1
|
Dehdashtian A, Timek JH, Svientek SR, Risch MJ, Bratley JV, Riegger AE, Kung TA, Cederna PS, Kemp SWP. Sexually Dimorphic Pattern of Pain Mitigation Following Prophylactic Regenerative Peripheral Nerve Interface (RPNI) in a Rat Neuroma Model. Neurosurgery 2023; 93:1192-1201. [PMID: 37227138 DOI: 10.1227/neu.0000000000002548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Treating neuroma pain is a clinical challenge. Identification of sex-specific nociceptive pathways allows a more individualized pain management. The Regenerative Peripheral Nerve Interface (RPNI) consists of a neurotized autologous free muscle using a severed peripheral nerve to provide physiological targets for the regenerating axons. OBJECTIVE To evaluate prophylactic RPNI to prevent neuroma pain in male and female rats. METHODS F344 rats of each sex were assigned to neuroma, prophylactic RPNI, or sham groups. Neuromas and RPNIs were created in both male and female rats. Weekly pain assessments including neuroma site pain and mechanical, cold, and thermal allodynia were performed for 8 weeks. Immunohistochemistry was used to evaluate macrophage infiltration and microglial expansion in the corresponding dorsal root ganglia and spinal cord segments. RESULTS Prophylactic RPNI prevented neuroma pain in both sexes; however, female rats displayed delayed pain attenuation when compared with males. Cold allodynia and thermal allodynia were attenuated exclusively in males. Macrophage infiltration was mitigated in males, whereas females showed a reduced number of spinal cord microglia. CONCLUSION Prophylactic RPNI can prevent neuroma site pain in both sexes. However, attenuation of both cold allodynia and thermal allodynia occurred in males exclusively, potentially because of their sexually dimorphic effect on pathological changes of the central nervous system.
Collapse
Affiliation(s)
- Amir Dehdashtian
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Jagienka H Timek
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Shelby R Svientek
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Mary Jane Risch
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Jared V Bratley
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Anna E Riegger
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Theodore A Kung
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
| | - Paul S Cederna
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor , Michigan , USA
| | - Stephen W P Kemp
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, Ann Arbor , Michigan , USA
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor , Michigan , USA
| |
Collapse
|
2
|
Meregalli C, Monza L, Jongen JLM. A mechanistic understanding of the relationship between skin innervation and chemotherapy-induced neuropathic pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:1066069. [PMID: 36582196 PMCID: PMC9792502 DOI: 10.3389/fpain.2022.1066069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Neuropathic pain is a frequent complication of chemotherapy-induced peripheral neurotoxicity (CIPN). Chemotherapy-induced peripheral neuropathies may serve as a model to study mechanisms of neuropathic pain, since several other common causes of peripheral neuropathy like painful diabetic neuropathy may be due to both neuropathic and non-neuropathic pain mechanisms like ischemia and inflammation. Experimental studies are ideally suited to study changes in morphology, phenotype and electrophysiologic characteristics of primary afferent neurons that are affected by chemotherapy and to correlate these changes to behaviors reflective of evoked pain, mainly hyperalgesia and allodynia. However, hyperalgesia and allodynia may only represent one aspect of human pain, i.e., the sensory-discriminative component, while patients with CIPN often describe their pain using words like annoying, tiring and dreadful, which are affective-emotional descriptors that cannot be tested in experimental animals. To understand why some patients with CIPN develop neuropathic pain and others not, and which are the components of neuropathic pain that they are experiencing, experimental and clinical pain research should be combined. Emerging evidence suggests that changes in subsets of primary afferent nerve fibers may contribute to specific aspects of neuropathic pain in both preclinical models and in patients with CIPN. In addition, the role of cutaneous neuroimmune interactions is considered. Since obtaining dorsal root ganglia and peripheral nerves in patients is problematic, analyses performed on skin biopsies from preclinical models as well as patients provide an opportunity to study changes in primary afferent nerve fibers and to associate these changes to human pain. In addition, other biomarkers of small fiber damage in CIPN, like corneal confocal microscope and quantitative sensory testing, may be considered.
Collapse
Affiliation(s)
- Cristina Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy,Correspondence: Cristina Meregalli
| | - Laura Monza
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Joost L. M. Jongen
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
3
|
Yang H, Datta-Chaudhuri T, George SJ, Haider B, Wong J, Hepler TD, Andersson U, Brines M, Tracey KJ, Chavan SS. High-frequency electrical stimulation attenuates neuronal release of inflammatory mediators and ameliorates neuropathic pain. Bioelectron Med 2022; 8:16. [PMID: 36195968 PMCID: PMC9533511 DOI: 10.1186/s42234-022-00098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Neuroinflammation is an important driver of acute and chronic pain states. Therefore, targeting molecular mediators of neuroinflammation may present an opportunity for developing novel pain therapies. In preclinical models of neuroinflammatory pain, calcitonin gene-related peptide (CGRP), substance P and high mobility group box 1 protein (HMGB1) are molecules synthesized and released by sensory neurons which activate inflammation and pain. High-frequency electrical nerve stimulation (HFES) has achieved clinical success as an analgesic modality, but the underlying mechanism is unknown. Here, we reasoned that HFES inhibits neuroinflammatory mediator release by sensory neurons to reduce pain. METHODS Utilizing in vitro and in vivo assays, we assessed the modulating effects of HFES on neuroinflammatory mediator release by activated sensory neurons. Dorsal root ganglia (DRG) neurons harvested from wildtype or transgenic mice expressing channelrhodopsin-2 (ChR2) were cultured on micro-electrode arrays, and effect of HFES on optogenetic- or capsaicin-induced neuroinflammatory mediator release was determined. Additionally, the effects of HFES on local neuroinflammatory mediator release and hyperalgesia was assessed in vivo using optogenetic paw stimulation and the neuropathic pain model of chronic constriction injury (CCI) of the sciatic nerve. RESULTS Light- or capsaicin-evoked neuroinflammatory mediator release from cultured transgenic DRG sensory neurons was significantly reduced by concurrent HFES (10 kHz). In agreement with these findings, elevated levels of neuroinflammatory mediators were detected in the affected paw following optogenetic stimulation or CCI and were significantly attenuated using HFES (20.6 kHz for 10 min) delivered once daily for 3 days. CONCLUSION These studies reveal a previously unidentified mechanism for the pain-modulating effect of HFES in the setting of acute and chronic nerve injury. The results support the mechanistic insight that HFES may reset sensory neurons into a less pro-inflammatory state via inhibiting the release of neuroinflammatory mediators resulting in reduced inflammation and pain.
Collapse
Affiliation(s)
- Huan Yang
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Timir Datta-Chaudhuri
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Sam J George
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Bilal Haider
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Jason Wong
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Tyler D Hepler
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Michael Brines
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kevin J Tracey
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Sangeeta S Chavan
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
4
|
Arora V, Li T, Kumari S, Wang S, Asgar J, Chung MK. Capsaicin-induced depolymerization of axonal microtubules mediates analgesia for trigeminal neuropathic pain. Pain 2022; 163:1479-1488. [PMID: 34724681 PMCID: PMC9046530 DOI: 10.1097/j.pain.0000000000002529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/05/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Capsaicin is a specific agonist of transient receptor potential vanilloid 1 (TRPV1), which is enriched in nociceptors. Capsaicin not only produces acute pain but also leads to long-lasting analgesia in patients with chronic pain. Although capsaicin-induced TRPV1 and Ca 2+ /calpain-dependent ablation of axonal terminals is necessary for long-lasting analgesia, the mechanisms underlying capsaicin-induced ablation of axonal terminals and its association with analgesia are not fully understood. Microtubules are composed of tubulin polymers and serve as a main axonal cytoskeleton maintaining axonal integrity. In this study, we hypothesized that capsaicin would increase the depolymerization of microtubules and lead to axonal ablation and analgesia for trigeminal neuropathic pain. Paclitaxel, a microtubule stabilizer, decreased capsaicin-induced ablation of axonal terminals in time-lapsed imaging in vitro. Capsaicin increases free tubulin in dissociated sensory neurons, which was inhibited by paclitaxel. Consistently, subcutaneous injection of paclitaxel prevented capsaicin-induced axonal ablation in the hind paw skin. Capsaicin administration to the facial skin produced analgesia for mechanical hyperalgesia in mice with chronic constriction injury of the infraorbital nerve, which was prevented by the coadministration of paclitaxel and capsaicin. Whole-mount staining of facial skin showed that paclitaxel reduced capsaicin-induced ablation of peptidergic afferent terminals. Despite the suggested involvement of TRPV1 Ser801 phosphorylation on microtubule integrity, capsaicin-induced analgesia was not affected in TRPV1 S801A knock-in mice. In conclusion, capsaicin-induced depolymerization of axonal microtubules determined capsaicin-induced ablation of nociceptive terminals and the extent of analgesia. Further understanding of TRPV1/Ca 2+ -dependent mechanisms of capsaicin-induced ablation and analgesia may help to improve the management of chronic pain.
Collapse
Affiliation(s)
- Vipin Arora
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, the University of Maryland Baltimore, Baltimore, MD, United States
| | - Tingting Li
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, the University of Maryland Baltimore, Baltimore, MD, United States
| | - Sinu Kumari
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, the University of Maryland Baltimore, Baltimore, MD, United States
| | - Sheng Wang
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, the University of Maryland Baltimore, Baltimore, MD, United States
| | - Jamila Asgar
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, the University of Maryland Baltimore, Baltimore, MD, United States
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, the University of Maryland Baltimore, Baltimore, MD, United States
| |
Collapse
|
5
|
Gangadharan V, Zheng H, Taberner FJ, Landry J, Nees TA, Pistolic J, Agarwal N, Männich D, Benes V, Helmstaedter M, Ommer B, Lechner SG, Kuner T, Kuner R. Neuropathic pain caused by miswiring and abnormal end organ targeting. Nature 2022; 606:137-145. [PMID: 35614217 PMCID: PMC9159955 DOI: 10.1038/s41586-022-04777-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/20/2022] [Indexed: 12/12/2022]
Abstract
Nerve injury leads to chronic pain and exaggerated sensitivity to gentle touch (allodynia) as well as a loss of sensation in the areas in which injured and non-injured nerves come together1-3. The mechanisms that disambiguate these mixed and paradoxical symptoms are unknown. Here we longitudinally and non-invasively imaged genetically labelled populations of fibres that sense noxious stimuli (nociceptors) and gentle touch (low-threshold afferents) peripherally in the skin for longer than 10 months after nerve injury, while simultaneously tracking pain-related behaviour in the same mice. Fully denervated areas of skin initially lost sensation, gradually recovered normal sensitivity and developed marked allodynia and aversion to gentle touch several months after injury. This reinnervation-induced neuropathic pain involved nociceptors that sprouted into denervated territories precisely reproducing the initial pattern of innervation, were guided by blood vessels and showed irregular terminal connectivity in the skin and lowered activation thresholds mimicking low-threshold afferents. By contrast, low-threshold afferents-which normally mediate touch sensation as well as allodynia in intact nerve territories after injury4-7-did not reinnervate, leading to an aberrant innervation of tactile end organs such as Meissner corpuscles with nociceptors alone. Genetic ablation of nociceptors fully abrogated reinnervation allodynia. Our results thus reveal the emergence of a form of chronic neuropathic pain that is driven by structural plasticity, abnormal terminal connectivity and malfunction of nociceptors during reinnervation, and provide a mechanistic framework for the paradoxical sensory manifestations that are observed clinically and can impose a heavy burden on patients.
