fitting distributions approach [Formula: see text] of maximal entropy in the majority of cases, the best maximization is obtained primarily for short-tailed gamma distribution. We find that most empirical ratios of standard deviation to mean for spine volumes and areas are in the range [Formula: see text], which is close to the theoretical optimal ratios coming from entropy maximization for gamma and lognormal distributions. On average, the highest entropy is contained in spine length ([Formula: see text] bits per spine), and the lowest in spine volume and area ([Formula: see text] bits), although the latter two are closer to optimality. In contrast, we find that entropy density (entropy per spine size) is always suboptimal. Our results suggest that spine sizes are almost as random as possible given the constraint on their size, and moreover the general principle of entropy maximization is applicable and potentially useful to information and memory storing in the population of cortical and hippocampal excitatory synapses, and to predicting their morphological properties.
Collapse
Affiliation(s)
- Jan Karbowski
- Institute of Applied Mathematics and Mechanics, University of Warsaw, Warsaw, Poland.
| | - Paulina Urban
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
- Laboratory of Databases and Business Analytics, National Information Processing Institute, National Research Institute, Warsaw, Poland
| |
Collapse
|
3
|
Wang L, Pang K, Zhou L, Cebrián-Silla A, González-Granero S, Wang S, Bi Q, White ML, Ho B, Li J, Li T, Perez Y, Huang EJ, Winkler EA, Paredes MF, Kovner R, Sestan N, Pollen AA, Liu P, Li J, Piao X, García-Verdugo JM, Alvarez-Buylla A, Liu Z, Kriegstein AR. A cross-species proteomic map reveals neoteny of human synapse development. Nature 2023; 622:112-119. [PMID: 37704727 PMCID: PMC10576238 DOI: 10.1038/s41586-023-06542-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023]
Abstract
The molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood1,2. Here we generate a cross-species proteomic map of synapse development in the human, macaque and mouse neocortex. By tracking the changes of more than 1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we find that PSD maturation in humans separates into three major phases that are dominated by distinct pathways. Cross-species comparisons reveal that human PSDs mature about two to three times slower than those of other species and contain higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the perinatal period. Enhancement of RhoGEF signalling in human neurons delays morphological maturation of dendritic spines and functional maturation of synapses, potentially contributing to the neotenic traits of human brain development. In addition, PSD proteins can be divided into four modules that exert stage- and cell-type-specific functions, possibly explaining their differential associations with cognitive functions and diseases. Our proteomic map of synapse development provides a blueprint for studying the molecular basis and evolutionary changes of synapse maturation.
Collapse
Affiliation(s)
- Li Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| | - Kaifang Pang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Li Zhou
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Arantxa Cebrián-Silla
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED, Valencia, Spain
| | - Shaohui Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Qiuli Bi
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew L White
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Brandon Ho
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jiani Li
- Gilead Sciences, Foster City, CA, USA
| | - Tao Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Yonatan Perez
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Ethan A Winkler
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mercedes F Paredes
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Rothem Kovner
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Alex A Pollen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Pengyuan Liu
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, USA
| | - Jingjing Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Xianhua Piao
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Division of Neonatology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Newborn Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED, Valencia, Spain
| | - Arturo Alvarez-Buylla
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Arnold R Kriegstein
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Droogers WJ, MacGillavry HD. Plasticity of postsynaptic nanostructure. Mol Cell Neurosci 2023; 124:103819. [PMID: 36720293 DOI: 10.1016/j.mcn.2023.103819] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The postsynaptic density (PSD) of excitatory synapses is built from a wide variety of scaffolding proteins, receptors, and signaling molecules that collectively orchestrate synaptic transmission. Seminal work over the past decades has led to the identification and functional characterization of many PSD components. In contrast, we know far less about how these constituents are assembled within synapses, and how this organization contributes to synapse function. Notably, recent evidence from high-resolution microscopy studies and in silico models, highlights the importance of the precise subsynaptic structure of the PSD for controlling the strength of synaptic transmission. Even further, activity-driven changes in the distribution of glutamate receptors are acknowledged to contribute to long-term changes in synaptic efficacy. Thus, defining the mechanisms that drive structural changes within the PSD are important for a molecular understanding of synaptic transmission and plasticity. Here, we review the current literature on how the PSD is organized to mediate basal synaptic transmission and how synaptic activity alters the nanoscale organization of synapses to sustain changes in synaptic strength.
Collapse
Affiliation(s)
- W J Droogers
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, The Netherlands
| | - H D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, The Netherlands.
| |
Collapse
|
5
|
Miski M, Keömley-Horváth BM, Rákóczi Megyeriné D, Csikász-Nagy A, Gáspári Z. Diversity of synaptic protein complexes as a function of the abundance of their constituent proteins: A modeling approach. PLoS Comput Biol 2022; 18:e1009758. [PMID: 35041658 PMCID: PMC8797218 DOI: 10.1371/journal.pcbi.1009758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/28/2022] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
The postsynaptic density (PSD) is a dense protein network playing a key role in information processing during learning and memory, and is also indicated in a number of neurological disorders. Efforts to characterize its detailed molecular organization are encumbered by the large variability of the abundance of its constituent proteins both spatially, in different brain areas, and temporally, during development, circadian rhythm, and also in response to various stimuli. In this study we ran large-scale stochastic simulations of protein binding events to predict the presence and distribution of PSD complexes. We simulated the interactions of seven major PSD proteins (NMDAR, AMPAR, PSD-95, SynGAP, GKAP, Shank3, Homer1) based on previously published, experimentally determined protein abundance data from 22 different brain areas and 42 patients (altogether 524 different simulations). Our results demonstrate that the relative ratio of the emerging protein complexes can be sensitive to even subtle changes in protein abundances and thus explicit simulations are invaluable to understand the relationships between protein availability and complex formation. Our observations are compatible with a scenario where larger supercomplexes are formed from available smaller binary and ternary associations of PSD proteins. Specifically, Homer1 and Shank3 self-association reactions substantially promote the emergence of very large protein complexes. The described simulations represent a first approximation to assess PSD complex abundance, and as such, use significant simplifications. Therefore, their direct biological relevance might be limited but we believe that the major qualitative findings can contribute to the understanding of the molecular features of the postsynapse.
Collapse
Affiliation(s)
- Marcell Miski
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Bence Márk Keömley-Horváth
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Cytocast Ltd., Vecsés, Hungary
| | - Dorina Rákóczi Megyeriné
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Attila Csikász-Nagy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Cytocast Ltd., Vecsés, Hungary
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
6
|
Suzuki T, Terada N, Higashiyama S, Kametani K, Shirai Y, Honda M, Kai T, Li W, Tabuchi K. Non-microtubule tubulin-based backbone and subordinate components of postsynaptic density lattices. Life Sci Alliance 2021; 4:4/7/e202000945. [PMID: 34006534 PMCID: PMC8326785 DOI: 10.26508/lsa.202000945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/28/2022] Open
Abstract
This study proposes a postsynaptic density (PSD) lattice model comprising a non-microtubule tubulin-based backbone structure and its associated proteins, including various PSD scaffold/adaptor proteins and other PSD proteins. A purification protocol was developed to identify and analyze the component proteins of a postsynaptic density (PSD) lattice, a core structure of the PSD of excitatory synapses in the central nervous system. “Enriched”- and “lean”-type PSD lattices were purified by synaptic plasma membrane treatment to identify the protein components by comprehensive shotgun mass spectrometry and group them into minimum essential cytoskeleton (MEC) and non-MEC components. Tubulin was found to be a major component of the MEC, with non-microtubule tubulin widely distributed on the purified PSD lattice. The presence of tubulin in and around PSDs was verified by post-embedding immunogold labeling EM of cerebral cortex. Non-MEC proteins included various typical scaffold/adaptor PSD proteins and other class PSD proteins. Thus, this study provides a new PSD lattice model consisting of non-microtubule tubulin-based backbone and various non-MEC proteins. Our findings suggest that tubulin is a key component constructing the backbone and that the associated components are essential for the versatile functions of the PSD.
