1
|
Kong D, Kong L, Liu C, Wu Q, Wang J, Dai C. Commissural and monosynaptic inputs to medial vestibular nucleus GABAergic neurons in mice. Front Neurol 2024; 15:1484488. [PMID: 39440253 PMCID: PMC11493639 DOI: 10.3389/fneur.2024.1484488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Objective MVN GABAergic neurons is involved in the rebalance of commissural system contributing to alleviating acute peripheral vestibular dysfunction syndrome. This study aims to depict monosynaptic inputs to MVN GABAergic neurons. Methods The modified rabies virus-based retrogradation method combined with the VGAT-IRES-Cre mice was used in this study. Moreover, the commissural connections with MVN GABAergic neurons were analyzed. Results We identified 60 nuclei projecting to MVN GABAergic neurons primarily distributed in the cerebellum and the medulla. The uvula-nodulus, gigantocellular reticular nucleus, prepositus nucleus, intermediate reticular nucleus, and three other nuclei sent dense inputs to MVN GABAergic neurons. The medial (fastigial) cerebellar nucleus, dorsal paragigantocellular nucleus, lateral paragigantocellular nucleus and 10 other nuclei sent moderate inputs to MVN GABAergic neurons. Sparse inputs to MVN GABAergic neurons originated from the nucleus of the solitary tract, lateral reticular nucleus, pedunculopontine tegmental nucleus and 37 other nuclei. The MVN GABAergic neurons were regulated by the contralateral MVN, lateral vestibular nucleus, superior vestibular nucleus, and inferior vestibular nucleus. Conclusion Our study contributes to further understanding of the vestibular dysfunction in terms of neural circuits and search for new strategies to facilitate vestibular compensation.
Collapse
Affiliation(s)
- Dedi Kong
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Lingxi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chengwei Liu
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Qianru Wu
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chunfu Dai
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
XI H, LI X, ZHANG Z, CUI X, JING X, ZHU B, GAO X. Neuro- and immuno-modulation mediated by the cardiac sympathetic nerve: a novel insight into the anti-ischemic efficacy of acupuncture. J TRADIT CHIN MED 2024; 44:1058-1066. [PMID: 39380238 PMCID: PMC11462539 DOI: 10.19852/j.cnki.jtcm.20240423.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/15/2024] [Indexed: 10/14/2024]
Abstract
Communication between sympathetic nerves and the immune system is a crucial and active process during myocardial ischemia (MI), as myocardial damage and inflammatory stimuli concurrently occur. Sympathetic nerves undergo structural and functional changes after MI, leading to adverse left ventricular (LV) remodeling and heart failure (HF). The complex inflammatory response to MI, including local myocardial anti-inflammatory repair and systemic immune reactions, plays a key role in adverse LV remodeling. Here, we review the progressive structural and electrophysiological remodeling of the LV and the involvement of sympathetic tone in complex and dynamic processes that are susceptible to MI pathological conditions. Acupuncture has been reported to effectively improve cardiac function, eliminate arrhythmia, and mitigate adverse LV remodeling via somatosensory regulation after MI. Moreover, acupuncture has an anti-inflammatory effect on the pathological process of myocardial ischemia. In this Review, we aim to summarize the involvement of sympathetic nerve activation in the neuro-immune modulation of structural and functional cardiac changes after MI. As a noninvasive method for sympathetic regulation, acupuncture is an ideal option because of its anti-ischemic efficacy. A better understanding of the neural circuitry that regulates cardiac function and immune responses following MI could reveal novel targets for acupuncture treatment.
Collapse
Affiliation(s)
- Hanqing XI
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xia LI
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ziyi ZHANG
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiang CUI
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xianghong JING
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bing ZHU
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinyan GAO
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
3
|
Holt AG, King S, Naqvi D, Braun RD, Bauer DS, Anderson M, King WM. Stimulation of otolith irregular fibers produces a rostro-caudal gradient in activity in the vestibular nuclear complex (VNC), but not the vestibulocerebellum (VeCb). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614117. [PMID: 39345450 PMCID: PMC11430015 DOI: 10.1101/2024.09.20.614117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The vestibular system is important for posture, balance, motor control, and spatial orientation. Each of the vestibular end organs have specialized neuroepithelia with both regular and irregular afferents. In otolith organs, the utricle and saccule, afferents most responsive to linear jerk (jerk - derivative of acceleration) are located in the striola and project centrally to the vestibular nuclear complex (VNC) as well as the uvula and nodulus of the vestibulocerebellum (VeCb). The pattern of central neuronal activation attributed to otolith irregular afferents is relatively unknown. To address this gap, c-Fos was used as a marker of neuronal activity to map the distribution of active neurons throughout the rostro-caudal extent of the VNC and VeCb. Immunohistochemistry for c-Fos was performed to assess activation of VNC and VeCb neurons in response to a linear jerk stimulus delivered in the naso-occipital plane. Activated neurons were distributed throughout the VNC, including the lateral vestibular nucleus (LVe), magnocellular medial vestibular nucleus (MVeMC), parvocellular medial vestibular nucleus (MVePC), spinal vestibular nucleus (SpVe), and superior vestibular nucleus (SuVe). Notably, after stimulation, the MVePC exhibited the greatest number of c-Fos labeled nuclei. Significant increases in c-Fos labeling were found in mid-rostrocaudal and caudal regions of the VNC in the LVe, MVe, and SpVe. Additionally, c-Fos labeling was observed across all regions of the VeCb after jerk stimulation. Significant increases in the number of labeled nuclei were found throughout the rostro-caudal extent of the nodulus and uvula. However, jerk stimulated increases in activity for the paraflocculus were restricted to the caudal VeCb. The distribution of neuronal activity suggests that regions receiving the greatest direct otolith input exhibit the most substantial changes in response to otolith derived, irregular fiber stimulation. Highlights Nuclei with descending projections (LVe, MVePC, and SpVe) demonstrated the greatest change in activity after naso-occipital jerk stimulation.Naso-occipital jerk stimulation preferentially activates caudal VNC neuronsNaso-occipital jerk stimulation activates neurons throughout the VeCbJerk stimulation in the naso-occipital plane has the greatest effects on activity in VNC and VeCb regions with the greatest inputs from afferents originating in gravity receptors.
Collapse
|
4
|
Choi JY, Lee ES, Kim JS. Vestibular syncope. Curr Opin Neurol 2024; 37:66-73. [PMID: 38193502 DOI: 10.1097/wco.0000000000001226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW This review considers recent observations on vestibular syncope in terms of clinical features, laboratory findings, and potential mechanisms. RECENT FINDINGS Vestibular syncope, potentially associated with severe fall-related injuries, may develop multiple times in about one-third of patients. Meniere's disease and benign paroxysmal positional vertigo are the most common causes of vestibular syncope, but the underlying disorders remain elusive in 62% of cases with vestibular syncope. The postictal orthostatic blood pressure test exhibits a lower diagnostic yield. Vestibular function tests, such as cervical vestibular-evoked myogenic potentials and video head impulse tests, can reveal one or more abnormal findings, suggesting compensated or ongoing minor vestibular dysfunctions. The pathomechanism of syncope is assumed to be the erroneous interaction between the vestibulo-sympathetic reflex and the baroreflex that have different operating mechanisms and action latencies. The central vestibular system, which estimates gravity orientation and inertia motion may also play an important role in abnormal vestibulo-sympathetic reflex. SUMMARY Vestibular disorders elicit erroneous cardiovascular responses by providing false vestibular information. The results include vertigo-induced hypertension or hypotension, which can ultimately lead to syncope in susceptible patients.
Collapse
Affiliation(s)
- Jeong-Yoon Choi
- Dizziness Center, Seoul National University Bundang Hospital, Seongnam
- Department of Neurology, Seoul National University College of Medicine, Seoul
| | - Eek-Sung Lee
- Department of Neurology, Soonchunhang University Bucheon Hospital, Bucheon, Korea
| | - Ji-Soo Kim
- Dizziness Center, Seoul National University Bundang Hospital, Seongnam
- Department of Neurology, Seoul National University College of Medicine, Seoul
| |
Collapse
|
5
|
Kim KT, Lee SU, Kim JB, Choi JY, Kim BJ, Kim JS. Augmented ocular vestibular-evoked myogenic potentials in postural orthostatic tachycardia syndrome. Clin Auton Res 2023; 33:479-489. [PMID: 37115468 DOI: 10.1007/s10286-023-00943-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE To delineate the association between otolith function and changes in mean orthostatic blood pressure (BP) and heart rate (HR) in patients with postural orthostatic tachycardia syndrome (POTS). METHODS Forty-nine patients with POTS were prospectively recruited. We analyzed the results of ocular vestibular-evoked myogenic potentials (oVEMPs) and cervical vestibular-evoked myogenic potentials (cVEMPs), as well as head-up tilt table tests using a Finometer. The oVEMP and cVEMP responses were obtained using tapping stimuli and 110 dB tone-burst sounds, respectively. We measured maximal changes in 5-s averaged systolic BP (SBP), diastolic BP (DBP), and heart rate (HR) within 15 s and during 10 min after tilting. We compared the results with those of 20 age- and sex-matched healthy participants. RESULTS The n1-p1 amplitude of oVEMPs was larger in patients with POTS than in healthy participants (p = 0.001), whereas the n1 latency (p = 0.280) and interaural difference (p = 0.199) did not differ between the two. The n1-p1 amplitude was a positive predictor for POTS (odds ratio 1.07, 95% confidence interval 1.01-1.13, p = 0.025). Body weight (p = 0.007) and n1-p1 amplitude of oVEMP (p = 0.019) were positive predictors for ΔSBP15s in POTS, whereas aging was a negative predictor (p = 0.005). These findings were not observed in healthy participants. CONCLUSIONS Augmented utricular inputs may be associated with a relative predominance of sympathetic over vagal control of BP and HR, especially for an early response during orthostasis in patients with POTS. Overt sympathoexcitation due to exaggerated utricular input and lack of readaptation may be associated with the pathomechanism of POTS.