Collapse
Affiliation(s)
- Vijayan Gangadharan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Hongwei Zheng
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Francisco J Taberner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Jonathan Landry
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Timo A Nees
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Jelena Pistolic
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nitin Agarwal
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Deepitha Männich
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Björn Ommer
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
| | - Stefan G Lechner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
6
|
Middleton SJ, Perez-Sanchez J, Dawes JM. The structure of sensory afferent compartments in health and disease. J Anat 2021; 241:1186-1210. [PMID: 34528255 PMCID: PMC9558153 DOI: 10.1111/joa.13544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
Primary sensory neurons are a heterogeneous population of cells able to respond to both innocuous and noxious stimuli. Like most neurons they are highly compartmentalised, allowing them to detect, convey and transfer sensory information. These compartments include specialised sensory endings in the skin, the nodes of Ranvier in myelinated axons, the cell soma and their central terminals in the spinal cord. In this review, we will highlight the importance of these compartments to primary afferent function, describe how these structures are compromised following nerve damage and how this relates to neuropathic pain.
Collapse
Affiliation(s)
- Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Yeh HY, Lee JC, Chi HH, Chen CC, Liu Q, Yen CT. Longitudinal intravital imaging nerve degeneration and sprouting in the toes of spared nerve injured mice. J Comp Neurol 2021; 529:3247-3264. [PMID: 33880774 DOI: 10.1002/cne.25162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/26/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Neuropathic pain is pain caused by damage to the somatosensory nervous system. Both degenerating injured nerves and neighboring sprouting nerves can contribute to neuropathic pain. However, the mesoscale changes in cutaneous nerve fibers over time after the loss of the parent nerve has not been investigated in detail. In this study, we followed the changes in nerve fibers longitudinally in the toe tips of mice that had undergone spared nerve injury (SNI). Nav1.8-tdTomato, Thy1-GFP and MrgD-GFP mice were used to observe the small and large cutaneous nerve fibers. We found that peripheral nerve plexuses degenerated within 3 days of nerve injury, and free nerve endings in the epidermis degenerated within 2 days. The timing of degeneration paralleled the initiation of mechanical hypersensitivity. We also found that some of the Nav1.8-positive nerve plexuses and free nerve endings in the fifth toe survived, and sprouting occurred mostly from 7 to 28 days. The timing of the sprouting of nerve fibers in the fifth toe paralleled the maintenance phase of mechanical hypersensitivity. Our results support the hypotheses that both injured and intact nerve fibers participate in neuropathic pain, and that, specifically, nerve degeneration is related to the initiation of evoked pain and nerve sprouting is related to the maintenance of evoked pain.
Collapse
Affiliation(s)
- Han-Yuan Yeh
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jye-Chang Lee
- Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Han-Hsiung Chi
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Qin Liu
- Department of Anesthesiology and the Center for the Study of Itch, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Sasaki R, Sakamoto J, Kondo Y, Oga S, Takeshita I, Honda Y, Kataoka H, Origuchi T, Okita M. Effects of Cryotherapy Applied at Different Temperatures on Inflammatory Pain During the Acute Phase of Arthritis in Rats. Phys Ther 2021; 101:6039322. [PMID: 33351944 DOI: 10.1093/ptj/pzaa211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/21/2020] [Accepted: 11/03/2020] [Indexed: 11/14/2022]
Abstract
OBJECTIVE The biological mechanisms of cryotherapy for managing acute pain remain unclear. Additionally, it is unknown whether the effectiveness of cryotherapy depends on the applied temperature. This study aimed to clarify the biological effects of cryotherapy and to examine the therapeutic effects of cryotherapy applied at different temperatures in rats. METHODS This was an experimental study using a rat knee joint arthritis model. Thirty-five Wistar rats were randomly divided into arthritis (AR), arthritis with 5°C cryotherapy (CR-5), arthritis with 10°C cryotherapy (CR-10), and sham-arthritis control (CON) groups. Arthritis was induced by injecting a mixture of kaolin/carrageenan into the right knee joint. Cryotherapy was applied for 7 days starting the day after injection by immersing the right knee joint in 5°C or 10°C water. Joint transverse diameter, pressure pain threshold, and pain-related behaviors were assessed for 7 days. The number of CD68-positive cells in the knee joint and the expression of calcitonin gene-related peptide in the spinal dorsal horn 8 days after injection were analyzed by immunohistochemical staining. RESULTS Improvements in transverse diameter, pressure pain threshold, and pain-related behaviors were observed in the CR-5 and CR-10 groups on the 3rd day compared with the AR group. The number of CD68-positive cells and the expression of calcitonin gene-related peptide in the CR-5 and CR-10 groups were significantly decreased compared with the AR group. There were no significant differences in all results between the CR-5 and CR-10 groups. CONCLUSIONS Cryotherapy can ameliorate inflammatory pain through reduction of synovium and central sensitization. Additionally, the effects of cryotherapy lower than 10°C are observed independent of applied temperature. IMPACT Cryotherapy may be beneficial as a physical therapy modality for pain and swelling management in the acute phase of inflammation. Translational human study is needed to determine the effective cryotherapy temperature for the inflammatory pain.
Collapse
Affiliation(s)
- Ryo Sasaki
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Juzenkai Hospital, Nagasaki, Japan
| | - Junya Sakamoto
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasutaka Kondo
- Department of Rehabilitation, Japan Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Satoshi Oga
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Japan Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Idumi Takeshita
- Department of Rehabilitation, Faculty of Medicine, University of Miyazaki Hospital, Miyazaki, Japan
| | - Yuichiro Honda
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Kataoka
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Rehabilitation, Nagasaki Memorial Hospital, Nagasaki, Japan
| | - Tomoki Origuchi
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Minoru Okita
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
9
|
Tong Y, Ishikawa K, Sasaki R, Takeshita I, Sakamoto J, Okita M. The effects of wheel-running using the upper limbs following immobilization after inducing arthritis in the knees of rats. Physiol Res 2021; 70:79-87. [PMID: 33453715 DOI: 10.33549/physiolres.934469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study investigated the effects of wheel-running using the upper limbs following immobilization after inducing arthritis in the knees of rats. Forty male Wistar rats (aged 8 weeks) divided into four groups randomly: arthritis (AR), immobilization after arthritis (Im), wheel-running exercise with the upper limbs following immobilization after arthritis induction (Im+Ex) and sham arthritis induction (Con). The knee joints of the Im and Im+Ex groups were immobilized with a cast for 4 weeks. In the Im+Ex group, wheel-running exercise was administered for 60 min/day (5 times/week). The swelling and the pressure pain threshold (PPT) of the knee joint were evaluated for observing the condition of inflammatory symptoms in affected area, and the paw withdraw response (PWR) was evaluated for observing the condition of secondary hyperalgesia in distant area. Especially, in order to evaluate histological inflammation in the knee joint, the number of macrophage (CD68-positive cells) in the synovium was examined. The expression of calcitonin gene-related peptide (CGRP) in the spinal dorsal horn (L2-3 and L4-5) was examined to evaluate central sensitization. The Im+Ex group showed a significantly better recovery than the Im group in the swelling, PPTs, and PWRs. Additionally, CGRP expression of the spinal dorsal horn (L2-3 and L4-5) in the Im+Ex group was significantly decreased compared with the Im group. According to the results, upper limb exercise can decrease pain in the affected area, reduce hyperalgesia in distant areas, and suppress the central sensitization in the spinal dorsal horn by triggering exercise-induced hypoalgesia (EIH).
Collapse
Affiliation(s)
- Y Tong
- Department of Physical Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Hayashi K, Fukuyasu-Matsuo S, Inoue T, Fujiwara M, Asai Y, Iwata M, Suzuki S. Effects of cyclic stretching exercise on long-lasting hyperalgesia, joint contracture, and muscle injury following cast immobilization in rats. Physiol Res 2020; 69:861-870. [PMID: 32901491 DOI: 10.33549/physiolres.934437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The effects of exercise on mechanical hyperalgesia, joint contracture, and muscle injury resulting from immobilization are not completely understood. This study aimed to investigate the effects of cyclic stretching on these parameters in a rat model of chronic post-cast pain (CPCP). Seventeen 8-week-old Wistar rats were randomly assigned to (1) control group, (2) immobilization (CPCP) group, or (3) immobilization and stretching exercise (CPCP+STR) group. In the CPCP and CPCP+STR groups, both hindlimbs of each rat were immobilized in full plantar flexion with a plaster cast for a 4-week period. In the CPCP+STR group, cyclic stretching exercise was performed 6 days/week for 2 weeks, beginning immediately after cast removal prior to reloading. Although mechanical hyperalgesia in the plantar skin and calf muscle, ankle joint contracture, and gastrocnemius muscle injury were observed in both immobilized groups, these changes were significantly less severe in the CPCP+STR group than in the CPCP group. These results clearly demonstrate the beneficial effect of cyclic stretching exercises on widespread mechanical hyperalgesia, joint contracture, and muscle injury in a rat model of CPCP.
Collapse
Affiliation(s)
- K Hayashi
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan, Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, Handa, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacol Ther 2020; 220:107743. [PMID: 33181192 DOI: 10.1016/j.pharmthera.2020.107743] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Capsaicin, the pungent ingredient in chili peppers, produces intense burning pain in humans. Capsaicin selectively activates the transient receptor potential vanilloid 1 (TRPV1), which is enriched in nociceptive primary afferents, and underpins the mechanism for capsaicin-induced burning pain. Paradoxically, capsaicin has long been used as an analgesic. The development of topical patches and injectable formulations containing capsaicin has led to application in clinical settings to treat chronic pain conditions, such as neuropathic pain and the potential to treat osteoarthritis. More detailed determination of the neurobiological mechanisms of capsaicin-induced analgesia should provide the logical rationale for capsaicin therapy and help to overcome the treatment's limitations, which include individual differences in treatment outcome and procedural discomfort. Low concentrations of capsaicin induce short-term defunctionalization of nociceptor terminals. This phenomenon is reversible within hours and, hence, likely does not account for the clinical benefit. By contrast, high concentrations of capsaicin lead to long-term defunctionalization mediated by the ablation of TRPV1-expressing afferent terminals, resulting in long-lasting analgesia persisting for several months. Recent studies have shown that capsaicin-induced Ca2+/calpain-mediated ablation of axonal terminals is necessary to produce long-lasting analgesia in a mouse model of neuropathic pain. In combination with calpain, axonal mitochondrial dysfunction and microtubule disorganization may also contribute to the longer-term effects of capsaicin. The analgesic effects subside over time in association with the regeneration of the ablated afferent terminals. Further determination of the neurobiological mechanisms of capsaicin-induced analgesia should lead to more efficacious non-opioidergic analgesic options with fewer adverse side effects.
Collapse
|
12
|
An Index Combining Lost and Remaining Nerve Fibers Correlates with Pain Hypersensitivity in Mice. Cells 2020; 9:cells9112414. [PMID: 33158176 PMCID: PMC7694241 DOI: 10.3390/cells9112414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
Multiple peripheral nerves are known to degenerate after nerve compression injury but the correlation between the extent of nerve alteration and pain severity remains unclear. Here, we used intravital two-photon fluorescence microscopy to longitudinally observe changes in cutaneous fibers in the hind paw of Nav1.8-Cre-tdTomato mice after chronic constriction injury (CCI). Results showed that the CCI led to variable loss of the skin nerve plexus and intraepidermal nerve fibers. The timing of Nav1.8 nerve fiber loss correlated with the development of mechanical hypersensitivity. We compared a scoring approach that assessed whole-paw nerve degeneration with an index that quantified changes in the nerve plexus and terminals in multiple small regions of interest (ROI) from intravital images of the third and fifth toe tips. We found that the number of surviving nerve fibers was not linearly correlated with mechanical hypersensitivity. On the contrary, at 14 days after CCI, the moderately injured mice showed greater mechanical hypersensitivity than the mildly or severely injured mice. This indicates that both surviving and injured nerves are required for evoked neuropathic pain. In addition, these two methods may have the estimative effect as diagnostic and prognostic biomarkers for the assessment of neuropathic pain.
