1
|
Amelogenin as a regenerative endodontic molecule for immature teeth with apical periodontitis. An experimental study. J Oral Biol Craniofac Res 2022; 12:721-726. [DOI: 10.1016/j.jobcr.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/28/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
|
2
|
Gu W, Qi J, Zhang S, Ding Y, Qiao J, Han Y. Inhibition of HIF prolyl hydroxylase modulates platelet function. Thromb Haemost 2022; 122:1693-1705. [PMID: 35477177 DOI: 10.1055/a-1837-7797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hypoxia-inducible factors-1α (HIF-1α) involves in redox reaction. Considering the role of reactive oxygen species (ROS) in platelet function, whether it regulates platelet function remains unclear. Using an inhibitor of HIF prolyl hydroxylase IOX-2, we intend to investigate its effect on platelet function. Human platelets were treated with IOX-2 (0, 10, 25, and 50 M) followed by analysis of platelet aggregation, granule secretion, receptor expression, platelet spreading or clot retraction. Additionally, IOX-2 (10 mg/kg) was injected intraperitoneally into mice to measure tail bleeding time and arterial thrombosis. IOX-2 significantly inhibited collagen-related peptide (CRP, 0.25 μg/ml) or thrombin (0.03 U/ml)-induced platelet aggregation and ATP release dose dependently without affecting P-selectin expression and the surface levels of glycoprotein (GP)Ib, GPVI or IIb3. In addition, IOX-2-treated platelets presented significantly decreased spreading on fibrinogen or collagen and clot retraction. Moreover, IOX-2 administration into mice significantly impaired the in vivo hemostatic function of platelets and arterial thrombus formation without affecting the number of circulating platelets and coagulation factor (FVIII and FIX). Further, IOX-2 significantly upregulated HIF-1 in platelets, decreased ROS generation and downregulated NOX1 expression. Finally, IOX-2 increased the phosphorylation level of VASP (Ser157/239), and inhibited the phosphorylation of p38 (Thr180/Tyr182), ERK1/2 (Thr202/Tyr204), AKT (Thr308/Ser473) and PKC (Thr505) in CRP- or thrombin-stimulated platelets. In conclusion, inhibition of HIF prolyl hydroxylase modulates platelet function and arterial thrombus formation, possibly through upregulation of HIF-1α expression and subsequent inhibition of ROS generation, indicating that HIF-1α might be a novel target for the treatment of thrombotic disorders.
Collapse
|
3
|
Rezaei-Lotfi S, Vujovic F, Simonian M, Hunter N, Farahani RM. Programmed genomic instability regulates neural transdifferentiation of human brain microvascular pericytes. Genome Biol 2021; 22:334. [PMID: 34886891 PMCID: PMC8656028 DOI: 10.1186/s13059-021-02555-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Transdifferentiation describes transformation in vivo of specialized cells from one lineage into another. While there is extensive literature on forced induction of lineage reprogramming in vitro, endogenous mechanisms that govern transdifferentiation remain largely unknown. The observation that human microvascular pericytes transdifferentiate into neurons provided an opportunity to explore the endogenous molecular basis for lineage reprogramming. RESULTS We show that abrupt destabilization of the higher-order chromatin topology that chaperones lineage memory of pericytes is driven by transient global transcriptional arrest. This leads within minutes to localized decompression of the repressed competing higher-order chromatin topology and expression of pro-neural genes. Transition to neural lineage is completed by probabilistic induction of R-loops in key myogenic loci upon re-initiation of RNA polymerase activity, leading to depletion of the myogenic transcriptome and emergence of the neurogenic transcriptome. CONCLUSIONS These findings suggest that the global transcriptional landscape not only shapes the functional cellular identity of pericytes, but also stabilizes lineage memory by silencing the competing neural program within a repressed chromatin state.