Collapse
Affiliation(s)
- Keun-Tae Kim
- Department of Neurology, Korea University Medical Center, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Sun-Uk Lee
- Department of Neurology, Korea University Medical Center, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea.
| | - Jung-Bin Kim
- Department of Neurology, Korea University Medical Center, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jeong-Yoon Choi
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
- Dizziness Center, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Byung-Jo Kim
- Department of Neurology, Korea University Medical Center, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, South Korea
- BK21 FOUR Program in Learning Health Systems, Korea University, Seoul, South Korea
| | - Ji-Soo Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
- Dizziness Center, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
6
|
Utricular dysfunction in patients with orthostatic hypotension. Clin Auton Res 2022; 32:431-444. [PMID: 36074194 DOI: 10.1007/s10286-022-00890-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE To delineate the association between otolithic dysfunction and orthostatic hypotension (OH). METHODS We retrospectively reviewed the medical records of 382 patients who presented with orthostatic dizziness at a tertiary dizziness center between July 2017 and December 2021. Patients were included for analyses when they had completed ocular (oVEMP) and/or cervical vestibular-evoked myogenic potentials (cVEMP), and head-up tilt table test with a Finometer (n = 155). We compared the results between the patients with OH (n = 38) and those with NOI (normal head-up tilt table test despite orthostatic intolerance, n = 117). RESULTS Thirty-eight patients with OH were further categorized as either classic (n = 30), delayed (n = 7), or initial (n = 1) types. Multivariable logistic regression showed that OH was associated with high baseline systolic BP (p = 0.046), presence of heart failure (p = 0.016), and unilateral oVEMP abnormalities (p = 0.016). n1 latency of oVEMP were negatively correlated with the maximal changes of systolic blood pressure (BP) in 15 s ([Formula: see text]SBP15s, p = 0.013), 3 min ([Formula: see text]SBP3min, p = 0.005) and 10 min ([Formula: see text]SBP10min, p = 0.002). In contrast, the n1-p1 amplitude was positively correlated with [Formula: see text]SBP15s (p = 0.029). Meanwhile, p13 latency of cVEMP was negatively correlated with [Formula: see text]SBP10min (p = 0.018). CONCLUSIONS Our study provides evidence of utricular dysfunction related to OH.
Collapse
|
7
|
Iser C, Arca K. Headache and Autonomic Dysfunction: a Review. Curr Neurol Neurosci Rep 2022; 22:625-634. [PMID: 35994191 DOI: 10.1007/s11910-022-01225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW We explore the anatomy of the central and peripheral autonomic pathways involved in primary headache as well as the mechanisms for secondary headache associated with disorders of the autonomic nervous system. The prevalence and clinical presentation of cranial and systemic autonomic symptoms in these conditions will be discussed, with a focus on recent studies. RECENT FINDINGS Several small studies have utilized the relationship between headache and the autonomic nervous system to identify potential biomarkers to aid in diagnosis of migraine and cluster headache. Headache in postural orthostatic tachycardia syndrome (POTS) has also been further characterized, particularly in its association with orthostatic headache and spontaneous intracranial hypotension (SIH). This review examines the pathophysiology of primary and secondary headache disorders in the context of the autonomic nervous system. Mechanisms of headache associated with systemic autonomic disorders are also reviewed.
Collapse
Affiliation(s)
- Courtney Iser
- Department of Neurology, Mayo Clinic Scottsdale, Scottsdale, AZ, USA
| | - Karissa Arca
- Department of Neurology, Mayo Clinic Scottsdale, Scottsdale, AZ, USA.
| |
Collapse
|
8
|
Zhao Q, Ning BF, Zhou JY, Wang J, Yao YJ, Peng ZY, Yuan ZL, Chen JD, Xie WF. Transcutaneous Electrical Acustimulation Ameliorates Motion Sickness Induced by Rotary Chair in Healthy Subjects: A Prospective Randomized Crossover Study. Neuromodulation 2022; 25:1421-1430. [DOI: 10.1016/j.neurom.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/25/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022]
|
9
|
Kwon E, Lee JY, Kim HJ, Choi JY, Kim JS. Can Dyssynergia of Vestibulosympathetic and Baroreflexes Cause Vestibular Syncope? The Hypothesis Based on the Velocity-Storage Function. THE CEREBELLUM 2021; 21:244-252. [PMID: 34156636 DOI: 10.1007/s12311-021-01296-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
The mechanism of vestibular syncope, the syncope occurring during the vertigo attacks, remains uncertain. This study aims to clarify the mechanism of vestibular syncope by pursuing the function of vestibular system in cardiovascular autonomic control and by defining neuro-hemodynamic changes in vestibular syncope. By integrating the velocity-storage (VS) circuit in the brainstem and cerebellum, we propose that the vestibular syncope develops as a result of dyssynergia of the vestibulosympathetic and baroreflexes in which centrally estimated downward inertial acceleration during the vertigo attacks acts as a trigger. Recognition of the vestibular disorders as a possible cause of syncope would allow proper managements for prevention of further syncope and related complications in patients with vestibular disorders.
Collapse
Affiliation(s)
- Eunjin Kwon
- Department of Neurology, Chungnam National University Hospital, Daejeon, South Korea
| | - Ju Young Lee
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Hyo-Jung Kim
- Research Administration Team, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jeong-Yoon Choi
- Dizziness Center, Clinical Neuroscience Center, Department of Neurology, Seoul National University Bundang Hospital, Seongnam, South Korea. .,Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea.
| | - Ji-Soo Kim
- Dizziness Center, Clinical Neuroscience Center, Department of Neurology, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Rice D, Martinelli GP, Jiang W, Holstein GR, Rajguru SM. Pulsed Infrared Stimulation of Vertical Semicircular Canals Evokes Cardiovascular Changes in the Rat. Front Neurol 2021; 12:680044. [PMID: 34122320 PMCID: PMC8193737 DOI: 10.3389/fneur.2021.680044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
A variety of stimuli activating vestibular end organs, including sinusoidal galvanic vestibular stimulation, whole body rotation and tilt, and head flexion have been shown to evoke significant changes in blood pressure (BP) and heart rate (HR). While a role for the vertical semicircular canals in altering autonomic activity has been hypothesized, studies to-date attribute the evoked BP and HR responses to the otolith organs. The present study determined whether unilateral activation of the posterior (PC) or anterior (AC) semicircular canal is sufficient to elicit changes in BP and/or HR. The study employed frequency-modulated pulsed infrared radiation (IR: 1,863 nm) directed via optical fibers to PC or AC of adult male Long-Evans rats. BP and HR changes were detected using a small-animal single pressure telemetry device implanted in the femoral artery. Eye movements evoked during IR of the vestibular endorgans were used to confirm the stimulation site. We found that sinusoidal IR delivered to either PC or AC elicited a rapid decrease in BP and HR followed by a stimulation frequency-matched modulation. The magnitude of the initial decrements in HR and BP did not correlate with the energy of the suprathreshold stimulus. This response pattern was consistent across multiple trials within an experimental session, replicable, and in most animals showed no evidence of habituation or an additive effect. Frequency modulated electrical current delivered to the PC and IR stimulation of the AC, caused decrements in HR and BP that resembled those evoked by IR of the PC. Frequency domain heart rate variability assessment revealed that, in most subjects, IR stimulation increased the low frequency (LF) component and decreased the high frequency (HF) component, resulting in an increase in the LF/HF ratio. This ratio estimates the relative contributions of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activities. An injection of atropine, a muscarinic cholinergic receptor antagonist, diminished the IR evoked changes in HR, while the non-selective beta blocker propranolol eliminated changes in both HR and BP. This study provides direct evidence that activation of a single vertical semicircular canal is sufficient to activate and modulate central pathways that control HR and BP.
Collapse
Affiliation(s)
- Darrian Rice
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Weitao Jiang
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Suhrud M Rajguru
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States.,Department of Otolaryngology, University of Miami, Miami, FL, United States
| |
Collapse
|
11
|
Bielanin JP, Douglas NO, Shulgach JA, McCall AA, Miller DM, Amin PR, Murphey CP, Barman SM, Yates BJ. Responses of Neurons in the Medullary Lateral Tegmental Field and Nucleus Tractus Solitarius to Vestibular Stimuli in Conscious Felines. Front Neurol 2020; 11:620817. [PMID: 33391176 PMCID: PMC7775595 DOI: 10.3389/fneur.2020.620817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/30/2020] [Indexed: 01/17/2023] Open
Abstract
Considerable evidence shows that the vestibular system contributes to adjusting sympathetic nervous system activity to maintain adequate blood pressure during movement and changes in posture. However, only a few prior experiments entailed recordings in conscious animals from brainstem neurons presumed to convey baroreceptor and vestibular inputs to neurons in the rostral ventrolateral medulla (RVLM) that provide inputs to sympathetic preganglionic neurons in the spinal cord. In this study, recordings were made in conscious felines from neurons in the medullary lateral tegmental field (LTF) and nucleus tractus solitarius (NTS) identified as regulating sympathetic nervous system activity by exhibiting changes in firing rate related to the cardiac cycle, or cardiac-related activity (CRA). Approximately 38% of LTF and NTS neurons responded to static 40° head up tilts with a change in firing rate (increase for 60% of the neurons, decrease for 40%) of ~50%. However, few of these neurons responded to 10° sinusoidal rotations in the pitch plane, in contrast to prior findings in decerebrate animals that the firing rates of both NTS and LTF neurons are modulated by small-amplitude body rotations. Thus, as previously demonstrated for RVLM neurons, in conscious animals NTS and LTF neurons only respond to large rotations that lead to changes in sympathetic nervous system activity. The similar responses to head-up rotations of LTF and NTS neurons with those documented for RVLM neurons suggest that LTF and NTS neurons are components of the vestibulo-sympathetic reflex pathway. However, a difference between NTS/LTF and RVLM neurons was variability in CRA over time. This variability was significantly greater for RVLM neurons, raising the hypothesis that the responsiveness of these neurons to baroreceptor input is adjusted based on the animal's vigilance and alertness.