Collapse
|
13
|
Diaz-delCastillo M, Kamstrup D, Olsen RB, Hansen RB, Pembridge T, Simanskaite B, Jimenez-Andrade JM, Lawson MA, Heegaard AM. Differential Pain-Related Behaviors and Bone Disease in Immunocompetent Mouse Models of Myeloma. JBMR Plus 2019; 4:e10252. [PMID: 32083236 PMCID: PMC7017884 DOI: 10.1002/jbm4.10252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/09/2019] [Accepted: 11/03/2019] [Indexed: 12/26/2022] Open
Abstract
Bone pain is a serious and debilitating symptom of multiple myeloma (MM) that impairs the quality of life of patients. The underlying mechanisms of the pain are unknown and understudied, and there is a need for immunocompetent preclinical models of myeloma-induced bone pain. The aim of this study was to provide the first in-depth behavioral characterization of an immunocompetent mouse model of MM presenting the clinical disease features: osteolytic bone disease and bone pain. We hypothesized that a widely used syngeneic model of MM, established by systemic inoculation of green fluorescent protein-tagged myeloma cells (5TGM1-GFP) in immunocompetent C57Bl/KaLwRijHsd (BKAL) mice, would present pain-related behaviors. Disease phenotype was confirmed by splenomegaly, high serum paraprotein, and tumor infiltration in the bone marrow of the hind limbs; however, myeloma-bearing mice did not present pain-related behaviors or substantial bone disease. Thus, we investigated an alternative model in which 5TGM1-GFP cells were directly inoculated into the intrafemoral medullary cavity. This localized myeloma model presented the hallmarks of the disease, including high serum paraprotein, tumor growth, and osteolytic bone lesions. Compared with control mice, myeloma-bearing mice presented myeloma-induced pain-related behaviors, a phenotype that was reversed by systemic morphine treatment. Micro-computed tomography analyses of the myeloma-inoculated femurs showed bone disease in cortical and trabecular bone. Repeated systemic bisphosphonate treatment induced an amelioration of the nociceptive phenotype, but did not completely reverse it. Furthermore, intrafemorally injected mice presented a profound denervation of the myeloma-bearing bones, a previously unknown feature of the disease. This study reports the intrafemoral inoculation of 5TGM1-GFP cells as a robust immunocompetent model of myeloma-induced bone pain, with consistent bone loss. Moreover, the data suggest that myeloma-induced bone pain is caused by a combinatorial mechanism including osteolysis and bone marrow denervation. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Marta Diaz-delCastillo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Danna Kamstrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Rikke Brix Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Rie Bager Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Thomas Pembridge
- Department of Oncology & Metabolism University of Sheffield Sheffield UK.,Mellanby Centre for Bone Research University of Sheffield Sheffield UK
| | - Brigita Simanskaite
- Department of Oncology & Metabolism University of Sheffield Sheffield UK.,Mellanby Centre for Bone Research University of Sheffield Sheffield UK
| | - Juan Miguel Jimenez-Andrade
- Department of Unidad Académica Multidisciplinaria Reynosa Aztlan Universidad Autónoma de Tamaulipas Reynosa, Tamaulipas Mexico
| | - Michelle A Lawson
- Department of Oncology & Metabolism University of Sheffield Sheffield UK.,Mellanby Centre for Bone Research University of Sheffield Sheffield UK
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
14
|
Acetyl-11-keto-β-boswellic acid regulates the repair of rat sciatic nerve injury by promoting the proliferation of Schwann cells. Life Sci 2019; 254:116887. [PMID: 31606377 DOI: 10.1016/j.lfs.2019.116887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
AIMS This study aimed to study the effects of acetyl-11-keto-β-boswellic acid (AKBA) on the regeneration of injured peripheral nerves and the ability of the extracellular signal-regulated kinase (ERK) signaling pathway to regulate the proliferation of Schwann cells and the formation of myelin. MAIN METHODS A sciatic nerve crush injury model rats were randomly divided into the model control, low-, medium-, and high-dose AKBA groups. The repair of myelin damage was observed through Luxol Fast Blue staining and the expression of neurofilament-200 (NF200) protein was detected through immunohistochemical tests. The relative expression levels of ERK, Phosphorylated-ERK (p-ERK), c-Jun N-terminal Kinase (JNK), and Phosphorylated-JNK (p-JNK) proteins were detected in vitro in Schwann cells treated with AKBA. The effect of AKBA on P0 and P75 protein expression in Schwann cells was detected through siRNA-mediated ERK gene knockout. KEY FINDINGS AKBA promotes the repair of rat sciatic nerve injury by elevating the phosphorylation of the ERK signaling pathway and by regulating the proliferation and myelination of Schwann cells. SIGNIFICANCE This test can provide data support for AKBA to repair sciatic nerve injury, provide a theoretical basis for further revealing AKBA repair mechanism, and provide reference for clinical development of sciatic nerve injury drugs.
Collapse
|
15
|
Early life vincristine exposure evokes mechanical pain hypersensitivity in the developing rat. Pain 2018; 158:1647-1655. [PMID: 28722694 DOI: 10.1097/j.pain.0000000000000953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vincristine (VNC) is commonly used to treat pediatric cancers, including the most prevalent childhood malignancy, acute lymphoblastic leukemia. Although clinical evidence suggests that VNC causes peripheral neuropathy in children, the degree to which pediatric chemotherapeutic regimens influence pain sensitivity throughout life remains unclear, in part because of the lack of an established animal model of chemotherapy-induced neuropathic pain during early life. Therefore, this study investigated the effects of VNC exposure between postnatal days (P) 11 and 21 on mechanical and thermal pain sensitivity in the developing rat. Low doses of VNC (15 or 30 μg/kg) failed to alter nociceptive withdrawal reflexes at any age examined compared with vehicle-injected littermate controls. Meanwhile, high dose VNC (60 μg/kg) evoked mechanical hypersensitivity in both sexes beginning at P26 that persisted until adulthood and included both static and dynamic mechanical allodynia. Hind paw withdrawal latencies to noxious heat and cold were unaffected by high doses of VNC, suggesting a selective effect of neonatal VNC on mechanical pain sensitivity. Gross and fine motor function appeared normal after VNC treatment, although a small decrease in weight gain was observed. The VNC regimen also produced a significant decrease in intraepidermal nerve fiber density in the hind paw skin by P33. Overall, the present results demonstrate that high-dose administration of VNC during the early postnatal period selectively evokes a mechanical hypersensitivity that is slow to emerge during adolescence, providing further evidence that aberrant sensory input during early life can have prolonged consequences for pain processing.
Collapse
|
16
|
GDNF, Neurturin, and Artemin Activate and Sensitize Bone Afferent Neurons and Contribute to Inflammatory Bone Pain. J Neurosci 2018; 38:4899-4911. [PMID: 29712778 DOI: 10.1523/jneurosci.0421-18.2018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/20/2018] [Accepted: 04/22/2018] [Indexed: 11/21/2022] Open
Abstract
Pain associated with skeletal pathology or disease is a significant clinical problem, but the mechanisms that generate and/or maintain it remain poorly understood. In this study, we explored roles for GDNF, neurturin, and artemin signaling in bone pain using male Sprague Dawley rats. We have shown that inflammatory bone pain involves activation and sensitization of peptidergic, NGF-sensitive neurons via artemin/GDNF family receptor α-3 (GFRα3) signaling pathways, and that sequestering artemin might be useful to prevent inflammatory bone pain derived from activation of NGF-sensitive bone afferent neurons. In addition, we have shown that inflammatory bone pain also involves activation and sensitization of nonpeptidergic neurons via GDNF/GFRα1 and neurturin/GFRα2 signaling pathways, and that sequestration of neurturin, but not GDNF, might be useful to treat inflammatory bone pain derived from activation of nonpeptidergic bone afferent neurons. Our findings suggest that GDNF family ligand signaling pathways are involved in the pathogenesis of bone pain and could be targets for pharmacological manipulations to treat it.SIGNIFICANCE STATEMENT Pain associated with skeletal pathology, including bone cancer, bone marrow edema syndromes, osteomyelitis, osteoarthritis, and fractures causes a major burden (both in terms of quality of life and cost) on individuals and health care systems worldwide. We have shown the first evidence of a role for GDNF, neurturin, and artemin in the activation and sensitization of bone afferent neurons, and that sequestering these ligands reduces pain behavior in a model of inflammatory bone pain. Thus, GDNF family ligand signaling pathways are involved in the pathogenesis of bone pain and could be targets for pharmacological manipulations to treat it.
Collapse
|
17
|
Chen W, Chi YN, Kang XJ, Liu QY, Zhang HL, Li ZH, Zhao ZF, Yang Y, Su L, Cai J, Liao FF, Yi M, Wan Y, Liu FY. Accumulation of Ca v3.2 T-type Calcium Channels in the Uninjured Sural Nerve Contributes to Neuropathic Pain in Rats with Spared Nerve Injury. Front Mol Neurosci 2018; 11:24. [PMID: 29472842 PMCID: PMC5809483 DOI: 10.3389/fnmol.2018.00024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Injuries to peripheral nerve fibers induce neuropathic pain. But the involvement of adjacent uninjured fibers to pain is not fully understood. The present study aims to investigate the possible contribution of Cav3.2 T-type calcium channels in uninjured afferent nerve fibers to neuropathic pain in rats with spared nerve injury (SNI). Aβ-, Aδ- and C-fibers of the uninjured sural nerve were sensitized revealed by in vivo single-unit recording, which were accompanied by accumulation of Cav3.2 T-type calcium channel proteins shown by Western blotting. Application of mibefradil, a T-type calcium channel blocker, to sural nerve receptive fields increased mechanical thresholds of Aβ-, Aδ- and C-fibers, confirming the functional involvement of accumulated channels in the sural nerve in SNI rats. Finally, perineural application of mibefradil or TTA-P2 to the uninjured sural nerve alleviated mechanical allodynia in SNI rats. These results suggest that axonal accumulation of Cav3.2 T-type calcium channels plays an important role in the uninjured sural nerve sensitization and contributes to neuropathic pain.
