1
|
Cattaneo S, Bettegazzi B, Crippa L, Asth L, Regoni M, Soukupova M, Zucchini S, Cantore A, Codazzi F, Valtorta F, Simonato M. Gene therapy for epilepsy targeting neuropeptide Y and its Y2 receptor to dentate gyrus granule cells. EMBO Rep 2024; 25:4387-4409. [PMID: 39251828 PMCID: PMC11467199 DOI: 10.1038/s44319-024-00244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Gene therapy is emerging as an alternative option for individuals with drug-resistant focal epilepsy. Here, we explore the potential of a novel gene therapy based on Neuropeptide Y (NPY), a well-known endogenous anticonvulsant. We develop a lentiviral vector co-expressing NPY with its inhibitory receptor Y2 in which, for the first time, both transgenes are placed under the control of the minimal CamKIIa(0.4) promoter, biasing expression toward excitatory neurons and allowing autoregulation of neuronal excitability by Y2 receptor-mediated inhibition. Vector-induced NPY and Y2 expression and safety are first assessed in cultures of hippocampal neurons. In vivo experiments demonstrate efficient and nearly selective overexpression of both genes in granule cell mossy fiber terminals following vector administration in the dentate gyrus. Telemetry video-EEG monitoring reveals a reduction in the frequency and duration of seizures in the synapsin triple KO model. This study shows that targeting a small subset of neurons (hippocampal granule cells) with a combined overexpression of NPY and Y2 receptor is sufficient to reduce the occurrence of spontaneous seizures.
Collapse
Affiliation(s)
- Stefano Cattaneo
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Barbara Bettegazzi
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Lucia Crippa
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Maria Regoni
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Silvia Zucchini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Alessio Cantore
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20123, Milan, Italy
| | - Franca Codazzi
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Flavia Valtorta
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Michele Simonato
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
2
|
Zhang Y, Shen J, Xie F, Liu Z, Yin F, Cheng M, Wang L, Cai M, Herzog H, Wu P, Zhang Z, Zhan C, Liu T. Feedforward inhibition of stress by brainstem neuropeptide Y neurons. Nat Commun 2024; 15:7603. [PMID: 39217143 PMCID: PMC11365948 DOI: 10.1038/s41467-024-51956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Resistance to stress is a key determinant for mammalian functioning. While many studies have revealed neural circuits and substrates responsible for initiating and mediating stress responses, little is known about how the brain resists to stress and prevents overreactions. Here, we identified a previously uncharacterized neuropeptide Y (NPY) neuronal population in the dorsal raphe nucleus and ventrolateral periaqueductal gray region (DRN/vlPAG) with anxiolytic effects in male mice. NPYDRN/vlPAG neurons are rapidly activated by various stressful stimuli. Inhibiting these neurons exacerbated hypophagic and anxiety responses during stress, while activation significantly ameliorates acute stress-induced hypophagia and anxiety levels and transmits positive valence. Furthermore, NPYDRN/vlPAG neurons exert differential but synergic anxiolytic effects via inhibitory projections to the paraventricular thalamic nucleus (PVT) and the lateral hypothalamic area (LH). Together, our findings reveal a feedforward inhibition neural mechanism underlying stress resistance and suggest NPYDRN/vlPAG neurons as a potential therapeutic target for stress-related disorders.
Collapse
Grants
- the National Key R&D Program of China (2019YFA0801900, 2018YFA0800300), the National Natural Science Foundation of China (9235730017, 92249302, 32150610475, 31971074), Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (ZYYCXTD-D-202001), Faculty Resources Project of College of Life Sciences, Inner Mongolia University (2022-102)
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, the National Natural Science Foundation of China (32171144) and Shanghai Pujiang Program (22PJD007).
- the STI2030-Major Projects (2021ZD0203900),the National Natural Science Foundation of China (32271063, 31822026, 31500860), Research Funds of Center for Advanced Interdisciplinary Science and Biomedicine of IHM (QYPY20220018)
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Jiayi Shen
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Famin Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiwei Liu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fangfang Yin
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Mingxiu Cheng
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Liang Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meiting Cai
- Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Herbert Herzog
- St Vincent's Centre for Applied Medical Research, Faculty of Medicine, UNSW, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Ping Wu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Zhi Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Cheng Zhan
- Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China.
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Shanghai, China.
- School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
3
|
Caffrey A, Lavecchia E, Merkel R, Zhang Y, Chichura KS, Hayes MR, Doyle RP, Schmidt HD. PYY 3-36 infused systemically or directly into the VTA attenuates fentanyl seeking in male rats. Neuropharmacology 2023; 239:109686. [PMID: 37572954 PMCID: PMC10528880 DOI: 10.1016/j.neuropharm.2023.109686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
More effective treatments for fentanyl use disorder are urgently needed. An emerging literature indicates that glucagon-like peptide-1 receptor (GLP-1R) agonists attenuate voluntary opioid taking and seeking in rodents. However, GLP-1R agonists produce adverse malaise-like effects that may limit patient compliance. Recently, we developed a dual agonist of GLP-1Rs and neuropeptide Y2 receptors (Y2Rs) that attenuates fentanyl taking and seeking at doses that do not produce malaise-like effects in opioid-experienced rats. Whether activating Y2Rs alone is sufficient to reduce opioid taking and seeking, however, is not known. Here, we investigated the efficacy of the Y2R ligand PYY3-36 to reduce fentanyl self-administration and the reinstatement of fentanyl-seeking behavior, a model of relapse in humans. Male rats were allowed to self-administer fentanyl (2.5 μg/kg, i.v.) for 21 days on a fixed-ratio 5 (FR5) schedule of reinforcement. Rats were then pretreated with vehicle or PYY3-36 (50 μg/kg s.c.; 0.1 and 1.0 μg/100 nL intra-VTA) prior to fentanyl self-administration test sessions. There were no effects of systemic or intra-VTA PYY3-36 on intravenous fentanyl self-administration. Opioid taking was then extinguished. Prior to subsequent reinstatement test sessions, rats were pretreated with vehicle or PYY3-36 (50 μg/kg s.c.; 0.1 and 1.0 μg/100 nL intra-VTA). Both systemic and intra-VTA administration of PYY3-36 attenuated fentanyl reinstatement in male rats at doses that did not affect food intake or produce adverse malaise-like effects. These findings indicate that Y2R agonism alone is sufficient to decrease fentanyl-seeking behavior during abstinence in opioid-experienced rats and further support strategies aimed at targeting Y2Rs for treating opioid use disorders.
Collapse
Affiliation(s)
- A Caffrey
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - E Lavecchia
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - R Merkel
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Y Zhang
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - K S Chichura
- Department of Chemistry, Syracuse University, NY, 13244, USA
| | - M R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - R P Doyle
- Department of Chemistry, Syracuse University, NY, 13244, USA; Departments of Medicine and Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - H D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Lu K, Jia X, Wu J, Wang Q, Liang XF. Neuropeptide Y receptor Y2 ( npy2r) deficiency reduces anxiety and increases food intake in Japanese medaka ( Oryzias latipes). Front Cell Dev Biol 2023; 11:1273006. [PMID: 38020893 PMCID: PMC10662287 DOI: 10.3389/fcell.2023.1273006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Neuropeptide Y receptor Y2 (npy2r) is an important receptor gene involved in anxiety and feeding regulation in mammals. Since NPY receptors have different receptor gene deletions in mammals and teleost fish, it is not clear whether npy2r has the similar function in fish as in mammals. In this study, we used the CRISPR/Cas9 system to establish npy2r-deficient medaka (Oryzias latipes). Unexpectedly, the deletion of npy2r resulted in the npy2r +/- medaka were all-male, therefore, npy2r homozygous mutant lines could not be established. The deletion of npy2r increased the food intake in medaka, and the expression levels of appetite stimulating genes (agrp, npy) increased significantly, while the expression levels of anorexia factors (cck, pomc) decreased significantly. Moreover, the absence of npy2r significantly increased the total length and body weight of medaka. The mirror test and open field test showed that npy2r +/- medaka improved sociability and reduced anxiety-like behavior, qRT-PCR analysis showed that the expression levels of anxiety related genes (th1, th2, gr1, gr2, and mr) in npy2r +/- medaka were significantly decreased. So far, this is the first npy2r gene knockout model established in fish and demonstrates that npy2r plays an important role in the regulation of reproduction, feeding and anxiety in fish.
Collapse
Affiliation(s)
- Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Xiaodan Jia
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Qiuling Wang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| |
Collapse
|
5
|
Braga MFM, Juranek J, Eiden LE, Li Z, Figueiredo TH, de Araujo Furtado M, Marini AM. GABAergic circuits of the basolateral amygdala and generation of anxiety after traumatic brain injury. Amino Acids 2022; 54:1229-1249. [PMID: 35798984 DOI: 10.1007/s00726-022-03184-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) has reached epidemic proportions around the world and is a major public health concern in the United States. Approximately 2.8 million individuals sustain a traumatic brain injury and are treated in an Emergency Department yearly in the U.S., and about 50,000 of them die. Persistent symptoms develop in 10-15% of the cases including neuropsychiatric disorders. Anxiety is the second most common neuropsychiatric disorder that develops in those with persistent neuropsychiatric symptoms after TBI. Abnormalities or atrophy in the temporal lobe has been shown in the overwhelming number of TBI cases. The basolateral amygdala (BLA), a temporal lobe structure that consolidates, stores and generates fear and anxiety-based behavioral outputs, is a critical brain region in the anxiety circuitry. In this review, we sought to capture studies that characterized the relationship between human post-traumatic anxiety and structural/functional alterations in the amygdala. We compared the human findings with results obtained with a reproducible mild TBI animal model that demonstrated a direct relationship between the alterations in the BLA and an anxiety-like phenotype. From this analysis, both preliminary insights, and gaps in knowledge, have emerged which may open new directions for the development of rational and more efficacious treatments.
Collapse
Affiliation(s)
- Maria F M Braga
- Department of Anatomy, Physiology and Genetics and Program in Neuroscience, Uniformed Services University of the Health Science School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Jenifer Juranek
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| | - Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, MD, 20814, USA
| | - Zheng Li
- Section On Synapse Development and Plasticity, National Institute of Mental Health, Intramural Research Program, Bethesda, MD, 20814, USA
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology and Genetics and Program in Neuroscience, Uniformed Services University of the Health Science School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Marcio de Araujo Furtado
- Department of Anatomy, Physiology and Genetics and Program in Neuroscience, Uniformed Services University of the Health Science School of Medicine, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Ann M Marini
- Department of Neurology and Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
6
|
Lee RHC, Wu CYC, Citadin CT, Couto E Silva A, Possoit HE, Clemons GA, Acosta CH, de la Llama VA, Neumann JT, Lin HW. Activation of Neuropeptide Y2 Receptor Can Inhibit Global Cerebral Ischemia-Induced Brain Injury. Neuromolecular Med 2022; 24:97-112. [PMID: 34019239 PMCID: PMC8606017 DOI: 10.1007/s12017-021-08665-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022]
Abstract
Cardiopulmonary arrest (CA) can greatly impact a patient's life, causing long-term disability and death. Although multi-faceted treatment strategies against CA have improved survival rates, the prognosis of CA remains poor. We previously reported asphyxial cardiac arrest (ACA) can cause excessive activation of the sympathetic nervous system (SNS) in the brain, which contributes to cerebral blood flow (CBF) derangements such as hypoperfusion and, consequently, neurological deficits. Here, we report excessive activation of the SNS can cause enhanced neuropeptide Y levels. In fact, mRNA and protein levels of neuropeptide Y (NPY, a 36-amino acid neuropeptide) in the hippocampus were elevated after ACA-induced SNS activation, resulting in a reduced blood supply to the brain. Post-treatment with peptide YY3-36 (PYY3-36), a pre-synaptic NPY2 receptor agonist, after ACA inhibited NPY release and restored brain circulation. Moreover, PYY3-36 decreased neuroinflammatory cytokines, alleviated mitochondrial dysfunction, and improved neuronal survival and neurological outcomes. Overall, NPY is detrimental during/after ACA, but attenuation of NPY release via PYY3-36 affords neuroprotection. The consequences of PYY3-36 inhibit ACA-induced 1) hypoperfusion, 2) neuroinflammation, 3) mitochondrial dysfunction, 4) neuronal cell death, and 5) neurological deficits. The present study provides novel insights to further our understanding of NPY's role in ischemic brain injury.