Collapse
Affiliation(s)
- John P. Bielanin
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nerone O. Douglas
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jonathan A. Shulgach
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Andrew A. McCall
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Derek M. Miller
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Pooja R. Amin
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Charles P. Murphey
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Susan M. Barman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Bill J. Yates
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Zhang Y, Zhang Y, Tian K, Wang Y, Fan X, Pan Q, Qin G, Zhang D, Chen L, Zhou J. Calcitonin gene-related peptide facilitates sensitization of the vestibular nucleus in a rat model of chronic migraine. J Headache Pain 2020; 21:72. [PMID: 32522232 PMCID: PMC7288551 DOI: 10.1186/s10194-020-01145-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background Vestibular migraine has recently been recognized as a novel subtype of migraine. However, the mechanism that relate vestibular symptoms to migraine had not been well elucidated. Thus, the present study investigated vestibular dysfunction in a rat model of chronic migraine (CM), and to dissect potential mechanisms between migraine and vertigo. Methods Rats subjected to recurrent intermittent administration of nitroglycerin (NTG) were used as the CM model. Migraine- and vestibular-related behaviors were analyzed. Immunofluorescent analyses and quantitative real-time polymerase chain reaction were employed to detect expressions of c-fos and calcitonin gene-related peptide (CGRP) in the trigeminal nucleus caudalis (TNC) and vestibular nucleus (VN). Morphological changes of vestibular afferent terminals was determined under transmission electron microscopy. FluoroGold (FG) and CTB-555 were selected as retrograde tracers and injected into the VN and TNC, respectively. Lentiviral vectors comprising CGRP short hairpin RNA (LV-CGRP) was injected into the trigeminal ganglion. Results CM led to persistent thermal hyperalgesia, spontaneous facial pain, and prominent vestibular dysfunction, accompanied by the upregulation of c-fos labeling neurons and CGRP immunoreactivity in the TNC (c-fos: vehicle vs. CM = 2.9 ± 0.6 vs. 45.5 ± 3.4; CGRP OD: vehicle vs. CM = 0.1 ± 0.0 vs. 0.2 ± 0.0) and VN (c-fos: vehicle vs. CM = 2.3 ± 0.8 vs. 54.0 ± 2.1; CGRP mRNA: vehicle vs. CM = 1.0 ± 0.1 vs. 2.4 ± 0.1). Furthermore, FG-positive neurons was accumulated in the superficial layer of the TNC, and the number of c-fos+/FG+ neurons were significantly increased in rats with CM compared to the vehicle group (vehicle vs. CM = 25.3 ± 2.2 vs. 83.9 ± 3.0). Meanwhile, CTB-555+ neurons dispersed throughout the VN. The structure of vestibular afferent terminals was less pronounced after CM compared with the peripheral vestibular dysfunction model. In vivo knockdown of CGRP in the trigeminal ganglion significantly reduced the number of c-fos labeling neurons (LV-CGRP vs. LV-NC = 9.9 ± 3.0 vs. 60.0 ± 4.5) and CGRP mRNA (LV-CGRP vs. LV-NC = 1.0 ± 0.1 vs. 2.1 ± 0.2) in the VN, further attenuating vestibular dysfunction after CM. Conclusions These data demonstrates the possibility of sensitization of vestibular nucleus neurons to impair vestibular function after CM, and anti-CGRP treatment to restore vestibular dysfunction in patients with CM.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Ke Tian
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaoping Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qi Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
13
|
Clément GR, Boyle RD, George KA, Nelson GA, Reschke MF, Williams TJ, Paloski WH. Challenges to the central nervous system during human spaceflight missions to Mars. J Neurophysiol 2020; 123:2037-2063. [DOI: 10.1152/jn.00476.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Space travel presents a number of environmental challenges to the central nervous system, including changes in gravitational acceleration that alter the terrestrial synergies between perception and action, galactic cosmic radiation that can damage sensitive neurons and structures, and multiple factors (isolation, confinement, altered atmosphere, and mission parameters, including distance from Earth) that can affect cognition and behavior. Travelers to Mars will be exposed to these environmental challenges for up to 3 years, and space-faring nations continue to direct vigorous research investments to help elucidate and mitigate the consequences of these long-duration exposures. This article reviews the findings of more than 50 years of space-related neuroscience research on humans and animals exposed to spaceflight or analogs of spaceflight environments, and projects the implications and the forward work necessary to ensure successful Mars missions. It also reviews fundamental neurophysiology responses that will help us understand and maintain human health and performance on Earth.
Collapse
Affiliation(s)
| | - Richard D. Boyle
- National Aeronautics and Space Administration, Ames Research Center, Moffett Field, California
| | | | - Gregory A. Nelson
- Division of Biomedical Engineering Sciences, School of Medicine Loma Linda University, Loma Linda, California
| | - Millard F. Reschke
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| | - Thomas J. Williams
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| | - William H. Paloski
- National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas
| |
Collapse
|
14
|
Miller DM, Joshi A, Kambouroglos ET, Engstrom IC, Bielanin JP, Wittman SR, McCall AA, Barman SM, Yates BJ. Responses of neurons in the rostral ventrolateral medulla of conscious cats to anticipated and passive movements. Am J Physiol Regul Integr Comp Physiol 2020; 318:R481-R492. [PMID: 31940234 PMCID: PMC7099461 DOI: 10.1152/ajpregu.00205.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/04/2019] [Accepted: 01/02/2020] [Indexed: 11/22/2022]
Abstract
The vestibular system contributes to regulating sympathetic nerve activity and blood pressure. Initial studies in decerebrate animals showed that neurons in the rostral ventrolateral medulla (RVLM) respond to small-amplitude (<10°) rotations of the body, as in other brain areas that process vestibular signals, although such movements do not affect blood distribution in the body. However, a subsequent experiment in conscious animals showed that few RVLM neurons respond to small-amplitude movements. This study tested the hypothesis that RVLM neurons in conscious animals respond to signals from the vestibular otolith organs elicited by large-amplitude static tilts. The activity of approximately one-third of RVLM neurons whose firing rate was related to the cardiac cycle, and thus likely received baroreceptor inputs, was modulated by vestibular inputs elicited by 40° head-up tilts in conscious cats, but not during 10° sinusoidal rotations in the pitch plane that affected the activity of neurons in brain regions providing inputs to the RVLM. These data suggest the existence of brain circuitry that suppresses vestibular influences on the activity of RVLM neurons and the sympathetic nervous system unless these inputs are physiologically warranted. We also determined that RVLM neurons failed to respond to a light cue signaling the movement, suggesting that feedforward cardiovascular responses do not occur before passive movements that require cardiovascular adjustments.
Collapse
Affiliation(s)
- Derek M Miller
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Asmita Joshi
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Isaiah C Engstrom
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John P Bielanin
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel R Wittman
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew A McCall
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Susan M Barman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Takemoto Y. Muscle vasodilator response via potential adrenaline secretion to L-cysteine microinjected in rostral ventrolateral medulla of rats. Auton Neurosci 2020; 224:102644. [DOI: 10.1016/j.autneu.2020.102644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
|
16
|
Bordoni B. The Shape and Function of Solid Fascias Depend on the Presence of Liquid Fascias. Cureus 2020; 12:e6939. [PMID: 32190491 PMCID: PMC7067346 DOI: 10.7759/cureus.6939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Scientific research is not a showcase of his own talent or own resources, it is a chance to improve common knowledge on certain topics for the collective well-being. A researcher should use multidisciplinarity to observe a phenomenon in its entirety and not only its alignment of thought, federations, committees, and knowledge; to get to understand it is necessary to exploit more tools and more disciplines. The article discusses the importance of the fluids (or liquid fascia) in maintaining the shape and function of the human body, as, currently, many texts forget how much body fluids are fundamental for understanding structural dynamics (bones and muscles, fibrils, and cells). By revisiting the current literature, the text wishes to highlight how the liquid fascia determines body adaptation in the presence of mechanical stress. Without fluids, there would be no body shape that we know.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| |
Collapse
|
17
|
Yang X, Sun P, Wu JP, Jiang W, Vai MI, Pun SH, Peng C, Chen F. Nondestructive and objective assessment of the vestibular function in rodent models: A review. Neurosci Lett 2020; 717:134608. [PMID: 31743751 DOI: 10.1016/j.neulet.2019.134608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022]
Abstract
The normal function of the vestibular system is crucial for the sense of balance. The techniques used to assess the vestibular function plays a vital role in the research of the vestibular system. In this article, we have systematically reviewed some popular methods employing vestibular reflexes and vestibular evoked potentials for assessing the vestibular function in rodent models. These vestibular reflexes and vestibular evoked potentials to effective stimuli have been used as nondestructive and objective functional measures. The main types of vestibular reflexes include the vestibulo-ocular reflex (VOR), vestibulocollic reflex (VCR), and vestibulo-sympathetic reflex (VSR). They are all capable of indicating the functions of the semicircular canals and otoliths. However, the VOR assessment is much more prevalently used because of the relatively stereotypical inputoutput relationship and simple motion pattern of the ocular response. In contrast, the complicated motion pattern and small gain of the VCR response, as well as the undesired component possibly contributed from the acceleration receptors outside the labyrinths in the VSR response, restrict the widespread applications of VCR and VSR in the assessment of the vestibular system. The vestibular evoked myogenic potentials (VEMPs) and vestibular sensory evoked potentials (VsEPs) are the two typical evoked potentials that have been also employed for evaluating the vestibular function. Through exploiting different types of the VEMPs, the saccular and utricular functions can be evaluated separately. The sound-induced VEMPs, moreover, are capable of noninvasively assessing the unilateral vestibular function. The VsEPs, via the morphology of their signal waveforms, enable the access to the location-specific information that indicates the functional statuses of different components within the vestibular neural pathway.