Collapse
Affiliation(s)
- Wen Chen
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Ye-Nan Chi
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Anesthesiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xue-Jing Kang
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Qing-Ying Liu
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Hao-Lin Zhang
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Zhi-Hua Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zi-Fang Zhao
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Yin Yang
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Li Su
- Neuroscience Research Institute, Peking University, Beijing, China.,Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Fei-Fei Liao
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Feng-Yu Liu
- Neuroscience Research Institute, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
18
|
Nuñez-Badinez P, Sepúlveda H, Diaz E, Greffrath W, Treede RD, Stehberg J, Montecino M, van Zundert B. Variable transcriptional responsiveness of the P2X3 receptor gene during CFA-induced inflammatory hyperalgesia. J Cell Biochem 2018; 119:3922-3935. [PMID: 29219199 DOI: 10.1002/jcb.26534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022]
Abstract
The purinergic receptor P2X3 (P2X3-R) plays important roles in molecular pathways of pain, and reduction of its activity or expression effectively reduces chronic inflammatory and neuropathic pain sensation. Inflammation, nerve injury, and cancer-induced pain can increase P2X3-R mRNA and/or protein levels in dorsal root ganglia (DRG). However, P2X3-R expression is unaltered or even reduced in other pain studies. The reasons for these discrepancies are unknown and might depend on the applied traumatic intervention or on intrinsic factors such as age, gender, genetic background, and/or epigenetics. In this study, we sought to get insights into the molecular mechanisms responsible for inflammatory hyperalgesia by determining P2X3-R expression in DRG neurons of juvenile male rats that received a Complete Freund's Adjuvant (CFA) bilateral paw injection. We demonstrate that all CFA-treated rats showed inflammatory hyperalgesia, however, only a fraction (14-20%) displayed increased P2X3-R mRNA levels, reproducible across both sides. Immunostaining assays did not reveal significant increases in the percentage of P2X3-positive neurons, indicating that increased P2X3-R at DRG somas is not critical for inducing inflammatory hyperalgesia in CFA-treated rats. Chromatin immunoprecipitation (ChIP) assays showed a correlated (R2 = 0.671) enrichment of the transcription factor Runx1 and the epigenetic active mark histone H3 acetylation (H3Ac) at the P2X3-R gene promoter in a fraction of the CFA-treated rats. These results suggest that animal-specific increases in P2X3-R mRNA levels are likely associated with the genetic/epigenetic context of the P2X3-R locus that controls P2X3-R gene transcription by recruiting Runx1 and epigenetic co-regulators that mediate histone acetylation.
Collapse
Affiliation(s)
- Paulina Nuñez-Badinez
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello, Santiago, Chile
| | - Hugo Sepúlveda
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Emilio Diaz
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello, Santiago, Chile
| | - Wolfgang Greffrath
- Centre for Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim, Germany
| | - Rolf-Detlef Treede
- Centre for Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim, Germany
| | - Jimmy Stehberg
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello, Santiago, Chile
| | - Martin Montecino
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Santiago, Chile
| | - Brigitte van Zundert
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
19
|
Wegner KA, Cadena MT, Trevena R, Turco AE, Gottschalk A, Halberg RB, Guo J, McMahon JA, McMahon AP, Vezina CM. An immunohistochemical identification key for cell types in adult mouse prostatic and urethral tissue sections. PLoS One 2017; 12:e0188413. [PMID: 29145476 PMCID: PMC5690684 DOI: 10.1371/journal.pone.0188413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023] Open
Abstract
Though many methods can be used to identify cell types contained in complex tissues, most require cell disaggregation and destroy information about where cells reside in relation to their microenvironment. Here, we describe a polytomous key for cell type identification in intact sections of adult mouse prostate and prostatic urethra. The key is organized as a decision tree and initiates with one round of immunostaining for nerve, epithelial, fibromuscular/hematolymphoid, or vascular associated cells. Cell identities are recursively eliminated by subsequent staining events until the remaining pool of potential cell types can be distinguished by direct comparison to other cells. We validated our identification key using wild type adult mouse prostate and urethra tissue sections and it currently resolves sixteen distinct cell populations which include three nerve fiber types as well as four epithelial, five fibromuscular/hematolymphoid, one nerve-associated, and three vascular-associated cell types. We demonstrate two uses of this novel identification methodology. We first used the identification key to characterize prostate stromal cell type changes in response to constitutive phosphatidylinositide-3-kinase activation in prostate epithelium. We then used the key to map cell lineages in a new reporter mouse strain driven by Wnt10aem1(cre/ERT2)Amc. The identification key facilitates rigorous and reproducible cell identification in prostate tissue sections and can be expanded to resolve additional cell types as new antibodies and other resources become available.
Collapse
Affiliation(s)
- Kyle A. Wegner
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark T. Cadena
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan Trevena
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anne E. Turco
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Adam Gottschalk
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Richard B. Halberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Jill A. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Chad M. Vezina
- George M. O’Brien Benign Urology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
20
|
Bechakra M, Schüttenhelm BN, Pederzani T, van Doorn PA, de Zeeuw CI, Jongen JLM. The reduction of intraepidermal P2X 3 nerve fiber density correlates with behavioral hyperalgesia in a rat model of nerve injury-induced pain. J Comp Neurol 2017; 525:3757-3768. [PMID: 28815599 DOI: 10.1002/cne.24302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/12/2017] [Accepted: 07/19/2017] [Indexed: 01/18/2023]
Abstract
Skin biopsies from patients with neuropathic pain often show changes in epidermal innervation, although it remains to be elucidated to what extent such changes can be linked to a particular subgroup of nerve fibers and how these changes are correlated with pain intensity. Here, we investigated to what extent behavioral signs of hyperalgesia are correlated with immunohistochemical changes of peptidergic and non-peptidergic epidermal nerve fibers in a rat model of nerve injury-induced pain. Rats subjected to unilateral partial ligation of the sciatic nerve developed significant mechanical and thermal hyperalgesia as tested by the withdrawal responses of the ipsilateral footpad to von Frey hairs and hotplate stimulation. At day 14, epidermal nerve fiber density and total epidermal nerve fiber length/mm2 were significantly and consistently reduced compared to the contralateral side, following testing and re-testing by two blinded observers. The expression of calcitonin gene-related peptide, a marker for peptidergic nerve fibers, was not significantly changed on the ipsilateral side. In contrast, the expression of the P2X3 receptor, a marker for non-peptidergic nerve fibers, was not only significantly reduced but could also be correlated with behavioral hyperalgesia. When labeling both peptidergic and non-peptidergic nerve fibers with the pan-neuronal marker PGP9.5, the expression was significantly reduced, albeit without a significant correlation with behavioral hyperalgesia. In conjunction, our data suggest that the pathology of the P2X3 epidermal nerve fibers can be selectively linked to neuropathy, highlighting the possibility that it is the degeneration of these fibers that drives hyperalgesia.
Collapse
Affiliation(s)
- Malik Bechakra
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | - Chris I de Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts & Sciences, Amsterdam, The Netherlands
| | | |
Collapse
|
21
|
Behavioral characterization of neuropathic pain on the glabrous skin areas reinnervated solely by axotomy-regenerative axons after adult rat sciatic nerve crush. Neuroreport 2016; 27:404-14. [PMID: 26926475 DOI: 10.1097/wnr.0000000000000554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In cranial and spinal nerve ganglia, both axotomized primary sensory neurons without regeneration (axotomy-nonregenerative neurons) and spared intact primary sensory neurons adjacent to axotomized neurons (axotomy-spared neurons) have been definitely shown to participate in pain transmission in peripheral neuropathic pain states. However, whether axotomized primary sensory neurons with regeneration (axotomy-regenerative neurons) would be integral components of neural circuits underlying peripheral neuropathic pain states remains controversial. In the present study, we utilized an adult rat sciatic nerve crush model to systematically analyze pain behaviors on the glabrous plantar surface of the hindpaw sural nerve skin territories. To the best of our knowledge, our results for the first time showed that heat hyperalgesia, cold allodynia, mechanical allodynia, and mechanical hyperalgesia emerged and persisted on the glabrous sural nerve skin areas after adult rat sciatic nerve crush. Interestingly, mechanical hyperalgesia was sexually dimorphic. Moreover, with our optimized immunofluorescence staining protocol of free-floating thick skin sections for wide-field epifluorescence microscopic imaging, changes in purely regenerative reinnervation on the same skin areas by axotomized primary sensory afferents were shown to be paralleled by those pathological pain behaviors. To our surprise, Protein Gene Product 9.5-immunoreactive nerve fibers with regular and large varicosities ectopically emigrated into the upper dermis of the glabrous sural nerve skin territories after adult rat sciatic nerve crush. Our results indicated that axotomy-regenerative primary sensory neurons could be critical elements in neural circuits underlying peripheral neuropathic pain states. Besides, our results implied that peripheral neuropathic pain transmitted by axotomy-regenerative primary sensory neurons alone might be a new dimension in the clinical therapy of peripheral nerve trauma beyond regeneration.
Collapse
|
22
|
|
23
|
Valek L, Häussler A, Dröse S, Eaton P, Schröder K, Tegeder I. Redox-guided axonal regrowth requires cyclic GMP dependent protein kinase 1: Implication for neuropathic pain. Redox Biol 2016; 11:176-191. [PMID: 27978504 PMCID: PMC5156608 DOI: 10.1016/j.redox.2016.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/03/2016] [Accepted: 12/02/2016] [Indexed: 01/27/2023] Open
Abstract
Cyclic GMP-dependent protein kinase 1 (PKG1) mediates presynaptic nociceptive long-term potentiation (LTP) in the spinal cord and contributes to inflammatory pain in rodents but the present study revealed opposite effects in the context of neuropathic pain. We used a set of loss-of-function models for in vivo and in vitro studies to address this controversy: peripheral neuron specific deletion (SNS-PKG1-/-), inducible deletion in subsets of neurons (SLICK-PKG1-/-) and redox-dead PKG1 mutants. In contrast to inflammatory pain, SNS-PKG1-/- mice developed stronger neuropathic hyperalgesia associated with an impairment of nerve regeneration, suggesting specific repair functions of PKG1. Although PKG1 accumulated at the site of injury, its activity was lost in the proximal nerve due to a reduction of oxidation-dependent dimerization, which was a consequence of mitochondrial damage in injured axons. In vitro, PKG1 deficiency or its redox-insensitivity resulted in enhanced outgrowth and reduction of growth cone collapse in response to redox signals, which presented as oxidative hotspots in growing cones. At the molecular level, PKG1 deficiency caused a depletion of phosphorylated cofilin, which is essential for growth cone collapse and guidance. Hence, redox-mediated guidance required PKG1 and consequently, its deficiency in vivo resulted in defective repair and enhanced neuropathic pain after nerve injury. PKG1-dependent repair functions will outweigh its signaling functions in spinal nociceptive LTP, so that inhibition of PKG1 is no option for neuropathic pain. Axonal injury leads mitochondrial damage. The loss of signaling ROS is associated with a reduction of redox-dependent autoactivation of PKG1. Loss of PKG1 impairs peripheral nerve regeneration and aggravates neuropathic pain in mice. Oxidative hot spots are generated in spiky growth cones and trigger growth cone collapse via PKG1. Malfunctioning of this redox-PKG1 guided growth cone collapse leads to aberrant outgrowth.