Collapse
Affiliation(s)
- Saba Rezaei-Lotfi
- IDR/Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006 Australia
| | - Filip Vujovic
- IDR/Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006 Australia
| | - Mary Simonian
- IDR/Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
| | - Ramin M. Farahani
- IDR/Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006 Australia
| |
Collapse
|
4
|
Girolamo F, de Trizio I, Errede M, Longo G, d'Amati A, Virgintino D. Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids Barriers CNS 2021; 18:14. [PMID: 33743764 PMCID: PMC7980348 DOI: 10.1186/s12987-021-00242-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Central nervous system diseases involving the parenchymal microvessels are frequently associated with a ‘microvasculopathy’, which includes different levels of neurovascular unit (NVU) dysfunction, including blood–brain barrier alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells (OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU. Indeed, at this critical site, pericytes have a number of direct and extracellular matrix molecule- and soluble factor-mediated functions, displaying marked phenotypical and functional heterogeneity and carrying out multitasking services. This pericytes heterogeneity is primarily linked to their position in specific tissue and organ microenvironments and, most importantly, to their ontogeny. During ontogenesis, pericyte subtypes belong to two main embryonic germ layers, mesoderm and (neuro)ectoderm, and are therefore expected to be found in organs ontogenetically different, nonetheless, pericytes of different origin may converge and colonize neighbouring areas of the same organ/apparatus. Here, we provide a brief overview of the unusual roles played by forebrain pericytes in the processes of angiogenesis and barriergenesis by virtue of their origin from midbrain neural crest stem cells. A better knowledge of the ontogenetic subpopulations may support the understanding of specific interactions and mechanisms involved in pericyte function/dysfunction, including normal and pathological angiogenesis, thereby offering an alternative perspective on cell subtype-specific therapeutic approaches. ![]()
Collapse
Affiliation(s)
- Francesco Girolamo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.
| | - Ignazio de Trizio
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.,Intensive Care Unit, Department of Intensive Care, Regional Hospital of Lugano, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Mariella Errede
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Molecular Biology Unit, University of Bari School of Medicine, Bari, Italy
| | - Antonio d'Amati
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.,Department of Emergency and Organ Transplantation, Pathology Section, University of Bari School of Medicine, Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| |
Collapse
|
5
|
Girolamo F, de Trizio I, Errede M, Longo G, d’Amati A, Virgintino D. Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids Barriers CNS 2021. [DOI: 10.1186/s12987-021-00242-7 union select null--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCentral nervous system diseases involving the parenchymal microvessels are frequently associated with a ‘microvasculopathy’, which includes different levels of neurovascular unit (NVU) dysfunction, including blood–brain barrier alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells (OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU. Indeed, at this critical site, pericytes have a number of direct and extracellular matrix molecule- and soluble factor-mediated functions, displaying marked phenotypical and functional heterogeneity and carrying out multitasking services. This pericytes heterogeneity is primarily linked to their position in specific tissue and organ microenvironments and, most importantly, to their ontogeny. During ontogenesis, pericyte subtypes belong to two main embryonic germ layers, mesoderm and (neuro)ectoderm, and are therefore expected to be found in organs ontogenetically different, nonetheless, pericytes of different origin may converge and colonize neighbouring areas of the same organ/apparatus. Here, we provide a brief overview of the unusual roles played by forebrain pericytes in the processes of angiogenesis and barriergenesis by virtue of their origin from midbrain neural crest stem cells. A better knowledge of the ontogenetic subpopulations may support the understanding of specific interactions and mechanisms involved in pericyte function/dysfunction, including normal and pathological angiogenesis, thereby offering an alternative perspective on cell subtype-specific therapeutic approaches.