Collapse
Affiliation(s)
- Tatsuo Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University Academic Assembly, Institute of Medicine, Shinshu University Academic Assembly, Matsumoto, Japan
| | - Nobuo Terada
- Health Science Division, Department of Medical Sciences, Graduate School of Medicine, Science and Technology, Shinshu University, Matsumoto, Nagano, Japan
| | - Shigeki Higashiyama
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, To-on, Ehime, Japan
| | - Kiyokazu Kametani
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Shinshu University Academic Assembly, Institute of Medicine, Shinshu University Academic Assembly, Matsumoto, Japan
| | - Mamoru Honda
- Bioscience Group, Center for Precision Medicine Supports, Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, INC, Kyoto, Japan
| | - Tsutomu Kai
- Bioscience Group, Center for Precision Medicine Supports, Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, INC, Kyoto, Japan
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research Shinshu University, Matsumoto, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University Academic Assembly, Institute of Medicine, Shinshu University Academic Assembly, Matsumoto, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research Shinshu University, Matsumoto, Japan
| |
Collapse
|
7
|
Gou G, Roca-Fernandez A, Kilinc M, Serrano E, Reig-Viader R, Araki Y, Huganir RL, de Quintana-Schmidt C, Rumbaugh G, Bayés À. SynGAP splice variants display heterogeneous spatio-temporal expression and subcellular distribution in the developing mammalian brain. J Neurochem 2020; 154:618-634. [PMID: 32068252 PMCID: PMC7754318 DOI: 10.1111/jnc.14988] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/04/2020] [Accepted: 02/17/2020] [Indexed: 11/28/2022]
Abstract
The SynGAP protein is a major regulator of synapse biology and neural circuit function. Genetic variants linked to epilepsy and intellectual disability disrupt synaptic function and neural excitability. SynGAP has been involved in multiple signaling pathways and can regulate small GTPases with very different roles. Yet, the molecular bases behind this pleiotropy are poorly understood. We hypothesize that different SynGAP isoforms will mediate different sets of functions and that deciphering their spatio-temporal expression and subcellular localization will accelerate understanding their multiple functions. Using isoform-specific antibodies recognizing SynGAP in mouse and human samples we found distinctive developmental expression patterns for all SynGAP isoforms in five mouse brain areas. Particularly noticeable was the delayed expression of SynGAP-α1 isoforms, which directly bind to postsynaptic density-95, in cortex and hippocampus during the first 2 weeks of postnatal development. Suggesting that during this period other isoforms would have a more prominent role. Furthermore, we observed subcellular localization differences between isoforms, particularly throughout postnatal development. Consistent with previous reports, SynGAP was enriched in the postsynaptic density in the mature forebrain. However, SynGAP was predominantly found in non-synaptic locations in a period of early postnatal development highly sensitive to SynGAP levels. While, α1 isoforms were always found enriched in the postsynaptic density, α2 isoforms changed from a non-synaptic to a mostly postsynaptic density localization with age and β isoforms were always found enriched in non-synaptic locations. The differential expression and subcellular distribution of SynGAP isoforms may contribute to isoform-specific regulation of small GTPases, explaining SynGAP pleiotropy.
Collapse
Affiliation(s)
- Gemma Gou
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | | | - Murat Kilinc
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Elena Serrano
- Biobank, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Rita Reig-Viader
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Yoichi Araki
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | | | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
8
|
Santuy A, Tomás-Roca L, Rodríguez JR, González-Soriano J, Zhu F, Qiu Z, Grant SGN, DeFelipe J, Merchan-Perez A. Estimation of the number of synapses in the hippocampus and brain-wide by volume electron microscopy and genetic labeling. Sci Rep 2020; 10:14014. [PMID: 32814795 PMCID: PMC7438319 DOI: 10.1038/s41598-020-70859-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/27/2020] [Indexed: 11/29/2022] Open
Abstract
Determining the number of synapses that are present in different brain regions is crucial to understand brain connectivity as a whole. Membrane-associated guanylate kinases (MAGUKs) are a family of scaffolding proteins that are expressed in excitatory glutamatergic synapses. We used genetic labeling of two of these proteins (PSD95 and SAP102), and Spinning Disc confocal Microscopy (SDM), to estimate the number of fluorescent puncta in the CA1 area of the hippocampus. We also used FIB-SEM, a three-dimensional electron microscopy technique, to calculate the actual numbers of synapses in the same area. We then estimated the ratio between the three-dimensional densities obtained with FIB-SEM (synapses/µm3) and the bi-dimensional densities obtained with SDM (puncta/100 µm2). Given that it is impractical to use FIB-SEM brain-wide, we used previously available SDM data from other brain regions and we applied this ratio as a conversion factor to estimate the minimum density of synapses in those regions. We found the highest densities of synapses in the isocortex, olfactory areas, hippocampal formation and cortical subplate. Low densities were found in the pallidum, hypothalamus, brainstem and cerebellum. Finally, the striatum and thalamus showed a wide range of synapse densities.
Collapse
Affiliation(s)
- Andrea Santuy
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Laura Tomás-Roca
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - José-Rodrigo Rodríguez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce, 37, 28002, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, Madrid, Spain
| | - Juncal González-Soriano
- Departamento de Anatomía y Embriología, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Fei Zhu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Zhen Qiu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce, 37, 28002, Madrid, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, Madrid, Spain
| | - Angel Merchan-Perez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain. .,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) ISCIII, Madrid, Spain. .,Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
9
|
Goin-Kochel RP, Trinh S, Barber S, Bernier R. Gene Disrupting Mutations Associated with Regression in Autism Spectrum Disorder. J Autism Dev Disord 2018; 47:3600-3607. [PMID: 28856484 DOI: 10.1007/s10803-017-3256-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Approximately one-third of children with autism spectrum disorder (ASD) reportedly lose skills within the first 3 years, yet a causal mechanism remains elusive. Considering evidence of strong genetic effects for ASD and findings that distinct phenotypes in ASD associate with specific genetic events, we examined rates of parent-reported regression in the Simons Simplex Collection with likely gene disrupting mutations from five distinct classes: FMRP target genes, genes encoding chromatin modifiers, genes expressed preferentially in embryos, genes encoding postsynaptic density proteins, and essential genes. Children with ASD and mutations in postsynaptic density genes were more likely to experience regression, while a trend suggested that children with ASD and mutations in embryonic genes were less likely to have skill losses.