Collapse
Affiliation(s)
- Lucie Valek
- Depts. of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | - Annett Häussler
- Depts. of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | - Stefan Dröse
- Depts. of Anaesthesiology, Goethe-University Hospital, Frankfurt, Germany
| | - Philipp Eaton
- King's College of London, Cardiovascular Division, The Rayne Institute, St. Thomas' Hospital, London, United Kingdom
| | - Katrin Schröder
- Depts. of Cardiovascular Physiology, Goethe-University Hospital, Frankfurt, Germany
| | - Irmgard Tegeder
- Depts. of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany.
| |
Collapse
|
24
|
Altmann C, Vasic V, Hardt S, Heidler J, Häussler A, Wittig I, Schmidt MHH, Tegeder I. Progranulin promotes peripheral nerve regeneration and reinnervation: role of notch signaling. Mol Neurodegener 2016; 11:69. [PMID: 27770818 PMCID: PMC5075406 DOI: 10.1186/s13024-016-0132-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 09/28/2016] [Indexed: 01/11/2023] Open
Abstract
Background Peripheral nerve injury is a frequent cause of lasting motor deficits and chronic pain. Although peripheral nerves are capable of regrowth they often fail to re-innervate target tissues. Results Using newly generated transgenic mice with inducible neuronal progranulin overexpression we show that progranulin accelerates axonal regrowth, restoration of neuromuscular synapses and recovery of sensory and motor functions after injury of the sciatic nerve. Oppositely, progranulin deficient mice have long-lasting deficits in motor function tests after nerve injury due to enhanced losses of motor neurons and stronger microglia activation in the ventral horn of the spinal cord. Deep proteome and gene ontology (GO) enrichment analysis revealed that the proteins upregulated in progranulin overexpressing mice were involved in ‘regulation of transcription’ and ‘response to insulin’ (GO terms). Transcription factor prediction pointed to activation of Notch signaling and indeed, co-immunoprecipitation studies revealed that progranulin bound to the extracellular domain of Notch receptors, and this was functionally associated with higher expression of Notch target genes in the dorsal root ganglia of transgenic mice with neuronal progranulin overexpression. Functionally, these transgenic mice recovered normal gait and running, which was not achieved by controls and was stronger impaired in progranulin deficient mice. Conclusion We infer that progranulin activates Notch signaling pathways, enhancing thereby the regenerative capacity of partially injured neurons, which leads to improved motor function recovery. Graphical abstract ![]()
Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0132-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine Altmann
- Institute of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | - Verica Vasic
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stefanie Hardt
- Institute of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | - Juliana Heidler
- Functional Proteomics, SFB815 Core Unit, Goethe-University, Frankfurt, Germany
| | - Annett Häussler
- Institute of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | - Ilka Wittig
- Functional Proteomics, SFB815 Core Unit, Goethe-University, Frankfurt, Germany
| | - Mirko H H Schmidt
- Molecular Signal Transduction Laboratories, Institute for Microscopic Anatomy and Neurobiology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany.
| |
Collapse
|
25
|
NAKABAYASHI K, SAKAMOTO J, KATAOKA H, KONDO Y, HAMAUE Y, HONDA Y, NAKANO J, OKITA M. Effect of Continuous Passive Motion Initiated After the Onset of Arthritis on Inflammation and Secondary Hyperalgesia in Rats. Physiol Res 2016; 65:683-691. [DOI: 10.33549/physiolres.933214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study investigated the effect of continuous passive motion (CPM) initiated after the onset of arthritis in rats. Rats were injected with 3 % kaolin/carrageenan in the knee joint and randomized to the control, immobilization (IM), or CPM group. The knee joints of the IM and CPM groups were immobilized with a cast for 56 days. In the CPM group, CPM exercise was administered for 60 min/day (6 times/week). Joint transverse diameter and pressure pain threshold (PPT) were assessed as indicators of inflammation, and paw withdrawal response (PWR) was assessed as indicator of secondary hyperalgesia. Central sensitization was analyzed by measuring calcitonin gene-related peptide (CGRP) expression levels in the spinal dorsal horn. In the CPM group, the PPT was significantly increased compared with the IM group from 14 to 35 days, and PWR was significantly decreased from 14 to 56 days. Additionally, CGRP expression in the super facial layer (I-II) of the spinal dorsal horn (L4-5) in the CPM group was significantly decreased compared with the IM group. Our study found the CPM initiated after the onset of arthritis promoted the recovery of inflammation and mitigated secondary hyperalgesia
Collapse
Affiliation(s)
| | - J. SAKAMOTO
- Department of Physical Therapy Science, Unit of Physical and Occupational Therapy Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Sajgo S, Ali S, Popescu O, Badea TC. Dynamic expression of transcription factor Brn3b during mouse cranial nerve development. J Comp Neurol 2015; 524:1033-61. [PMID: 26356988 DOI: 10.1002/cne.23890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/18/2015] [Accepted: 08/31/2015] [Indexed: 01/23/2023]
Abstract
During development, transcription factor combinatorial codes define a large variety of morphologically and physiologically distinct neurons. Such a combinatorial code has been proposed for the differentiation of projection neurons of the somatic and visceral components of cranial nerves. It is possible that individual neuronal cell types are not specified by unique transcription factors but rather emerge through the intersection of their expression domains. Brn3a, Brn3b, and Brn3c, in combination with each other and/or transcription factors of other families, can define subgroups of retinal ganglion cells (RGC), spiral and vestibular ganglia, inner ear and vestibular hair cell neurons in the vestibuloacoustic system, and groups of somatosensory neurons in the dorsal root ganglia. The present study investigates the expression and potential role of the Brn3b transcription factor in cranial nerves and associated nuclei of the brainstem. We report the dynamic expression of Brn3b in the somatosensory component of cranial nerves II, V, VII, and VIII and visceromotor nuclei of nerves VII, IX, and X as well as other brainstem nuclei during different stages of development into adult stage. We find that genetically identified Brn3b(KO) RGC axons show correct but delayed pathfinding during the early stages of embryonic development. However, loss of Brn3b does not affect the anatomy of the other cranial nerves normally expressing this transcription factor.
Collapse
Affiliation(s)
- Szilard Sajgo
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892.,Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Science, Babes-Bolyai University, Cluj-Napoca, Cluj, 400084, Romania
| | - Seid Ali
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892
| | - Octavian Popescu
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Science, Babes-Bolyai University, Cluj-Napoca, Cluj, 400084, Romania.,Institute of Biology, Romanian Academy, Bucharest, 060031, Romania
| | | |
Collapse
|
27
|
Nascimento FP, Magnussen C, Yousefpour N, Ribeiro-da-Silva A. Sympathetic fibre sprouting in the skin contributes to pain-related behaviour in spared nerve injury and cuff models of neuropathic pain. Mol Pain 2015; 11:59. [PMID: 26376854 PMCID: PMC4574171 DOI: 10.1186/s12990-015-0062-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Background Cuff and spared nerve injury (SNI) in the sciatic territory are widely used to model neuropathic pain. Because nociceptive information is first detected in skin, it is important to understand how alterations in peripheral innervation contribute to pain in each model. Over 16 weeks in male rats, changes in sensory and autonomic innervation of the skin were described after cuff and SNI using immunohistochemistry to label myelinated (neurofilament 200 positive—NF200+) and peptidergic (calcitonin gene-related peptide positive—CGRP+) primary afferents and sympathetic fibres (dopamine β-hydroxylase positive—DBH+) Results Cuff and SNI caused an early loss and later reinnervation of NF200 and CGRP fibres in the plantar hind paw skin. In both models, DBH+ fibres sprouted into the upper dermis of the plantar skin 4 and 6 weeks after injury. Despite these similarities, behavioural pain measures were significantly different in each model. Sympathectomy using guanethidine significantly alleviated mechanical allodynia 6 weeks after cuff, when peak sympathetic sprouting was observed, having no effect at 2 weeks, when fibres were absent. In SNI animals, mechanical allodynia in the lateral paw was significantly improved by guanethidine at 2 and 6 weeks, and the development of cold hyperalgesia, which roughly paralleled the appearance of ectopic sympathetic fibres, was alleviated by guanethidine at 6 weeks. Sympathetic fibres did not sprout into the dorsal root ganglia at 2 or 6 weeks, indicating their unimportance to pain behaviour in these two models. Conclusions Alterations in sympathetic innervation in the skin represents an important mechanism that contributes to pain in cuff and SNI models of neuropathic pain.
Collapse
Affiliation(s)
- Francisney P Nascimento
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Room 1215, Montreal, QC, H3G 1Y6, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, H3A 0G1, Canada.
| | - Claire Magnussen
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Room 1215, Montreal, QC, H3G 1Y6, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, H3A 0G1, Canada.
| | - Noosha Yousefpour
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Room 1215, Montreal, QC, H3G 1Y6, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, H3A 0G1, Canada.
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Room 1215, Montreal, QC, H3G 1Y6, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, H3A 0G1, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
28
|
Saeed AW, Pawlowski SA, Ribeiro-da-Silva A. Limited changes in spinal lamina I dorsal horn neurons following the cytotoxic ablation of non-peptidergic C-fibers. Mol Pain 2015; 11:54. [PMID: 26353788 PMCID: PMC4564961 DOI: 10.1186/s12990-015-0060-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/31/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-peptidergic nociceptive neurons are a sub-population of small diameter primary sensory neurons that comprise approximately 50 % of the C fiber population. Together with the peptidergic sub-population, they transmit nociceptive information from the periphery to the superficial dorsal horn of the spinal cord. Despite the numerous studies investigating the role of the non-peptidergic primary afferents, their role in normal nociception and in pain remains poorly understood. Our lab has previously demonstrated that, in rat models of neuropathic and inflammatory pain, there is a de novo expression of substance P receptors (NK-1r) by lamina I pyramidal projection neurons, a neuronal population that normally does not express these receptors. RESULTS In this study, we used a ribosomal toxin, saporin, conjugated to the lectin IB4 to selectively ablate the non-peptidergic nociceptive C fibers, to investigate if the loss of these fibers was enough to induce a change in NK-1r expression by lamina I projection neurons. IB4-saporin treatment led to the permanent ablation of the IB4-positive afferents but also to a small non-significant reduction in CGRP-positive afferents. An overall increase in immunoreactivity for the NK-1r was observed in lamina I projection neurons, however, the lack of non-peptidergic afferents did not increase the number of lamina I pyramidal projection neurons immunoreactive for the receptor. CONCLUSIONS Our results demonstrate that the deletion of the non-peptidergic afferents, at the L4-L5 spinal levels, is not sufficient to trigger the de novo expression of NK-1r by projection pyramidal neurons but increases the expression of NK-1r in fusiform and multipolar projection neurons. Furthermore, our data suggest that a neuropathic component is essential to trigger the expression of NK-1r by pyramidal neurons.
Collapse
Affiliation(s)
- Abeer W Saeed
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC, H3G 1Y6, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, H3A 0G1, Canada.
| | - Sophie A Pawlowski
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC, H3G 1Y6, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, H3A 0G1, Canada.
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC, H3G 1Y6, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, H3A 0G1, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
29
|
Effects of Vibration Therapy on Immobilization-Induced Hypersensitivity in Rats. Phys Ther 2015; 95:1015-26. [PMID: 25655883 DOI: 10.2522/ptj.20140137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 01/28/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cast immobilization induces mechanical hypersensitivity, which disturbs rehabilitation. Although vibration therapy can reduce various types of pain, whether vibration reduces immobilization-induced hypersensitivity remains unclear. OBJECTIVE The purpose of this study was to investigate the preventive and therapeutic effects of vibration therapy on immobilization-induced hypersensitivity. DESIGN The experimental design of the study involved conducting behavioral, histological, and immunohistochemical studies in model rats. METHODS Thirty-five Wistar rats (8 weeks old, all male) were used. The right ankle joints of 30 rats were immobilized by plaster cast for 8 weeks, and 5 rats were used as controls. The immobilized rats were divided randomly into the following 3 groups: (1) immobilization-only group (Im, n=10); (2) vibration therapy group 1, for which vibration therapy was initiated immediately after the onset of immobilization (Im+Vib1, n=10); and (3) vibration therapy group 2, for which vibration therapy was initiated 4 weeks after the onset of immobilization (Im+Vib2, n=10). Vibration was applied to the hind paw. The mechanical hypersensitivity and epidermal thickness of the hind paw skin were measured. To investigate central sensitization, calcitonin gene-related peptide (CGRP) expression in the spinal cord and dorsal root ganglion (DRG) was analyzed. RESULTS Immobilization-induced hypersensitivity was inhibited in the Im+Vib1 group but not in the Im+Vib2 group. Central sensitization, which was indicated by increases in CGRP expression in the spinal cord and the size of the area of CGRP-positive neurons in the DRG, was inhibited in only the Im+Vib1 group. Epidermal thickness was not affected by vibration stimulation. LIMITATIONS A limitation of this study is that the results were limited to an animal model and cannot be generalized to humans. CONCLUSIONS The data suggest that initiation of vibration therapy in the early phase of immobilization may inhibit the development of immobilization-induced hypersensitivity.