Collapse
Affiliation(s)
- Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA
| | - Cristiane T Citadin
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alexandre Couto E Silva
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Harlee E Possoit
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA
| | - Garrett A Clemons
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Christina H Acosta
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Victoria A de la Llama
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA
| | - Jake T Neumann
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA.
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA.
| |
Collapse
|
7
|
Méndez-Couz M, González-Pardo H, Arias JL, Conejo NM. Hippocampal neuropeptide Y 2 receptor blockade improves spatial memory retrieval and modulates limbic brain metabolism. Neurobiol Learn Mem 2021; 187:107561. [PMID: 34838984 DOI: 10.1016/j.nlm.2021.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The neuropeptide Y (NPY) is broadly distributed in the central nervous system (CNS), and it has been related to neuroprotective functions. NPY seems to be an important component to counteract brain damage and cognitive impairment mediated by drugs of abuse and neurodegenerative diseases, and both NPY and its Y2 receptor (Y2R) are highly expressed in the hippocampus, critical for learning and memory. We have recently demonstrated its influence on cognitive functions; however, the specific mechanism and involved brain regions where NPY modulates spatial memory by acting on Y2R remain unclear. METHODS Here, we examined the involvement of the hippocampal NPY Y2R in spatial memory and associated changes in brain metabolism by bilateral administration of the selective antagonist BIIE0246 into the rat dorsal hippocampus. To further evaluate the relationship between memory functions and neuronal activity, we analysed the regional expression of the mitochondrial enzyme cytochrome c oxidase (CCO) as an index of oxidative metabolic capacity in limbic and non-limbic brain regions. RESULTS The acute blockade of NPY Y2R significantly improved spatial memory recall in rats trained in the Morris water maze that matched metabolic activity changes in spatial memory processing regions. Specifically, CCO activity changes were found in the dentate gyrus of the dorsal hippocampus and CA1 subfield of the ventral hippocampus, the infralimbic region of the PFC and the mammillary bodies. CONCLUSIONS These findings suggest that the NPY hippocampal system, through its Y2R receptor, influences spatial memory recall (retrieval) and exerts control over patterns of brain activation that are relevant for associative learning, probably mediated by Y2R modulation of long-term potentiation and long-term depression.
Collapse
Affiliation(s)
- Marta Méndez-Couz
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Pl. Feijoo s/n, 33003 Oviedo, Spain; Dept. Neurophysiology. Medical Faculty, Ruhr-University Bochum. Universitätsstraße, 150. Building MA 01/551, 44780 Bochum, Germany.
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Pl. Feijoo s/n, 33003 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Jorge L Arias
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Pl. Feijoo s/n, 33003 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Pl. Feijoo s/n, 33003 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| |
Collapse
|
8
|
Przykaza Ł, Kozniewska E. Ligands of the Neuropeptide Y Y2 Receptors as a Potential Multitarget Therapeutic Approach for the Protection of the Neurovascular Unit Against Acute Ischemia/Reperfusion: View from the Perspective of the Laboratory Bench. Transl Stroke Res 2021; 13:12-24. [PMID: 34292517 PMCID: PMC8766383 DOI: 10.1007/s12975-021-00930-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023]
Abstract
Ischemic stroke is the third leading cause of death and disability worldwide, with no available satisfactory prevention or treatment approach. The current treatment is limited to the use of “reperfusion methods,” i.e., an intravenous or intra-arterial infusion of a fibrinolytic agent, mechanical removal of the clot by thrombectomy, or a combination of both methods. It should be stressed, however, that only approximately 5% of all acute strokes are eligible for fibrinolytic treatment and fewer than 10% for thrombectomy. Despite the tremendous progress in understanding of the pathomechanisms of cerebral ischemia, the promising results of basic research on neuroprotection are not currently transferable to human stroke. A possible explanation for this failure is that experiments on in vivo animal models involve healthy young animals, and the experimental protocols seldom consider the importance of protecting the whole neurovascular unit (NVU), which ensures intracranial homeostasis and is seriously damaged by ischemia/reperfusion. One of the endogenous protective systems activated during ischemia and in neurodegenerative diseases is represented by neuropeptide Y (NPY). It has been demonstrated that activation of NPY Y2 receptors (Y2R) by a specific ligand decreases the volume of the postischemic infarction and improves performance in functional tests of rats with arterial hypertension subjected to middle cerebral artery occlusion/reperfusion. This functional improvement suggests the protection of the NVU. In this review, we focus on NPY and discuss the potential, multidirectional protective effects of Y2R agonists against acute focal ischemia/reperfusion injury, with special reference to the NVU.
Collapse
Affiliation(s)
- Łukasz Przykaza
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute Polish Academy of Sciences, A. Pawińskiego Str. 5, 02-106, Warsaw, Poland
| | - Ewa Kozniewska
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute Polish Academy of Sciences, A. Pawińskiego Str. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
9
|
Tanaka M, Yamada S, Watanabe Y. The Role of Neuropeptide Y in the Nucleus Accumbens. Int J Mol Sci 2021; 22:ijms22147287. [PMID: 34298907 PMCID: PMC8307209 DOI: 10.3390/ijms22147287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Neuropeptide Y (NPY), an abundant peptide in the central nervous system, is expressed in neurons of various regions throughout the brain. The physiological and behavioral effects of NPY are mainly mediated through Y1, Y2, and Y5 receptor subtypes, which are expressed in regions regulating food intake, fear and anxiety, learning and memory, depression, and posttraumatic stress. In particular, the nucleus accumbens (NAc) has one of the highest NPY concentrations in the brain. In this review, we summarize the role of NPY in the NAc. NPY is expressed principally in medium-sized aspiny neurons, and numerous NPY immunoreactive fibers are observed in the NAc. Alterations in NPY expression under certain conditions through intra-NAc injections of NPY or receptor agonists/antagonists revealed NPY to be involved in the characteristic functions of the NAc, such as alcohol intake and drug addiction. In addition, control of mesolimbic dopaminergic release via NPY receptors may take part in these functions. NPY in the NAc also participates in fat intake and emotional behavior. Accumbal NPY neurons and fibers may exert physiological and pathophysiological actions partly through neuroendocrine mechanisms and the autonomic nervous system.
Collapse
Affiliation(s)
- Masaki Tanaka
- Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
- Correspondence: ; Tel.: +81-75-251-5300
| | - Shunji Yamada
- Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
| | - Yoshihisa Watanabe
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
| |
Collapse
|
10
|
Comeras LB, Hörmer N, Mohan Bethuraj P, Tasan RO. NPY Released From GABA Neurons of the Dentate Gyrus Specially Reduces Contextual Fear Without Affecting Cued or Trace Fear. Front Synaptic Neurosci 2021; 13:635726. [PMID: 34122036 PMCID: PMC8187774 DOI: 10.3389/fnsyn.2021.635726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/20/2021] [Indexed: 11/15/2022] Open
Abstract
Disproportionate, maladapted, and generalized fear are essential hallmarks of posttraumatic stress disorder (PTSD), which develops upon severe trauma in a subset of exposed individuals. Among the brain areas that are processing fear memories, the hippocampal formation exerts a central role linking emotional-affective with cognitive aspects. In the hippocampus, neuronal excitability is constrained by multiple GABAergic interneurons with highly specialized functions and an extensive repertoire of co-released neuromodulators. Neuropeptide Y (NPY) is one of these co-transmitters that significantly affects hippocampal signaling, with ample evidence supporting its fundamental role in emotional, cognitive, and metabolic circuitries. Here we investigated the role of NPY in relation to GABA, both released from the same interneurons of the dorsal dentate gyrus (DG), in different aspects of fear conditioning. We demonstrated that activation of dentate GABA neurons specifically during fear recall reduced cue-related as well as trace-related freezing behavior, whereas inhibition of the same neurons had no significant effects. Interestingly, concomitant overexpression of NPY in these neurons did not further modify fear recall, neither under baseline conditions nor upon chemogenetic stimulation. However, potentially increased co-release of NPY substantially reduced contextual fear, promoted extinction learning, and long-term suppression of fear in a foreground context–conditioning paradigm. Importantly, NPY in the dorsal DG was not only expressed in somatostatin neurons, but also in parvalbumin-positive basket cells and axoaxonic cells, indicating intense feedback and feedforward modulation of hippocampal signaling and precise curtailing of neuronal engrams. Thus, these findings suggest that co-release of NPY from specific interneuron populations of the dorsal DG modifies dedicated aspects of hippocampal processing by sharpening the activation of neural engrams and the consecutive fear response. Since inappropriate and generalized fear is the major impediment in the treatment of PTSD patients, the dentate NPY system may be a suitable access point to ameliorate PTSD symptoms and improve the inherent disease course.
Collapse
Affiliation(s)
- Lucas B Comeras
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Noa Hörmer
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Ramon O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Mitchell CS, Begg DP. The regulation of food intake by insulin in the central nervous system. J Neuroendocrinol 2021; 33:e12952. [PMID: 33656205 DOI: 10.1111/jne.12952] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023]
Abstract
Food intake and energy expenditure are regulated by peripheral signals providing feedback on nutrient status and adiposity to the central nervous system. One of these signals is the pancreatic hormone, insulin. Unlike peripheral administration of insulin, which often causes weight gain, central administration of insulin leads to a reduction in food intake and body weight when administered long-term. This is a result of feedback processes in regions of the brain that regulate food intake. Within the hypothalamus, the arcuate nucleus (ARC) contains subpopulations of neurones that produce orexinergic neuropeptides agouti-related peptide (AgRP)/neuropeptide Y (NPY) and anorexigenic neuropeptides, pro-opiomelanocortin (POMC)/cocaine- and amphetamine-regulated transcript (CART). Intracerebroventricular infusion of insulin down-regulates the expression of AgRP/NPY at the same time as up-regulating expression of POMC/CART. Recent evidence suggests that insulin activity within the amygdala may play an important role in regulating energy balance. Insulin infusion into the central nucleus of the amygdala (CeA) can decrease food intake, possibly by modulating activity of NPY and other neurone subpopulations. Insulin signalling within the CeA can also influence stress-induced obesity. Overall, it is evident that the CeA is a critical target for insulin signalling and the regulation of energy balance.
