1
|
Saleki K, Banazadeh M, Saghazadeh A, Rezaei N. Aging, testosterone, and neuroplasticity: friend or foe? Rev Neurosci 2022; 34:247-273. [PMID: 36017670 DOI: 10.1515/revneuro-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
Abstract
Neuroplasticity or neural plasticity implicates the adaptive potential of the brain in response to extrinsic and intrinsic stimuli. The concept has been utilized in different contexts such as injury and neurological disease. Neuroplasticity mechanisms have been classified into neuroregenerative and function-restoring processes. In the context of injury, neuroplasticity has been defined in three post-injury epochs. Testosterone plays a key yet double-edged role in the regulation of several neuroplasticity alterations. Research has shown that testosterone levels are affected by numerous factors such as age, stress, surgical procedures on gonads, and pharmacological treatments. There is an ongoing debate for testosterone replacement therapy (TRT) in aging men; however, TRT is more useful in young individuals with testosterone deficit and more specific subgroups with cognitive dysfunction. Therefore, it is important to pay early attention to testosterone profile and precisely uncover its harms and benefits. In the present review, we discuss the influence of environmental factors, aging, and gender on testosterone-associated alterations in neuroplasticity, as well as the two-sided actions of testosterone in the nervous system. Finally, we provide practical insights for further study of pharmacological treatments for hormonal disorders focusing on restoring neuroplasticity.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,USERN Office, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| | - Mohammad Banazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, 76169 13555 Kerman, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 14176 13151 Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| |
Collapse
|
2
|
Rensel MA, Schlinger BA. 11ß hydroxysteroid dehydrogenases regulate circulating glucocorticoids but not central gene expression. Gen Comp Endocrinol 2021; 305:113734. [PMID: 33548254 PMCID: PMC7954975 DOI: 10.1016/j.ygcen.2021.113734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/17/2021] [Accepted: 01/30/2021] [Indexed: 11/15/2022]
Abstract
Regulation of glucocorticoids (GCs), important mediators of physiology and behavior at rest and during stress, is multi-faceted and dynamic. The 11ß hydroxysteroid dehydrogenases 11ß-HSD1 and 11ß-HSD2 catalyze the regeneration and inactivation of GCs, respectively, and provide peripheral and central control over GC actions in mammals. While these enzymes have only recently been investigated in just two songbird species, central expression patterns suggest that they may function differently in birds and mammals, and little is known about how peripheral expression regulates circulating GCs. In this study, we utilized the 11ß-HSD inhibitor carbenoxolone (CBX) to probe the functional effects of 11ß-HSD activity on circulating GCs and central GC-dependent gene expression in the adult zebra finch (Taeniopygia guttata). Peripheral CBX injection produced a marked increase in baseline GCs 60 min after injection, suggestive of a dominant role for 11ß-HSD2 in regulating circulating GCs. In the adult zebra finch brain, where 11ß-HSD2 but not 11ß-HSD1 is expressed, co-incubation of micro-dissected brain regions with CBX and stress-level GCs had no impact on expression of several GC-dependent genes. These results suggest that peripheral 11ß-HSD2 attenuates circulating GCs, whereas central 11ß-HSD2 has little impact on gene expression. Instead, rapid 11ß-HSD2-based regulation of local GC levels might fine-tune membrane GC actions in brain. These results provide new insights into the dynamics of GC secretion and action in this important model organism.