Collapse
Affiliation(s)
- Robin P Goin-Kochel
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA. .,Autism Center, Texas Children's Hospital, Houston, TX, USA.
| | - Sandy Trinh
- Department of School Psychology, University of Washington, Seattle, Washington, USA
| | - Shelley Barber
- Department of School Psychology, University of Washington, Seattle, Washington, USA
| | - Raphael Bernier
- Department of Psychiatry, University of Washington, Seattle, Washington, USA. .,Center on Human Development and Disability, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Wang D, Wang X, Liu X, Jiang L, Yang G, Shi X, Zhang C, Piao F. Inhibition of miR-219 Alleviates Arsenic-Induced Learning and Memory Impairments and Synaptic Damage Through Up-regulating CaMKII in the Hippocampus. Neurochem Res 2018; 43:948-958. [DOI: 10.1007/s11064-018-2500-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 01/09/2023]
|
11
|
Activation State-Dependent Substrate Gating in Ca 2+/Calmodulin-Dependent Protein Kinase II. Neural Plast 2017; 2017:9601046. [PMID: 29391954 PMCID: PMC5748111 DOI: 10.1155/2017/9601046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is highly concentrated in the brain where its activation by the Ca2+ sensor CaM, multivalent structure, and complex autoregulatory features make it an ideal translator of Ca2+ signals created by different patterns of neuronal activity. We provide direct evidence that graded levels of kinase activity and extent of T287 (T286 α isoform) autophosphorylation drive changes in catalytic output and substrate selectivity. The catalytic domains of CaMKII phosphorylate purified PSDs much more effectively when tethered together in the holoenzyme versus individual subunits. Using multisubstrate SPOT arrays, high-affinity substrates are preferentially phosphorylated with limited subunit activity per holoenzyme, whereas multiple subunits or maximal subunit activation is required for intermediate- and low-affinity, weak substrates, respectively. Using a monomeric form of CaMKII to control T287 autophosphorylation, we demonstrate that increased Ca2+/CaM-dependent activity for all substrates tested, with the extent of weak, low-affinity substrate phosphorylation governed by the extent of T287 autophosphorylation. Our data suggest T287 autophosphorylation regulates substrate gating, an intrinsic property of the catalytic domain, which is amplified within the multivalent architecture of the CaMKII holoenzyme.
Collapse
|
12
|
Liu KKL, Hagan MF, Lisman JE. Gradation (approx. 10 size states) of synaptic strength by quantal addition of structural modules. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0328. [PMID: 28093559 DOI: 10.1098/rstb.2016.0328] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 12/31/2022] Open
Abstract
Memory storage involves activity-dependent strengthening of synaptic transmission, a process termed long-term potentiation (LTP). The late phase of LTP is thought to encode long-term memory and involves structural processes that enlarge the synapse. Hence, understanding how synapse size is graded provides fundamental information about the information storage capability of synapses. Recent work using electron microscopy (EM) to quantify synapse dimensions has suggested that synapses may structurally encode as many as 26 functionally distinct states, which correspond to a series of proportionally spaced synapse sizes. Other recent evidence using super-resolution microscopy has revealed that synapses are composed of stereotyped nanoclusters of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and scaffolding proteins; furthermore, synapse size varies linearly with the number of nanoclusters. Here we have sought to develop a model of synapse structure and growth that is consistent with both the EM and super-resolution data. We argue that synapses are composed of modules consisting of matrix material and potentially one nanocluster. LTP induction can add a trans-synaptic nanocluster to a module, thereby converting a silent module to an AMPA functional module. LTP can also add modules by a linear process, thereby producing an approximately 10-fold gradation in synapse size and strength.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Kang K L Liu
- Department of Physics, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Michael F Hagan
- Department of Physics, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - John E Lisman
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
13
|
Sevoflurane Acts on Ubiquitination-Proteasome Pathway to Reduce Postsynaptic Density 95 Protein Levels in Young Mice. Anesthesiology 2017; 127:961-975. [PMID: 28968276 DOI: 10.1097/aln.0000000000001889] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Children with multiple exposures to anesthesia and surgery may have an increased risk of developing cognitive impairment. Sevoflurane, a commonly used anesthetic in children, has been reported to decrease levels of postsynaptic density 95 protein. However, the upstream mechanisms and downstream consequences of the sevoflurane-induced reduction in postsynaptic density 95 protein levels remains largely unknown. We therefore set out to assess whether sevoflurane acts on ubiquitination-proteasome pathway to facilitate postsynaptic density 95 protein degradation. METHODS Six-day-old wild-type mice received anesthesia with 3% sevoflurane 2 h daily for 3 days starting on postnatal day 6. We determined the effects of the sevoflurane anesthesia on mRNA, protein and ubiquitinated levels of postsynaptic density 95 protein in neurons, and synaptosomes and hippocampus of young mice. Cognitive function in the mice was determined at postnatal day 31 by using a Morris water maze. Proteasome inhibitor MG132 and E3 ligase mouse double mutant 2 homolog inhibitor Nutlin-3 were used for the interaction studies. RESULTS The sevoflurane anesthesia decreased protein, but not mRNA, levels of postsynaptic density 95, and reduced ubiquitinated postsynaptic density 95 protein levels in neurons, synaptosomes, and hippocampus of young mice. Both MG132 and Nutlin-3 blocked these sevoflurane-induced effects. Sevoflurane promoted the interaction of mouse double mutant 2 homolog and postsynaptic density 95 protein in neurons. Finally, MG132 and Nutlin-3 ameliorated the sevoflurane-induced cognitive impairment in the mice. CONCLUSIONS These data suggest that sevoflurane acts on the ubiquitination-proteasome pathway to facilitate postsynaptic density 95 protein degradation, which then decreases postsynaptic density 95 protein levels, leading to cognitive impairment in young mice. These studies would further promote the mechanistic investigation of anesthesia neurotoxicity in the developing brain.
Collapse
|
14
|
Abstract
At each of the brain's vast number of synapses, the presynaptic nerve terminal, synaptic cleft, and postsynaptic specialization form a transcellular unit to enable efficient transmission of information between neurons. While we know much about the molecular machinery within each compartment, we are only beginning to understand how these compartments are structurally registered and functionally integrated with one another. This review will describe the organization of each compartment and then discuss their alignment across pre- and postsynaptic cells at a nanometer scale. We propose that this architecture may allow for precise synaptic information exchange and may be modulated to contribute to the remarkable plasticity of brain function.
Collapse
Affiliation(s)
- Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
15
|
Biederer T, Kaeser PS, Blanpied TA. Transcellular Nanoalignment of Synaptic Function. Neuron 2017; 96:680-696. [PMID: 29096080 PMCID: PMC5777221 DOI: 10.1016/j.neuron.2017.10.006] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
At each of the brain's vast number of synapses, the presynaptic nerve terminal, synaptic cleft, and postsynaptic specialization form a transcellular unit to enable efficient transmission of information between neurons. While we know much about the molecular machinery within each compartment, we are only beginning to understand how these compartments are structurally registered and functionally integrated with one another. This review will describe the organization of each compartment and then discuss their alignment across pre- and postsynaptic cells at a nanometer scale. We propose that this architecture may allow for precise synaptic information exchange and may be modulated to contribute to the remarkable plasticity of brain function.