Collapse
Affiliation(s)
| | - Denovan P Begg
- School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Stone LA, Girgenti MJ, Wang J, Ji D, Zhao H, Krystal JH, Duman RS. Cortical Transcriptomic Alterations in Association With Appetitive Neuropeptides and Body Mass Index in Posttraumatic Stress Disorder. Int J Neuropsychopharmacol 2021; 24:118-129. [PMID: 32951025 PMCID: PMC8611677 DOI: 10.1093/ijnp/pyaa072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/10/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The molecular pathology underlying posttraumatic stress disorder (PTSD) remains unclear mainly due to a lack of human PTSD postmortem brain tissue. The orexigenic neuropeptides ghrelin, neuropeptide Y, and hypocretin were recently implicated in modulating negative affect. Drawing from the largest functional genomics study of human PTSD postmortem tissue, we investigated whether there were molecular changes of these and other appetitive molecules. Further, we explored the interaction between PTSD and body mass index (BMI) on gene expression. METHODS We analyzed previously reported transcriptomic data from 4 prefrontal cortex regions from 52 individuals with PTSD and 46 matched neurotypical controls. We employed gene co-expression network analysis across the transcriptomes of these regions to uncover PTSD-specific networks containing orexigenic genes. We utilized Ingenuity Pathway Analysis software for pathway annotation. We identified differentially expressed genes (DEGs) among individuals with and without PTSD, stratified by sex and BMI. RESULTS Three PTSD-associated networks (P < .01) contained genes in signaling families of appetitive molecules: 2 in females and 1 in all subjects. We uncovered DEGs (P < .05) between PTSD and control subjects stratified by sex and BMI with especially robust changes in males with PTSD with elevated vs normal BMI. Further, we identified putative upstream regulators (P < .05) driving these changes, many of which were enriched for involvement in inflammation. CONCLUSIONS PTSD-associated cortical transcriptomic modules contain transcripts of appetitive genes, and BMI further interacts with PTSD to impact expression. DEGs and inferred upstream regulators of these modules could represent targets for future pharmacotherapies for obesity in PTSD.
Collapse
Affiliation(s)
- Lauren A Stone
- Department of Psychiatry, Yale School of Medicine, New Haven,
CT
- Clinical Neuroscience Division, National Center for PTSD and National PTSD
Brain Bank VA Connecticut Healthcare System, West Haven, CT
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven,
CT
- Clinical Neuroscience Division, National Center for PTSD and National PTSD
Brain Bank VA Connecticut Healthcare System, West Haven, CT
| | - Jiawei Wang
- Program of Computational Biology and Bioinformatics, Yale
University, New Haven, CT
| | - Dingjue Ji
- Program of Computational Biology and Bioinformatics, Yale
University, New Haven, CT
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale
University, New Haven, CT
- Department of Biostatistics, Yale School of Public Health, New
Haven, CT
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven,
CT
- Clinical Neuroscience Division, National Center for PTSD and National PTSD
Brain Bank VA Connecticut Healthcare System, West Haven, CT
- Departments of Neuroscience and Psychology, and the Yale Center for Clinical
Investigation, Yale University, New Haven, CT
- Department of Psychiatry, Yale New Haven Health System, New
Haven, CT
| | - Ronald S Duman
- Department of Psychiatry, Yale School of Medicine, New Haven,
CT
- Clinical Neuroscience Division, National Center for PTSD and National PTSD
Brain Bank VA Connecticut Healthcare System, West Haven, CT
| |
Collapse
|
13
|
Cattaneo S, Verlengia G, Marino P, Simonato M, Bettegazzi B. NPY and Gene Therapy for Epilepsy: How, When,... and Y. Front Mol Neurosci 2021; 13:608001. [PMID: 33551745 PMCID: PMC7862707 DOI: 10.3389/fnmol.2020.608001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Neuropeptide Y (NPY) is a neuropeptide abundantly expressed in the mammalian central and peripheral nervous system. NPY is a pleiotropic molecule, which influences cell proliferation, cardiovascular and metabolic function, pain and neuronal excitability. In the central nervous system, NPY acts as a neuromodulator, affecting pathways that range from cellular (excitability, neurogenesis) to circuit level (food intake, stress response, pain perception). NPY has a broad repertoire of receptor subtypes, each activating specific signaling pathways in different tissues and cellular sub-regions. In the context of epilepsy, NPY is thought to act as an endogenous anticonvulsant that performs its action through Y2 and Y5 receptors. In fact, its overexpression in the brain with the aid of viral vectors can suppress seizures in animal models of epilepsy. Therefore, NPY-based gene therapy may represent a novel approach for the treatment of epilepsy patients, particularly for pharmaco-resistant and genetic forms of the disease. Nonetheless, considering all the aforementioned aspects of NPY signaling, the study of possible NPY applications as a therapeutic molecule is not devoid of critical aspects. The present review will summarize data related to NPY biology, focusing on its anti-epileptic effects, with a critical appraisal of key elements that could be exploited to improve the already existing NPY-based gene therapy approaches for epilepsy.
Collapse
Affiliation(s)
- Stefano Cattaneo
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Verlengia
- San Raffaele Scientific Institute, Milan, Italy.,Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Pietro Marino
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy.,Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Barbara Bettegazzi
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
14
|
Bertocchi I, Mele P, Ferrero G, Oberto A, Carulli D, Eva C. NPY-Y1 receptor signaling controls spatial learning and perineuronal net expression. Neuropharmacology 2020; 184:108425. [PMID: 33285203 DOI: 10.1016/j.neuropharm.2020.108425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
Perineuronal nets (PNNs) are extracellular matrix structures that form around some types of neurons at the end of critical periods, limiting neuronal plasticity. In the adult brain, PNNs play a crucial role in the regulation of learning and cognitive processes. Neuropeptide Y (NPY) is involved in the regulation of many physiological functions, including learning and memory abilities, via activation of Y1 receptors (Y1Rs). Here we demonstrated that the conditional depletion of the gene encoding the Y1R for NPY in adult forebrain excitatory neurons (Npy1rrfb mutant mice), induces a significant slowdown in spatial learning, which is associated with a robust intensification of PNN expression and an increase in the number of c-Fos expressing cells in the cornus ammonis 1 (CA1) of the dorsal hippocampus. Importantly, the enzymatic digestion of PNNs in CA1 normalizes c-Fos activity and completely rescues learning abilities of Npy1rrfb mice. These data highlight a previously unknown functional link between NPY-Y1R transmission and PNNs, which may play a role in the control of dorsal hippocampal excitability and related cognitive functions.
Collapse
Affiliation(s)
- Ilaria Bertocchi
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126, Turin, Italy; Neuroscience Institute of Turin (NIT), Italy
| | - Paolo Mele
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126, Turin, Italy
| | - Giuliano Ferrero
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy
| | - Alessandra Oberto
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126, Turin, Italy; Neuroscience Institute of Turin (NIT), Italy
| | - Daniela Carulli
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126, Turin, Italy; Neuroscience Institute of Turin (NIT), Italy; Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, Netherlands
| | - Carola Eva
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126, Turin, Italy; Neuroscience Institute of Turin (NIT), Italy.
| |
Collapse
|
15
|
Michaelson SD, Miranda Tapia AP, McKinty A, Silveira Villarroel H, Mackay JP, Urban JH, Colmers WF. Contribution of NPY Y 5 Receptors to the Reversible Structural Remodeling of Basolateral Amygdala Dendrites in Male Rats Associated with NPY-Mediated Stress Resilience. J Neurosci 2020; 40:3231-3249. [PMID: 32144180 PMCID: PMC7159890 DOI: 10.1523/jneurosci.2621-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 11/21/2022] Open
Abstract
Endogenous neuropeptide Y (NPY) and corticotrophin-releasing factor (CRF) modulate the responses of the basolateral amygdala (BLA) to stress and are associated with the development of stress resilience and vulnerability, respectively. We characterized persistent effects of repeated NPY and CRF treatment on the structure and function of BLA principal neurons in a novel organotypic slice culture (OTC) model of male rat BLA, and examined the contributions of specific NPY receptor subtypes to these neural and behavioral effects. In BLA principal neurons within the OTCs, repeated NPY treatment caused persistent attenuation of excitatory input and induced dendritic hypotrophy via Y5 receptor activation; conversely, CRF increased excitatory input and induced hypertrophy of BLA principal neurons. Repeated treatment of OTCs with NPY followed by an identical treatment with CRF, or vice versa, inhibited or reversed all structural changes in OTCs. These structural responses to NPY or CRF required calcineurin or CaMKII, respectively. Finally, repeated intra-BLA injections of NPY or a Y5 receptor agonist increased social interaction, a validated behavior for anxiety, and recapitulated structural changes in BLA neurons seen in OTCs, while a Y5 receptor antagonist prevented NPY's effects both on behavior and on structure. These results implicate the Y5 receptor in the long-term, anxiolytic-like effects of NPY in the BLA, consistent with an intrinsic role in stress buffering, and highlight a remarkable mechanism by which BLA neurons may adapt to different levels of stress. Moreover, BLA OTCs offer a robust model to study mechanisms associated with resilience and vulnerability to stress in BLA.SIGNIFICANCE STATEMENT Within the basolateral amygdala (BLA), neuropeptide Y (NPY) is associated with buffering the neural stress response induced by corticotropin releasing factor, and promoting stress resilience. We used a novel organotypic slice culture model of BLA, complemented with in vivo studies, to examine the cellular mechanisms associated with the actions of NPY. In organotypic slice cultures, repeated NPY treatment reduces the complexity of the dendritic extent of anxiogenic BLA principal neurons, making them less excitable. NPY, via activation of Y5 receptors, additionally inhibits and reverses the increases in dendritic extent and excitability induced by the stress hormone, corticotropin releasing factor. This NPY-mediated neuroplasticity indicates that resilience or vulnerability to stress may thus involve neuropeptide-mediated dendritic remodeling in BLA principal neurons.
Collapse
Affiliation(s)
- Sheldon D Michaelson
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Ana Pamela Miranda Tapia
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Amanda McKinty
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Heika Silveira Villarroel
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - James P Mackay
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Janice H Urban
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - William F Colmers
- Department of Pharmacology, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| |
Collapse
|
16
|
Trevizan-Baú P, Dhingra RR, Burrows EL, Dutschmann M, Stanić D. Tauopathy in the periaqueductal gray, kölliker-fuse nucleus and nucleus retroambiguus is not predicted by ultrasonic vocalization in tau-P301L mice. Behav Brain Res 2019; 369:111916. [PMID: 31004684 DOI: 10.1016/j.bbr.2019.111916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
Abstract
Upper airway and vocalization control areas such as the periaqueductal gray (PAG), kölliker-fuse nucleus (KF) and nucleus retroambiguus (NRA) are prone to developing tauopathy in mice expressing the mutant human tau P301L protein. Consequently, impaired ultrasonic vocalization (USV) previously identified in tau-P301L mice at the terminal disease stage of 8-9 months of age, was attributed to the presence of tauopathy in these regions. Our aim was to establish whether the onset of USV disorders manifest prior to the terminal stage, and if USV disorders are predictive of the presence of tauopathy in the PAG, KF and NRA. USVs produced by tau-P301L and wildtype mice aged 3-4, 5-6 or 8-9 months were recorded during male-female interaction. Immunohistochemistry was then performed to assess the presence or degree of tauopathy in the PAG, KF and NRA of mice displaying normal or abnormal USV patterns. Comparing various USV measurements, including the number, duration and frequency of calls, revealed no differences between tau-P301L and wildtype mice across all age groups, and linear discriminant analysis also failed to identify separate USV populations. Finally, the presence of tauopathy in the PAG, KF and NRA in individual tau-P301L mice did not reliably associate with USV disorders. Our findings that tauopathy in designated mammalian vocalization centres, such as the PAG, KF and NRA, did not associate with USV disturbances in tau-P301L mice questions whether USV phenotypes in this transgenic mouse are valid for studying tauopathy-related human voice and speech disorders.