Collapse
Affiliation(s)
- Michelle A Rensel
- Institute for Society and Genetics, University of California Los Angeles, 621 Charles E Young Drive S, Los Angeles, CA 90095, USA; Laboratory of Neuroendocrinology, Brain Research Institute UCLA, Box 951761, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Barney A Schlinger
- Laboratory of Neuroendocrinology, Brain Research Institute UCLA, Box 951761, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles E Young Drive E, Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E Young Drive S, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Rensel MA, Schlinger BA. The stressed brain: regional and stress-related corticosterone and stress-regulated gene expression in the adult zebra finch (Taeniopygia guttata). J Neuroendocrinol 2020; 32:e12852. [PMID: 32364267 PMCID: PMC7286616 DOI: 10.1111/jne.12852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 11/30/2022]
Abstract
Glucocorticoids (CORT) are well-known as important regulators of behaviour and cognition at basal levels and under stress. However, the precise mechanisms governing CORT action and functional outcomes of this action in the brain remain unclear, particularly in model systems other than rodents. In the present study, we investigated the dynamics of CORT regulation in the zebra finch, an important model system for vocal learning, neuroplasticity and cognition. We tested the hypothesis that CORT is locally regulated in the zebra finch brain by quantifying regional and stress-related variation in total CORT across brain regions. In addition, we used an ex vivo slice culture system to test whether CORT regulates target gene expression uniquely in discrete regions of the brain. We documented a robust increase in brain CORT across regions after 30 minutes of restraint stress but, interestingly, baseline and stress-induced CORT levels varied between regions. In addition, CORT treatment of brain slice cultures differentially affected expression of three CORT target genes: it up-regulated expression of FKBP5 in most regions and SGK1 in the hypothalamus only, whereas GILZ was unaffected by CORT treatment across all brain regions investigated. The specific mechanisms producing regional variation in CORT and CORT-dependent downstream gene expression remain unknown, although these data provide additional support for the hypothesis that the songbird brain employs regulatory mechanisms that result in precise control over the influence of CORT on glucocorticoid-sensitive neural circuits.
Collapse
Affiliation(s)
- Michelle A. Rensel
- Institute for Society and Genetics, the University of California Los Angeles, Los Angeles, CA
- Laboratory of Neuroendocrinology, the University of California Los Angeles, Los Angeles, CA
- Corresponding author (MAR)
| | - Barney A. Schlinger
- Laboratory of Neuroendocrinology, the University of California Los Angeles, Los Angeles, CA
- Dept. of Integrative Biology and Physiology, the University of California Los Angeles, Los Angeles, CA
- Dept. of Ecology and Evolutionary Biology, the University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
4
|
Orije J, Cardon E, De Groof G, Hamaide J, Jonckers E, Van Massenhoven S, Darras V, Balthazart J, Verhoye M, Van der Linden A. In vivo online monitoring of testosterone-induced neuroplasticity in a female songbird. Horm Behav 2020; 118:104639. [PMID: 31765658 DOI: 10.1016/j.yhbeh.2019.104639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Adult neuroplasticity in the song control system of seasonal songbirds is largely driven by photoperiod-induced increases in testosterone. Prior studies of the relationships between testosterone, song performance and neuroplasticity used invasive techniques, which prevent analyzing the dynamic changes over time and often focus on pre-defined regions-of-interest instead of examining the entire brain. Here, we combined (i) in vivo diffusion tensor imaging (DTI) to assess structural neuroplasticity with (ii) repeated monitoring of song and (iii) measures of plasma testosterone concentrations in thirteen female photosensitive starlings (Sturnus vulgaris) who received a testosterone implant for 3 weeks. We observed fast (days) and slower (weeks) effects of testosterone on song behavior and structural neuroplasticity and determined how these effects correlate on a within-subject level, which suggested separate contributions of the song motor and anterior forebrain pathways in the development of song performance. Specifically, the increase in testosterone correlated with a rapid increase of song rate and RA volume, and with changes in Area X microstructure. After implant removal, these variables rapidly reverted to baseline levels. In contrast, the more gradual improvement of song quality was positively correlated with the fractional anisotropy values (DTI metric sensitive to white matter changes) of the HVC-RA tract and of the lamina mesopallialis, which contains fibers connecting the song control nuclei. Thus, we confirmed many of the previously reported testosterone-induced effects, like the increase in song control nuclei volume, but identified for the first time a more global picture of the spatio-temporal changes in brain plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Veerle Darras
- Laboratory of Comparative Endocrinology, KU Leuven, Belgium.