Collapse
|
6
|
Svandova E, Peterkova R, Matalova E, Lesot H. Formation and Developmental Specification of the Odontogenic and Osteogenic Mesenchymes. Front Cell Dev Biol 2020; 8:640. [PMID: 32850793 PMCID: PMC7396701 DOI: 10.3389/fcell.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Within the mandible, the odontogenic and osteogenic mesenchymes develop in a close proximity and form at about the same time. They both originate from the cranial neural crest. These two condensing ecto-mesenchymes are soon separated from each other by a very loose interstitial mesenchyme, whose cells do not express markers suggesting a neural crest origin. The two condensations give rise to mineralized tissues while the loose interstitial mesenchyme, remains as a soft tissue. This is crucial for proper anchorage of mammalian teeth. The situation in all three regions of the mesenchyme was compared with regard to cell heterogeneity. As the development progresses, the early phenotypic differences and the complexity in cell heterogeneity increases. The differences reported here and their evolution during development progressively specifies each of the three compartments. The aim of this review was to discuss the mechanisms underlying condensation in both the odontogenic and osteogenic compartments as well as the progressive differentiation of all three mesenchymes during development. Very early, they show physical and structural differences including cell density, shape and organization as well as the secretion of three distinct matrices, two of which will mineralize. Based on these data, this review highlights the consecutive differences in cell-cell and cell-matrix interactions, which support the cohesion as well as mechanosensing and mechanotransduction. These are involved in the conversion of mechanical energy into biochemical signals, cytoskeletal rearrangements cell differentiation, or collective cell behavior.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Renata Peterkova
- Department of Histology and Embryology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia.,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| |
Collapse
|
7
|
Subramaniam S. Rhes Tunnels: A Radical New Way of Communication in the Brain's Striatum? Bioessays 2020; 42:e1900231. [PMID: 32236969 PMCID: PMC7310467 DOI: 10.1002/bies.201900231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Ras homolog enriched in the striatum (Rhes) is a striatal enriched protein that promotes the formation of thin membranous tubes resembling tunneling nanotubes (TNT)-"Rhes tunnels"-that connect neighboring cell and transport cargoes: vesicles and proteins between the neuronal cells. Here the literature on TNT-like structures is reviewed, and the implications of Rhes-mediated TNT, the mechanisms of its formation, and its potential in novel cell-to-cell communication in regulating striatal biology and disease are emphasized. Thought-provoking ideas regarding how Rhes-mediated TNT, if it exists, in vivo, would radically change the way neurons communicate in the brain are discussed.
Collapse
|
8
|
Chawana R, Patzke N, Bhagwandin A, Kaswera-Kyamakya C, Gilissen E, Bertelsen MF, Hemingway J, Manger PR. Adult hippocampal neurogenesis in Egyptian fruit bats from three different environments: Are interpretational variations due to the environment or methodology? J Comp Neurol 2020; 528:2994-3007. [PMID: 32112418 DOI: 10.1002/cne.24895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 01/10/2023]
Abstract
We quantified both proliferative (Ki-67 immunohistochemistry) and immature (doublecortin immunohistochemistry) cells within the dentate gyrus of adult Egyptian fruit bats from three distinct environments: (a) primary rainforest, (b) subtropical woodland, and (c) fifth-generation captive-bred. We used four different previously reported methods to assess the effect of the environment on proliferative and immature cells: (a) the comparison of raw totals of proliferative and immature cells; (b) these totals standardized to brain mass; (c) these totals expressed as a density using the volume of the granular cell layer (GCLv) for standardization; and (d) these totals expressed as a percentage of the total number of granule cells. For all methods, the numbers of proliferative cells did not differ statistically among the three groups, indicating that the rate of proliferation, while malleable to experimental manipulation or transiently in response to events of importance in the natural habitat, appears to occur, for the most part, at a predetermined rate within a species. For the immature cells, raw numbers and standardizations to brain mass and GCLv revealed no difference between the three groups studied; however, standardization to total granule cell numbers indicated that the two groups of wild-caught bats had significantly higher numbers of immature neurons than the captive-bred bats. These contrasting results indicate that the interpretation of the effect of the environment on the numbers of immature neurons appears method dependent. It is possible that current methods are not sensitive enough to reveal the effect of different environments on proliferative and immature cells.