Collapse
Affiliation(s)
- Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
16
|
Lin X, Lorent JH, Skinkle AD, Levental KR, Waxham MN, Gorfe AA, Levental I. Domain Stability in Biomimetic Membranes Driven by Lipid Polyunsaturation. J Phys Chem B 2016; 120:11930-11941. [PMID: 27797198 DOI: 10.1021/acs.jpcb.6b06815] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biological membranes contain a broad variety of lipid species whose individual physicochemical properties and collective interactions ultimately determine membrane organization. A key aspect of the organization of cellular membranes is their lateral subdivision into domains of distinct structure and composition. The most widely studied membrane domains are lipid rafts, which are the biological manifestations of liquid-ordered phases that form in sterol-containing membranes. Detailed studies of biomimetic membrane mixtures have yielded wide-ranging insights into the physical principles behind lipid rafts; however, these simplified models do not fully capture the diversity and complexity of the mammalian lipidome, most notably in their exclusion of polyunsaturated lipids. Here, we assess the role of lipid acyl chain unsaturation as a driving force for phase separation using coarse-grained molecular dynamics (CGMD) simulations validated by model membrane experiments. The clear trends in our observations and good qualitative agreements between simulations and experiments support the conclusions that highly unsaturated lipids promote liquid-liquid domain stability by enhancing the differences in cholesterol content and lipid chain order between the coexisting domains. These observations reveal the important role of noncanonical biological lipids in the physical properties of membranes, showing that lipid polyunsaturation is a driving force for liquid-liquid phase separation.
Collapse
Affiliation(s)
- Xubo Lin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston , Houston, Texas 77030, United States
| | - Joseph H Lorent
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston , Houston, Texas 77030, United States
| | - Allison D Skinkle
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston , Houston, Texas 77030, United States
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston , Houston, Texas 77030, United States
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston , Houston, Texas 77030, United States
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston , Houston, Texas 77030, United States
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston , Houston, Texas 77030, United States
| |
Collapse
|
17
|
Tulodziecka K, Diaz-Rohrer BB, Farley MM, Chan RB, Di Paolo G, Levental KR, Waxham MN, Levental I. Remodeling of the postsynaptic plasma membrane during neural development. Mol Biol Cell 2016; 27:3480-3489. [PMID: 27535429 PMCID: PMC5221582 DOI: 10.1091/mbc.e16-06-0420] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/04/2016] [Indexed: 11/29/2022] Open
Abstract
Neuronal synapses require precise regulation, particularly of membrane components. The composition and organization of synaptic membranes are dramatically remodeled during development, including accumulation of lipids associated with raft domains, and concomitant palmitoylation of PSD-95, suggesting recruitment of domains via scaffold lipidation. Neuronal synapses are the fundamental units of neural signal transduction and must maintain exquisite signal fidelity while also accommodating the plasticity that underlies learning and development. To achieve these goals, the molecular composition and spatial organization of synaptic terminals must be tightly regulated; however, little is known about the regulation of lipid composition and organization in synaptic membranes. Here we quantify the comprehensive lipidome of rat synaptic membranes during postnatal development and observe dramatic developmental lipidomic remodeling during the first 60 postnatal days, including progressive accumulation of cholesterol, plasmalogens, and sphingolipids. Further analysis of membranes associated with isolated postsynaptic densities (PSDs) suggests the PSD-associated postsynaptic plasma membrane (PSD-PM) as one specific location of synaptic remodeling. We analyze the biophysical consequences of developmental remodeling in reconstituted synaptic membranes and observe remarkably stable microdomains, with the stability of domains increasing with developmental age. We rationalize the developmental accumulation of microdomain-forming lipids in synapses by proposing a mechanism by which palmitoylation of the immobilized scaffold protein PSD-95 nucleates domains at the postsynaptic plasma membrane. These results reveal developmental changes in lipid composition and palmitoylation that facilitate the formation of postsynaptic membrane microdomains, which may serve key roles in the function of the neuronal synapse.
Collapse
Affiliation(s)
- Karolina Tulodziecka
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Barbara B Diaz-Rohrer
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Madeline M Farley
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Robin B Chan
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
18
|
Depolarization of Hippocampal Neurons Induces Formation of Nonsynaptic NMDA Receptor Islands Resembling Nascent Postsynaptic Densities. eNeuro 2015; 2:eN-NWR-0066-15. [PMID: 26665164 PMCID: PMC4672205 DOI: 10.1523/eneuro.0066-15.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/15/2015] [Accepted: 11/03/2015] [Indexed: 01/11/2023] Open
Abstract
Depolarization of neurons in 3-week-old rat hippocampal cultures promotes a rapid increase in the density of surface NMDA receptors (NRs), accompanied by transient formation of nonsynaptic NMDA receptor clusters or NR islands. Islands exhibit cytoplasmic dense material resembling that at postsynaptic densities (PSDs), and contain typical PSD components, including MAGUKS (membrane-associated guanylate kinases), GKAP, Shank, Homer, and CaMKII detected by pre-embedding immunogold electron microscopy. In contrast to mature PSDs, islands contain more NMDA than AMPA receptors, and more SAP102 than PSD-95, features that are shared with nascent PSDs in developing synapses. Islands do not appear to be exocytosed or endocytosed directly as preformed packages because neurons lacked intracellular vacuoles containing island-like structures. Islands form and disassemble upon depolarization of neurons on a time scale of 2-3 min, perhaps representing an initial stage in synaptogenesis.
Collapse
|
19
|
Wang LF, Wei L, Qiao SM, Gao XN, Gao YB, Wang SM, Zhao L, Dong J, Xu XP, Zhou HM, Hu XJ, Peng RY. Microwave-Induced Structural and Functional Injury of Hippocampal and PC12 Cells Is Accompanied by Abnormal Changes in the NMDAR-PSD95-CaMKII Pathway. Pathobiology 2015; 82:181-94. [PMID: 26337368 DOI: 10.1159/000398803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/09/2015] [Indexed: 11/19/2022] Open
Abstract
Recent studies have highlighted the important role of the postsynaptic NMDAR-PSD95-CaMKII pathway for synaptic transmission and related neuronal injury. Here, we tested changes in the components of this pathway upon microwave-induced neuronal structure and function impairments. Ultrastructural and functional changes were induced in hippocampal neurons of rats and in PC12 cells exposed to microwave radiation. We detected abnormal protein and mRNA expression, as well as posttranslational modifications in the NMDAR-PSD95-CaMKII pathway and its associated components, such as synapsin I, following microwave radiation exposure of rats and PC12 cells. Thus, microwave radiation may induce neuronal injury via changes in the molecular organization of postsynaptic density and modulation of the biochemical cascade that potentiates synaptic transmission.
Collapse
Affiliation(s)
- Li-Feng Wang
- Laboratory of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities. Neuroscience 2015. [PMID: 26215919 DOI: 10.1016/j.neuroscience.2015.07.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electron tomography and immunogold labeling were used to analyze similarities and differences in the morphology and protein composition of postsynaptic densities (PSDs) isolated from adult rat cerebella, hippocampi, and cortices. There were similarities in physical dimensions and gross morphology between cortical, hippocampal and most cerebellar PSDs, although the morphology among cerebellar PSDs could be categorized into three distinct groups. The majority of cerebellar PSDs were composed of dense regions of protein, similar to cortical and hippocampal PSDs, while others were either composed of granular or lattice-like protein regions. Significant differences were found in protein composition and organization across PSDs from the different brain regions. The signaling protein, βCaMKII, was found to be a major component of each PSD type and was more abundant than αCaMKII in both hippocampal and cerebellar PSDs. The scaffold molecule PSD-95, a major component of cortical PSDs, was found absent in a fraction of cerebellar PSDs and when present was clustered in its distribution. In contrast, immunogold labeling for the proteasome was significantly more abundant in cerebellar and hippocampal PSDs than cortical PSDs. Together, these results indicate that PSDs exhibit remarkable diversity in their composition and morphology, presumably as a reflection of the unique functional demands placed on different synapses.