| | | | | | | |
Collapse
|
5
|
Kranz TM, Lent KL, Miller KE, Chao MV, Brenowitz EA. Rapamycin blocks the neuroprotective effects of sex steroids in the adult birdsong system. Dev Neurobiol 2019; 79:794-804. [PMID: 31509642 DOI: 10.1002/dneu.22719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 11/06/2022]
Abstract
In adult songbirds, the telencephalic song nucleus HVC and its efferent target RA undergo pronounced seasonal changes in morphology. In breeding birds, there are increases in HVC volume and total neuron number, and RA neuronal soma area compared to nonbreeding birds. At the end of breeding, HVC neurons die through caspase-dependent apoptosis and thus, RA neuron size decreases. Changes in HVC and RA are driven by seasonal changes in circulating testosterone (T) levels. Infusing T, or its metabolites 5α-dihydrotestosterone (DHT) and 17 β-estradiol (E2), intracerebrally into HVC (but not RA) protects HVC neurons from death, and RA neuron size, in nonbreeding birds. The phosphoinositide 3-kinase (PI3K)-Akt (a serine/threonine kinase)-mechanistic target of rapamycin (mTOR) signaling pathway is a point of convergence for neuroprotective effects of sex steroids and other trophic factors. We asked if mTOR activation is necessary for the protective effect of hormones in HVC and RA of adult male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii). We transferred sparrows from breeding to nonbreeding hormonal and photoperiod conditions to induce regression of HVC neurons by cell death and decrease of RA neuron size. We infused either DHT + E2, DHT + E2 plus the mTOR inhibitor rapamycin, or vehicle alone in HVC. Infusion of DHT + E2 protected both HVC and RA neurons. Coinfusion of rapamycin with DHT + E2, however, blocked the protective effect of hormones on HVC volume and neuron number, and RA neuron size. These results suggest that activation of mTOR is an essential downstream step in the neuroprotective cascade initiated by sex steroid hormones in the forebrain.
Collapse
Affiliation(s)
- Thorsten M Kranz
- Department of Psychiatry, Skirball Institute of Biomolecular Medicine, Langone Medical Center, New York University, New York, New York
| | - Karin L Lent
- Departments of Psychology and Biology, Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| | - Kimberly E Miller
- Departments of Psychology and Biology, Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| | - Moses V Chao
- Department of Psychiatry, Skirball Institute of Biomolecular Medicine, Langone Medical Center, New York University, New York, New York
| | - Eliot A Brenowitz
- Departments of Psychology and Biology, Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
6
|
Samandari R, Hassanpour-Ezatti M, Fakhri S, Abbaszadeh F, Jorjani M. Sex Differences and Role of Gonadal Hormones on Glutamate LevelAfter Spinal Cord Injury in Rats: A Microdialysis Study. Basic Clin Neurosci 2019; 10:225-234. [PMID: 31462977 PMCID: PMC6712632 DOI: 10.32598/bcn.9.10.260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/28/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023] Open
Abstract
Introduction: Sex differences in outcomes of Spinal Cord Injury (SCI) suggest a sex-hormone-mediated effect on post-SCI pathological events, including glutamate excitotoxicity. This study aimed to investigate the importance of gonadal hormones on glutamate release subsequent to SCI in rats. Methods: After laminectomy at T8–T9, an electrolytic lesion was applied to the spinothalamic tracts of male and female rats. Using spinal microdialysis, we assessed glutamate levels at the site of lesion in both intact and gonadectomized rats for 4 hours. In this way, we examined the sex differences in the glutamate concentrations. Results: The peak retention time of glutamate level was 10.6 min and spinal glutamate concentration reached a maximum level 40 min following SCI. In male SCI rats, gonadectomy caused a significant elevation of glutamate level (P<0.001) following injury which was maximum 40 min post-SCI as well. However, no significant alterations were seen in gonadectomized female rats. Conclusion: The significant differences in glutamate levels between both intact and gonadectomized SCI male and female rats show the sex-hormone-related mechanisms underlying the molecular events in the second phase of SCI. It seems that the role of male gonadal hormones to prevent glutamate excitotoxicity is more prominent. The exact mechanisms of these hormones on the functional recovery after SCI should be clarified in further studies.