Collapse
Affiliation(s)
- Xiaojie Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Peng Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau, China
| | - Jian-Ping Wu
- Academy of Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Weitao Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Mang I Vai
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau, China.
| | - Sio Hang Pun
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau, China.
| | - Cheng Peng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
18
|
Samoudi G, Nilsson A, Carlsson T, Bergquist F. c-Fos Expression after Stochastic Vestibular Stimulation and Levodopa in 6-OHDA Hemilesioned Rats. Neuroscience 2020; 424:146-154. [DOI: 10.1016/j.neuroscience.2019.10.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022]
|
19
|
Gagliuso AH, Chapman EK, Martinelli GP, Holstein GR. Vestibular neurons with direct projections to the solitary nucleus in the rat. J Neurophysiol 2019; 122:512-524. [PMID: 31166818 PMCID: PMC6734410 DOI: 10.1152/jn.00082.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Anterograde and retrograde tract tracing were combined with neurotransmitter and modulator immunolabeling to identify the chemical anatomy of vestibular nuclear neurons with direct projections to the solitary nucleus in rats. Direct, sparsely branched but highly varicose axonal projections from neurons in the caudal vestibular nuclei to the solitary nucleus were observed. The vestibular neurons giving rise to these projections were predominantly located in ipsilateral medial vestibular nucleus. The cell bodies were intensely glutamate immunofluorescent, and their axonal processes contained vesicular glutamate transporter 2, supporting the interpretation that the cells utilize glutamate for neurotransmission. The glutamate-immunofluorescent, retrogradely filled vestibular cells also contained the neuromodulator imidazoleacetic acid ribotide, which is an endogenous CNS ligand that participates in blood pressure regulation. The vestibulo-solitary neurons were encapsulated by axo-somatic GABAergic terminals, suggesting that they are under tight inhibitory control. The results establish a chemoanatomical basis for transient vestibular activation of the output pathways from the caudal and intermediate regions of the solitary nucleus. In this way, changes in static head position and movement of the head in space may directly influence heart rate, blood pressure, respiration, as well as gastrointestinal motility. This would provide one anatomical explanation for the synchronous heart rate and blood pressure responses observed after peripheral vestibular activation, as well as disorders ranging from neurogenic orthostatic hypotension, postural orthostatic tachycardia syndrome, and vasovagal syncope to the nausea and vomiting associated with motion sickness.NEW & NOTEWORTHY Vestibular neurons with direct projections to the solitary nucleus utilize glutamate for neurotransmission, modulated by imidazoleacetic acid ribotide. This is the first direct demonstration of the chemical neuroanatomy of the vestibulo-solitary pathway.
Collapse
Affiliation(s)
- Amelia H Gagliuso
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emily K Chapman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
20
|
Pyykkö I, Manchaiah V, Zou J, Levo H, Kentala E. Association between Syncope and Tumarkin Attacks in Ménière's Disease. J Int Adv Otol 2019; 15:135-140. [PMID: 31058603 PMCID: PMC6483450 DOI: 10.5152/iao.2019.6094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES The aim of the current study was to further collect evidence that would confirm the hypothesis that vestibular drop attacks (VDAs) could cause syncope in patients with Ménière's disease (MD). MATERIALS AND METHODS A cross-sectional survey design was employed in the present study. An Internet-based survey was administered on 602 individuals with MD. The mean age of the participants was 56.7 (25-75) years, and the mean duration of the disease was 12.4 (0.5-35) years. RESULTS VDAs with varying severity were present among 307 (50.7%) patients and led to fall in 92 patients, and syncope occurred in 45 patients with VDA. The overall percentage of syncope due to MD was 4.7%. Factors, such as duration of disease, age, and gender of the patient, did not explain attacks of syncope. Migraine and headache were not associated with syncope. Syncope was witnessed in 23 and self-reported by 22 patients. Syncope was associated with frequent VDA, duration of VDA, and falls that occurred during VDA. Patients with syncope reported the experience as frightening, had reduced general health-related quality of life, had higher anxiousness scores, and suffered more from fatigue. They also experienced problems with work, employment, and social restrictions. CONCLUSION Approximately 5% of patients with MD suffer from syncope, and syncope occurs among patients with VDA. In vestibular syncope, the sympathetic tone is lost, and baroreflex feedback is inhibited leading to fall and syncope. The consequences of vestibular syncope are severe, and patients face injuries and a significantly reduced quality of life.
Collapse
Affiliation(s)
- Ilmari Pyykkö
- Department of Otolaryngology, University of Tampere, School of Medicine, Tampere, Finland
| | - Vinaya Manchaiah
- Department of Speech and Hearing Sciences, Lamar University, School of Medicine, Beaumont, USA
| | - Jing Zou
- Department of Otolaryngology, University of Tampere, School of Medicine, Tampere, Finland
| | - Hilla Levo
- Department of Otolaryngology, University of Helsinki, School of Medicine, Helsinki, Finland
| | - Erna Kentala
- Department of Otolaryngology, University of Helsinki, School of Medicine, Helsinki, Finland
| |
Collapse
|
21
|
Abstract
Although motion of the head and body has been suspected or known as the provocative cause for the production of motion sickness for centuries, it is only within the last 20 yr that the source of the signal generating motion sickness and its neural basis has been firmly established. Here, we briefly review the source of the conflicts that cause the body to generate the autonomic signs and symptoms that constitute motion sickness and provide a summary of the experimental data that have led to an understanding of how motion sickness is generated and can be controlled. Activity and structures that produce motion sickness include vestibular input through the semicircular canals, the otolith organs, and the velocity storage integrator in the vestibular nuclei. Velocity storage is produced through activity of vestibular-only (VO) neurons under control of neural structures in the nodulus of the vestibulo-cerebellum. Separate groups of nodular neurons sense orientation to gravity, roll/tilt, and translation, which provide strong inhibitory control of the VO neurons. Additionally, there are acetylcholinergic projections from the nodulus to the stomach, which along with other serotonergic inputs from the vestibular nuclei, could induce nausea and vomiting. Major inhibition is produced by the GABAB receptors, which modulate and suppress activity in the velocity storage integrator. Ingestion of the GABAB agonist baclofen causes suppression of motion sickness. Hopefully, a better understanding of the source of sensory conflict will lead to better ways to avoid and treat the autonomic signs and symptoms that constitute the syndrome.
Collapse
Affiliation(s)
- Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| | - Mingjia Dai
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| | - Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| | - Catherine Cho
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| |
Collapse
|
22
|
Cohen B, Lewis R. Editorial: Vestibular Contributions to Health and Disease. Front Neurol 2018; 9:117. [PMID: 29615952 PMCID: PMC5867307 DOI: 10.3389/fneur.2018.00117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/19/2018] [Indexed: 01/21/2023] Open
Affiliation(s)
- Bernard Cohen
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States
| | - Richard Lewis
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Vestibular syncope: A disorder associated with drop attack in Ménière’s disease. Auris Nasus Larynx 2018; 45:234-241. [DOI: 10.1016/j.anl.2017.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/11/2017] [Accepted: 03/23/2017] [Indexed: 01/02/2023]
|
24
|
Barman SM, Yates BJ. Deciphering the Neural Control of Sympathetic Nerve Activity: Status Report and Directions for Future Research. Front Neurosci 2017; 11:730. [PMID: 29311801 PMCID: PMC5743742 DOI: 10.3389/fnins.2017.00730] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/14/2017] [Indexed: 12/15/2022] Open
Abstract
Sympathetic nerve activity (SNA) contributes appreciably to the control of physiological function, such that pathological alterations in SNA can lead to a variety of diseases. The goal of this review is to discuss the characteristics of SNA, briefly review the methodology that has been used to assess SNA and its control, and to describe the essential role of neurophysiological studies in conscious animals to provide additional insights into the regulation of SNA. Studies in both humans and animals have shown that SNA is rhythmic or organized into bursts whose frequency varies depending on experimental conditions and the species. These rhythms are generated by brainstem neurons, and conveyed to sympathetic preganglionic neurons through several pathways, including those emanating from the rostral ventrolateral medulla. Although rhythmic SNA is present in decerebrate animals (indicating that neurons in the brainstem and spinal cord are adequate to generate this activity), there is considerable evidence that a variety of supratentorial structures including the insular and prefrontal cortices, amygdala, and hypothalamic subnuclei provide inputs to the brainstem regions that regulate SNA. It is also known that the characteristics of SNA are altered during stress and particular behaviors such as the defense response and exercise. While it is a certainty that supratentorial structures contribute to changes in SNA during these behaviors, the neural underpinnings of the responses are yet to be established. Understanding how SNA is modified during affective responses and particular behaviors will require neurophysiological studies in awake, behaving animals, including those that entail recording activity from neurons that generate SNA. Recent studies have shown that responses of neurons in the central nervous system to most sensory inputs are context-specific. Future neurophysiological studies in conscious animals should also ascertain whether this general rule also applies to sensory signals that modify SNA.
Collapse
Affiliation(s)
- Susan M Barman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
25
|
Park SE, Jin YZ, Park BR. Dual control of the vestibulosympathetic reflex following hypotension in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:675-686. [PMID: 29200911 PMCID: PMC5709485 DOI: 10.4196/kjpp.2017.21.6.675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 12/29/2022]
Abstract
Orthostatic hypotension (OH) is associated with symptoms including headache, dizziness, and syncope. The incidence of OH increases with age. Attenuation of the vestibulosympathetic reflex (VSR) is also associated with an increased incidence of OH. In order to understand the pathophysiology of OH, we investigated the physiological characteristics of the VSR in the disorder. We applied sodium nitroprusside (SNP) to conscious rats with sinoaortic denervation in order to induce hypotension. Expression of pERK in the intermediolateral cell column (IMC) of the T4~7 thoracic spinal regions, blood epinephrine levels, and blood pressure were evaluated following the administration of glutamate and/or SNP. SNP-induced hypotension led to increased pERK expression in the medial vestibular nucleus (MVN), rostral ventrolateral medullary nucleus (RVLM) and the IMC, as well as increased blood epinephrine levels. We co-administered either a glutamate receptor agonist or a glutamate receptor antagonist to the MVN or the RVLM. The administration of the glutamate receptor agonists, AMPA or NMDA, to the MVN or RVLM led to elevated blood pressure, increased pERK expression in the IMC, and increased blood epinephrine levels. Administration of the glutamate receptor antagonists, CNQX or MK801, to the MVN or RVLM attenuated the increased pERK expression and blood epinephrine levels caused by SNP-induced hypotension. These results suggest that two components of the pathway which maintains blood pressure are involved in the VSR induced by SNP. These are the neurogenic control of blood pressure via the RVLM and the humoral control of blood pressure via epinephrine release from the adrenal medulla.