Collapse
|
21
|
Stensrud MJ, Sogn CJ, Gundersen V. Immunogold characteristics of VGLUT3-positive GABAergic nerve terminals suggest corelease of glutamate. J Comp Neurol 2015; 523:2698-713. [PMID: 26010578 DOI: 10.1002/cne.23811] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 12/20/2022]
Abstract
There is compelling evidence that glutamate can act as a cotransmitter in the mammalian brain. Interestingly, the third vesicular glutamate transporter (VGLUT3) is primarily found in neurons that were anticipated to be nonglutamatergic. Whereas the function of VGLUT3 in acetylcholinergic and serotoninergic neurons has been elucidated, the role of VGLUT3 in neurons releasing gamma-aminobutyric acid (GABA) is not settled. We have previously shown that VGLUT3 is found together with the vesicular GABA transporter (VIAAT) on synaptic vesicle membranes in the hippocampus. Now we provide novel electron microscopic data from the rat hippocampus suggesting that glutamate is enriched in inhibitory nerve terminals containing VGLUT3 compared to those lacking VGLUT3. The opposite was found for GABA; VGLUT3-positive inhibitory terminals contained lower density of GABA labeling compared to VGLUT3-negative inhibitory terminals. In addition, semiquantitative confocal immunofluorescence showed that N-methyl-D-aspartate (NMDA)-receptor labeling was present more frequently in VGLUT3-positive/VIAAT-positive synapses versus in VGLUT3-negative/VIAAT-positive synapses. Electron microscopic immunogold data further suggest that NMDA receptors are enriched in VGLUT3 containing inhibitory terminals. Our data reveal new chemical characteristics of a subset of GABAergic interneurons in the hippocampus. The analyses suggest that glutamate is coreleased with GABA from hippocampal basket cell-synapses to act on NMDA receptors.
Collapse
Affiliation(s)
- Mats Julius Stensrud
- Department of Anatomy and Healthy Brain Ageing Centre Regional Research Network, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Carl Johan Sogn
- Department of Anatomy and Healthy Brain Ageing Centre Regional Research Network, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Vidar Gundersen
- Department of Anatomy and Healthy Brain Ageing Centre Regional Research Network, Institute of Basic Medical Sciences, University of Oslo, Norway.,Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
22
|
Inoue T, Fujiwara T, Rikitake Y, Maruo T, Mandai K, Kimura K, Kayahara T, Wang S, Itoh Y, Sai K, Mori M, Mori K, Mizoguchi A, Takai Y. Nectin-1 spots as a novel adhesion apparatus that tethers mitral cell lateral dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb. J Comp Neurol 2015; 523:1824-39. [DOI: 10.1002/cne.23762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/15/2015] [Accepted: 02/18/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Takahito Inoue
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe Japan
| | - Takeshi Fujiwara
- CREST, Japan Science and Technology Agency; Kobe Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yoshiyuki Rikitake
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- CREST, Japan Science and Technology Agency; Kobe Japan
- Division of Signal Transduction; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Tomohiko Maruo
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe Japan
| | - Kenji Mandai
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe Japan
| | - Kazushi Kimura
- Department of Physical Therapy; Faculty of Human Science; Hokkaido Bunkyo University; Eniwa Hokkaido 061-1449 Japan
| | - Tetsuro Kayahara
- Department of Medical Rehabilitation; Faculty of Rehabilitation; Kobe Gakuin University; Kobe Hyogo 651-2180 Japan
| | - Shujie Wang
- CREST, Japan Science and Technology Agency; Kobe Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yu Itoh
- CREST, Japan Science and Technology Agency; Kobe Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Kousyoku Sai
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Masahiro Mori
- CREST, Japan Science and Technology Agency; Kobe Japan
- Faculty of Health Sciences; Kobe University Graduate School of Health Sciences; Kobe Hyogo 654-0142 Japan
| | - Kensaku Mori
- Department of Physiology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
- CREST, Japan Science and Technology Agency; Tokyo Japan
| | - Akira Mizoguchi
- CREST, Japan Science and Technology Agency; Kobe Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yoshimi Takai
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe Japan
| |
Collapse
|
23
|
Lowenthal MS, Markey SP, Dosemeci A. Quantitative mass spectrometry measurements reveal stoichiometry of principal postsynaptic density proteins. J Proteome Res 2015; 14:2528-38. [PMID: 25874902 DOI: 10.1021/acs.jproteome.5b00109] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Quantitative studies are presented of postsynaptic density (PSD) fractions from rat cerebral cortex with the ultimate goal of defining the average copy numbers of proteins in the PSD complex. Highly specific and selective isotope dilution mass spectrometry assays were developed using isotopically labeled polypeptide concatemer internal standards. Interpretation of PSD protein stoichiometry was achieved as a molar ratio with respect to PSD-95 (SAP-90, DLG4), and subsequently, copy numbers were estimated using a consensus literature value for PSD-95. Average copy numbers for several proteins at the PSD were estimated for the first time, including those for AIDA-1, BRAGs, and densin. Major findings include evidence for the high copy number of AIDA-1 in the PSD (144 ± 30)-equivalent to that of the total GKAP family of proteins (150 ± 27)-suggesting that AIDA-1 is an element of the PSD scaffold. The average copy numbers for NMDA receptor sub-units were estimated to be 66 ± 18, 27 ± 9, and 45 ± 15, respectively, for GluN1, GluN2A, and GluN2B, yielding a total of 34 ± 10 NMDA channels. Estimated average copy numbers for AMPA channels and their auxiliary sub-units TARPs were 68 ± 36 and 144 ± 38, respectively, with a stoichiometry of ∼1:2, supporting the assertion that most AMPA receptors anchor to the PSD via TARP sub-units. This robust, quantitative analysis of PSD proteins improves upon and extends the list of major PSD components with assigned average copy numbers in the ongoing effort to unravel the complex molecular architecture of the PSD.