Collapse
Affiliation(s)
- Richard Chawana
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Nina Patzke
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.,Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | | | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium.,Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium.,Department of Anthropology, University of Arkansas, Fayetteville, Arkansas
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Jason Hemingway
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
9
|
Su X, Huang L, Qu Y, Xiao D, Mu D. Pericytes in Cerebrovascular Diseases: An Emerging Therapeutic Target. Front Cell Neurosci 2019; 13:519. [PMID: 31824267 PMCID: PMC6882740 DOI: 10.3389/fncel.2019.00519] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Pericytes are functional components of the neurovascular unit (NVU) that are located around the blood vessels, and their roles in the regulation of cerebral health and diseases has been reported. Currently, the potential properties of pericytes as emerging therapeutic targets for cerebrovascular diseases have attracted considerable attention. Nonetheless, few reviews have comprehensively discussed pericytes and their roles in cerebrovascular diseases. Therefore, in this review, we not only summarized and described the basic characteristics of pericytes but also focused on clarifying the new understanding about the roles of pericytes in the pathogenesis of cerebrovascular diseases, including white matter injury (WMI), hypoxic-ischemic brain damage, depression, neovascular insufficiency disease, and Alzheimer's disease (AD). Furthermore, we summarized the current therapeutic strategies targeting pericytes for cerebrovascular diseases. Collectively, this review is aimed at providing a comprehensive understanding of pericytes and new insights about the use of pericytes as novel therapeutic targets for cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Lingyi Huang
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dongqiong Xiao
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
10
|
A population of nonneuronal GFRα3-expressing cells in the bone marrow resembles nonmyelinating Schwann cells. Cell Tissue Res 2019; 378:441-456. [DOI: 10.1007/s00441-019-03068-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/01/2019] [Indexed: 12/17/2022]
|
11
|
Role of Hedgehog Signaling in Vasculature Development, Differentiation, and Maintenance. Int J Mol Sci 2019; 20:ijms20123076. [PMID: 31238510 PMCID: PMC6627637 DOI: 10.3390/ijms20123076] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
The role of Hedgehog (Hh) signaling in vascular biology has first been highlighted in embryos by Pepicelli et al. in 1998 and Rowitch et al. in 1999. Since then, the proangiogenic role of the Hh ligands has been confirmed in adults, especially under pathologic conditions. More recently, the Hh signaling has been proposed to improve vascular integrity especially at the blood–brain barrier (BBB). However, molecular and cellular mechanisms underlying the role of the Hh signaling in vascular biology remain poorly understood and conflicting results have been reported. As a matter of fact, in several settings, it is currently not clear whether Hh ligands promote vessel integrity and quiescence or destabilize vessels to promote angiogenesis. The present review relates the current knowledge regarding the role of the Hh signaling in vasculature development, maturation and maintenance, discusses the underlying proposed mechanisms and highlights controversial data which may serve as a guideline for future research. Most importantly, fully understanding such mechanisms is critical for the development of safe and efficient therapies to target the Hh signaling in both cancer and cardiovascular/cerebrovascular diseases.
Collapse
|
12
|
Farahani RM, Rezaei-Lotfi S, Simonian M, Xaymardan M, Hunter N. Neural microvascular pericytes contribute to human adult neurogenesis. J Comp Neurol 2018; 527:780-796. [PMID: 30471080 DOI: 10.1002/cne.24565] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022]
Abstract
Consistent adult neurogenic activity in humans is observed in specific niches within the central nervous system. However, the notion of an adult neurogenic niche is challenged by accumulating evidence for ectopic neurogenic activity in other cerebral locations. Herein we interface precision of ultrastructural resolution and anatomical simplicity of accessible human dental pulp neurogenic zone to address this conflict. We disclose a basal level of adult neurogenic activity characterized by glial invasion of terminal microvasculature followed by release of individual platelet-derived growth factor receptor-β mural pericytes and subsequent reprogramming into NeuN+ local interneurons. Concomitant angiogenesis, a signature of adult neurogenic niches, accelerates the rate of neurogenesis by amplifying release and proliferation of the mural pericyte population by ≈10-fold. Subsequent in vitro and in vivo experiments confirmed gliogenic and neurogenic capacities of human neural pericytes. Findings foreshadow the bimodal nature of the glio-vascular assembly where pericytes, under instruction from glial cells, can stabilize the quiescent microvasculature or enrich local neuronal microcircuits upon differentiation.