Collapse
Affiliation(s)
- Sang Eon Park
- Department of Orthopedic Surgery, Kyung Hee University Hospital, Seoul 02447, Korea
| | - Yuan-Zhe Jin
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji 133002, China
| | - Byung Rim Park
- Department of Physiology, Wonkwang University of School of Medicine and Brain Science Institute at Wonkwang University, Iksan 54538, Korea
| |
Collapse
|
26
|
Mathews MA, Camp AJ, Murray AJ. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits. Front Physiol 2017; 8:552. [PMID: 28824449 PMCID: PMC5539236 DOI: 10.3389/fphys.2017.00552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/17/2017] [Indexed: 12/31/2022] Open
Abstract
Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS) in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate corollary discharge from the spinal cord through the efferent vestibular nucleus (EVN), and hint at a potential role in overall vestibular plasticity and compensation. Hypotheses range from differentiating between passive and active movements at the level of vestibular afferents, to EVS activation under specific behavioral and environmental contexts such as arousal, predation, and locomotion. In this review, we summarize current knowledge of EVS circuitry, its effects on vestibular hair cell and primary afferent activity, and discuss its potential functional roles.
Collapse
Affiliation(s)
- Miranda A Mathews
- Sensory Systems and Integration Laboratory, Bosch Institute, Discipline of Biomedical Science, University of SydneySydney, NSW, Australia
| | - Aaron J Camp
- Sensory Systems and Integration Laboratory, Bosch Institute, Discipline of Biomedical Science, University of SydneySydney, NSW, Australia
| | - Andrew J Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondon, United Kingdom
| |
Collapse
|
27
|
Curthoys IS, MacDougall HG, Vidal PP, de Waele C. Sustained and Transient Vestibular Systems: A Physiological Basis for Interpreting Vestibular Function. Front Neurol 2017; 8:117. [PMID: 28424655 PMCID: PMC5371610 DOI: 10.3389/fneur.2017.00117] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/14/2017] [Indexed: 01/17/2023] Open
Abstract
Otolithic afferents with regular resting discharge respond to gravity or low-frequency linear accelerations, and we term these the static or sustained otolithic system. However, in the otolithic sense organs, there is anatomical differentiation across the maculae and corresponding physiological differentiation. A specialized band of receptors called the striola consists of mainly type I receptors whose hair bundles are weakly tethered to the overlying otolithic membrane. The afferent neurons, which form calyx synapses on type I striolar receptors, have irregular resting discharge and have low thresholds to high frequency (e.g., 500 Hz) bone-conducted vibration and air-conducted sound. High-frequency sound and vibration likely causes fluid displacement which deflects the weakly tethered hair bundles of the very fast type I receptors. Irregular vestibular afferents show phase locking, similar to cochlear afferents, up to stimulus frequencies of kilohertz. We term these irregular afferents the transient system signaling dynamic otolithic stimulation. A 500-Hz vibration preferentially activates the otolith irregular afferents, since regular afferents are not activated at intensities used in clinical testing, whereas irregular afferents have low thresholds. We show how this sustained and transient distinction applies at the vestibular nuclei. The two systems have differential responses to vibration and sound, to ototoxic antibiotics, to galvanic stimulation, and to natural linear acceleration, and such differential sensitivity allows probing of the two systems. A 500-Hz vibration that selectively activates irregular otolithic afferents results in stimulus-locked eye movements in animals and humans. The preparatory myogenic potentials for these eye movements are measured in the new clinical test of otolith function—ocular vestibular-evoked myogenic potentials. We suggest 500-Hz vibration may identify the contribution of the transient system to vestibular controlled responses, such as vestibulo-ocular, vestibulo-spinal, and vestibulo-sympathetic responses. The prospect of particular treatments targeting one or the other of the transient or sustained systems is now being realized in the clinic by the use of intratympanic gentamicin which preferentially attacks type I receptors. We suggest that it is valuable to view vestibular responses by this sustained-transient distinction.
Collapse
Affiliation(s)
- Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Hamish G MacDougall
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Pierre-Paul Vidal
- Cognition and Action Group, CNRS UMR8257, Centre Universitaire des Saints-Pères, University Paris Descartes, Paris, France
| | | |
Collapse
|
28
|
McCall AA, Miller DM, Yates BJ. Descending Influences on Vestibulospinal and Vestibulosympathetic Reflexes. Front Neurol 2017; 8:112. [PMID: 28396651 PMCID: PMC5366978 DOI: 10.3389/fneur.2017.00112] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
This review considers the integration of vestibular and other signals by the central nervous system pathways that participate in balance control and blood pressure regulation, with an emphasis on how this integration may modify posture-related responses in accordance with behavioral context. Two pathways convey vestibular signals to limb motoneurons: the lateral vestibulospinal tract and reticulospinal projections. Both pathways receive direct inputs from the cerebral cortex and cerebellum, and also integrate vestibular, spinal, and other inputs. Decerebration in animals or strokes that interrupt corticobulbar projections in humans alter the gain of vestibulospinal reflexes and the responses of vestibular nucleus neurons to particular stimuli. This evidence shows that supratentorial regions modify the activity of the vestibular system, but the functional importance of descending influences on vestibulospinal reflexes acting on the limbs is currently unknown. It is often overlooked that the vestibulospinal and reticulospinal systems mainly terminate on spinal interneurons, and not directly on motoneurons, yet little is known about the transformation of vestibular signals that occurs in the spinal cord. Unexpected changes in body position that elicit vestibulospinal reflexes can also produce vestibulosympathetic responses that serve to maintain stable blood pressure. Vestibulosympathetic reflexes are mediated, at least in part, through a specialized group of reticulospinal neurons in the rostral ventrolateral medulla that project to sympathetic preganglionic neurons in the spinal cord. However, other pathways may also contribute to these responses, including those that dually participate in motor control and regulation of sympathetic nervous system activity. Vestibulosympathetic reflexes differ in conscious and decerebrate animals, indicating that supratentorial regions alter these responses. However, as with vestibular reflexes acting on the limbs, little is known about the physiological significance of descending control of vestibulosympathetic pathways.
Collapse
Affiliation(s)
- Andrew A McCall
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Derek M Miller
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| |
Collapse
|
29
|
Pyykkö I, Manchaiah V, Zou J, Levo H, Kentala E. Do patients with Ménière’s disease have attacks of syncope? J Neurol 2017; 264:48-54. [DOI: 10.1007/s00415-017-8452-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/06/2017] [Accepted: 03/10/2017] [Indexed: 01/08/2023]
|
30
|
Cohen B, Martinelli GP, Xiang Y, Raphan T, Yakushin SB. Vestibular Activation Habituates the Vasovagal Response in the Rat. Front Neurol 2017; 8:83. [PMID: 28360882 PMCID: PMC5350135 DOI: 10.3389/fneur.2017.00083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
Abstract
Vasovagal syncope is a significant medical problem without effective therapy, postulated to be related to a collapse of baroreflex function. While some studies have shown that repeated static tilts can block vasovagal syncope, this was not found in other studies. Using anesthetized, male Long–Evans rats that were highly susceptible to generation of vasovagal responses, we found that repeated activation of the vestibulosympathetic reflex (VSR) with ±2 and ±3 mA, 0.025 Hz sinusoidal galvanic vestibular stimulation (sGVS) caused incremental changes in blood pressure (BP) and heart rate (HR) that blocked further generation of vasovagal responses. Initially, BP and HR fell ≈20–50 mmHg and ≈20–50 beats/min (bpm) into a vasovagal response when stimulated with Sgv\S in susceptible rats. As the rats were continually stimulated, HR initially rose to counteract the fall in BP; then the increase in HR became more substantial and long lasting, effectively opposing the fall in BP. Finally, the vestibular stimuli simply caused an increase in BP, the normal sequence following activation of the VSR. Concurrently, habituation caused disappearance of the low-frequency (0.025 and 0.05 Hz) oscillations in BP and HR that must be present when vasovagal responses are induced. Habituation also produced significant increases in baroreflex sensitivity (p < 0.001). Thus, repeated low-frequency activation of the VSR resulted in a reduction and loss of susceptibility to development of vasovagal responses in rats that were previously highly susceptible. We posit that reactivation of the baroreflex, which is depressed by anesthesia and the disappearance of low-frequency oscillations in BP and HR are likely to be critically involved in producing resistance to the development of vasovagal responses. SGVS has been widely used to activate muscle sympathetic nerve activity in humans and is safe and well tolerated. Potentially, it could be used to produce similar habituation of vasovagal syncope in humans.
Collapse
Affiliation(s)
- Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Yongqing Xiang
- Department of Computer and Information Science, Brooklyn College, City University of New York , New York, NY , USA
| | - Theodore Raphan
- Department of Computer and Information Science, Brooklyn College, City University of New York , New York, NY , USA
| | - Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|
31
|
Rajagopalan A, Jinu KV, Sailesh KS, Mishra S, Reddy UK, Mukkadan JK. Understanding the links between vestibular and limbic systems regulating emotions. J Nat Sci Biol Med 2017; 8:11-15. [PMID: 28250668 PMCID: PMC5320810 DOI: 10.4103/0976-9668.198350] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Vestibular system, which consists of structures in the inner ear and brainstem, plays a vital role is body balance and patient well-being. In recent years, modulating this system by vestibular stimulation techniques are reported to be effective in stress relief and possibly patient's emotional well-being. Emotions refer to an aroused state involving intense feeling, autonomic activation, and related change in behavior, which accompany many of our conscious experiences. The limbic system is primarily involved in the regulation of emotions. Considering the extensive networks between vestibular and limbic system, it is likely that vestibular stimulation techniques may be useful in influencing emotions. Hence, we review here, the possible mechanisms through which vestibular system can influence emotions and highlight the necessary knowledge gaps, which warrants further research to develop vestibular stimulation techniques as a means to treat health conditions associated with emotional disturbances.