Collapse
Affiliation(s)
- Mark S Lowenthal
- †Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sanford P Markey
- †Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.,‡Laboratory of Neurotoxicology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ayse Dosemeci
- §Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
24
|
Lisman J, Raghavachari S. Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex. Brain Res 2014; 1621:51-61. [PMID: 25511992 DOI: 10.1016/j.brainres.2014.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 11/17/2022]
Abstract
Memory involves the storage of information at synapses by an LTP-like process. This information storage is synapse specific and can endure for years despite the turnover of all synaptic proteins. There must, therefore, be special principles that underlie the stability of LTP. Recent experimental results suggest that LTP is maintained by the complex of CaMKII with the NMDAR. Here we consider the specifics of the CaMKII/NMDAR molecular switch, with the goal of understanding the biochemical principles that underlie stable information storage by synapses. Consideration of a variety of experimental results suggests that multiple principles are involved. One switch requirement is to prevent spontaneous transitions from the off to the on state. The highly cooperative nature of CaMKII autophosphorylation by Ca(2+) (Hill coefficient of 8) and the fact that formation of the CaMKII/NMDAR complex requires release of CaMKII from actin are mechanisms that stabilize the off state. The stability of the on state depends critically on intersubunit autophosphorylation, a process that restores any loss of pT286 due to phosphatase activity. Intersubunit autophosphorylation is also important in explaining why on state stability is not compromised by protein turnover. Recent evidence suggests that turnover occurs by subunit exchange. Thus, stability could be achieved if a newly inserted unphosphorylated subunit was autophosphorylated by a neighboring subunit. Based on other recent work, we posit a novel mechanism that enhances the stability of the on state by protection of pT286 from phosphatases. We posit that the binding of the NMNDAR to CaMKII forces pT286 into the catalytic site of a neighboring subunit, thereby protecting pT286 from phosphatases. A final principle concerns the role of structural changes. The binding of CaMKII to the NMDAR may act as a tag to organize the binding of further proteins that produce the synapse enlargement that underlies late LTP. We argue that these structural changes not only enhance transmission, but also enhance the stability of the CaMKII/NMDAR complex. Together, these principles provide a mechanistic framework for understanding how individual synapses produce stable information storage. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- John Lisman
- Brandeis University, Department of Biology and Volen Center for Complex Systems, 415 South Street-MS008, Waltham, MA 02454, United States Minor Outlying Islands.
| | - Sridhar Raghavachari
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States
| |
Collapse
|
25
|
Fukata Y, Dimitrov A, Boncompain G, Vielemeyer O, Perez F, Fukata M. Local palmitoylation cycles define activity-regulated postsynaptic subdomains. ACTA ACUST UNITED AC 2013; 202:145-61. [PMID: 23836932 PMCID: PMC3704990 DOI: 10.1083/jcb.201302071] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Local palmitoylation machinery has an instructive role in creating activity-responsive PSD-95 nanodomains, which contribute to postsynaptic density (re)organization. Distinct PSD-95 clusters are primary landmarks of postsynaptic densities (PSDs), which are specialized membrane regions for synapses. However, the mechanism that defines the locations of PSD-95 clusters and whether or how they are reorganized inside individual dendritic spines remains controversial. Because palmitoylation regulates PSD-95 membrane targeting, we combined a conformation-specific recombinant antibody against palmitoylated PSD-95 with live-cell super-resolution imaging and discovered subsynaptic nanodomains composed of palmitoylated PSD-95 that serve as elementary units of the PSD. PSD-95 in nanodomains underwent continuous de/repalmitoylation cycles driven by local palmitoylating activity, ensuring the maintenance of compartmentalized PSD-95 clusters within individual spines. Plasma membrane targeting of DHHC2 palmitoyltransferase rapidly recruited PSD-95 to the plasma membrane and proved essential for postsynaptic nanodomain formation. Furthermore, changes in synaptic activity rapidly reorganized PSD-95 nano-architecture through plasma membrane–inserted DHHC2. Thus, the first genetically encoded antibody sensitive to palmitoylation reveals an instructive role of local palmitoylation machinery in creating activity-responsive PSD-95 nanodomains, contributing to the PSD (re)organization.
Collapse
Affiliation(s)
- Yuko Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Olini N, Kurth S, Huber R. The effects of caffeine on sleep and maturational markers in the rat. PLoS One 2013; 8:e72539. [PMID: 24023748 PMCID: PMC3762801 DOI: 10.1371/journal.pone.0072539] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/11/2013] [Indexed: 01/29/2023] Open
Abstract
Adolescence is a critical period for brain maturation during which a massive reorganization of cortical connectivity takes place. In humans, slow wave activity (<4.5 Hz) during NREM sleep was proposed to reflect cortical maturation which relies on use-dependent processes. A stimulant like caffeine, whose consumption has recently increased especially in adolescents, is known to affect sleep wake regulation. The goal of this study was to establish a rat model allowing to assess the relationship between cortical maturation and sleep and to further investigate how these parameters are affected by caffeine consumption. To do so, we assessed sleep and markers of maturation by electrophysiological recordings, behavioral and structural readouts in the juvenile rat. Our results show that sleep slow wave activity follows a similar inverted U-shape trajectory as already known in humans. Caffeine treatment exerted short-term stimulating effects and altered the trajectory of slow wave activity. Moreover, caffeine affected behavioral and structural markers of maturation. Thus, caffeine consumption during a critical developmental period shows long lasting effects on sleep and brain maturation.
Collapse
Affiliation(s)
- Nadja Olini
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, Zurich, Switzerland
| | - Salomé Kurth
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, Zurich, Switzerland
- University of Colorado Boulder, Department of Integrative Physiology, Boulder, Colorado, United States of America
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
27
|
MacGillavry HD, Song Y, Raghavachari S, Blanpied TA. Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 2013; 78:615-22. [PMID: 23719161 DOI: 10.1016/j.neuron.2013.03.009] [Citation(s) in RCA: 310] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2013] [Indexed: 01/01/2023]
Abstract
Scaffolding molecules at the postsynaptic membrane form the foundation of excitatory synaptic transmission by establishing the architecture of the postsynaptic density (PSD), but the small size of the synapse has precluded measurement of PSD organization in live cells. We measured the internal structure of the PSD in live neurons at approximately 25 nm resolution using photoactivated localization microscopy (PALM). We found that four major PSD scaffold proteins were each organized in distinctive ∼80 nm ensembles able to undergo striking changes over time. Bidirectional PALM and single-molecule immunolabeling showed that dense nanodomains of PSD-95 were preferentially enriched in AMPA receptors more than NMDA receptors. Chronic suppression of activity triggered changes in PSD interior architecture that may help amplify synaptic plasticity. The observed clustered architecture of the PSD controlled the amplitude and variance of simulated postsynaptic currents, suggesting several ways in which PSD interior organization may regulate the strength and plasticity of neurotransmission.
Collapse
Affiliation(s)
- Harold D MacGillavry
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
28
|
Fera A, Dosemeci A, Sousa AA, Yang C, Leapman RD, Reese TS. Direct visualization of CaMKII at postsynaptic densities by electron microscopy tomography. J Comp Neurol 2013; 520:4218-25. [PMID: 22627922 DOI: 10.1002/cne.23151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ca(2+) /calmodulin-dependent protein kinase II (CaMKII) is a major component of postsynaptic densities (PSDs) involved in synaptic regulation. It has been previously shown that upon activity CaMKII from the spine reversibly aggregates at the cytoplasmic surfaces of PSDs, where it encounters various targets for phosphorylation. Targets for CaMKII are also present within the PSD, but there has been no reliable method to pinpoint whether, or where, CaMKII is located inside the PSD. Here we show that CaMKII can be mapped molecule-by-molecule within isolated PSDs using negative stain electron microscopy tomography. CaMKII molecules found in the core of the PSD may represent a pool distinct from the CaMKII residing at the cytoplasmic surface.