Collapse
Affiliation(s)
- Ramin M Farahani
- Institute of Dental Research, Westmead Institute for Medical Research and Westmead Centre for Oral Health, Westmead, New South Wales, Australia.,Department of Life Sciences, Faculty of Medicine and Health Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Saba Rezaei-Lotfi
- Department of Life Sciences, Faculty of Medicine and Health Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Mary Simonian
- Institute of Dental Research, Westmead Institute for Medical Research and Westmead Centre for Oral Health, Westmead, New South Wales, Australia
| | - Munira Xaymardan
- Institute of Dental Research, Westmead Institute for Medical Research and Westmead Centre for Oral Health, Westmead, New South Wales, Australia.,Department of Life Sciences, Faculty of Medicine and Health Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Neil Hunter
- Institute of Dental Research, Westmead Institute for Medical Research and Westmead Centre for Oral Health, Westmead, New South Wales, Australia.,Department of Life Sciences, Faculty of Medicine and Health Sciences, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
13
|
Tsikandelova R, Mladenov P, Planchon S, Kalenderova S, Praskova M, Mihaylova Z, Stanimirov P, Mitev V, Renaut J, Ishkitiev N. Proteome response of dental pulp cells to exogenous FGF8. J Proteomics 2018; 183:14-24. [PMID: 29758290 DOI: 10.1016/j.jprot.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022]
Abstract
FGF8 specifies early tooth development by directing the migration of the early tooth founder cells to the site of tooth emergence. To date the effect of the FGF8 in adult dental pulp has not been studied. We have assessed the regenerative potential of FGF8 by evaluating changes in the proteome landscape of dental pulp following short- and long-term exposure to recombinant FGF8 protein. In addition, we carried out qRT PCR analysis to determine extracellular/adhesion gene marker expression and assessed cell proliferation and mineralization in response to FGF8 treatment. 2D and mass spectrometry data showed differential expression of proteins implicated in cytoskeleton/ECM remodeling and migration, cell proliferation and odontogenic differentiation as evidenced by the upregulation of gelsolin, moesin, LMNA, WDR1, PLOD2, COPS5 and downregulation of P4HB. qRT PCR showed downregulation of proteins involved in cell-matrix adhesion such as ADAMTS8, LAMB3 and ANOS1 and increased expression of the angiogenesis marker PECAM1. We have observed that, FGF8 treatment was able to boost dental pulp cell proliferation and to enhance dental pulp mineralization. Collectively, our data suggest that, FGF8 treatment could promote endogenous healing of the dental pulp via recruitment of dental pulp progenitors as well as by promoting their angiogenic and odontogenic differentiation. SIGNIFICANCE Dental pulp cells (DP) have been studied extensively for the purposes of mineralized tissue repair, particularly for the reconstruction of hard and soft tissue maxillofacial defects. Canonical FGF signaling has been implicated throughout multiple stages of tooth development by regulating cell proliferation, differentiation, survival as well as cellular migration. FGF8 expression is indispensible for normal tooth development and particularly for the migration of early tooth progenitors to the sites of tooth emergence. The present study provides proteome and qRT PCR data with regard to the future application and biological relevance of FGF8 in dental regenerative medicine. AUTHORS WITH ORCID Rozaliya Tsikandelova - 0000-0003-0178-3767 Zornitsa Mihaylova - 0000-0003-1748-4489 Sébastien Planchon - 0000-0002-0455-0574 Nikolay Ishkitiev - 0000-0002-4351-5579.