Collapse
Affiliation(s)
- Archana Rajagopalan
- Department of Physiology, Saveetha Medical College, Saveetha University, Chennai, Tamil Nadu, India
| | - K V Jinu
- Department of Physiology, Little Flower Institute of Medical Sciences and Research, Angamaly, Kerala, India
| | - Kumar Sai Sailesh
- Department of Physiology, Little Flower Institute of Medical Sciences and Research, Angamaly, Kerala, India
| | - Soumya Mishra
- Department of Physiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Udaya Kumar Reddy
- International Stress Management Association-India, Hyderabad, Telangana, India
| | - Joseph Kurien Mukkadan
- Department of Physiology, Little Flower Medical Research Centre, Angamaly, Kerala, India
| |
Collapse
|
32
|
Yakushin SB, Martinelli GP, Raphan T, Cohen B. The response of the vestibulosympathetic reflex to linear acceleration in the rat. J Neurophysiol 2016; 116:2752-2764. [PMID: 27683882 PMCID: PMC5141259 DOI: 10.1152/jn.00217.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/26/2016] [Indexed: 12/19/2022] Open
Abstract
The vestibulosympathetic reflex (VSR) increases blood pressure (BP) upon arising to maintain blood flow to the brain. The optimal directions of VSR activation and whether changes in heart rate (HR) are associated with changes in BP are still not clear. We used manually activated pulses and oscillatory linear accelerations of 0.2-2.5 g along the naso-occipital, interaural, and dorsoventral axes in isoflurane-anesthetized, male Long-Evans rats. BP and HR were recorded with an intra-aortic sensor and acceleration with a three-dimensional accelerometer. Linear regressions of BP changes in accelerations along the upward, downward, and forward axes had slopes of ≈3-6 mmHg · g-1 (P < 0.05). Lateral and backward accelerations did not produce consistent changes in BP. Thus upward, downward, and forward translations were the directions that significantly altered BP. HR was unaffected by these translations. The VSR sensitivity to oscillatory forward-backward translations was ≈6-10 mmHg · g-1 at frequencies of ≈0.1 Hz (0.2 g), decreasing to zero at frequencies above 2 Hz (1.8 g). Upward, 70° tilts of an alert rat increased BP by 9 mmHg · g-1 without changes in HR, indicating that anesthesia had not reduced the VSR sensitivity. The similarity in BP induced in alert and anesthetized rats indicates that the VSR is relatively insensitive to levels of alertness and that the VSR is likely to cause changes in BP through modification of peripheral vascular resistance. Thus the VSR, which is directed toward the cardiovascular system, is in contrast to the responses in the alert state that can produce sweating, alterations in BP and HR, and motion sickness.
Collapse
Affiliation(s)
- S B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - G P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - T Raphan
- Department of Computer and Information Sciences, Brooklyn College, City University of New York, New York, New York
| | - B Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; and
| |
Collapse
|
33
|
McBride DW, Reis C, Frank E, Klebe DW, Zhang JH, Applegate R, Tang J. An Experimental Model of Vasovagal Syncope Induces Cerebral Hypoperfusion and Fainting-Like Behavior in Awake Rats. PLoS One 2016; 11:e0163280. [PMID: 27658057 PMCID: PMC5033448 DOI: 10.1371/journal.pone.0163280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/05/2016] [Indexed: 11/25/2022] Open
Abstract
Vasovagal syncope, a contributing factor to elderly falls, is the transient loss of consciousness caused by decreased cerebral perfusion. Vasovagal syncope is characterized by hypotension, bradycardia, and reduced cerebral blood flow, resulting in fatigue, altered coordination, and fainting. The purpose of this study is to develop an animal model which is similar to human vasovagal syncope and establish an awake animal model of vasovagal syncope. Male Sprague-Dawley rats were subjected to sinusoidal galvanic vestibular stimulation (sGVS). Blood pressure, heart rate, and cerebral blood flow were monitored before, during, and post-stimulation. sGVS resulted in hypotension, bradycardia, and decreased cerebral blood flow. One cohort of animals was subjected to sGVS while freely moving. sGVS in awake animals produced vasovagal syncope-like symptoms, including fatigue and uncoordinated movements; two animals experienced spontaneous falling. Another cohort of animals was preconditioned with isoflurane for several days before being subjected to sGVS. Isoflurane preconditioning before sGVS did not prevent sGVS-induced hypotension or bradycardia, yet isoflurane preconditioning attenuated sGVS-induced cerebral blood flow reduction. The sGVS rat model mimics elements of human vasovagal syncope pathophysiology (hypotension, bradycardia, and decreased cerebral perfusion), including behavioral symptoms such as fatigue and altered balance. This study indicates that the sGVS rat model is similar to human vasovagal syncope and that therapies directed at preventing cerebral hypoperfusion may decrease syncopal episodes and reduce injuries from syncopal falls.
Collapse
Affiliation(s)
- Devin W. McBride
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, California, United States of America
| | - Cesar Reis
- Department of Anesthesiology, Loma Linda University, Loma Linda, California, United States of America
| | - Ethan Frank
- Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Damon W. Klebe
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, California, United States of America
| | - John H. Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, California, United States of America
- Department of Neurosurgery, Loma Linda University, Loma Linda, California, United States of America
| | - Richard Applegate
- Department of Anesthesiology, Loma Linda University, Loma Linda, California, United States of America
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Bigelow RT, Semenov YR, Anson E, du Lac S, Ferrucci L, Agrawal Y. Impaired Vestibular Function and Low Bone Mineral Density: Data from the Baltimore Longitudinal Study of Aging. J Assoc Res Otolaryngol 2016; 17:433-40. [PMID: 27447468 DOI: 10.1007/s10162-016-0577-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 07/05/2016] [Indexed: 12/21/2022] Open
Abstract
Animal studies have demonstrated that experimentally induced vestibular ablation leads to a decrease in bone mineral density, through mechanisms mediated by the sympathetic nervous system. Loss of bone mineral density is a common and potentially morbid condition that occurs with aging, and we sought to investigate whether vestibular loss is associated with low bone mineral density in older adults. We evaluated this question in a cross-sectional analysis of data from the Baltimore Longitudinal Study of Aging (BLSA), a large, prospective cohort study managed by the National Institute on Aging (N = 389). Vestibular function was assessed with cervical vestibular evoked myogenic potentials (cVEMPs), a measure of saccular function. Bone mineral density was assessed using dual-energy X-ray absorptiometry (DEXA). In two-way t test analysis, we observed that individuals with reduced vestibular physiologic function had significantly lower bone mineral density. In adjusted multivariate linear regression analyses, we observed that older individuals with reduced vestibular physiologic function had significantly lower bone mineral density, specifically in weight-bearing hip and lower extremity bones. These results suggest that the vestibular system may contribute to bone homeostasis in older adults, notably of the weight-bearing hip bones at greatest risk of osteoporotic fracture. Further longitudinal analysis of vestibular function and bone mineral density in humans is needed to characterize this relationship and investigate the potential confounding effect of physical activity.
Collapse
Affiliation(s)
- Robin T Bigelow
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins University School of Medicine, 601 N Caroline Street, Baltimore, MD, 21287, USA.
| | - Yevgeniy R Semenov
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins University School of Medicine, 601 N Caroline Street, Baltimore, MD, 21287, USA
| | - Eric Anson
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins University School of Medicine, 601 N Caroline Street, Baltimore, MD, 21287, USA
| | - Sascha du Lac
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins University School of Medicine, 601 N Caroline Street, Baltimore, MD, 21287, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Clinical Research Branch, National Institute on Aging, Baltimore, MD, USA
| | - Yuri Agrawal
- Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins University School of Medicine, 601 N Caroline Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
35
|
Holstein GR, Friedrich VL, Martinelli GP. Imidazoleacetic acid-ribotide in vestibulo-sympathetic pathway neurons. Exp Brain Res 2016; 234:2747-60. [PMID: 27411812 DOI: 10.1007/s00221-016-4725-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
Imidazole-4-acetic acid-ribotide (IAARP) is a putative neurotransmitter/modulator and an endogenous regulator of sympathetic drive, notably systemic blood pressure, through binding to imidazoline receptors. IAARP is present in neurons and processes throughout the CNS, but is particularly prevalent in regions that are involved in blood pressure control. The goal of this study was to determine whether IAARP is present in neurons in the caudal vestibular nuclei that participate in the vestibulo-sympathetic reflex (VSR) pathway. This pathway is important in modulating blood pressure upon changes in head position with regard to gravity, as occurs when humans rise from a supine position and when quadrupeds climb or rear. Sinusoidal galvanic vestibular stimulation was used to activate the VSR and cfos gene expression in VSR pathway neurons of rats. These subjects had previously received a unilateral FluoroGold tracer injection in the rostral or caudal ventrolateral medullary region. The tracer was transported retrogradely and filled vestibular neuronal somata with direct projections to the injected region. Brainstem sections through the caudal vestibular nuclei were immunostained to visualize FluoroGold, cFos protein, IAARP and glutamate immunofluorescence. The results demonstrate that IAARP is present in vestibular neurons of the VSR pathway, where it often co-localizes with intense glutamate immunofluorescence. The co-localization of IAARP and intense glutamate immunofluorescence in VSR neurons may represent an efficient chemoanatomical configuration, allowing the vestibular system to rapidly up- and down-modulate the activity of presympathetic neurons in the ventrolateral medulla, thereby altering blood pressure.
Collapse
Affiliation(s)
- Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, Box 1140, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Anatomy/Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Victor L Friedrich
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai, Box 1140, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
36
|
Raphan T, Cohen B, Xiang Y, Yakushin SB. A Model of Blood Pressure, Heart Rate, and Vaso-Vagal Responses Produced by Vestibulo-Sympathetic Activation. Front Neurosci 2016; 10:96. [PMID: 27065779 PMCID: PMC4814511 DOI: 10.3389/fnins.2016.00096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/26/2016] [Indexed: 12/17/2022] Open
Abstract
Blood Pressure (BP), comprised of recurrent systoles and diastoles, is controlled by central mechanisms to maintain blood flow. Periodic behavior of BP was modeled to study how peak amplitudes and frequencies of the systoles are modulated by vestibular activation. The model was implemented as a relaxation oscillator, driven by a central signal related to Desired BP. Relaxation oscillations were maintained by a second order system comprising two integrators and a threshold element in the feedback loop. The output signal related to BP was generated as a nonlinear function of the derivative of the first state variable, which is a summation of an input related to Desired BP, feedback from the states, and an input from the vestibular system into one of the feedback loops. This nonlinear function was structured to best simulate the shapes of systoles and diastoles, the relationship between BP and Heart Rate (HR) as well as the amplitude modulations of BP and Pulse Pressure. Increases in threshold in one of the feedback loops produced lower frequencies of HR, but generated large pulse pressures to maintain orthostasis, without generating a VasoVagal Response (VVR). Pulse pressures were considerably smaller in the anesthetized rats than during the simulations, but simulated pulse pressures were lowered by including saturation in the feedback loop. Stochastic changes in threshold maintained the compensatory Baroreflex Sensitivity. Sudden decreases in Desired BP elicited non-compensatory VVRs with smaller pulse pressures, consistent with experimental data. The model suggests that the Vestibular Sympathetic Reflex (VSR) modulates BP and HR of an oscillating system by manipulating parameters of the baroreflex feedback and the signals that maintain the oscillations. It also shows that a VVR is generated when the vestibular input triggers a marked reduction in Desired BP.