Collapse
Affiliation(s)
- Pedro Trevizan-Baú
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, Australia
| | - Rishi R Dhingra
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, Australia
| | - Emma L Burrows
- Mental Health Theme, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mathias Dutschmann
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, Australia.
| | - Davor Stanić
- The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience Theme, Australia.
| |
Collapse
|
17
|
Comeras LB, Herzog H, Tasan RO. Neuropeptides at the crossroad of fear and hunger: a special focus on neuropeptide Y. Ann N Y Acad Sci 2019; 1455:59-80. [PMID: 31271235 PMCID: PMC6899945 DOI: 10.1111/nyas.14179] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Survival in a natural environment forces an individual into constantly adapting purposive behavior. Specified interoceptive neurons monitor metabolic and physiological balance and activate dedicated brain circuits to satisfy essential needs, such as hunger, thirst, thermoregulation, fear, or anxiety. Neuropeptides are multifaceted, central components within such life‐sustaining programs. For instance, nutritional depletion results in a drop in glucose levels, release of hormones, and activation of hypothalamic and brainstem neurons. These neurons, in turn, release several neuropeptides that increase food‐seeking behavior and promote food intake. Similarly, internal and external threats activate neuronal pathways of avoidance and defensive behavior. Interestingly, specific nuclei of the hypothalamus and extended amygdala are activated by both hunger and fear. Here, we introduce the relevant neuropeptides and describe their function in feeding and emotional‐affective behaviors. We further highlight specific pathways and microcircuits, where neuropeptides may interact to identify prevailing homeostatic needs and direct respective compensatory behaviors. A specific focus will be on neuropeptide Y, since it is known for its pivotal role in metabolic and emotional pathways. We hypothesize that the orexigenic and anorexigenic properties of specific neuropeptides are related to their ability to inhibit fear and anxiety.
Collapse
Affiliation(s)
- Lucas B Comeras
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ramon O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Huston NJ, Brenner LA, Taylor ZC, Ritter RC. NPY2 receptor activation in the dorsal vagal complex increases food intake and attenuates CCK-induced satiation in male rats. Am J Physiol Regul Integr Comp Physiol 2019; 316:R406-R416. [PMID: 30726118 DOI: 10.1152/ajpregu.00011.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neuropeptide Y (NPY), peptide YY (PYY), and their cognate receptors (YR) are expressed by subpopulations of central and peripheral nervous system neurons. Intracerebroventricular injections of NPY or PYY increase food intake, and intrahypothalamic NPY1 or NPY5 receptor agonist injections also increase food intake. In contrast, injection of PYY in the periphery reduces food intake, apparently by activating peripheral Y2R. The dorsal vagal complex (DVC) of the hindbrain is the site where vagal afferents relay gut satiation signals to the brain. While contributions of the DVC are increasingly investigated, a role for DVC YR in control of food intake has not been examined systematically. We used in situ hybridization to confirm expression of Y1R and Y2R, but not Y5R, in the DVC and vagal afferent neurons. We found that nanoinjections of a Y2R agonist, PYY-(3-36), into the DVC significantly increased food intake over a 4-h period in satiated male rats. PYY-(3-36)-evoked food intake was prevented by injection of a selective Y2R antagonist. Injection of a Y1R/Y5R-preferring agonist into the DVC failed to increase food intake at doses reported to increase food intake following hypothalamic injection. Finally, injection of PYY-(3-36) into the DVC prevented reduction of 30-min food intake following intraperitoneal injection of cholecystokinin (CCK). Our results indicate that activation of DVC Y2R, unlike hypothalamic or peripheral Y2R, increases food intake. Furthermore, in the context of available electrophysiological observations, our results are consistent with the hypothesis that DVC Y2R control food intake by dampening vagally mediated satiation signals in the DVC.
Collapse
Affiliation(s)
- Nathaneal J Huston
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Lynne A Brenner
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Zachary C Taylor
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Robert C Ritter
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| |
Collapse
|
19
|
Hippocampal NPY Y2 receptors modulate memory depending on emotional valence and time. Neuropharmacology 2018; 143:20-28. [DOI: 10.1016/j.neuropharm.2018.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/29/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
|
20
|
Wanka L, Babilon S, Kaiser A, Mörl K, Beck-Sickinger AG. Different mode of arrestin-3 binding at the human Y 1 and Y 2 receptor. Cell Signal 2018; 50:58-71. [DOI: 10.1016/j.cellsig.2018.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 01/04/2023]
|
21
|
Theisen CC, Reyes BA, Sabban E, Van Bockstaele EJ. Ultrastructural Characterization of Corticotropin-Releasing Factor and Neuropeptide Y in the Rat Locus Coeruleus: Anatomical Evidence for Putative Interactions. Neuroscience 2018; 384:21-40. [DOI: 10.1016/j.neuroscience.2018.04.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
|
22
|
Verma D, Tasan R, Sperk G, Pape HC. Neuropeptide Y2 receptors in anteroventral BNST control remote fear memory depending on extinction training. Neurobiol Learn Mem 2018; 149:144-153. [PMID: 29408468 DOI: 10.1016/j.nlm.2018.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/15/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
The anterior bed nucleus of stria terminalis (BNST) is involved in reinstatement of extinguished fear, and neuropeptide Y2 receptors influence local synaptic signaling. Therefore, we hypothesized that Y2 receptors in anteroventral BNST (BNSTav) interfere with remote fear memory and that previous fear extinction is an important variable. C57BL/6NCrl mice were fear-conditioned, and a Y2 receptor-specific agonist (NPY3-36) or antagonist (JNJ-5207787) was applied in BNSTav before fear retrieval at the following day. Remote fear memory was tested on day 16 in two groups of mice, which had (experiment 1) or had not (experiment 2) undergone extinction training after conditioning. In the group with extinction training, tests of remote fear memory revealed partial retrieval of extinction, which was prevented after blockade of Y2 receptors in BNSTav. No such effect was observed in the group with no extinction training, but stimulation of Y2 receptors in BNSTav mimicked the influence of extinction during tests of remote fear memory. Pharmacological manipulation of Y2 receptors in BNSTav before fear acquisition (experiment 3) had no effect on fear memory retrieval, extinction or remote fear memory. Furthermore, partial retrieval of extinction during tests of remote fear memory was associated with changes in number of c-Fos expressing neurons in BNSTav, which was prevented or mimicked upon Y2 blockade or stimulation in BNSTav. These results indicate that Y2 receptor manipulation in BNSTav interferes with fear memory and extinction retrieval at remote stages, likely through controlling neuronal activity in BNSTav during extinction training.
Collapse
Affiliation(s)
- Dilip Verma
- Institute of Physiology 1, Westfälische Wilhelms-University, D-48149 Münster, Germany
| | - Ramon Tasan
- Institute of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Guenther Sperk
- Institute of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Hans-Christian Pape
- Institute of Physiology 1, Westfälische Wilhelms-University, D-48149 Münster, Germany.
| |
Collapse
|
23
|
Domingues MF, de Assis DR, Piovesan AR, Belo CAD, da Costa JC. Peptide YY (3-36) modulates intracellular calcium through activation of the phosphatidylinositol pathway in hippocampal neurons. Neuropeptides 2018; 67:1-8. [PMID: 29157865 DOI: 10.1016/j.npep.2017.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 10/18/2022]
Abstract
Peptide YY (PYY) belongs to the neuropeptide Y (NPY) family, which also includes the pancreatic polypeptide (PP) and NPY. PYY is secreted by the intestinal L cells, being present in the blood stream in two active forms capable of crossing the blood brain barrier, PYY (1-36) and its cleavage product, PYY (3-36). PYY is a selective agonist for the Y2 receptor (Y2R) and these receptors are abundant in the hippocampus. Here we investigated the mechanisms by which PYY (3-36) regulates intracellular Ca2+ concentrations ([Ca2+]i) in hippocampal neurons by employing a calcium imaging technique in hippocampal cultures. Alterations in [Ca2+]i were detected by changes in the Fluo-4 AM reagent emission. PYY (3-36) significantly increased [Ca2+] from the concentration of 10-11M as compared to the controls (infusion of HEPES-buffered solution (HBS) solution alone). The PYY (3-36)-increase in [Ca2+]i remained unchanged even in Ca2+-free extracellular solutions. Sarcoplasmic/endoplasmic reticulum Ca2+-ATPase pump (SERCA pump) inhibition partially prevent the PYY (3-36)-increase of [Ca2+]i and inositol 1,4,5-triphosphate receptor (IP3R) inhibition also decreased the PYY (3-36)-increase of [Ca2+]i. Taken together, our data strongly suggest that PYY (3-36) mobilizes calcium from the neuronal endoplasmic reticulum (ER) stores towards the cytoplasm. Next, we showed that PYY (3-36) inhibited high K+-induced increases of [Ca2+]i, suggesting that PYY (3-36) could also act by activating G-protein coupled inwardly rectifying potassium K+ channels. Finally, the co-infusion of the Y2 receptor (Y2R) antagonist BIIE0246 with PYY (3-36) abolished the [Ca2+]i increase induced by the peptide, suggesting that PYY (3-36)-induced [Ca2+]i increase in hippocampal neurons occurs via Y2Rs.
Collapse
Affiliation(s)
- Michelle Flores Domingues
- Graduate Program in Cellular and Molecular Biology - Center for Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil; Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Dênis Reis de Assis
- Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Angela Regina Piovesan
- Graduate Program in Cellular and Molecular Biology - Center for Biotechnology, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil; Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Cháriston André Dal Belo
- Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil; Laboratory of Neurobiology and Toxinology, LANETOX, Universidade Federal do Pampa, UNIPAMPA, São Gabriel, Brazil; Graduate Program in Biological Sciences: Biochemical Toxicology, PPGBTox, Universidade Federal de Santa Maria, UFSM, Santa Maria, Brazil.
| | - Jaderson Costa da Costa
- Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| |
Collapse
|
24
|
Longo A, Fadda M, Brasso C, Mele P, Palanza P, Nanavaty I, Bertocchi I, Oberto A, Eva C. Conditional inactivation of Npy1r gene in mice induces behavioural inflexibility and orbitofrontal cortex hyperactivity that are reversed by escitalopram. Neuropharmacology 2018; 133:12-22. [PMID: 29353053 DOI: 10.1016/j.neuropharm.2018.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
Abstract
Cognitive flexibility is the ability to rapidly adapt established patterns of behaviour in the face of changing circumstance and depends critically on the orbitofrontal cortex (OFC). Impaired flexibility also results from altered serotonin transmission in the OFC. The Y1 (Y1R) and Y5 (Y5R) receptors for neuropeptide Y (NPY) colocalize in several brain regions and have overlapping functions in regulating cognition and emotional behaviour. The targeted disruption of gene encoding Y1R (Npy1r gene) in Y5R containing neurons (Npy1rY5R-/- mice) increases anxiety-like behaviour and spatial reference memory. Here we used the same conditional system to analyse whether the coordinated expression of the Y1R and Y5R might be required for behavioural flexibility in reversal learning tasks, OFC serotoninergic tone and OFC neural activity, as detected by immunohistochemical quantification of the immediate-early gene, c-Fos. In addition, we investigated whether the acute treatment of Npy1rY5R-/- mice with the selective serotonin reuptake inhibitor escitalopram affected behavioural flexibility and OFC c-Fos expression. Npy1rY5R-/- male mice exhibit an impairment in performing the reversal task of the Morris water maze and the water T-maze but normal spatial learning, working memory and sociability, compared to their control siblings. Furthermore, Npy1rY5R-/- male mice display decreased 5-hydroxytriptamine (5-HT) positive fibres and increased baseline neural activity in OFC. Importantly, escitalopram normalizes OFC neural activity and restores behavioural flexibility of Npy1rY5R-/- male mice. These findings suggest that the inactivation of Y1R in Y5R containing neurons increases pyramidal neuron activity and dysregulates serotoninergic tone in OFC, whereby contributing to reversal learning impairment.