Collapse
Affiliation(s)
- Rozaliya Tsikandelova
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria
| | - Petko Mladenov
- Agrobioinstitute, Agricultural Academy, Dr. Tsankov Blvd 8, 1164 Sofia, Bulgaria
| | - Sébastien Planchon
- Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Silvia Kalenderova
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria
| | - Maria Praskova
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria
| | - Zornitsa Mihaylova
- Medical University Sofia, Dept. of Oral and Maxillofacial Surgery, 1 G. Sofiyski str. Sofia, 1431, Bulgaria
| | - Pavel Stanimirov
- Medical University Sofia, Dept. of Oral and Maxillofacial Surgery, 1 G. Sofiyski str. Sofia, 1431, Bulgaria
| | - Vanyo Mitev
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Nikolay Ishkitiev
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria.
| |
Collapse
|
14
|
Fernández-Flores F, García-Verdugo JM, Martín-Ibáñez R, Herranz C, Fondevila D, Canals JM, Arús C, Pumarola M. Characterization of the canine rostral ventricular-subventricular zone: Morphological, immunohistochemical, ultrastructural, and neurosphere assay studies. J Comp Neurol 2017; 526:721-741. [DOI: 10.1002/cne.24365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 10/09/2017] [Accepted: 11/16/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Francisco Fernández-Flores
- Veterinary Faculty, Department of Animal Medicine and Surgery; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiologia comparada, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, CIBERNED; Valencia Spain
| | - Raquel Martín-Ibáñez
- Stem Cells and Regenerative Medicine Laboratory; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Department of Biomedicine; University of Barcelona; Barcelona Spain
- Neuroscience Institute, University of Barcelona; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED); Valencia Spain
| | - Cristina Herranz
- Stem Cells and Regenerative Medicine Laboratory; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Department of Biomedicine; University of Barcelona; Barcelona Spain
- Neuroscience Institute, University of Barcelona; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED); Valencia Spain
| | - Dolors Fondevila
- Veterinary Faculty, Department of Animal Medicine and Surgery; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| | - Josep María Canals
- Stem Cells and Regenerative Medicine Laboratory; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Department of Biomedicine; University of Barcelona; Barcelona Spain
- Neuroscience Institute, University of Barcelona; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED); Valencia Spain
| | - Carles Arús
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
- Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| | - Martí Pumarola
- Veterinary Faculty, Department of Animal Medicine and Surgery; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| |
Collapse
|
15
|
Xiong A, Liu Y. Targeting Hypoxia Inducible Factors-1α As a Novel Therapy in Fibrosis. Front Pharmacol 2017; 8:326. [PMID: 28611671 PMCID: PMC5447768 DOI: 10.3389/fphar.2017.00326] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/16/2017] [Indexed: 02/05/2023] Open
Abstract
Fibrosis, characterized by increased extracellular matrix (ECM) deposition, and widespread vasculopathy, has the prominent trait of chronic hypoxia. Hypoxia inducible factors-1α (HIF-1α), a key transcriptional factor in response to this chronic hypoxia, is involved in fibrotic disease, such as Systemic sclerosis (SSc). The implicated function of HIF-1α in fibrosis include stimulation of excessive ECM, vascular remodeling, and futile angiogenesis with further exacerbation of chronic hypoxia and deteriorate pathofibrogenesis. This review will focus on the molecular biological behavior of HIF-1α in regulating progressive fibrosis. Better understanding of the role for HIF-1α-regulated pathways in fibrotic disease will accelerate development of novel therapeutic strategies that target HIF-1α. Such new therapeutic strategies may be particularly effective for treatment of the prototypic, multisystem fibrotic, autoimmune disease SSc.