Collapse
Affiliation(s)
- Theodore Raphan
- Department of Computer and Information Science, Institute for Neural and Intelligent Systems, Brooklyn College, City University of New York New York, NY, USA
| | - Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Yongqing Xiang
- Department of Computer and Information Science, Institute for Neural and Intelligent Systems, Brooklyn College, City University of New York New York, NY, USA
| | - Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
37
|
Holstein GR, Friedrich VLJ, Martinelli GP. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons. Front Neuroanat 2016; 10:7. [PMID: 26903817 PMCID: PMC4744852 DOI: 10.3389/fnana.2016.00007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/25/2016] [Indexed: 12/19/2022] Open
Abstract
The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first demonstration of two disparate chemoanatomic VSR pathways.
Collapse
Affiliation(s)
- Gay R. Holstein
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Anatomy/Functional Morphology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | | | | |
Collapse
|
38
|
Abstract
Neuronal networks that are linked to the peripheral vestibular system contribute to gravitoinertial sensation, balance control, eye movement control, and autonomic function. Ascending connections to the limbic system and cerebral cortex are also important for motion perception and threat recognition, and play a role in comorbid balance and anxiety disorders. The vestibular system also shows remarkable plasticity, termed vestibular compensation. Activity in these networks is regulated by an interaction between: (1) intrinsic neurotransmitters of the inner ear, vestibular nerve, and vestibular nuclei; (2) neurotransmitters associated with thalamocortical and limbic pathways that receive projections originating in the vestibular nuclei; and (3) locus coeruleus and raphe (serotonergic and nonserotonergic) projections that influence the latter components. Because the ascending vestibular interoceptive and thalamocortical pathways include networks that influence a broad range of stress responses (endocrine and autonomic), memory consolidation, and cognitive functions, common transmitter substrates provide a basis for understanding features of acute and chronic vestibular disorders.
Collapse
Affiliation(s)
- C D Balaban
- Departments of Otolaryngology, Neurobiology, Communication Sciences and Disorders, and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Afferent and efferent connections of C1 cells with spinal cord or hypothalamic projections in mice. Brain Struct Funct 2015; 221:4027-4044. [PMID: 26560463 DOI: 10.1007/s00429-015-1143-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/02/2015] [Indexed: 12/20/2022]
Abstract
The axonal projections and synaptic input of the C1 adrenergic neurons of the rostral ventrolateral medulla (VLM) were examined using transgenic dopamine-beta hydroxylase Cre mice and modified rabies virus. Cre-dependent viral vectors expressing TVA (receptor for envelopeA) and rabies glycoprotein were injected into the left VLM. EnvelopeA-pseudotyped rabies-EGFP glycoprotein-deficient virus (rabies-EGFP) was injected 4-6 weeks later in either thoracic spinal cord (SC) or hypothalamus. TVA immunoreactivity was detected almost exclusively (95 %) in VLM C1 neurons. In mice with SC injections of rabies-EGFP, starter cells (expressing TVA + EGFP) were found at the rostral end of the VLM; in mice with hypothalamic injections starter C1 cells were located more caudally. C1 neurons innervating SC or hypothalamus had other terminal fields in common (e.g., dorsal vagal complex, locus coeruleus, raphe pallidus and periaqueductal gray matter). Putative inputs to C1 cells with SC or hypothalamic projections originated from the same brain regions, especially the lower brainstem reticular core from spinomedullary border to rostral pons. Putative input neurons to C1 cells were also observed in the nucleus of the solitary tract, caudal VLM, caudal spinal trigeminal nucleus, cerebellum, periaqueductal gray matter and inferior and superior colliculi. In sum, regardless of whether they innervate SC or hypothalamus, VLM C1 neurons receive input from the same general brain regions. One interpretation is that many types of somatic or internal stimuli recruit these neurons en bloc to produce a stereotyped acute stress response with sympathetic, parasympathetic, vigilance and neuroendocrine components.
Collapse
|
40
|
Zhang LL, Wang JQ, Qi RR, Pan LL, Li M, Cai YL. Motion Sickness: Current Knowledge and Recent Advance. CNS Neurosci Ther 2015; 22:15-24. [PMID: 26452639 DOI: 10.1111/cns.12468] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 01/02/2023] Open
Abstract
Motion sickness (MS) is a common physiological response to real or virtual motion. Numerous studies have investigated the neurobiological mechanism and the control measures of MS. This review summarizes the current knowledge about pathogenesis and pathophysiology, prediction, evaluation, and countermeasures of MS. The sensory conflict hypothesis is the most widely accepted theory for MS. Both the hippocampus and vestibular cortex might play a role in forming internal model. The pathophysiology focuses on the visceral afference, thermoregulation and MS-related neuroendocrine. Single-nucleotide polymorphisms (SNPs) in some genes and epigenetic modulation might contribute to MS susceptibility and habituation. Questionnaires, heart rate variability (HRV) and electrogastrogram (EGG) are useful for diagnosing and evaluating MS. We also list MS medications to guide clinical practice. Repeated real motion exposure and combined visual-vestibular interaction training accelerate the progress of habituation. Behavioral and dietary countermeasures, as well as physiotherapy, are also effective in alleviating MS symptoms.
Collapse
Affiliation(s)
- Li-Li Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Jun-Qin Wang
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Rui-Rui Qi
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Lei-Lei Pan
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Min Li
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Yi-Ling Cai
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
41
|
Lu HJ, Li MH, Li MZ, Park SE, Kim MS, Jin YZ, Park BR. Functional Connections of the Vestibulo-spino-adrenal Axis in the Control of Blood Pressure Via the Vestibulosympathetic Reflex in Conscious Rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:427-34. [PMID: 26330755 PMCID: PMC4553402 DOI: 10.4196/kjpp.2015.19.5.427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/15/2015] [Accepted: 07/01/2015] [Indexed: 12/20/2022]
Abstract
Significant evidence supports the role of the vestibular system in the regulation of blood pressure during postural movements. In the present study, the role of the vestibulo-spino-adrenal (VSA) axis in the modulation of blood pressure via the vestibulosympathetic reflex was clarified by immunohistochemical and enzyme immunoassay methods in conscious rats with sinoaortic denervation. Expression of c-Fos protein in the intermediolateral cell column of the middle thoracic spinal regions and blood epinephrine levels were investigated, following microinjection of glutamate receptor agonists or antagonists into the medial vestibular nucleus (MVN) and/or sodium nitroprusside (SNP)-induced hypotension. Both microinjection of glutamate receptor agonists (NMDA and AMPA) into the MVN or rostral ventrolateral medullary nucleus (RVLM) and SNP-induced hypotension led to increased number of c-Fos positive neurons in the intermediolateral cell column of the middle thoracic spinal regions and increased blood epinephrine levels. Pretreatment with microinjection of glutamate receptor antagonists (MK-801 and CNQX) into the MVN or RVLM prevented the increased number of c-Fos positive neurons resulting from SNP-induced hypotension, and reversed the increased blood epinephrine levels. These results indicate that the VSA axis may be a key component of the pathway used by the vestibulosympathetic reflex to maintain blood pressure during postural movements.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine and Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules at Yanbian University, Yanji 133002, China
| | - Mei-Han Li
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine and Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules at Yanbian University, Yanji 133002, China
| | - Mei-Zhi Li
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine and Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules at Yanbian University, Yanji 133002, China
| | - Sang Eon Park
- Department of Physiology, Wonkwang University School of Medicine and Brain Science Institute at Wonkwang University, Iksan 570-749, Korea
| | - Min Sun Kim
- Department of Physiology, Wonkwang University School of Medicine and Brain Science Institute at Wonkwang University, Iksan 570-749, Korea
| | - Yuan-Zhe Jin
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine and Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules at Yanbian University, Yanji 133002, China
| | - Byung Rim Park
- Department of Physiology, Wonkwang University School of Medicine and Brain Science Institute at Wonkwang University, Iksan 570-749, Korea
| |
Collapse
|
42
|
Sailesh KS, Archana R, Mukkadan JK. Vestibular stimulation: A simple but effective intervention in diabetes care. J Nat Sci Biol Med 2015; 6:321-3. [PMID: 26283821 PMCID: PMC4518401 DOI: 10.4103/0976-9668.159991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the complexities of the relationship between vestibular stimulation and endocrine disorders being well known, research efforts to understand these complexities are lacking. Interestingly vestibular stimulation may potentially prevent/delay development/progression of diabetes. Here we review the science behind this concept and highlight the need for necessary translational research in this area. Current evidence supports the use of vestibular stimulation not only as a potential intervention to prevent or delay the development of diabetes mellitus in at-risk population, but also to use it as supplementary therapy for diabetic patients management. We urge clinicians to recommend vestibular stimulation by simple means like swing as a goal in maintaining a healthy lifestyle.