Collapse
Affiliation(s)
- Angela Longo
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Melissa Fadda
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Claudio Brasso
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Paolo Mele
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Paola Palanza
- Department of Medicine - Neuroscience Unit, University of Parma, Parma, Italy
| | - Ishira Nanavaty
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Ilaria Bertocchi
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Alessandra Oberto
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Neuroscience Institute of Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy
| | - Carola Eva
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, Regione Gonzole, 10, 10043, Orbassano, Turin, Italy; Neuroscience Institute of Turin, Italy; Department of Neuroscience, University of Turin, C.so Massimo d'Azeglio 52, 10126 Turin, Italy.
| |
Collapse
|
25
|
Schmeltzer SN, Herman JP, Sah R. Neuropeptide Y (NPY) and posttraumatic stress disorder (PTSD): A translational update. Exp Neurol 2016; 284:196-210. [PMID: 27377319 PMCID: PMC8375392 DOI: 10.1016/j.expneurol.2016.06.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a trauma-evoked syndrome, with variable prevalence within the human population due to individual differences in coping and resiliency. In this review, we discuss evidence supporting the relevance of neuropeptide Y (NPY), a stress regulatory transmitter in PTSD. We consolidate findings from preclinical, clinical, and translational studies of NPY that are of relevance to PTSD with an attempt to provide a current update of this area of research. NPY is abundantly expressed in forebrain limbic and brainstem areas that regulate stress and emotional behaviors. Studies in rodents demonstrate a role for NPY in stress responses, anxiety, fear, and autonomic regulation, all relevant to PTSD symptomology. Genetic studies support an association of NPY polymorphisms with stress coping and affect. Importantly, cerebrospinal fluid (CSF) measurements in combat veterans provide direct evidence of NPY association with PTSD diagnosis and symptomology. In addition, NPY involvement in pain, depression, addiction, and metabolism may be relevant to comorbidities associated with PTSD. Collectively, the literature supports the relevance of NPY to PTSD pathophysiology, although knowledge gaps remain. The NPY system is an attractive target in terms of understanding the physiological basis of PTSD as well as treatment of the disorder.
Collapse
Affiliation(s)
- Sarah N Schmeltzer
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Renu Sah
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States; VA Medical Center, Cincinnati, OH, 45220, United States.
| |
Collapse
|
26
|
Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiol Dis 2016; 95:210-24. [PMID: 27461050 DOI: 10.1016/j.nbd.2016.07.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.
Collapse
|
27
|
Leitermann RJ, Rostkowski AB, Urban JH. Neuropeptide Y input to the rat basolateral amygdala complex and modulation by conditioned fear. J Comp Neurol 2016; 524:2418-39. [PMID: 26779765 DOI: 10.1002/cne.23960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022]
Abstract
Within the basolateral amygdaloid complex (BLA), neuropeptide Y (NPY) buffers against protracted anxiety and fear. Although the importance of NPY's actions in the BLA is well documented, little is known about the source(s) of NPY fibers to this region. The current studies identified sources of NPY projections to the BLA by using a combination of anatomical and neurochemical approaches. NPY innervation of the BLA was assessed in rats by examining the degree of NPY coexpression within interneurons or catecholaminergic fibers with somatostatin and tyrosine hydroxylase (TH) or dopamine β-hydroxylase (DβH), respectively. Numerous NPY(+) /somatostatin(+) and NPY(+) /somatostatin(-) fibers were observed, suggesting at least two populations of NPY fibers within the BLA. No colocalization was noted between NPY and TH or DβH immunoreactivities. Additionally, Fluorogold (FG) retrograde tracing with immunohistochemistry was used to identify the precise origin of NPY projections to the BLA. FG(+) /NPY(+) cells were identified within the amygdalostriatal transition area (AStr) and stria terminalis and scattered throughout the bed nucleus of the stria terminalis. The subpopulation of NPY neurons in the AStr also coexpressed somatostatin. Subjecting animals to a conditioned fear paradigm increased NPY gene expression within the AStr, whereas no changes were observed within the BLA or stria terminalis. Overall, these studies identified limbic regions associated with stress circuits providing NPY input to the BLA and demonstrated that a unique NPY projection from the AStr may participate in the regulation of conditioned fear. J. Comp. Neurol. 524:2418-2439, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Randy J Leitermann
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Amanda B Rostkowski
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Janice H Urban
- Department of Physiology and Biophysics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
28
|
Tasan RO, Verma D, Wood J, Lach G, Hörmer B, de Lima TCM, Herzog H, Sperk G. The role of Neuropeptide Y in fear conditioning and extinction. Neuropeptides 2016; 55:111-26. [PMID: 26444585 DOI: 10.1016/j.npep.2015.09.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 12/23/2022]
Abstract
While anxiety disorders are the brain disorders with the highest prevalence and constitute a major burden for society, a considerable number of affected people are still treated insufficiently. Thus, in an attempt to identify potential new anxiolytic drug targets, neuropeptides have gained considerable attention in recent years. Compared to classical neurotransmitters they often have a regionally restricted distribution and may bind to several distinct receptor subtypes. Neuropeptide Y (NPY) is a highly conserved neuropeptide that is specifically concentrated in limbic brain areas and signals via at least 5 different G-protein-coupled receptors. It is involved in a variety of physiological processes including the modulation of emotional-affective behaviors. An anxiolytic and stress-reducing property of NPY is supported by many preclinical studies. Whether NPY may also interact with processing of learned fear and fear extinction is comparatively unknown. However, this has considerable relevance since pathological, inappropriate and generalized fear expression and impaired fear extinction are hallmarks of human post-traumatic stress disorder and a major reason for its treatment-resistance. Recent evidence from different laboratories emphasizes a fear-reducing role of NPY, predominantly mediated by exogenous NPY acting on Y1 receptors. Since a reduction of fear expression was also observed in Y1 receptor knockout mice, other Y receptors may be equally important. By acting on Y2 receptors, NPY promotes fear extinction and generates a long-term suppression of fear, two important preconditions that could support cognitive behavioral therapies in human patients. A similar effect has been demonstrated for the closely related pancreatic polypeptide (PP) when acting on Y4 receptors. Preliminary evidence suggests that NPY modulates fear in particular by activation of Y1 and Y2 receptors in the basolateral and central amygdala, respectively. In the basolateral amygdala, NPY signaling activates inhibitory G protein-coupled inwardly-rectifying potassium channels or suppresses hyperpolarization-induced I(h) currents in a Y1 receptor-dependent fashion, favoring a general suppression of neuronal activity. A more complex situation has been described for the central extended amygdala, where NPY reduces the frequency of inhibitory and excitatory postsynaptic currents. In particular the inhibition of long-range central amygdala output neurons may result in a Y2 receptor-dependent suppression of fear. The role of NPY in processes of learned fear and fear extinction is, however, only beginning to emerge, and multiple questions regarding the relevance of endogenous NPY and different receptor subtypes remain elusive. Y2 receptors may be of particular interest for future studies, since they are the most prominent Y receptor subtype in the human brain and thus among the most promising therapeutic drug targets when translating preclinical evidence to potential new therapies for human anxiety disorders.
Collapse
Affiliation(s)
- R O Tasan
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - D Verma
- Institute of Physiology I, University of Münster, D-48149 Münster, Germany
| | - J Wood
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - G Lach
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria; Capes Foundation, Ministry of Education of Brazil, 70040-020 Brasília/DF, Brazil
| | - B Hörmer
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - T C M de Lima
- Department of Pharmacology, Federal University of Santa Catarina, 88049-970 Florianópolis, Brazil
| | - H Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - G Sperk
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
29
|
Qi Y, Fu M, Herzog H. Y2 receptor signalling in NPY neurons controls bone formation and fasting induced feeding but not spontaneous feeding. Neuropeptides 2016; 55:91-7. [PMID: 26444586 DOI: 10.1016/j.npep.2015.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 12/24/2022]
Abstract
Y2 receptors have been implicated in the development of obesity and are a potential target for obesity treatment due to their known role of inhibiting neuropeptide Y (NPY) induced feeding responses. However, the precise neuronal population on which Y2 receptors act to fulfil this role is less clear. Here we utilise a novel inducible, postnatal onset NPY neurons specific deletion model to investigate the functional consequences of loss of Y2 signalling in this population of neurons on feeding and energy homeostasis regulation. While the consequences of lack of Y2 signalling in NPY neurons are confirmed in terms of the uncoupling of suppression/increasing of NPY and pro-opiomelanocortin (POMC) mRNA expression in the arcuate nuclei (Arc), respectively, this lack of Y2 signalling surprisingly does not have any significant effect on spontaneous food intake. Fasting induced food intake, however, is strongly increased but only in the first 1h after re-feeding. Consequently no significant changes in body weight are being observed although body weight gain is increased in male mice after postnatal onset Y2 deletion. Importantly, another known function of central Y2 receptor signalling, the suppression of bone formation is conserved in this conditional model with whole body bone mineral content being decreased. Taken together this model confirms the critical role of Y2 signalling to control NPY and associated POMC expression in the Arc, but also highlights the possibility that others, non-NPY neuronal Y2 receptors, are also involved in controlling feeding and energy homeostasis regulation.
Collapse
Affiliation(s)
- Yue Qi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Melissa Fu
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
30
|
An Indirect Action Contributes to C-Fos Induction in Paraventricular Hypothalamic Nucleus by Neuropeptide Y. Sci Rep 2016; 6:19980. [PMID: 26813148 PMCID: PMC4728490 DOI: 10.1038/srep19980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/17/2015] [Indexed: 12/03/2022] Open
Abstract
Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively to examine the underlying NPY orexigenic neural pathways. However, PVH C-Fos induction is in discordance with the abundant expression of NPY receptors, a group of inhibitory Gi protein coupled receptors in the PVH, and with the overall role of PVH neurons in feeding inhibition, suggesting a mechanism of indirect action. Here we showed that the ability of NPY on C-Fos induction in the PVH was blunted in conditions of insulin deficiency and fasting, a condition associated with a high level of NPY and a low level of insulin. Moreover, insulin insufficiency blunted C-Fos induction in the PVH by fasting-induced re-feeding, and insulin and NPY induced c-Fos induction in the same group of PVH neurons. Finally, NPY produced normal C-Fos induction in the PVH with disruption of GABA-A receptors. Thus, our results revealed that PVH C-Fos induction by NPY is mediated by an indirect action, which is at least partially mediated by insulin action, but not GABA-A receptors.
Collapse
|
31
|
Tissue Plasminogen Activator Expression Is Restricted to Subsets of Excitatory Pyramidal Glutamatergic Neurons. Mol Neurobiol 2015; 53:5000-12. [PMID: 26377106 DOI: 10.1007/s12035-015-9432-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022]
Abstract
Although the extracellular serine protease tissue plasminogen activator (tPA) is involved in pathophysiological processes such as learning and memory, anxiety, epilepsy, stroke, and Alzheimer's disease, information about its regional, cellular, and subcellular distribution in vivo is lacking. In the present study, we observed, in healthy mice and rats, the presence of tPA in endothelial cells, oligodendrocytes, mastocytes, and ependymocytes, but not in pericytes, microglial cells, and astrocytes. Moreover, blockage of the axo-dendritic transport unmasked tPA expression in neurons of cortical and hippocampal areas. Interestingly, combined electrophysiological recordings, single-cell reverse transcription polymerase chain reaction (RT-PCR), and immunohistological analyses revealed that the presence of tPA is restricted to subsets of excitatory pyramidal glutamatergic neurons. We further evidenced that tPA is stored in synaptobrevin-2-positive glutamatergic synaptic vesicles. Based on all these data, we propose the existence of tPA-ergic neurons in the mature brain.