Collapse
Affiliation(s)
- Razieh Samandari
- Department of Physiology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | | | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jorjani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Peng R, Dai W, Li Y. Neuroprotective effect of a physiological ratio of testosterone and estradiol on corticosterone-induced apoptosis in PC12 cells via Traf6/TAK1 pathway. Toxicol In Vitro 2018; 50:257-263. [DOI: 10.1016/j.tiv.2018.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Accepted: 03/30/2018] [Indexed: 01/03/2023]
|
8
|
Hawkins SJ, Weiss L, Offner T, Dittrich K, Hassenklöver T, Manzini I. Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit. Front Cell Neurosci 2017; 11:380. [PMID: 29234276 PMCID: PMC5712363 DOI: 10.3389/fncel.2017.00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Understanding the mechanisms involved in maintaining lifelong neurogenesis has a clear biological and clinical interest. In the present study, we performed olfactory nerve transection on larval Xenopus to induce severe damage to the olfactory circuitry. We surveyed the timing of the degeneration, subsequent rewiring and functional regeneration of the olfactory system following injury. A range of structural labeling techniques and functional calcium imaging were performed on both tissue slices and whole brain preparations. Cell death of olfactory receptor neurons and proliferation of stem cells in the olfactory epithelium were immediately increased following lesion. New olfactory receptor neurons repopulated the olfactory epithelium and once again showed functional responses to natural odorants within 1 week after transection. Reinnervation of the olfactory bulb (OB) by newly formed olfactory receptor neuron axons also began at this time. Additionally, we observed a temporary increase in cell death in the OB and a subsequent loss in OB volume. Mitral/tufted cells, the second order neurons of the olfactory system, largely survived, but transiently lost dendritic tuft complexity. The first odorant-induced responses in the OB were observed 3 weeks after nerve transection and the olfactory network showed signs of major recovery, both structurally and functionally, after 7 weeks.
Collapse
Affiliation(s)
- Sara J Hawkins
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Lukas Weiss
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Offner
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Katarina Dittrich
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Ivan Manzini
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany.,Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus Liebig University Giessen, Giessen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
9
|
Dittrich K, Kuttler J, Hassenklöver T, Manzini I. Metamorphic remodeling of the olfactory organ of the African clawed frog, Xenopus laevis. J Comp Neurol 2015; 524:986-98. [PMID: 26294036 DOI: 10.1002/cne.23887] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 11/08/2022]
Abstract
The amphibian olfactory system undergoes massive remodeling during metamorphosis. The transition from aquatic olfaction in larvae to semiaquatic or airborne olfaction in adults requires anatomical, cellular, and molecular modifications. These changes are particularly pronounced in Pipidae, whose adults have secondarily adapted to an aquatic life style. In the fully aquatic larvae of Xenopus laevis, the main olfactory epithelium specialized for sensing water-borne odorous substances lines the principal olfactory cavity (PC), whereas a separate olfactory epithelium lies in the vomeronasal organ (VNO). During metamorphosis, the epithelium of the PC is rearranged into the adult "air nose," whereas a new olfactory epithelium, the adult "water nose," forms in the emerging middle cavity (MC). Here we performed a stage-by-stage investigation of the anatomical changes of the Xenopus olfactory organ during metamorphosis. We quantified cell death in all olfactory epithelia and found massive cell death in the PC and the VNO, suggesting that the majority of larval sensory neurons is replaced during metamorphosis in both sensory epithelia. The moderate cell death in the MC shows that during the formation of this epithelium some cells are sorted out. Our results show that during MC formation some supporting cells, but not sensory neurons, are relocated from the PC to the MC and that they are eventually eliminated during metamorphosis. Together our findings illustrate the structural and cellular changes of the Xenopus olfactory organ during metamorphosis.