Collapse
Affiliation(s)
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan UniversityChengdu, China
| |
Collapse
|
16
|
Early alterations of Hedgehog signaling pathway in vascular endothelial cells after peripheral nerve injury elicit blood-nerve barrier disruption, nerve inflammation, and neuropathic pain development. Pain 2017; 157:827-839. [PMID: 26655733 DOI: 10.1097/j.pain.0000000000000444] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Changes in the nerve's microenvironment and local inflammation resulting from peripheral nerve injury participate in nerve sensitization and neuropathic pain development. Taking part in these early changes, disruption of the blood-nerve barrier (BNB) allows for infiltration of immunocytes and promotes the neuroinflammation. However, molecular mechanisms engaged in vascular endothelial cells (VEC) dysfunction and BNB alterations remain unclear. In vivo, BNB permeability was assessed following chronic constriction injury (CCI) of the rat sciatic nerve (ScN) and differential expression of markers of VEC functional state, inflammation, and intracellular signaling was followed from 3 hours to 2 months postinjury. Several mechanisms potentially involved in functional alterations of VEC were evaluated in vitro using human VEC (hCMEC/D3), then confronted to in vivo physiopathological conditions. CCI of the ScN led to a rapid disruption of endoneurial vascular barrier that was correlated to a decreased production of endothelial tight-junction proteins and an early and sustained alteration of Hedgehog (Hh) signaling pathway. In vitro, activation of Toll-like receptor 4 in VEC downregulated the components of Hh pathway and altered the endothelial functional state. Inhibition of Hh signaling in the ScN of naive rats mimicked the biochemical and functional alterations observed after CCI and was, on its own, sufficient to evoke local neuroinflammation and sustained mechanical allodynia. Alteration of the Hh signaling pathway in VEC associated with peripheral nerve injury, is involved in BNB disruption and local inflammation, and could thus participate in the early changes leading to the peripheral nerve sensitization and, ultimately, neuropathic pain development.
Collapse
|
17
|
Azmitia EC, Saccomano ZT, Alzoobaee MF, Boldrini M, Whitaker-Azmitia PM. Persistent Angiogenesis in the Autism Brain: An Immunocytochemical Study of Postmortem Cortex, Brainstem and Cerebellum. J Autism Dev Disord 2016; 46:1307-18. [PMID: 26667147 PMCID: PMC4836621 DOI: 10.1007/s10803-015-2672-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the current work, we conducted an immunocytochemical search for markers of ongoing neurogenesis (e.g. nestin) in auditory cortex from postmortem sections of autism spectrum disorder (ASD) and age-matched control donors. We found nestin labeling in cells of the vascular system, indicating blood vessels plasticity. Evidence of angiogenesis was seen throughout superior temporal cortex (primary auditory cortex), fusiform cortex (face recognition center), pons/midbrain and cerebellum in postmortem brains from ASD patients but not control brains. We found significant increases in both nestin and CD34, which are markers of angiogenesis localized to pericyte cells and endothelial cells, respectively. This labeling profile is indicative of splitting (intussusceptive), rather than sprouting, angiogenesis indicating the blood vessels are in constant flux rather than continually expanding.