Collapse
|
30
|
Kambiz S, Duraku LS, Baas M, Nijhuis THJ, Cosgun SG, Hovius SER, Ruigrok TJH, Walbeehm ET. Long-term follow-up of peptidergic and nonpeptidergic reinnervation of the epidermis following sciatic nerve reconstruction in rats. J Neurosurg 2015; 123:254-69. [DOI: 10.3171/2014.12.jns141075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECT
Peripheral nerve injuries are a commonly encountered clinical problem and often result in long-term functional deficits. The current gold standard for transected nerves is an end-to-end reconstruction, which results in the intermittent appearance of neuropathic pain.
METHODS
To improve our understanding of the relation between this type of reconstruction and neuropathic pain, the authors transected and immediately end-to-end reconstructed the sciatic nerve in rats. The effect of this procedure on neuropathic pain, as measured by thermal and mechanical hypersensitivity at 4 different time points (5, 10, 20, and 30 weeks), was related to the density of peptidergic and nonpeptidergic fiber innervation in the glabrous skin of rats' hind paws.
RESULTS
Thermal hypersensitivity occurring 20 weeks after reconstruction was accompanied by a significant increase in peptidergic epidermal fibers. However, the lesion-induced reduction in the density of nonpeptidergic epidermal fibers remained decreased at all experimental time points. Moreover, temporal collateral sprouting by undamaged saphenous nerve was visualized using the recently revised Evans blue extravasation technique. Strikingly, as the sciatic nerve repopulated rats' hind paw, the saphenous nerve withdrew to its original territory.
CONCLUSIONS
The authors conclude that the transient thermal hypersensitivity is related to increased density of epidermal peptidergic fibers, which mainly originate from regenerating fibers. Furthermore, a changed composition in the peptidergic and nonpeptidergic epidermal fibers is demonstrated following end-to-end reconstruction of the sciatic nerve.
Collapse
Affiliation(s)
- Shoista Kambiz
- Departments of 1Neuroscience and
- 2Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands; and
| | - Liron S. Duraku
- Departments of 1Neuroscience and
- 2Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands; and
| | - Martijn Baas
- 2Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands; and
| | - Tim H. J. Nijhuis
- 2Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands; and
| | - Saniye G. Cosgun
- 2Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands; and
| | - Steven E. R. Hovius
- 2Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands; and
| | | | - Erik T. Walbeehm
- 2Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands; and
- 3Department of Plastic Surgery, Radboud UMC, Nijmegen, Gelderland, The Netherlands
| |
Collapse
|
31
|
Magnussen C, Hung SP, Ribeiro-da-Silva A. Novel expression pattern of neuropeptide Y immunoreactivity in the peripheral nervous system in a rat model of neuropathic pain. Mol Pain 2015; 11:31. [PMID: 26012590 PMCID: PMC4449610 DOI: 10.1186/s12990-015-0029-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/20/2015] [Indexed: 12/26/2022] Open
Abstract
Background Neuropeptide Y (NPY) has been implicated in the modulation of pain. Under normal conditions, NPY is found in interneurons in the dorsal horn of the spinal cord and in sympathetic postganglionic neurons but is absent from the cell bodies of sensory neurons. Following peripheral nerve injury NPY is dramatically upregulated in the sensory ganglia. How NPY expression is altered in the peripheral nervous system, distal to a site of nerve lesion, remains unknown. To address this question, NPY expression was investigated using immunohistochemistry at the level of the trigeminal ganglion, the mental nerve and in the skin of the lower lip in relation to markers of sensory and sympathetic fibers in a rat model of trigeminal neuropathic pain. Results At 2 and 6 weeks after chronic constriction injury (CCI) of the mental nerve, de novo expression of NPY was seen in the trigeminal ganglia, in axons in the mental nerve, and in fibers in the upper dermis of the skin. In lesioned animals, NPY immunoreactivity was expressed primarily by large diameter mental nerve sensory neurons retrogradely labelled with Fluorogold. Many axons transported this de novo NPY to the periphery as NPY-immunoreactive (IR) fibers were seen in the mental nerve both proximal and distal to the CCI. Some of these NPY-IR axons co-expressed Neurofilament 200 (NF200), a marker for myelinated sensory fibers, and occasionally colocalization was seen in their terminals in the skin. Peptidergic and non-peptidergic C fibers expressing calcitonin gene-related peptide (CGRP) or binding isolectin B4 (IB4), respectively, never expressed NPY. CCI caused a significant de novo sprouting of sympathetic fibers into the upper dermis of the skin, and most, but not all of these fibers, expressed NPY. Conclusions This is the first study to provide a comprehensive description of changes in NPY expression in the periphery after nerve injury. Novel expression of NPY in the skin comes mostly from sprouted sympathetic fibers. This information is fundamental in order to understand where endogenous NPY is expressed, and how it might be acting to modulate pain in the periphery.
Collapse
Affiliation(s)
- Claire Magnussen
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Room 1215, Montreal, Quebec, H3G 1Y6, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, H3A 0G1, Canada.
| | - Shih-Ping Hung
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Room 1215, Montreal, Quebec, H3G 1Y6, Canada.
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Room 1215, Montreal, Quebec, H3G 1Y6, Canada. .,Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, H3A 0G1, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada.
| |
Collapse
|
32
|
Kambiz S, van Neck JW, Cosgun SG, van Velzen MHN, Janssen JAMJL, Avazverdi N, Hovius SER, Walbeehm ET. An early diagnostic tool for diabetic peripheral neuropathy in rats. PLoS One 2015; 10:e0126892. [PMID: 25984949 PMCID: PMC4436028 DOI: 10.1371/journal.pone.0126892] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
Abstract
The skin’s rewarming rate of diabetic patients is used as a diagnostic tool for early diagnosis of diabetic neuropathy. At present, the relationship between microvascular changes in the skin and diabetic neuropathy is unclear in streptozotocin (STZ) diabetic rats. The aim of this study was to investigate whether the skin rewarming rate in diabetic rats is related to microvascular changes and whether this is accompanied by changes observed in classical diagnostic methods for diabetic peripheral neuropathy. Computer-assisted infrared thermography was used to assess the rewarming rate after cold exposure on the plantar skin of STZ diabetic rats’ hind paws. Peripheral neuropathy was determined by the density of intra-epidermal nerve fibers (IENFs), mechanical sensitivity, and electrophysiological recordings. Data were obtained in diabetic rats at four, six, and eight weeks after the induction of diabetes and in controls. Four weeks after the induction of diabetes, a delayed rewarming rate, decreased skin blood flow and decreased density of IENFs were observed. However, the mechanical hyposensitivity and decreased motor nerve conduction velocity (MNCV) developed 6 and 8 weeks after the induction of diabetes. Our study shows that the skin rewarming rate is related to microvascular changes in diabetic rats. Moreover, the skin rewarming rate is a non-invasive method that provides more information for an earlier diagnosis of peripheral neuropathy than the classical monofilament test and MNCV in STZ induced diabetic rats.
Collapse
Affiliation(s)
- Shoista Kambiz
- Dept. of Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands; Dept. of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Johan W van Neck
- Dept. of Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Saniye G Cosgun
- Dept. of Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands; Dept. of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marit H N van Velzen
- Dept. of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joop A M J L Janssen
- Dept. of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Naim Avazverdi
- Dept. of Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Steven E R Hovius
- Dept. of Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik T Walbeehm
- Dept. of Plastic, Reconstructive and Hand Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Kambiz S, Brakkee E, Duraku L, Hovius S, Ruigrok T, Walbeehm E. Mirror-image pain after nerve reconstruction in rats is related to enhanced density of epidermal peptidergic nerve fibers. Exp Neurol 2015; 267:87-94. [DOI: 10.1016/j.expneurol.2015.02.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/17/2015] [Accepted: 02/10/2015] [Indexed: 11/24/2022]
|
34
|
Nerve demyelination increases metabotropic glutamate receptor subtype 5 expression in peripheral painful mononeuropathy. Int J Mol Sci 2015; 16:4642-65. [PMID: 25739080 PMCID: PMC4394440 DOI: 10.3390/ijms16034642] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/24/2023] Open
Abstract
Wallerian degeneration or nerve demyelination, arising from spinal nerve compression, is thought to bring on chronic neuropathic pain. The widely distributed metabotropic glutamate receptor subtype 5 (mGluR5) is involved in modulating nociceptive transmission. The purpose of this study was to investigate the potential effects of mGluR5 on peripheral hypersensitivities after chronic constriction injury (CCI). Sprague-Dawley rats were operated on with four loose ligatures around the sciatic nerve to induce thermal hyperalgesia and mechanical allodynia. Primary afferents in dermis after CCI exhibited progressive decreases, defined as partial cutaneous denervation; importantly, mGluR5 expressions in primary afferents were statistically increased. CCI-induced neuropathic pain behaviors through the intraplantar injections of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective mGluR5 antagonist, were dose-dependently attenuated. Furthermore, the most increased mGluR5 expressions in primary afferents surrounded by reactive Schwann cells were observed at the distal CCI stumps of sciatic nerves. In conclusion, these results suggest that nerve demyelination results in the increases of mGluR5 expression in injured primary afferents after CCI; and further suggest that mGluR5 represents a main therapeutic target in developing pharmacological strategies to prevent peripheral hypersensitivities.
Collapse
|
35
|
Prokineticin 2 upregulation in the peripheral nervous system has a major role in triggering and maintaining neuropathic pain in the chronic constriction injury model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:301292. [PMID: 25685780 PMCID: PMC4313068 DOI: 10.1155/2015/301292] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/03/2014] [Indexed: 11/17/2022]
Abstract
The new chemokine Prokineticin 2 (PROK2) and its receptors (PKR1 and PKR2) have a role in inflammatory pain and immunomodulation. Here we identified PROK2 as a critical mediator of neuropathic pain in the chronic constriction injury (CCI) of the sciatic nerve in mice and demonstrated that blocking the prokineticin receptors with two PKR1-preferring antagonists (PC1 and PC7) reduces pain and nerve damage. PROK2 mRNA expression was upregulated in the injured nerve since day 3 post injury (dpi) and in the ipsilateral DRG since 6 dpi. PROK2 protein overexpression was evident in Schwann Cells, infiltrating macrophages and axons in the peripheral nerve and in the neuronal bodies and some satellite cells in the DRG. Therapeutic treatment of neuropathic mice with the PKR-antagonist, PC1, impaired the PROK2 upregulation and signalling. This fact, besides alleviating pain, brought down the burden of proinflammatory cytokines in the damaged nerve and prompted an anti-inflammatory repair program. Such a treatment also reduced intraneural oedema and axon degeneration as demonstrated by the physiological skin innervation and thickness conserved in CCI-PC1 mice. These findings suggest that PROK2 plays a crucial role in neuropathic pain and might represent a novel target of treatment for this disease.