Collapse
Affiliation(s)
- Katarina Dittrich
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, 37073, Göttingen, Germany
| | - Josua Kuttler
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, 37073, Göttingen, Germany
| | - Thomas Hassenklöver
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, 37073, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073, Göttingen, Germany
| | - Ivan Manzini
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, 37073, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073, Göttingen, Germany
| |
Collapse
|
10
|
Honarmand M, Thompson CK, Schatton A, Kipper S, Scharff C. Early developmental stress negatively affects neuronal recruitment to avian song system nucleus HVC. Dev Neurobiol 2015; 76:107-18. [DOI: 10.1002/dneu.22302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 05/02/2015] [Accepted: 05/07/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Mariam Honarmand
- Department of Animal Behavior; Freie Universität; Berlin Germany
| | - Christopher K. Thompson
- Department of Animal Behavior; Freie Universität; Berlin Germany
- Department of Molecular and Cellular Neuroscience; the Scripps Research Institute; La Jolla California
| | - Adriana Schatton
- Department of Animal Behavior; Freie Universität; Berlin Germany
| | - Silke Kipper
- Department of Animal Behavior; Freie Universität; Berlin Germany
- Department of Zoology; Technische Universität München; Munich Germany
| | | |
Collapse
|
11
|
Abstract
New neurons are added throughout the forebrain of adult birds. The song-control system is a model to investigate the addition of new long-projection neurons to a cortical circuit that regulates song, a learned sensorimotor behavior. Neuroblasts destined for the song nucleus HVC arise in the walls of the lateral ventricle, and wander through the pallium to reach HVC. The survival of new HVC neurons is supported by gonadally secreted testosterone and its downstream effectors including neurotrophins, vascularization, and electrical activity of postsynaptic neurons in nucleus RA (robust nucleus of the arcopallium). In seasonal species, the HVC→RA circuit degenerates in nonbreeding birds, and is reconstructed by the incorporation of new projection neurons in breeding birds. There is a functional linkage between the death of mature HVC neurons and the birth of new neurons. Various hypotheses for the function of adult neurogenesis in the song system can be proposed, but this remains an open question.
Collapse
Affiliation(s)
- Eliot A Brenowitz
- Departments of Biology and Psychology, University of Washington, Seattle, Washington 98195
| | - Tracy A Larson
- Departments of Biology and Psychology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
12
|
Wang S, Liao C, Li F, Liu S, Meng W, Li D. Castration modulates singing patterns and electrophysiological properties of RA projection neurons in adult male zebra finches. PeerJ 2014; 2:e352. [PMID: 24765586 PMCID: PMC3994634 DOI: 10.7717/peerj.352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/28/2014] [Indexed: 01/05/2023] Open
Abstract
Castration can change levels of plasma testosterone. Androgens such as testosterone play an important role in stabilizing birdsong. The robust nucleus of the arcopallium (RA) is an important premotor nucleus critical for singing. In this study, we investigated the effect of castration on singing patterns and electrophysiological properties of projection neurons (PNs) in the RA of adult male zebra finches. Adult male zebra finches were castrated and the changes in bird song assessed. We also recorded the electrophysiological changes from RA PNs using patch clamp recording. We found that the plasma levels of testosterone were significantly decreased, song syllable's entropy was increased and the similarity of motif was decreased after castration. Spontaneous and evoked firing rates, membrane time constants, and membrane capacitance of RA PNs in the castration group were lower than those of the control and the sham groups. Afterhyperpolarization AHP time to peak of spontaneous action potential (AP) was prolonged after castration.These findings suggest that castration decreases song stereotypy and excitability of RA PNs in male zebra finches.