Collapse
Affiliation(s)
- Andrea Fera
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Sanhueza M, Lisman J. The CaMKII/NMDAR complex as a molecular memory. Mol Brain 2013; 6:10. [PMID: 23410178 PMCID: PMC3582596 DOI: 10.1186/1756-6606-6-10] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/17/2013] [Indexed: 01/16/2023] Open
Abstract
CaMKII is a major synaptic protein that is activated during the induction of long-term potentiation (LTP) by the Ca2+ influx through NMDARs. This activation is required for LTP induction, but the role of the kinase in the maintenance of LTP is less clear. Elucidating the mechanisms of maintenance may provide insights into the molecular processes that underlie the stability of stored memories. In this brief review, we will outline the criteria for evaluating an LTP maintenance mechanism. The specific hypothesis evaluated is that LTP is maintained by the complex of activated CaMKII with the NMDAR. The evidence in support of this hypothesis is substantial, but further experiments are required, notably to determine the time course and persistence of complex after LTP induction. Additional work is also required to elucidate how the CaMKII/NMDAR complex produces the structural growth of the synapse that underlies late LTP. It has been proposed by Frey and Morris that late LTP involves the setting of a molecular tag during LTP induction, which subsequently allows the activated synapse to capture the proteins responsible for late LTP. However, the molecular processes by which this leads to the structural growth that underlies late LTP are completely unclear. Based on known binding reactions, we suggest the first molecularly specific version of tag/capture hypothesis: that the CaMKII/NMDAR complex, once formed, serves as a tag, which then leads to a binding cascade involving densin, delta-catenin, and N-cadherin (some of which are newly synthesized). Delta-catenin binds AMPA-binding protein (ABP), leading to the LTP-induced increase in AMPA channel content. The addition of postsynaptic N-cadherin, and the complementary increase on the presynaptic side, leads to a trans-synaptically coordinated increase in synapse size (and more release sites). It is suggested that synaptic strength is stored stably through the combined actions of the CaMKII/NMDAR complex and N-cadherin dimers. These N-cadherin pairs have redundant storage that could provide informational stability in a manner analogous to the base-pairing in DNA.
Collapse
Affiliation(s)
- Magdalena Sanhueza
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425, Santiago 7800024, Chile
| | | |
Collapse
|
30
|
On the mechanism of synaptic depression induced by CaMKIIN, an endogenous inhibitor of CaMKII. PLoS One 2012; 7:e49293. [PMID: 23145145 PMCID: PMC3493544 DOI: 10.1371/journal.pone.0049293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/08/2012] [Indexed: 12/16/2022] Open
Abstract
Activity-dependent synaptic plasticity underlies, at least in part, learning and memory processes. NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) is a major synaptic plasticity model. During LTP induction, Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated, autophosphorylated and persistently translocated to the postsynaptic density, where it binds to the NMDAR. If any of these steps is inhibited, LTP is disrupted. The endogenous CaMKII inhibitor proteins CaMKIINα,β are rapidly upregulated in specific brain regions after learning. We recently showed that transient application of peptides derived from CaMKIINα (CN peptides) persistently depresses synaptic strength and reverses LTP saturation, as it allows further LTP induction in previously saturated pathways. The treatment disrupts basal CaMKII-NMDAR interaction and decreases bound CaMKII fraction in spines. To unravel CaMKIIN function and to further understand CaMKII role in synaptic strength maintenance, here we more deeply investigated the mechanism of synaptic depression induced by CN peptides (CN-depression) in rat hippocampal slices. We showed that CN-depression does not require glutamatergic synaptic activity or Ca2+ signaling, thus discarding unspecific triggering of activity-dependent long-term depression (LTD) in slices. Moreover, occlusion experiments revealed that CN-depression and NMDAR-LTD have different expression mechanisms. We showed that CN-depression does not involve complex metabolic pathways including protein synthesis or proteasome-mediated degradation. Remarkably, CN-depression cannot be resolved in neonate rats, for which CaMKII is mostly cytosolic and virtually absent at the postsynaptic densities. Overall, our results support a direct effect of CN peptides on synaptic CaMKII-NMDAR binding and suggest that CaMKIINα,β could be critical plasticity-related proteins that may operate as cell-wide homeostatic regulators preventing saturation of LTP mechanisms or may selectively erase LTP-induced traces in specific groups of synapses.
Collapse
|
31
|
Ling W, Chang L, Song Y, Lu T, Jiang Y, Li Y, Wu Y. Immunolocalization of NR1, NR2A, and PSD-95 in rat hippocampal subregions during postnatal development. Acta Histochem 2012; 114:285-95. [PMID: 21719075 DOI: 10.1016/j.acthis.2011.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 01/14/2023]
Abstract
Although the expression of NMDARs and synaptic-associated proteins has been widely studied, the temporospatial distribution of NMDAR subunits and synaptic proteins in different hippocampal subregions during postnatal development still lacks detailed information, and the relationship between NR1 or NR2 subunits and PSD-95 family proteins is controversial. In this study, we used immunofluorescent staining to assess NR1 or NR2A and PSD-95 expressions and the relationship between them in CA1, CA3, and DG of rat hippocampus on postnatal (P) days: P0, P4, P7, P10, P14, P21, P28, P56. The results showed that from P0 to P56, NR1, NR2A, and PSD-95 expressions increased gradually, and the time points of their expression peak differed in CA1, CA3, and DG during postnatal development. Interestingly, although the expression of PSD-95 was positively correlated to both NR1 and NR2A, the NR1 and PSD-95 coexpressed puncta were greatest in CA3, while NR2A and PSD-95 coexpressed puncta were greatest in CA1, compared to other subregions. Surprisingly, at P21, among different strata of CA1, the area of highest expression of NR2A was dramatically changed from stratum pyramidale to stratum polymorphum and stratum moleculare, and returned to stratum pyramidale gradually on the later observed days again, indicating that P21 may be one critical timepoint during postnatal development in CA1. The specific temporospatial distribution pattern of NR1, NR2A, and PSD-95 might be related to the different physiological functions during postnatal development. Discovering the alteration of the relationship between PSD-95 and NMDAR subunits expression may be helpful for understanding mechanisms and therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei Ling
- Department of Anatomy, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Harris KM, Weinberg RJ. Ultrastructure of synapses in the mammalian brain. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a005587. [PMID: 22357909 DOI: 10.1101/cshperspect.a005587] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The morphology and molecular composition of synapses provide the structural basis for synaptic function. This article reviews the electron microscopy of excitatory synapses on dendritic spines, using data from rodent hippocampus, cerebral cortex, and cerebellar cortex. Excitatory synapses have a prominent postsynaptic density, in contrast with inhibitory synapses, which have less dense presynaptic or postsynaptic specializations and are usually found on the cell body or proximal dendritic shaft. Immunogold labeling shows that the presynaptic active zone provides a scaffold for key molecules involved in the release of neurotransmitter, whereas the postsynaptic density contains ligand-gated ionic channels, other receptors, and a complex network of signaling molecules. Delineating the structure and molecular organization of these axospinous synapses represents a crucial step toward understanding the mechanisms that underlie synaptic transmission and the dynamic modulation of neurotransmission associated with short- and long-term synaptic plasticity.