Collapse
|
32
|
Wood J, Verma D, Lach G, Bonaventure P, Herzog H, Sperk G, Tasan RO. Structure and function of the amygdaloid NPY system: NPY Y2 receptors regulate excitatory and inhibitory synaptic transmission in the centromedial amygdala. Brain Struct Funct 2015; 221:3373-91. [PMID: 26365505 PMCID: PMC4696156 DOI: 10.1007/s00429-015-1107-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/04/2015] [Indexed: 12/14/2022]
Abstract
The amygdala is essential for generating emotional-affective behaviors. It consists of several nuclei with highly selective, elaborate functions. In particular, the central extended amygdala, consisting of the central amygdala (CEA) and the bed nucleus of the stria terminalis (BNST) is an essential component actively controlling efferent connections to downstream effectors like hypothalamus and brain stem. Both, CEA and BNST contain high amounts of different neuropeptides that significantly contribute to synaptic transmission. Among these, neuropeptide Y (NPY) has emerged as an important anxiolytic and fear-reducing neuromodulator. Here, we characterized the expression, connectivity and electrophysiological function of NPY and Y2 receptors within the CEA. We identified several NPY-expressing neuronal populations, including somatostatin- and calretinin-expressing neurons. Furthermore, in the main intercalated nucleus, NPY is expressed primarily in dopamine D1 receptor-expressing neurons but also in interspersed somatostatin-expressing neurons. Interestingly, NPY neurons did not co-localize with the Y2 receptor. Retrograde tract tracing experiments revealed that NPY neurons reciprocally connect the CEA and BNST. Functionally, the Y2 receptor agonist PYY3-36, reduced both, inhibitory as well as excitatory synaptic transmission in the centromedial amygdala (CEm). However, we also provide evidence that lack of NPY or Y2 receptors results in increased GABA release specifically at inhibitory synapses in the CEm. Taken together, our findings suggest that NPY expressed by distinct populations of neurons can modulate afferent and efferent projections of the CEA via presynaptic Y2 receptors located at inhibitory and excitatory synapses.
Collapse
Affiliation(s)
- J Wood
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria
| | - D Verma
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria.,Institute of Physiology I (Neurophysiology), Westfälische Wilhelms-Universität, Munster, Germany
| | - G Lach
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria.,Capes Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil
| | - P Bonaventure
- Janssen Research & Development, LLC, San Diego, CA, USA
| | - H Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
| | - G Sperk
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria
| | - R O Tasan
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria.
| |
Collapse
|
33
|
Javdani F, Holló K, Hegedűs K, Kis G, Hegyi Z, Dócs K, Kasugai Y, Fukazawa Y, Shigemoto R, Antal M. Differential expression patterns of K(+) /Cl(-) cotransporter 2 in neurons within the superficial spinal dorsal horn of rats. J Comp Neurol 2015; 523:1967-83. [PMID: 25764511 DOI: 10.1002/cne.23774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 01/21/2023]
Abstract
γ-Aminobutyric acid (GABA)- and glycine-mediated hyperpolarizing inhibition is associated with a chloride influx that depends on the inwardly directed chloride electrochemical gradient. In neurons, the extrusion of chloride from the cytosol primarily depends on the expression of an isoform of potassium-chloride cotransporters (KCC2s). KCC2 is crucial in the regulation of the inhibitory tone of neural circuits, including pain processing neural assemblies. Thus we investigated the cellular distribution of KCC2 in neurons underlying pain processing in the superficial spinal dorsal horn of rats by using high-resolution immunocytochemical methods. We demonstrated that perikarya and dendrites widely expressed KCC2, but axon terminals proved to be negative for KCC2. In single ultrathin sections, silver deposits labeling KCC2 molecules showed different densities on the surface of dendritic profiles, some of which were negative for KCC2. In freeze fracture replicas and tissue sections double stained for the β3-subunit of GABAA receptors and KCC2, GABAA receptors were revealed on dendritic segments with high and also with low KCC2 densities. By measuring the distances between spots immunoreactive for gephyrin (a scaffolding protein of GABAA and glycine receptors) and KCC2 on the surface of neurokinin 1 (NK1) receptor-immunoreactive dendrites, we found that gephyrin-immunoreactive spots were located at various distances from KCC2 cotransporters; 5.7 % of them were recovered in the middle of 4-10-µm-long dendritic segments that were free of KCC2 immunostaining. The variable local densities of KCC2 may result in variable postsynaptic potentials evoked by the activation of GABAA and glycine receptors along the dendrites of spinal neurons.
Collapse
Affiliation(s)
- Fariba Javdani
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
| | - Krisztina Holló
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
| | - Krisztina Hegedűs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
| | - Gréta Kis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
| | - Zoltán Hegyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
| | - Klaudia Dócs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
| | - Yu Kasugai
- Department of Pharmacology, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Yugo Fukazawa
- Division of Cell Biology and Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida, 910-1193, Japan
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen 4012, Hungary
- MTA-DE Neuroscience Research Group, Debrecen, 4012, Hungary
| |
Collapse
|
34
|
Verma D, Wood J, Lach G, Mietzsch M, Weger S, Heilbronn R, Herzog H, Bonaventure P, Sperk G, Tasan RO. NPY Y2 receptors in the central amygdala reduce cued but not contextual fear. Neuropharmacology 2015; 99:665-74. [PMID: 26314208 DOI: 10.1016/j.neuropharm.2015.08.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
Abstract
The amygdala is fundamental for associative fear and extinction learning. Recently, also the central nucleus of the amygdala (CEA) has emerged as a site of plasticity actively controlling efferent connections to downstream effector brain areas. Although synaptic transmission is primarily mediated by glutamate and GABA, neuropeptides critically influence the overall response. While neuropeptide Y (NPY) acting via postsynaptic Y1 receptors exerts an important anxiolytic and fear-reducing action, the role of the predominantly presynaptic Y2 receptors is less defined. To investigate the role of Y2 receptors in the CEA we employed viral-vector mediated over-expression of the Y2 selective agonist NPY3-36 in fear conditioning and extinction experiments. NPY3-36 over-expression in the CEA resulted in reduced fear expression during fear acquisition and recall. Interestingly, this effect was blocked by intraperitoneal injection of a brain-penetrant Y2 receptor antagonist. Furthermore, over-expression of NPY3-36 in the CEA also reduced fear expression during fear extinction of CS-induced but not context-related fear. Again, fear extinction appeared delayed by peripheral injection of a Y2 receptor antagonist JNJ-31020028. Importantly, mice with over-expression of NPY3-36 in the CEA also displayed reduced spontaneous recovery and reinstatement, suggesting that Y2 receptor activation supports a permanent suppression of fear. Local deletion of Y2 receptors in the CEA, on the other hand, increased the expression of CS-induced freezing during fear recall and fear extinction. Thus, NPY inhibits fear learning and promotes cued extinction by reducing fear expression also via activation of presynaptic Y2 receptors on CEA neurons.
Collapse
Affiliation(s)
- D Verma
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - J Wood
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - G Lach
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria; Capes Foundation, Ministry of Education of Brazil, 70040-020 Brasília, DF, Brazil
| | - M Mietzsch
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - S Weger
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - R Heilbronn
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - H Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - P Bonaventure
- Janssen Research & Development, LLC, San Diego, CA, USA
| | - G Sperk
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - R O Tasan
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
35
|
Abstract
The gastrointestinal hormone peptide tyrosine tyrosine 3-36 (PYY(3-36)) has attained broad recognition with respect to its involvement in energy homeostasis and the control of food intake. It is mainly secreted by distal intestinal enteroendocrine L-cells in response to eating and exerts neurally mediated, paracrine and endocrine effects on various target organs. In addition to its gastrointestinal effects, PYY(3-36) has long been known to inhibit food intake. Recent closer examination of the effects of PYY(3-36) revealed that this gut-derived peptide also influences a wide spectrum of behavioral and cognitive functions that are pivotal for basic processes of perception and judgment, including central information processing, salience learning, working memory, and behavioral responding to novelty. Here, we review the effects of PYY(3-36) that go beyond food intake and provide a conceptual framework suggesting that several apparently unrelated behavioral actions of PYY(3-36) may actually reflect different manifestations of modulating the central dopamine system.
Collapse
|
36
|
Loh K, Herzog H, Shi YC. Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab 2015; 26:125-35. [PMID: 25662369 DOI: 10.1016/j.tem.2015.01.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
Obesity develops when energy intake exceeds energy expenditure over time. Numerous neurotransmitters, hormones, and factors have been implicated to coordinately control energy homeostasis, centrally and peripherally. However, the neuropeptide Y (NPY) system has emerged as the one with the most critical functions in this process. While NPY centrally promotes feeding and reduces energy expenditure, peptide YY (PYY) and pancreatic polypeptide (PP), the other family members, mediate satiety. Importantly, recent research has uncovered additional functions for these peptides that go beyond the simple feeding/satiety circuits and indicate a more extensive function in controlling energy homeostasis. In this review, we will discuss the actions of the NPY system in the regulation of energy balance, with a particular focus on energy expenditure.
Collapse
Affiliation(s)
- Kim Loh
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| |
Collapse
|
37
|
Enman NM, Sabban EL, McGonigle P, Van Bockstaele EJ. Targeting the Neuropeptide Y System in Stress-related Psychiatric Disorders. Neurobiol Stress 2015; 1:33-43. [PMID: 25506604 PMCID: PMC4260418 DOI: 10.1016/j.ynstr.2014.09.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Repeated, extreme, or traumatic stressors can elicit pathological effects leading to many negative physical and psychological outcomes. Stressors can precipitate the onset of psychiatric diseases, or exacerbate pre-existing disorders including various anxiety and mood disorders. As stressors can negatively impact human psychiatric health, it is essential to identify neurochemicals that may confer protection from the negative sequelae of repeated or extreme stress exposure. Elucidating the neurobiological underpinnings of stress resilience will enhance our ability to promote resilience to, or recovery from, stress-related psychiatric disease. Herein, we will review the evidence for neuropeptide Y as an endogenous mediator of resilience and its potential relevance for the treatment of stress-related psychiatric diseases. Overview of neuropeptide Y and receptor subtypes in the central nervous system. Alterations of neuropeptide Y in human stress-related psychiatric disorders. Evidence for neuropeptide Y in resilience to stress-related emotionality in rodent behavioral models. Pharmacotherapeutic implications for neuropeptide Y in the treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Nicole M Enman
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, 19102, USA
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Paul McGonigle
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA, 19102, USA
| | | |
Collapse
|
38
|
Dong C, Zhao W, Li W, Lv P, Dong X. Anti-epileptic effects of neuropeptide Y gene transfection into the rat brain. Neural Regen Res 2014; 8:1307-15. [PMID: 25206425 PMCID: PMC4107651 DOI: 10.3969/j.issn.1673-5374.2013.14.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 04/24/2013] [Indexed: 02/04/2023] Open
Abstract
Neuropeptide Y gene transfection into normal rat brain tissue can provide gene overexpression, which can attenuate the severity of kainic acid-induced seizures. In this study, a recombinant adeno-associated virus carrying the neuropeptide Y gene was transfected into brain tissue of rats with kainic acid-induced epilepsy through stereotactic methods. Following these transfections, we verified overexpression of the neuropeptide Y gene in the epileptic brain. Electroencephalograms showed that seizure severity was significantly inhibited and seizure latency was significantly prolonged up to 4 weeks after gene transfection. Moreover, quantitative fluorescent PCR and western blot assays revealed that the mRNA and protein expression of the N-methyl-D-aspartate receptor subunits NR1, NR2A, and NR2B was inhibited in the hippocampus of epileptic rats. These findings indicate that neuropeptide Y may inhibit seizures via down-regulation of the functional expression of N-methyl-D-aspartate receptors.