Collapse
Affiliation(s)
- E C Azmitia
- Departments of Biology and Psychiatry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| | - Z T Saccomano
- Departments of Biology and Psychiatry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - M F Alzoobaee
- Departments of Biology and Psychiatry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - M Boldrini
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
| | - P M Whitaker-Azmitia
- Departments of Psychology Program in Integrative Neuroscience, and Psychiatry, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
18
|
Gong H, Rehman J, Tang H, Wary K, Mittal M, Chaturvedi P, Zhao YY, Komarova YA, Vogel SM, Malik AB. HIF2α signaling inhibits adherens junctional disruption in acute lung injury. J Clin Invest 2015; 125:652-64. [PMID: 25574837 DOI: 10.1172/jci77701] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/25/2014] [Indexed: 12/23/2022] Open
Abstract
Vascular endothelial barrier dysfunction underlies diseases such as acute respiratory distress syndrome (ARDS), characterized by edema and inflammatory cell infiltration. The transcription factor HIF2α is highly expressed in vascular endothelial cells (ECs) and may regulate endothelial barrier function. Here, we analyzed promoter sequences of genes encoding proteins that regulate adherens junction (AJ) integrity and determined that vascular endothelial protein tyrosine phosphatase (VE-PTP) is a HIF2α target. HIF2α-induced VE-PTP expression enhanced dephosphorylation of VE-cadherin, which reduced VE-cadherin endocytosis and thereby augmented AJ integrity and endothelial barrier function. Mice harboring an EC-specific deletion of Hif2a exhibited decreased VE-PTP expression and increased VE-cadherin phosphorylation, resulting in defective AJs. Mice lacking HIF2α in ECs had increased lung vascular permeability and water content, both of which were further exacerbated by endotoxin-mediated injury. Treatment of these mice with Fg4497, a prolyl hydroxylase domain 2 (PHD2) inhibitor, activated HIF2α-mediated transcription in a hypoxia-independent manner. HIF2α activation increased VE-PTP expression, decreased VE-cadherin phosphorylation, promoted AJ integrity, and prevented the loss of endothelial barrier function. These findings demonstrate that HIF2α enhances endothelial barrier integrity, in part through VE-PTP expression and the resultant VE-cadherin dephosphorylation-mediated assembly of AJs. Moreover, activation of HIF2α/VE-PTP signaling via PHD2 inhibition has the potential to prevent the formation of leaky vessels and edema in inflammatory diseases such as ARDS.
Collapse
|
19
|
Houshmandi M, Ye P, Hunter N. Glial network responses to polymicrobial invasion of dentin. Caries Res 2014; 48:534-48. [PMID: 24993646 DOI: 10.1159/000360610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/08/2014] [Indexed: 11/19/2022] Open
Abstract
This study investigated the distribution patterns of glial networks disclosed by reactivity for glial fibrillary acidic protein (GFAP) and S100B in healthy and carious human teeth. The objective was to determine the assembly and collapse of glial networks in response to encroaching infection. 15 healthy and 37 carious posterior teeth from adults were studied. Immediately after extraction, teeth were cleaned and vertically split and the half with pulp fixed and prepared for resin or frozen sections. Sections were stained with toluidine blue and for immunofluorescence, with observation by confocal laser microscopy and analysis by ImageJ software. Carious teeth were subdivided into three groups according to degree of carious involvement: microbial penetration through enamel (stage A), extension into dentin (stage B) and advanced penetration into dentin but without invasion of underlying pulp tissue (stage C). In stage A lesions there was marked increase in glial networks in dental pulp tissue that extended beyond the zone of microbial invasion. This response was maintained in stage B lesions. In advanced stage C lesions these networks were degraded in the zone of invasion in association with failure to contain infection. Cells expressing the glial markers GFAP and S100B showed a response to initial microbial invasion of dentin by increase in number and altered anatomical arrangement. The late stage of dentinal caries was marked by collapse of these networks in the region adjacent to advancing bacteria. This behaviour is important for understanding and explaining the defensive response of the neurosensory peripheral dental pulp apparatus to infection.
Collapse
Affiliation(s)
- Mojgan Houshmandi
- Institute of Dental Research, Westmead Millennium Institute and Westmead Centre for Oral Health, Westmead Hospital, Westmead, N.S.W., Australia
| | | | | |
Collapse
|
20
|
Lesot H, Hovorakova M, Peterka M, Peterkova R. Three-dimensional analysis of molar development in the mouse from the cap to bell stage. Aust Dent J 2014; 59 Suppl 1:81-100. [DOI: 10.1111/adj.12132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- H Lesot
- Institut National de la Santé et de la Recherche Médicale; UMR 1109, Team ‘Osteoarticular and Dental Regenerative NanoMedicine’; Strasbourg France
- Université de Strasbourg; Faculté de Chirurgie Dentaire; Strasbourg France
| | - M Hovorakova
- Department of Teratology; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - M Peterka
- Department of Teratology; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - R Peterkova
- Department of Teratology; Institute of Experimental Medicine, Academy of Sciences of the Czech Republic; Prague Czech Republic
| |
Collapse
|