Collapse
Affiliation(s)
- Kristen M Harris
- Center for Learning and Memory, Neurobiology Section, University of Texas, Austin, 78712, USA.
| | | |
Collapse
|
33
|
Swulius MT, Farley MM, Bryant MA, Waxham MN. Electron cryotomography of postsynaptic densities during development reveals a mechanism of assembly. Neuroscience 2012; 212:19-29. [PMID: 22516021 DOI: 10.1016/j.neuroscience.2012.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 01/10/2023]
Abstract
Postsynaptic densities (PSDs) are responsible for organizing receptors and signaling proteins that regulate excitatory transmission in the mammalian brain. To better understand the assembly and 3D organization of this synaptic structure, we employed electron cryotomography to visualize general and fine structural details of PSDs isolated from P2, P14, P21 and adult forebrain in the absence of fixatives and stains. PSDs at P2 are a loose mesh of filamentous and globular proteins and during development additional protein complexes are recruited onto the mesh. Quantitative analysis reveals that while the surface area of PSDs is relatively constant, the thickness and protein occupancy of the PSD volume increase dramatically between P14 and adult. One striking morphological feature is the appearance of lipid raft-like structures, first evident in PSDs from 14 day old animals. These detergent-resistant membranes stain for GM1 ganglioside and their terminations can be clearly seen embedded in protein "bowls" within the PSD complex. In total, these results lead to the conclusion that the PSD is assembled by the gradual recruitment and stabilization of proteins within an initial mesh that systematically adds complexity to the structure.
Collapse
Affiliation(s)
- M T Swulius
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
34
|
Subsynaptic AMPA receptor distribution is acutely regulated by actin-driven reorganization of the postsynaptic density. J Neurosci 2012; 32:658-73. [PMID: 22238102 DOI: 10.1523/jneurosci.2927-11.2012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AMPA receptors (AMPARs) mediate synaptic transmission and plasticity during learning, development, and disease. Mechanisms determining subsynaptic receptor position are poorly understood but are key determinants of quantal size. We used a series of live-cell, high-resolution imaging approaches to measure protein organization within single postsynaptic densities in rat hippocampal neurons. By photobleaching receptors in synapse subdomains, we found that most AMPARs do not freely diffuse within the synapse, indicating they are embedded in a matrix that determines their subsynaptic position. However, time lapse analysis revealed that synaptic AMPARs are continuously repositioned in concert with plasticity of this scaffold matrix rather than simply by free diffusion. Using a fluorescence correlation analysis, we found that across the lateral extent of single PSDs, component proteins were differentially distributed, and this distribution was continually adjusted by actin treadmilling. The C-terminal PDZ ligand of GluA1 did not regulate its mobility or distribution in the synapse. However, glutamate receptor activation promoted subsynaptic mobility. Strikingly, subsynaptic immobility of both AMPARs and scaffold molecules remained essentially intact even after loss of actin filaments. We conclude that receptors are actively repositioned at the synapse by treadmilling of the actin cytoskeleton, an influence which is transmitted only indirectly to receptors via the pliable and surprisingly dynamic internal structure of the PSD.
Collapse
|
35
|
Shen L, Li X, Chen W, Xu L, Liu W, Yu XR, Huang YG. PSD95 Gene Specific siRNAs Attenuate Neuropathic Pain through Modulating Neuron Sensibility and Postsynaptic CaMKIIα Phosphorylation. ACTA ACUST UNITED AC 2011; 26:201-7. [DOI: 10.1016/s1001-9294(12)60001-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
Sheng M, Kim E. The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005678. [PMID: 22046028 DOI: 10.1101/cshperspect.a005678] [Citation(s) in RCA: 390] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The postsynaptic side of the synapse is specialized to receive the neurotransmitter signal released from the presynaptic terminal and transduce it into electrical and biochemical changes in the postsynaptic cell. The cardinal functional components of the postsynaptic specialization of excitatory and inhibitory synapses are the ionotropic receptors (ligand-gated channels) for glutamate and γ-aminobutyric acid (GABA), respectively. These receptor channels are concentrated at the postsynaptic membrane and embedded in a dense and rich protein network comprised of anchoring and scaffolding molecules, signaling enzymes, cytoskeletal components, as well as other membrane proteins. Excitatory and inhibitory postsynaptic specializations are quite different in molecular organization. The postsynaptic density of excitatory synapses is especially complex and dynamic in composition and regulation; it contains hundreds of different proteins, many of which are required for cognitive function and implicated in psychiatric illness.
Collapse
Affiliation(s)
- Morgan Sheng
- The Department of Neuroscience, Genentech Incorporated, San Francisco, California 94080, USA
| | | |
Collapse
|
37
|
MacGillavry HD, Kerr JM, Blanpied TA. Lateral organization of the postsynaptic density. Mol Cell Neurosci 2011; 48:321-31. [PMID: 21920440 DOI: 10.1016/j.mcn.2011.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/31/2011] [Accepted: 09/02/2011] [Indexed: 10/17/2022] Open
Abstract
Fast excitatory synaptic transmission is mediated by AMPA-type glutamate receptors (AMPARs). It is widely accepted that the number of AMPARs in the postsynaptic density (PSD) critically determines the efficiency of synaptic transmission, but an unappreciated aspect of synapse organization is the lateral positioning of AMPARs within the PSD, that is, their distribution across the face of a single synapse. Receptor lateral positioning is important in a number of processes, most notably because alignment with presynaptic release sites heavily influences the probability of receptor activation. In this review, we summarize current understanding of the mechanisms that dynamically control the subsynaptic positioning of AMPARs. This field is still at early stages, but the recent wave of developments in super-resolution microscopy, synapse tomography, and computational modeling now enable the study of lateral protein distribution and dynamics within the nanometer-scale boundaries of the PSD. We discuss data available measuring the lateral distribution of glutamate receptors and scaffold proteins within the PSD, and discuss potential mechanisms that might give rise to these patterns. Elucidating the mechanisms that underlie the lateral organization of the PSD will be critical to improve our understanding of synaptic processes whose disruption may be unexpectedly important in neurological disorders. This article is part of a Special Issue entitled Membrane Trafficking and Cytoskeletal Dynamics in 'Neuronal Function'.
Collapse
Affiliation(s)
- Harold D MacGillavry
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
38
|
Abstract
Calcyon regulates activity-dependent internalization of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors and long-term depression of excitatory synapses. Elevated levels of calcyon are consistently observed in brains from schizophrenic patients, and the calcyon gene is associated with attention-deficit hyperactivity disorder. Executive function deficits are common to both disorders, and at least for schizophrenia, the etiology appears to involve both heritable and neurodevelopmental factors. Here, we show with calcyon-overexpressing Cal(OE) transgenic mice that lifelong calcyon upregulation impairs executive functions including response inhibition and working memory, without producing learning and memory deficits in general. As response inhibition and working memory, as well as the underlying neural circuitry, continue to mature into early adulthood, we functionally silenced the transgene during postnatal days 28-49, a period corresponding to adolescence. Remarkably, the response inhibition and working memory deficits including perseverative behavior were absent in adult Cal(OE) mice with the transgene silenced in adolescence. Suppressing the calcyon transgene in adulthood only partially rescued the deficits, suggesting calcyon upregulation in adolescence irreversibly alters development of neural circuits supporting mature response inhibition and working memory. Brain regional immunoblots revealed a prominent downregulation of AMPA GluR1 subunits in hippocampus and GluR2/3 subunits in hippocampus and prefrontal cortex of the Cal(OE) mice. Silencing the transgene in adolescence prevented the decrease in hippocampal GluR1, further implicating altered fronto-hippocampal connectivity in the executive function deficits observed in the Cal(OE) mice. Treatments that mitigate the effects of high levels of calcyon during adolescence could preempt adult deficits in executive functions in individuals at risk for serious mental illness.
Collapse
|