Collapse
Affiliation(s)
- Changzheng Dong
- Faculty of Graduate Studies, Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Wenqing Zhao
- Faculty of Graduate Studies, Hebei Medical University, Shijiazhuang 050051, Hebei Province, China ; Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Wenling Li
- Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Peiyuan Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Xiufang Dong
- Department of Neurology, First Hospital of Xingtai, Xingtai 054000, Hebei Province, China
| |
Collapse
|
39
|
Aydin C, Oztan O, Isgor C. Hippocampal Y2 receptor-mediated mossy fiber plasticity is implicated in nicotine abstinence-related social anxiety-like behavior in an outbred rat model of the novelty-seeking phenotype. Pharmacol Biochem Behav 2014; 125:48-54. [PMID: 25158103 DOI: 10.1016/j.pbb.2014.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/12/2014] [Accepted: 08/17/2014] [Indexed: 10/24/2022]
Abstract
Experimentally naïve outbred rats display varying rates of locomotor reactivity in response to the mild stress of a novel environment. Namely, some display high rates (HR) whereas some display low rates (LR) of locomotor reactivity. Previous reports from our laboratory show that HRs, but not LRs, develop locomotor sensitization to a low dose nicotine challenge and exhibit increased social anxiety-like behavior following chronic intermittent nicotine training. Moreover, the hippocampus, specifically hippocampal Y2 receptor (Y2R)-mediated neuropeptide Y signaling is implicated in these nicotine-induced behavioral effects observed in HRs. The present study examines the structural substrates of the expression of locomotor sensitization to a low dose nicotine challenge and associated social anxiety-like behavior following chronic intermittent nicotine exposure during adolescence in the LRHR hippocampi. Our data showed that the expression of locomotor sensitization to the low dose nicotine challenge and the increase in social anxiety-like behavior were accompanied by an increase in mossy fiber terminal field size, as well as an increase in spinophilin mRNA levels in the hippocampus in nicotine pre-trained HRs compared to saline pre-trained controls. Furthermore, a novel, selective Y2R antagonist administered systemically during 1 wk of abstinence reversed the behavioral, molecular and neuromorphological effects observed in nicotine-exposed HRs. These results suggest that nicotine-induced neuroplasticity within the hippocampus may regulate abstinence-related negative affect in HRs, and implicate hippocampal Y2R in vulnerability to the behavioral and neuroplastic effects of nicotine in the novelty-seeking phenotype.
Collapse
Affiliation(s)
- Cigdem Aydin
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States.
| | - Ozge Oztan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Ceylan Isgor
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, United States
| |
Collapse
|
40
|
Arning L, Stock AK, Kloster E, Epplen JT, Beste C. NPY2-receptor variation modulates iconic memory processes. Eur Neuropsychopharmacol 2014; 24:1298-302. [PMID: 24709141 DOI: 10.1016/j.euroneuro.2014.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/13/2014] [Indexed: 01/09/2023]
Abstract
Sensory memory systems are modality-specific buffers that comprise information about external stimuli, which represent the earliest stage of information processing. While these systems have been the subject of cognitive neuroscience research for decades, little is known about the neurobiological basis of sensory memory. However, accumulating evidence suggests that the glutamatergic system and systems influencing glutamatergic neural transmission are important. In the current study we examine if functional promoter variations in neuropeptide Y (NPY) and its receptor gene NPY2R affect iconic memory processes using a partial report paradigm. We found that iconic memory decayed much faster in individuals carrying the rare promoter NPY2R G allele which is associated with increased expression of the Y2 receptor. Possibly this effect is due to altered presynaptic inhibition of glutamate release, known to be modulated by Y2 receptors. Altogether, our results provide evidence that the functionally relevant single nucleotide polymorphism (SNP) in the NPY2R promoter gene affect circumscribed processes of early sensory processing, i.e. only the stability of information in sensory memory buffers. This leads us to suggest that especially the stability of information in sensory memory buffers depends on glutamatergic neural transmission and factors modulating glutamatergic turnover.
Collapse
Affiliation(s)
- Larissa Arning
- Department of Human Genetics, Medical Faculty, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstraße 42, D-01309 Dresden, Germany
| | - Eugen Kloster
- Department of Human Genetics, Medical Faculty, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Jörg T Epplen
- Department of Human Genetics, Medical Faculty, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstraße 42, D-01309 Dresden, Germany.
| |
Collapse
|
41
|
Expression of neuropeptide Y1 receptors in the amygdala and hippocampus and anxiety-like behavior associated with Ammon's horn sclerosis following intrahippocampal kainate injection in C57BL/6J mice. Epilepsy Behav 2014; 37:175-83. [PMID: 25050777 DOI: 10.1016/j.yebeh.2014.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 11/22/2022]
Abstract
Damage to the amygdala is often linked to Ammon's horn sclerosis (AHS) in surgical specimens of patients suffering from temporal lobe epilepsy (TLE). Moreover, amygdalar pathology is thought to contribute to the development of anxiety symptoms frequently found in TLE. The neuropeptide Y (NPY) Y1 receptor is critical in the regulation of anxiety-related behavior and epileptiform activity in TLE. Therefore, intrahippocampal kainate (KA) injection was performed to induce AHS-associated TLE and to investigate behavioral and cytoarchitectural changes that occur in the amygdala related to Y1 receptor expression. Status epilepticus was induced by intrahippocampal KA injection in C57BL/6J mice. Anxiety-like behavior was assessed using the elevated plus maze (EPM). Pathology of hippocampus and amygdala (volume loss and gliosis) was examined in KA-injected and saline-injected controls. Y1 receptor expression was measured using immunohistochemistry and ELISA. Animal injected with KA showed increased anxiety-like behaviors and reduced risk assessment in the EPM test compared with saline-injected controls. In the ipsilateral hippocampus of KA-injected animals, CA1 ablation, granule cell dispersion, and volume reduction were accompanied by astrogliosis indicating the development of AHS. In the amygdala, a significant decrease in the volume of nuclei and numbers of neurons was observed in the ipsilateral lateral, basolateral, and central amygdalar nuclei, which was accompanied by astrogliosis. In addition, a decrease in Y1 receptor-expressing cells in the ipsilateral CA1 and CA3 sectors of the hippocampus, ipsilateral and contralateral granule cell layer of the dentate gyrus, and ipsilateral central nucleus of the amygdala was found, consistent with a reduction in Y1 receptor protein levels. Our results suggest that plastic changes in hippocampal and/or amygdalar Y1 receptor expression may negatively impact anxiety levels. Moreover, intrahippocampal KA injection can induce amygdalar damage suggesting that AHS-associated amygdala damage may contribute to behavioral alterations seen in patients with TLE.
Collapse
|
42
|
Stanić D, Dubois S, Chua HK, Tonge B, Rinehart N, Horne MK, Boon WC. Characterization of aromatase expression in the adult male and female mouse brain. I. Coexistence with oestrogen receptors α and β, and androgen receptors. PLoS One 2014; 9:e90451. [PMID: 24646567 PMCID: PMC3960106 DOI: 10.1371/journal.pone.0090451] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/30/2014] [Indexed: 01/13/2023] Open
Abstract
Aromatase catalyses the last step of oestrogen synthesis. There is growing evidence that local oestrogens influence many brain regions to modulate brain development and behaviour. We examined, by immunohistochemistry, the expression of aromatase in the adult male and female mouse brain, using mice in which enhanced green fluorescent protein (EGFP) is transcribed following the physiological activation of the Cyp19A1 gene. EGFP-immunoreactive processes were distributed in many brain regions, including the bed nucleus of the stria terminalis, olfactory tubercle, medial amygdaloid nucleus and medial preoptic area, with the densest distributions of EGFP-positive cell bodies in the bed nucleus and medial amygdala. Differences between male and female mice were apparent, with the density of EGFP-positive cell bodies and fibres being lower in some brain regions of female mice, including the bed nucleus and medial amygdala. EGFP-positive cell bodies in the bed nucleus, lateral septum, medial amygdala and hypothalamus co-expressed oestrogen receptor (ER) α and β, or the androgen receptor (AR), although single-labelled EGFP-positive cells were also identified. Additionally, single-labelled ERα-, ERβ- or AR-positive cell bodies often appeared to be surrounded by EGFP-immunoreactive nerve fibres/terminals. The widespread distribution of EGFP-positive cell bodies and fibres suggests that aromatase signalling is common in the mouse brain, and that locally synthesised brain oestrogens could mediate biological effects by activating pre- and post-synaptic oestrogen α and β receptors, and androgen receptors. The higher number of EGFP-positive cells in male mice may indicate that the autocrine and paracrine effects of oestrogens are more prominent in males than females.
Collapse
Affiliation(s)
- Davor Stanić
- Systems Neurophysiology, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Florey Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Sydney Dubois
- Neurodegeneration, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Départment de Biologie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Hui Kheng Chua
- Neurodegeneration, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bruce Tonge
- Centre for Developmental Psychiatry & Psychology, Monash University, Clayton, Victoria, Australia
| | - Nicole Rinehart
- Centre for Developmental Psychiatry & Psychology, Monash University, Clayton, Victoria, Australia
| | - Malcolm K. Horne
- Neurodegeneration, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Florey Neuroscience, University of Melbourne, Parkville, Victoria, Australia
- Neurology Department, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Wah Chin Boon
- Neurodegeneration, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Florey Neuroscience, University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
43
|
McCall NM, Sprow GM, Delpire E, Thiele TE, Kash TL, Pleil KE. Effects of sex and deletion of neuropeptide Y2 receptors from GABAergic neurons on affective and alcohol drinking behaviors in mice. Front Integr Neurosci 2013; 7:100. [PMID: 24399943 PMCID: PMC3872329 DOI: 10.3389/fnint.2013.00100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/08/2013] [Indexed: 12/13/2022] Open
Abstract
A large literature has demonstrated that neuropeptide Y (NPY) regulates many emotional and reward-related behaviors via its primary receptors, Y1R and Y2R. Classically, NPY actions at postsynaptic Y1R decrease anxiety, depression, and alcohol drinking, while its actions at presynaptic Y2R produce the opposite behavioral phenotypes. However, emerging evidence suggests that activation of Y2R can also produce anxiolysis in a brain region and neurotransmitter system-dependent fashion. Further, numerous human and rodent studies have reported that females display higher levels of anxiety, depression, and alcohol drinking. In this study, we evaluated sex differences and the role of Y2R on GABAergic transmission in these behaviors using a novel transgenic mouse that lacks Y2R specifically in VGAT-expressing neurons (VGAT-Y2R knockout). First, we confirmed our genetic manipulation by demonstrating that Y2R protein expression was decreased and that a Y2R agonist could not alter GABAergic transmission in the extended amygdala, a limbic brain region critically implicated in the regulation of anxiety and alcohol drinking behaviors, using immunofluorescence and slice electrophysiology. Then, we tested male and female VGAT-Y2R knockout mice on a series of behavioral assays for anxiety, depression, fear, anhedonia, and alcohol drinking. We found that females displayed greater basal anxiety, higher levels of ethanol consumption, and faster fear conditioning than males, and that knockout mice exhibited enhanced depressive-like behavior in the forced swim test. Together, these results confirm previous studies that demonstrate higher expression of negative affective and alcohol drinking behaviors in females than males, and they highlight the importance of Y2R function in GABAergic systems in the expression of depressive-like behavior.