Collapse
|
36
|
Chartier SR, Thompson ML, Longo G, Fealk MN, Majuta LA, Mantyh PW. Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain. Pain 2014; 155:2323-36. [PMID: 25196264 PMCID: PMC4254205 DOI: 10.1016/j.pain.2014.08.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/17/2014] [Accepted: 08/12/2014] [Indexed: 01/14/2023]
Abstract
Skeletal injury is a leading cause of chronic pain and long-term disability worldwide. While most acute skeletal pain can be effectively managed with nonsteroidal anti-inflammatory drugs and opiates, chronic skeletal pain is more difficult to control using these same therapy regimens. One possibility as to why chronic skeletal pain is more difficult to manage over time is that there may be nerve sprouting in nonhealed areas of the skeleton that normally receive little (mineralized bone) to no (articular cartilage) innervation. If such ectopic sprouting did occur, it could result in normally nonnoxious loading of the skeleton being perceived as noxious and/or the generation of a neuropathic pain state. To explore this possibility, a mouse model of skeletal pain was generated by inducing a closed fracture of the femur. Examined animals had comminuted fractures and did not fully heal even at 90+days post fracture. In all mice with nonhealed fractures, exuberant sensory and sympathetic nerve sprouting, an increase in the density of nerve fibers, and the formation of neuroma-like structures near the fracture site were observed. Additionally, all of these animals exhibited significant pain behaviors upon palpation of the nonhealed fracture site. In contrast, sprouting of sensory and sympathetic nerve fibers or significant palpation-induced pain behaviors was never observed in naïve animals. Understanding what drives this ectopic nerve sprouting and the role it plays in skeletal pain may allow a better understanding and treatment of this currently difficult-to-control pain state.
Collapse
Affiliation(s)
| | | | - Geraldine Longo
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Michelle N Fealk
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Lisa A Majuta
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Patrick W Mantyh
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA; Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
37
|
Hyperalgesia in an immobilized rat hindlimb: effect of treadmill exercise using non-immobilized limbs. Neurosci Lett 2014; 584:66-70. [PMID: 25304541 DOI: 10.1016/j.neulet.2014.09.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 09/21/2014] [Accepted: 09/29/2014] [Indexed: 12/30/2022]
Abstract
Cast immobilization of limbs causes hyperalgesia, which is a decline of the threshold of mechanical and thermal mechanical stimuli. The immobilization-induced hyperalgesia (IIH) can disturb rehabilitation and activities of daily living in patients with orthopedic disorders. However, it is unclear what therapeutic and preventive approaches can be used to alleviate IIH. Exercise that activates the descending pain modulatory system may be effective for IIH. The purpose of this study was to investigate the effects of treadmill exercise during the immobilization period, using the non-immobilized limbs, on IIH. Thirty-six 8-week-old Wistar rats were randomly divided into (1) control, (2) immobilization (Im), and (3) immobilization and treadmill exercise (Im+Ex) groups. In the Im and Im+Ex groups, the right ankle joints of each rat were immobilized in full plantar flexion with a plaster cast for an 8-week period. In the Im+Ex group, treadmill exercise (15 m/min, 30 min/day, 5 days/week) was administered during the immobilization period while the right hindlimb was kept immobilized. Mechanical hyperalgesia was measured using von Frey filaments every week. To investigate possible activation of the descending pain modulatory system, beta-endorphin expression levels in hypothalamus and midbrain periaqueductal gray were analyzed. Although IIH clearly occurred in the Im group, the hyperalgesia was partially but significantly reduced in the Im+Ex group. Beta-endorphin, which is one of the endogenous opioids, was selectively increased in the hypothalamus and midbrain periaqueductal gray of the Im+Ex group. Our data suggest that treadmill running using the non-immobilized limbs reduces the amount of hyperalgesia induced in the immobilized limb even if it is not freed. This ameliorating effect might be due to the descending pain modulatory system being activated by upregulation of beta-endorphin in the brain.
Collapse
|
38
|
Lorenzo LE, Magnussen C, Bailey AL, St Louis M, De Koninck Y, Ribeiro-da-Silva A. Spatial and temporal pattern of changes in the number of GAD65-immunoreactive inhibitory terminals in the rat superficial dorsal horn following peripheral nerve injury. Mol Pain 2014; 10:57. [PMID: 25189404 PMCID: PMC4164746 DOI: 10.1186/1744-8069-10-57] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/26/2014] [Indexed: 01/12/2023] Open
Abstract
Inhibitory interneurons are an important component of dorsal horn circuitry where they serve to modulate spinal nociception. There is now considerable evidence indicating that reduced inhibition in the spinal dorsal horn contributes to neuropathic pain. A loss of these inhibitory neurons after nerve injury is one of the mechanisms being proposed to account for reduced inhibition; however, this remains controversial. This is in part because previous studies have focused on global measurements of inhibitory neurons without assessing the number of inhibitory synapses. To address this, we conducted a quantitative analysis of the spatial and temporal changes in the number of inhibitory terminals, as detected by glutamic acid decarboxylase 65 (GAD65) immunoreactivity, in the superficial dorsal horn of the spinal cord following a chronic constriction injury (CCI) to the sciatic nerve in rats. Isolectin B4 (IB4) labelling was used to define the location within the dorsal horn directly affected by the injury to the peripheral nerve. The density of GAD65 inhibitory terminals was reduced in lamina I (LI) and lamina II (LII) of the spinal cord after injury. The loss of GAD65 terminals was greatest in LII with the highest drop occurring around 3–4 weeks and a partial recovery by 56 days. The time course of changes in the number of GAD65 terminals correlated well with both the loss of IB4 labeling and with the altered thresholds to mechanical and thermal stimuli. Our detailed analysis of GAD65+ inhibitory terminals clearly revealed that nerve injury induced a transient loss of GAD65 immunoreactive terminals and suggests a potential involvement for these alterations in the development and amelioration of pain behaviour.
Collapse
Affiliation(s)
| | | | | | | | | | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
39
|
Tseng TJ, Hsieh YL, Ko MH, Hsieh ST. Redistribution of voltage-gated sodium channels after nerve decompression contributes to relieve neuropathic pain in chronic constriction injury. Brain Res 2014; 1589:15-25. [PMID: 25038561 DOI: 10.1016/j.brainres.2014.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 06/13/2014] [Accepted: 07/08/2014] [Indexed: 11/29/2022]
Abstract
Nerve decompression is an important therapeutic strategy to relieve neuropathic pain and promote the peripheral nerve regeneration. To address these issues, we investigated the effects of nerve decompression on relief of neuropathic pain behaviors, redistribution of voltage-gated sodium channels (VGSCs), and skin reinnervation with chronic constriction injury (CCI). At post-operative week (POW) 4, animals were divided into a decompression group, in which the ligatures were removed, and a CCI group, in which the ligatures remained. Thermal hyperalgesia and mechanical allodynia at POW 8 had distinct reductions in decompression group compared to CCI group. At that time in CCI group, morphological evidence of pan VGSCs (Pan Nav) and isoforms of VGSCs (Nav1.6, Nav1.9, except for Nav1.8) were shown the widely distribution along the injured sciatic nerve. All of the VGSCs in decompression group became clustering around the node of Ranvier, similar to the pattern of control sciatic nerve at POW 8. Skin reinnervation was demonstrated by epidermal nerve density (END) for protein gene product 9.5 (PGP 9.5)-immunoreactive (IR) nerve fibers and a significant difference between groups only at POW 24 (p=0.01). Growth-associated protein 43 (GAP-43) is participated in the nerve fiber growth and sprouting, a difference in END for GAP-43-IR nerve fibers at POW 24 between groups were also significant (p=0.02). These observations demonstrated that nerve decompression was accompanied with the disappearance of neuropathic pain behaviors after CCI. Morphological studies provided the evidence that redistribution of VGSCs along the injured sciatic nerve but still with an incomplete skin reinnervation. These significant findings demonstrated a role of VGSCs in the pathogenesis of neuropathic pain, and gave an approaching in pharmacological basis of therapeutics.
Collapse
Affiliation(s)
- To-Jung Tseng
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Miau-Hwa Ko
- Department of Anatomy, College of Medicine, China Medical University, Taichung, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
40
|
Ko MH, Hu ME, Hsieh YL, Lan CT, Tseng TJ. Peptidergic intraepidermal nerve fibers in the skin contribute to the neuropathic pain in paclitaxel-induced peripheral neuropathy. Neuropeptides 2014; 48:109-17. [PMID: 24630273 DOI: 10.1016/j.npep.2014.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/27/2014] [Accepted: 02/13/2014] [Indexed: 02/05/2023]
Abstract
Paclitaxel in chemotherapy-induced peripheral neuropathy (CIPN) is predominantly with a dose-limiting effect on neuropathic pain in clinical strategy. In the present study, the relationship between the neuropathic pain and nerve degeneration in paclitaxel CIPN was investigated. Adult male Sprague-Dawley (SD) rats were divided into three paclitaxel groups (0.5, 1.0, 2.0mg/kg) and a vehicle group with four intraperitoneal (i.p.) injections on alternating days. Our results demonstrated that the paclitaxel groups significantly exhibited the reductions of thermal hyperalgesia and mechanical allodynia. The neurotoxicity of paclitaxel conveyed the degeneration of intraepidermal nerve fibers (IENFs) in hindpaw glabrous skin. Nevertheless, the influence of paclitaxel to the peptidergic IENFs are even unknown. The skin innervation of protein gene product 9.5 (PGP 9.5)-immunoreactive (IR) IENFs in paclitaxel groups revealed the decreasing levels of density (73.54±0.72%, 63.17±1.77%, 61.79±2.68%, respectively; vs. vehicle group, p<0.05) throughout the entire experimental period. Additionally, the diminishing levels of density for peptidergic substance P (SP)-IR IENFs in paclitaxel groups were significantly shown (48.84±1.74%, 30.02±1.69%, 30.14±0.37%, respectively; vs. vehicle group, p<0.05). On the contrary, the density for peptidergic calcitonin gene-related peptide (CGRP)-IR IENFs in paclitaxel groups were revealed the similar decreasing levels (82.75±0.91%, 84.34±3.20%, 81.99±0.25%, respectively; vs. vehicle group, p<0.05). Linear regression analyses exhibited that densities of IENFs for PGP 9.5, SP, CGRP were correlated with withdrawal latencies (r(2)=0.77, p<0.0001; r(2)=0.75, p<0.0001; r(2)=0.28, p=0.0001, respectively) and mechanical thresholds (r(2)=0.43, p<0.0001; r(2)=0.73, p<0.0001; r(2)=0.40, p<0.0001, respectively). Therefore, the present results suggested that the development of neuropathic pain following paclitaxel injection induced the progressive degeneration of IENFs in skin and gave the evidence that the peptidergic IENFs may play an important role in therapeutic strategy of paclitaxe CIPN.