Collapse
Affiliation(s)
- Songhua Wang
- School of Life Science, South China Normal University, Key Laboratory of Ecology and Environmental Science in Higher Education of Guangdong Province , Guangzhou , China
| | - Congshu Liao
- School of Life Science, South China Normal University, Key Laboratory of Ecology and Environmental Science in Higher Education of Guangdong Province , Guangzhou , China
| | - Fengling Li
- School of Life Science, South China Normal University, Key Laboratory of Ecology and Environmental Science in Higher Education of Guangdong Province , Guangzhou , China
| | - Shaoyi Liu
- School of Life Science, South China Normal University, Key Laboratory of Ecology and Environmental Science in Higher Education of Guangdong Province , Guangzhou , China
| | - Wei Meng
- School of Life Science, South China Normal University, Key Laboratory of Ecology and Environmental Science in Higher Education of Guangdong Province , Guangzhou , China
| | - Dongfeng Li
- School of Life Science, South China Normal University, Key Laboratory of Ecology and Environmental Science in Higher Education of Guangdong Province , Guangzhou , China
| |
Collapse
|
13
|
Apfelbeck B, Kiefer S, Mortega KG, Goymann W, Kipper S. Testosterone affects song modulation during simulated territorial intrusions in male black redstarts (Phoenicurus ochruros). PLoS One 2012; 7:e52009. [PMID: 23284852 PMCID: PMC3524101 DOI: 10.1371/journal.pone.0052009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/07/2012] [Indexed: 12/26/2022] Open
Abstract
Although it has been suggested that testosterone plays an important role in resource allocation for competitive behavior, details of the interplay between testosterone, territorial aggression and signal plasticity are largely unknown. Therefore, we investigated if testosterone acts specifically on signals that communicate the motivation or ability of individuals to engage in competitive situations in a natural context. We studied the black redstart, a territorial songbird species, during two different life-cycle stages, the early breeding phase in spring and the non-breeding phase in fall. Male territory holders were implanted with the androgen receptor blocker flutamide (Flut) and the aromatase inhibitor letrozole (Let) to inhibit the action of testosterone and its estrogenic metabolites. Controls received a placebo treatment. Three days after implantation birds were challenged with a simulated territorial intrusion (STI). Song was recorded before, during and after the challenge. In spring, both treatment groups increased the number of elements sung in parts of their song in response to the STI. However, Flut/Let-implanted males reacted to the STI with a decreased maximum acoustic frequency of one song part, while placebo-implanted males did not. Instead, placebo-implanted males sang the atonal part of their song with a broader frequency range. Furthermore, placebo-, but not Flut/Let-implanted males, sang shorter songs with shorter pauses between parts in the STIs. During simulated intrusions in fall, when testosterone levels are naturally low in this species, males of both treatment groups sang similar to Flut/Let-implanted males during breeding. The results suggest that song sung during a territorial encounter is of higher competitive value than song sung in an undisturbed situation and may, therefore, convey information about the motivation or quality of the territory holder. We conclude that testosterone facilitates context-dependent changes in song structures that may be honest signals of male quality in black redstarts.
Collapse
Affiliation(s)
- Beate Apfelbeck
- Abteilung für Verhaltensneurobiologie, Max-Planck-Institut für Ornithologie, Seewiesen, Germany.
| | | | | | | | | |
Collapse
|
14
|
Adult neuron addition to the zebra finch song motor pathway correlates with the rate and extent of recovery from botox-induced paralysis of the vocal muscles. J Neurosci 2012; 31:16958-68. [PMID: 22114266 DOI: 10.1523/jneurosci.2971-11.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In adult songbirds, neurons are continually incorporated into the telencephalic nucleus HVC (used as a proper name), a premotor region necessary for the production of learned vocalizations. Previous studies have demonstrated that neuron addition to HVC is highest when song is most variable: in juveniles during song learning, in seasonally singing adults during peaks in plasticity that precede the production of new song components, or during seasonal reestablishment of a previously learned song. These findings suggest that neuron addition provides motor flexibility for the transition from a variable song to a target song. Here we test the association between the quality of song structure and HVC neuron addition by experimentally manipulating syringeal muscle control with Botox, which produces a transient partial paralysis. We show that the quality of song structure covaries with new neuron addition to HVC. Both the magnitude of song distortion and the rate of song recovery after syringeal Botox injections were correlated with the number of new neurons incorporated into HVC. We suggest that the quality of song structure is either a cause or consequence of the number of new neurons added to HVC. Birds with naturally high rates of neuron addition may have had the greatest success in recovering song. Alternatively, or in addition, new neuron survival in the song motor pathway may be regulated by the quality of song-generated feedback as song regains its original stereotyped structure. Present results are the first to show a relationship between peripheral muscle control and adult neuron addition to cortical premotor circuits.
Collapse
|