Collapse
Affiliation(s)
- Kumar Sai Sailesh
- Department of Physiology, Little Flower Medical Research Centre, Angamaly, Kerala ; Department of Physiology, Saveetha Medical College, Thandalam, Chennai, India
| | - R Archana
- Department of Physiology, Little Flower Medical Research Centre, Angamaly, Kerala ; Department of Physiology, Saveetha Medical College, Thandalam, Chennai, India
| | - J K Mukkadan
- Department of Physiology, Little Flower Medical Research Centre, Angamaly, Kerala ; Department of Physiology, Saveetha Medical College, Thandalam, Chennai, India
| |
Collapse
|
43
|
Wang X, Guo R, Zhao W. Distribution of Fos-Like Immunoreactivity, Catecholaminergic and Serotoninergic Neurons Activated by the Laryngeal Chemoreflex in the Medulla Oblongata of Rats. PLoS One 2015; 10:e0130822. [PMID: 26087133 PMCID: PMC4473071 DOI: 10.1371/journal.pone.0130822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/26/2015] [Indexed: 01/17/2023] Open
Abstract
The laryngeal chemoreflex (LCR) induces apnea, glottis closure, bradycardia and hypertension in young and maturing mammals. We examined the distribution of medullary nuclei that are activated by the LCR and used immunofluorescent detection of Fos protein as a cellular marker for neuronal activation to establish that the medullary catecholaminergic and serotoninergic neurons participate in the modulation of the LCR. The LCR was elicited by the infusion of KCl-HCl solution into the laryngeal lumen of adult rats in the experimental group, whereas the control group received the same surgery but no infusion. In comparison, the number of regions of Fos-like immunoreactivity (FLI) that were activated by the LCR significantly increased in the nucleus of the solitary tract (NTS), the vestibular nuclear complex (VNC), the loose formation of the nucleus ambiguus (AmbL), the rostral ventral respiratory group (RVRG), the ventrolateral reticular complex (VLR), the pre-Bötzinger complex (PrBöt), the Bötzinger complex (Böt), the spinal trigeminal nucleus (SP5), and the raphe obscurus nucleus (ROb) bilaterally from the medulla oblongata. Furthermore, 12.71% of neurons with FLI in the dorsolateral part of the nucleus of the solitary tract (SolDL) showed tyrosine hydroxylase-immunoreactivity (TH-ir, catecholaminergic), and 70.87% of neurons with FLI in the ROb were serotoninergic. Our data demonstrated the distribution of medullary nuclei that were activated by the LCR, and further demonstrated that catecholaminergic neurons of the SolDL and serotoninergic neurons of the ROb were activated by the LCR, indicating the potential central pathway of the LCR.
Collapse
Affiliation(s)
- Xiaolu Wang
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, China
| | - Ruichen Guo
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
- * E-mail: (RCG); (WJZ)
| | - Wenjing Zhao
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan, China
- * E-mail: (RCG); (WJZ)
| |
Collapse
|
44
|
Li LW, Jin GS, Yang YZ, Ameer AN, Kim MS, Park BR, Jin YZ. Effect of glutamate on the vestibulo-solitary projection after sodium nitroprusside-induced hypotension in conscious rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:275-81. [PMID: 25954134 PMCID: PMC4422969 DOI: 10.4196/kjpp.2015.19.3.275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/17/2015] [Accepted: 03/01/2015] [Indexed: 12/20/2022]
Abstract
Orthostatic hypotension is most common in elderly people, and its prevalence increases with age. Attenuation of the vestibulo-sympathetic reflex (VSR) is commonly associated with orthostatic hypotension. In this study, we investigated the role of glutamate on the vestibulo-solitary projection of the VSR pathway to clarify the pathophysiology of orthostatic hypotension. Blood pressure and expression of both pERK and c-Fos protein were evaluated in the nucleus tractus solitarius (NTS) after microinjection of glutamate into the medial vestibular nucleus (MVN) in conscious rats with sodium nitroprusside (SNP)-induced hypotension that received baroreceptor unloading via sinoaortic denervation (SAD). SNP-induced hypotension increased the expression of both pERK and c-Fos protein in the NTS, which was abolished by pretreatment with glutamate receptor antagonists (MK801 or CNQX) in the MVN. Microinjection of glutamate receptor agonists (NMDA or AMPA) into the MVN increased the expression of both pERK and c-Fos protein in the NTS without causing changes in blood pressure. These results indicate that both NMDA and AMPA receptors play a significant role in the vestibulo-solitary projection of the VSR pathway for maintaining blood pressure, and that glutamatergic transmission in this projection might play a key role in the pathophysiology of orthostatic hypotension.
Collapse
Affiliation(s)
- Li-Wei Li
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji 133002, China
| | - Guang-Shi Jin
- Department of Cerebral Surgery, Yanbian University College of Clinical Medicine, Yanji 133000, China
| | - Yan-Zhao Yang
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji 133002, China
| | - Abdul Nasir Ameer
- Department of Physiology, Wonkwang University School of Medicine and Brain Science Institute at Wonkwang University, Iksan 570-749, Korea. ; University of Baghdad College of Medicine, Baghdad Medical City, Baghdad 10071, Iraq
| | - Min Sun Kim
- Department of Physiology, Wonkwang University School of Medicine and Brain Science Institute at Wonkwang University, Iksan 570-749, Korea
| | - Byung Rim Park
- Department of Physiology, Wonkwang University School of Medicine and Brain Science Institute at Wonkwang University, Iksan 570-749, Korea
| | - Yuan-Zhe Jin
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji 133002, China
| |
Collapse
|
45
|
Lan Y, Lu HJ, Jiang X, Li LW, Yang YZ, Jin GS, Park JY, Kim MS, Park BR, Jin YZ. Analysis of the Baroreceptor and Vestibular Receptor Inputs in the Rostral Ventrolateral Medulla following Hypotension in Conscious Rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:159-65. [PMID: 25729278 PMCID: PMC4342736 DOI: 10.4196/kjpp.2015.19.2.159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 12/17/2022]
Abstract
Input signals originating from baroreceptors and vestibular receptors are integrated in the rostral ventrolateral medulla (RVLM) to maintain blood pressure during postural movement. The contribution of baroreceptors and vestibular receptors in the maintenance of blood pressure following hypotension were quantitatively analyzed by measuring phosphorylated extracellular regulated protein kinase (pERK) expression and glutamate release in the RVLM. The expression of pERK and glutamate release in the RVLM were measured in conscious rats that had undergone bilateral labyrinthectomy (BL) and/or sinoaortic denervation (SAD) following hypotension induced by a sodium nitroprusside (SNP) infusion. The expression of pERK was significantly increased in the RVLM in the control group following SNP infusion, and expression peaked 10 min after SNP infusion. The number of pERK positive neurons increased following SNP infusion in BL, SAD, and BL+SAD groups, although the increase was smaller than seen in the control group. The SAD group showed a relatively higher reduction in pERK expression when compared with the BL group. The level of glutamate release was significantly increased in the RVLM in control, BL, SAD groups following SNP infusion, and this peaked 10 min after SNP infusion. The SAD group showed a relatively higher reduction in glutamate release when compared with the BL group. These results suggest that the baroreceptors are more powerful in pERK expression and glutamate release in the RVLM following hypotension than the vestibular receptors, but the vestibular receptors still have an important role in the RVLM.
Collapse
Affiliation(s)
- Yan Lan
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji 133002, China
| | - Huan-Jun Lu
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji 133002, China
| | - Xian Jiang
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji 133002, China
| | - Li-Wei Li
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji 133002, China
| | - Yan-Zhao Yang
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji 133002, China
| | - Guang-Shi Jin
- Department of Cerebral Surgery, Yanbian University College of Medicine, Yanji 133000, China
| | - Joo Young Park
- Department of Oral Physiology, Wonkwang University College of Dentistry, Iksan 570-749, Korea
| | - Min Sun Kim
- Department of Physiology, Wonkwang University School of Medicine and Brain Science Institute at Wonkwang University, Iksan 570-749, Korea
| | - Byung Rim Park
- Department of Physiology, Wonkwang University School of Medicine and Brain Science Institute at Wonkwang University, Iksan 570-749, Korea
| | - Yuan-Zhe Jin
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji 133002, China
| |
Collapse
|
46
|
Yakushin SB, Martinelli GP, Raphan T, Xiang Y, Holstein GR, Cohen B. Vasovagal oscillations and vasovagal responses produced by the vestibulo-sympathetic reflex in the rat. Front Neurol 2014; 5:37. [PMID: 24772102 PMCID: PMC3983498 DOI: 10.3389/fneur.2014.00037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/14/2014] [Indexed: 12/17/2022] Open
Abstract
Sinusoidal galvanic vestibular stimulation (sGVS) induces oscillations in blood pressure (BP) and heart rate (HR), i.e., vasovagal oscillations, as well as transient decreases in BP and HR, i.e., vasovagal responses, in isoflurane-anesthetized rats. We determined the characteristics of the vasovagal oscillations, assessed their role in the generation of vasovagal responses, and determined whether they could be induced by monaural as well as by binaural sGVS and by oscillation in pitch. Wavelet analyses were used to determine the power distributions of the waveforms. Monaural and binaural sGVS and pitch generated vasovagal oscillations at the frequency and at twice the frequency of stimulation. Vasovagal oscillations and vasovagal responses were maximally induced at low stimulus frequencies (0.025-0.05 Hz). The oscillations were attenuated and the responses were rarely induced at higher stimulus frequencies. Vasovagal oscillations could occur without induction of vasovagal responses, but vasovagal responses were always associated with a vasovagal oscillation. We posit that the vasovagal oscillations originate in a low frequency band that, when appropriately activated by strong sympathetic stimulation, can generate vasovagal oscillations as a precursor for vasovagal responses and syncope. We further suggest that the activity responsible for the vasovagal oscillations arises in low frequency, otolith neurons with orientation vectors close to the vertical axis of the head. These neurons are likely to provide critical input to the vestibulo-sympathetic reflex to increase BP and HR upon changes in head position relative to gravity, and to contribute to the production of vasovagal oscillations and vasovagal responses and syncope when the baroreflex is inactivated.
Collapse
Affiliation(s)
- Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Theodore Raphan
- Department of Computer and Information Sciences, Brooklyn College of the City University of New York , Brooklyn, NY , USA
| | - Yongqing Xiang
- Department of Computer and Information Sciences, Brooklyn College of the City University of New York , Brooklyn, NY , USA
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|