Collapse
Affiliation(s)
- Miau-Hwa Ko
- Department of Anatomy, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-E Hu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chyn-Tair Lan
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - To-Jung Tseng
- Department of Anatomy, College of Medicine, China Medical University, Taichung, Taiwan; Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
41
|
Innervation mapping of the hind paw of the rat using Evans Blue extravasation, Optical Surface Mapping and CASAM. J Neurosci Methods 2014; 229:15-27. [DOI: 10.1016/j.jneumeth.2014.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/20/2022]
|
42
|
Sensory innervation of the dorsal longitudinal ligament and the meninges in the lumbar spine of the dog. Histochem Cell Biol 2014; 142:433-47. [PMID: 24748503 DOI: 10.1007/s00418-014-1218-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2014] [Indexed: 10/25/2022]
Abstract
Although intervertebral disc herniation is a well-known disease in dogs, pain management for this condition has remained a challenge. The goal of the present study is to address the lack of information regarding the innervation of anatomical structures within the canine vertebral canal. Immunolabeling was performed with antibodies against protein gene product 9.5, Tuj-1 (neuron-specific class III β-tubulin), calcitonin gene-related peptide, and neuropeptide Y in combination with the lectin from Lycopersicon esculentum as a marker for blood vessels. Staining was indicative of both sensory and sympathetic fibers. Innervation density was the highest in lateral areas, intermediate in dorsal areas, and the lowest in ventral areas. In the dorsal longitudinal ligament (DLL), the highest innervation density was observed in the lateral regions. Innervation was lower at mid-vertebral levels than at intervertebral levels. The presence of sensory and sympathetic fibers in the canine dura and DLL suggests that pain may originate from both these structures. Due to these regional differences in sensory innervation patterns, trauma to intervertebral DLL and lateral dura is expected to be particularly painful. The results ought to provide a better basis for the assessment of medicinal and surgical procedures.
Collapse
|
43
|
Drummond PD, Drummond ES, Dawson LF, Mitchell V, Finch PM, Vaughan CW, Phillips JK. Upregulation of α1-adrenoceptors on cutaneous nerve fibres after partial sciatic nerve ligation and in complex regional pain syndrome type II. Pain 2014; 155:606-616. [DOI: 10.1016/j.pain.2013.12.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/07/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
|
44
|
Drummond ES, Dawson LF, Finch PM, Bennett GJ, Drummond PD. Increased Expression of Cutaneous α1-Adrenoceptors After Chronic Constriction Injury in Rats. THE JOURNAL OF PAIN 2014; 15:188-96. [DOI: 10.1016/j.jpain.2013.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
|
45
|
Muralidharan A, Wyse BD, Smith MT. Analgesic efficacy and mode of action of a selective small molecule angiotensin II type 2 receptor antagonist in a rat model of prostate cancer-induced bone pain. PAIN MEDICINE 2013; 15:93-110. [PMID: 24433468 DOI: 10.1111/pme.12258] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The pathobiology of prostate cancer (PCa)-induced bone pain (PCIBP) has both inflammatory and neuropathic components. Previously, we showed that small molecule angiotensin II type 2 receptor (AT2 R) antagonists with >1,000-fold selectivity over the angiotensin II type 1 receptor produced dose-dependent analgesia in a rat model of neuropathic pain. Here, we assessed the analgesic efficacy and mode of action of the AT2 R antagonist, EMA200, in a rat model of PCIBP. METHODS At 14-21 days after unilateral intratibial injection of AT3B PCa cells, rats exhibiting hindpaw hypersensitivity received single intravenous bolus doses of EMA200 (0.3-10 mg/kg) or vehicle, and analgesic efficacy was assessed. The mode of action was investigated using immunohistochemical, Western blot, and/or molecular biological methods in lumbar dorsal root ganglia (DRGs) removed from drug-naïve and EMA200-treated PCIBP rats relative to sham-control rats. RESULTS Intravenous bolus doses of EMA200 produced dose-dependent analgesia in PCIBP rats. Lumbar DRG levels of angiotensin II, nerve growth factor (NGF), tyrosine kinase A (TrkA), phospho-p38 mitogen-activated protein kinase (MAPK), and phospho-p44/p42 MAPK, but not the AT2 R, were increased significantly (P < 0.05) in PCIBP rats, c.f. the corresponding levels for sham controls. EMA200 produced analgesia in PCIBP rats by reducing elevated angiotensin II levels in the lumbar DRGs to attenuate augmented angiotensin II/AT2 R signaling. This in turn reduced augmented NGF/TrkA signaling in the lumbar DRGs. The net result was inhibition of p38 MAPK and p44/p42 MAPK activation. CONCLUSION Small molecule AT2 R antagonists are worthy of further investigation as novel analgesics for relief of intractable PCIBP and other pain types where hyperalgesia worsens symptoms.
Collapse
Affiliation(s)
- Arjun Muralidharan
- Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, Queensland, Australia; The School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
46
|
Sekino Y, Nakano J, Hamaue Y, Chuganji S, Sakamoto J, Yoshimura T, Origuchi T, Okita M. Sensory hyperinnervation and increase in NGF, TRPV1 and P2X3expression in the epidermis following cast immobilization in rats. Eur J Pain 2013; 18:639-48. [DOI: 10.1002/j.1532-2149.2013.00412.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Y. Sekino
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Japan
| | - J. Nakano
- Department of Physical Therapy Science; Unit of Physical and Occupational Therapy Sciences; Nagasaki University Graduate School of Biochemical Sciences; Japan
| | - Y. Hamaue
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Japan
| | - S. Chuganji
- Department of Physical Therapy Science; Unit of Physical and Occupational Therapy Sciences; Nagasaki University Graduate School of Biochemical Sciences; Japan
| | - J. Sakamoto
- Department of Rehabilitation; Nagasaki University Hospital; Japan
| | - T. Yoshimura
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Japan
| | - T. Origuchi
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Japan
| | - M. Okita
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Japan
| |
Collapse
|
47
|
Saeed AW, Ribeiro-da-Silva A. De novo expression of neurokinin-1 receptors by spinoparabrachial lamina I pyramidal neurons following a peripheral nerve lesion. J Comp Neurol 2013; 521:1915-28. [PMID: 23172292 DOI: 10.1002/cne.23267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 09/07/2012] [Accepted: 11/09/2012] [Indexed: 01/07/2023]
Abstract
Lamina I of the spinal dorsal horn is a major site of integration and transmission to higher centers of nociceptive information from the periphery. One important primary afferent population that transmits such information to the spinal cord expresses substance P (SP). These fibers terminate in contact with lamina I projection neurons that express the SP receptor, also known as the neurokinin-1 receptor (NK-1r). Three types of lamina I projection neurons have been described: multipolar, fusiform, and pyramidal. Most neurons of the first two types are thought to be nociceptive and express the NK-1r, whereas most pyramidal neurons are nonnociceptive and do not express the NK-1r. In this immunocytochemical and behavioral study, we induced a neuropathic pain-like condition in the rat by means of a polyethylene cuff placed around in the sciatic nerve. We document that this lesion led to a de novo expression of NK-1r on pyramidal neurons as well as a significant increase in SP-immunoreactive innervation onto these neurons. These phenotypic changes were evident at the time of onset of neuropathic pain-related behavior. Additionally, we show that, after a noxious stimulus (intradermal capsaicin injection), these NK-1r on pyramidal neurons were internalized, providing evidence that these neurons become responsive to peripheral noxious stimulation. We suggest that the changes following nerve lesion in the phenotype and innervation pattern of pyramidal neurons are of significance for neuropathic pain and/or limb temperature regulation.
Collapse
Affiliation(s)
- Abeer W Saeed
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | |
Collapse
|
48
|
Pathobiology and management of prostate cancer-induced bone pain: recent insights and future treatments. Inflammopharmacology 2013; 21:339-63. [PMID: 23918298 PMCID: PMC3779011 DOI: 10.1007/s10787-013-0183-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 07/23/2013] [Indexed: 12/27/2022]
Abstract
Prostate cancer (PCa) has a high propensity for metastasis to bone. Despite the availability of multiple treatment options for relief of PCa-induced bone pain (PCIBP), satisfactory relief of intractable pain in patients with advanced bony metastases is challenging for the clinicians because currently available analgesic drugs are often limited by poor efficacy and/or dose-limiting side effects. Rodent models developed in the past decade show that the pathobiology of PCIBP comprises elements of inflammatory, neuropathic and ischemic pain arising from ectopic sprouting and sensitization of sensory nerve fibres within PCa-invaded bones. In addition, at the cellular level, PCIBP is underpinned by dynamic cross talk between metastatic PCa cells, cellular components of the bone matrix, factors associated with the bone microenvironment as well as peripheral components of the somatosensory system. These insights are aligned with the clinical management of PCIBP involving use of a multimodal treatment approach comprising analgesic agents (opioids, NSAIDs), radiotherapy, radioisotopes, cancer chemotherapy agents and bisphosphonates. However, a major drawback of most rodent models of PCIBP is their short-term applicability due to ethical concerns. Thus, it has been difficult to gain insight into the mal(adaptive) neuroplastic changes occurring at multiple levels of the somatosensory system that likely contribute to intractable pain at the advanced stages of metastatic disease. Specifically, the functional responsiveness of noxious circuitry as well as the neurochemical signature of a broad array of pro-hyperalgesic mediators in the dorsal root ganglia and spinal cord of rodent models of PCIBP is relatively poorly characterized. Hence, recent work from our laboratory to develop a protocol for an optimized rat model of PCIBP will enable these knowledge gaps to be addressed as well as identification of novel targets for drug discovery programs aimed at producing new analgesics for the improved relief of intractable PCIBP.
Collapse
|
49
|
Duraku LS, Hossaini M, Schüttenhelm BN, Holstege JC, Baas M, Ruigrok TJ, Walbeehm ET. Re-innervation patterns by peptidergic Substance-P, non-peptidergic P2X3, and myelinated NF-200 nerve fibers in epidermis and dermis of rats with neuropathic pain. Exp Neurol 2013; 241:13-24. [DOI: 10.1016/j.expneurol.2012.11.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/24/2012] [Accepted: 11/29/2012] [Indexed: 12/27/2022]
|
50
|
Mulder J, Hökfelt T, Knuepfer MM, Kopp UC. Renal sensory and sympathetic nerves reinnervate the kidney in a similar time-dependent fashion after renal denervation in rats. Am J Physiol Regul Integr Comp Physiol 2013; 304:R675-82. [PMID: 23408032 DOI: 10.1152/ajpregu.00599.2012] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Efferent renal sympathetic nerves reinnervate the kidney after renal denervation in animals and humans. Therefore, the long-term reduction in arterial pressure following renal denervation in drug-resistant hypertensive patients has been attributed to lack of afferent renal sensory reinnervation. However, afferent sensory reinnervation of any organ, including the kidney, is an understudied question. Therefore, we analyzed the time course of sympathetic and sensory reinnervation at multiple time points (1, 4, and 5 days and 1, 2, 3, 4, 6, 9, and 12 wk) after renal denervation in normal Sprague-Dawley rats. Sympathetic and sensory innervation in the innervated and contralateral denervated kidney was determined as optical density (ImageJ) of the sympathetic and sensory nerves identified by immunohistochemistry using antibodies against markers for sympathetic nerves [neuropeptide Y (NPY) and tyrosine hydroxylase (TH)] and sensory nerves [substance P and calcitonin gene-related peptide (CGRP)]. In denervated kidneys, the optical density of NPY-immunoreactive (ir) fibers in the renal cortex and substance P-ir fibers in the pelvic wall was 6, 39, and 100% and 8, 47, and 100%, respectively, of that in the contralateral innervated kidney at 4 days, 4 wk, and 12 wk after denervation. Linear regression analysis of the optical density of the ratio of the denervated/innervated kidney versus time yielded similar intercept and slope values for NPY-ir, TH-ir, substance P-ir, and CGRP-ir fibers (all R(2) > 0.76). In conclusion, in normotensive rats, reinnervation of the renal sensory nerves occurs over the same time course as reinnervation of the renal sympathetic nerves, both being complete at 9 to 12 wk following renal denervation.
Collapse
Affiliation(s)
- Jan Mulder
- Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|