Collapse
Affiliation(s)
- Nora M McCall
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Pharmacology, University of North Carolina School of Medicine Chapel Hill, NC, USA
| | - Gretchen M Sprow
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Psychology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Nashville, TN, USA ; Department of Molecular Physiology and Biophysics, Vanderbilt University Nashville, TN, USA
| | - Todd E Thiele
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Psychology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Pharmacology, University of North Carolina School of Medicine Chapel Hill, NC, USA
| | - Kristen E Pleil
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Pharmacology, University of North Carolina School of Medicine Chapel Hill, NC, USA
| |
Collapse
|
44
|
Abstract
Neuropeptides play an important role in modulating seizures and epilepsy. Unlike neurotransmitters which operate on a millisecond time-scale, neuropeptides have longer half lives; this leads to modulation of neuronal and network activity over prolonged periods, so contributing to setting the seizure threshold. Most neuropeptides are stored in large dense vesicles and co-localize with inhibitory interneurons. They are released upon high frequency stimulation making them attractive targets for modulation of seizures, during which high frequency discharges occur. Numerous neuropeptides have been implicated in epilepsy; one, ACTH, is already used in clinical practice to suppress seizures. Here, we concentrate on neuropeptides that have a direct effect on seizures, and for which therapeutic interventions are being developed. We have thus reviewed the abundant reports that support a role for neuropeptide Y (NPY), galanin, ghrelin, somatostatin and dynorphin in suppressing seizures and epileptogenesis, and for tachykinins having pro-epileptic effects. Most in vitro and in vivo studies are performed in hippocampal tissue in which receptor expression is usually high, making translation to other brain areas less clear. We highlight recent therapeutic strategies to treat epilepsy with neuropeptides, which are based on viral vector technology, and outline how such interventions need to be refined in order to address human disease.
Collapse
Affiliation(s)
- Stjepana Kovac
- UCL Institute of Neurology, University College London, Queen Square, London, UK.
| | | |
Collapse
|
45
|
Administration of the Y2 receptor agonist PYY3-36 in mice induces multiple behavioral changes relevant to schizophrenia. Neuropsychopharmacology 2013; 38:2446-55. [PMID: 23748226 PMCID: PMC3799064 DOI: 10.1038/npp.2013.146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/24/2013] [Accepted: 06/05/2013] [Indexed: 12/22/2022]
Abstract
Functional changes in neuropeptide Y (NPY) signaling at the Y2 receptor subtype have been widely implicated in stress-related neuropsychiatric illnesses such as depression and anxiety disorders. Altered Y2 receptor signaling may also play a role in the precipitation of behavioral and cognitive symptoms associated with schizophrenia. To seek preclinical evidence for this possibility, we explored the functional consequences of treatment with the selective Y2 receptor agonist PYY(3-36) using translational tests for the assessment of schizophrenia-relevant behavioral and cognitive deficits in mice. We found that acute systemic administration of PYY(3-36) at a low dose (1 μg/100 g body weight) or high dose (20 μg/100 g body weight) profoundly impaired social interaction without affecting innate anxiety. PYY(3-36) treatment at the high dose further led to a disruption of sensorimotor gating in the form of prepulse inhibition deficiency. This effect was fully antagonized by acute treatment with the preferential dopamine D2 receptor antagonist haloperidol, but not with clozapine. In addition, both doses of PYY(3-36) impaired selective associative learning in the latent inhibition paradigm and spatial working memory in a matching-to-position water maze test. The wide range of abnormalities induced by PYY(3-36) suggests that signaling at the Y2 subtype of NPY receptors is critical for a number of behavioral and cognitive functions, some of which are highly relevant to schizophrenia and related psychotic disorders. At least some of the behavioral deficits induced by augmentation of Y2 receptor signaling may involve increased dopaminergic activity.
Collapse
|
46
|
Association of age at onset in Huntington disease with functional promoter variations in NPY and NPY2R. J Mol Med (Berl) 2013; 92:177-84. [DOI: 10.1007/s00109-013-1092-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/09/2013] [Accepted: 10/02/2013] [Indexed: 12/23/2022]
|
47
|
Abstract
Resiliency to the adverse effects of extraordinary emotional trauma on the brain varies within the human population. Accordingly, some people cope better than others with traumatic stress. Neuropeptide Y (NPY) is a 36-amino-acid peptide transmitter abundantly expressed in forebrain limbic and brain stem areas that regulate stress and emotional behaviors. Studies largely in rodents demonstrate a role for NPY in promoting coping with stress. Moreover, accruing data from the genetic to the physiological implicate NPY as a potential 'resilience-to-stress' factor in humans. Here, we consolidate findings from preclinical and clinical studies of NPY that are of relevance to stress-associated syndromes, most prototypically posttraumatic stress disorder (PTSD). Collectively, these data suggest that reduced central nervous system (CNS) NPY concentrations or function may be associated with PTSD. We also link specific symptoms of human PTSD with extant findings in the NPY field to reveal potential physiological contributions of the neuropeptide to the disorder. In pursuit of understanding the physiological basis and treatment of PTSD, the NPY system is an attractive target.
Collapse
Affiliation(s)
- R Sah
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, USA.
| | - TD Geracioti
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA,Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| |
Collapse
|
48
|
NPY Y1 receptors differentially modulate GABAA and NMDA receptors via divergent signal-transduction pathways to reduce excitability of amygdala neurons. Neuropsychopharmacology 2013; 38:1352-64. [PMID: 23358240 PMCID: PMC3656378 DOI: 10.1038/npp.2013.33] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuropeptide Y (NPY) administration into the basolateral amygdala (BLA) decreases anxiety-like behavior, mediated in part through the Y1 receptor (Y1R) isoform. Activation of Y1Rs results in G-protein-mediated reduction of cAMP levels, which results in reduced excitability of amygdala projection neurons. Understanding the mechanisms linking decreased cAMP levels to reduced excitability in amygdala neurons is important for identifying novel anxiolytic targets. We studied the intracellular mechanisms of activation of Y1Rs on synaptic transmission in the BLA. Activating Y1Rs by [Leu(31),Pro(34)]-NPY (L-P NPY) reduced the amplitude of evoked NMDA-mediated excitatory postsynaptic currents (eEPSCs), without affecting AMPA-mediated eEPSCs, but conversely increased the amplitude of GABAA-mediated evoked inhibitory postsynaptic currents (eIPSCs). Both effects were abolished by the Y1R antagonist, PD160170. Intracellular GDP-β-S, or pre-treatment with either forskolin or 8Br-cAMP, eliminated the effects of L-P NPY on both NMDA- and GABAA-mediated currents. Thus, both the NMDA and GABAA effects of Y1R activation in the BLA are G-protein-mediated and cAMP-dependent. Pipette inclusion of protein kinase A (PKA) catalytic subunit blocked the effect of L-P NPY on GABAA-mediated eIPSCs, but not on NMDA-mediated eEPSCs. Conversely, activating the exchange protein activated by cAMP (Epac) with 8CPT-2Me-cAMP blocked the effect of L-P NPY on NMDA-mediated eEPSCs, but not on GABAA-mediated eIPSCs. Thus, NPY regulates amygdala excitability via two signal-transduction events, with reduced PKA activity enhancing GABAA-mediated eIPSCs and Epac deactivation reducing NMDA-mediated eEPSCs. This multipathway regulation of NMDA- and GABAA-mediated currents may be important for NPY plasticity and stress resilience in the amygdala.
Collapse
|
49
|
Lach G, de Lima TCM. Role of NPY Y1 receptor on acquisition, consolidation and extinction on contextual fear conditioning: dissociation between anxiety, locomotion and non-emotional memory behavior. Neurobiol Learn Mem 2013; 103:26-33. [PMID: 23603424 DOI: 10.1016/j.nlm.2013.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/27/2013] [Accepted: 04/11/2013] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is the most abundant peptide in the central nervous system (CNS) and is densely localized in the brain regions involved in stress, memory, fear and anxiety. Although previous research supports a role for NPY in the mediation of rodent and human emotional behavior, there is currently a lack of information on the effects of low doses of NPY that could have a potential therapeutic advantage, minimizing side-effects such as cognition impairment or sedation. Herein, we assessed the effects of intracerebroventricular (i.c.v.) administration of low doses of NPY, and of the Y1-agonist Leu31Pro34-NPY (LP-NPY) on contextual fear conditioning (CFC), as they have no effect on unconditioned anxiety-like, locomotor activity and non-emotional memory. NPY (3 pmol) and LP-NPY (1 pmol) inhibited freezing behavior when administered in the acquisition or consolidation stages, indicating a reduction of fear. When injected in the extinction phase, only NPY inhibited freezing behavior on CFC. Pre-treatment with the Y1-antagonist BIBO3304 before NPY and LP-NPY was able to prevent the inhibition of fear responses induced by both NPY agonists. Taken together, our results demonstrate robust fear-inhibiting effects of i.c.v. injection of NPY on contextual fear conditioning in rats, a response that is mediated, at least in part, by the Y1 receptor. Moreover, these treatments were unable to change locomotor activity or to show an anxiolytic-like effect, as evaluated in an open-field and an elevated plus-maze. This specific fear reduction effect may underlie resilience systems in the CNS and has potential therapeutic relevance in PTSD.
Collapse
Affiliation(s)
- Gilliard Lach
- Laboratory of Neuropharmacology, Department of Pharmacology, CCB, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88049-970, Brazil
| | | |
Collapse
|
50
|
Rojas JM, Stafford JM, Saadat S, Printz RL, Beck-Sickinger AG, Niswender KD. Central nervous system neuropeptide Y signaling via the Y1 receptor partially dissociates feeding behavior from lipoprotein metabolism in lean rats. Am J Physiol Endocrinol Metab 2012; 303:E1479-88. [PMID: 23074243 PMCID: PMC3532466 DOI: 10.1152/ajpendo.00351.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Elevated plasma triglyceride (TG) levels contribute to an atherogenic dyslipidemia that is associated with obesity, diabetes, and metabolic syndrome. Numerous models of obesity are characterized by increased central nervous system (CNS) neuropeptide Y (NPY) tone that contributes to excess food intake and obesity. Previously, we demonstrated that intracerebroventricular (icv) administration of NPY in lean fasted rats also elevates hepatic production of very low-density lipoprotein (VLDL)-TG. Thus, we hypothesize that elevated CNS NPY action contributes to not only the pathogenesis of obesity but also dyslipidemia. Here, we sought to determine whether the effects of NPY on feeding and/or obesity are dissociable from effects on hepatic VLDL-TG secretion. Pair-fed, icv NPY-treated, chow-fed Long-Evans rats develop hypertriglyceridemia in the absence of increased food intake and body fat accumulation compared with vehicle-treated controls. We then modulated CNS NPY signaling by icv injection of selective NPY receptor agonists and found that Y1, Y2, Y4, and Y5 receptor agonists all induced hyperphagia in lean, ad libitum chow-fed Long-Evans rats, with the Y2 receptor agonist having the most pronounced effect. Next, we found that at equipotent doses for food intake NPY Y1 receptor agonist had the most robust effect on VLDL-TG secretion, a Y2 receptor agonist had a modest effect, and no effect was observed for Y4 and Y5 receptor agonists. These findings, using selective agonists, suggest the possibility that the effect of CNS NPY signaling on hepatic VLDL-TG secretion may be relatively dissociable from effects on feeding behavior via the Y1 receptor.
Collapse
|