1
|
Moroz LL, Romanova DY. Functional evolution and functional biodiversity: 150 years of déjà vu or new physiology of evolution? Front Cell Dev Biol 2024; 12:1485089. [PMID: 39512903 PMCID: PMC11541955 DOI: 10.3389/fcell.2024.1485089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, United States
| | - Daria Y. Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Laboratory of Cellular Neurobiology of Learning, Moscow, Russia
| |
Collapse
|
2
|
Romanova DY, Moroz LL. Brief History of Placozoa. Methods Mol Biol 2024; 2757:103-122. [PMID: 38668963 DOI: 10.1007/978-1-0716-3642-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Placozoans are morphologically the simplest free-living animals. They represent a unique window of opportunities to understand both the origin of the animal organization and the rules of life for the system and synthetic biology of the future. However, despite more than 100 years of their investigations, we know little about their organization, natural habitats, and life strategies. Here, we introduce this unique animal phylum and highlight some directions vital to broadening the frontiers of the biomedical sciences. In particular, understanding the genomic bases of placozoan biodiversity, cell identity, connectivity, reproduction, and cellular bases of behavior are critical hot spots for future studies.
Collapse
Affiliation(s)
- Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russian Federation.
| | - Leonid L Moroz
- Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Whitney Laboratory for Marine Biosciences University of Florida, St. Augustine, FL, USA.
| |
Collapse
|
3
|
Moroz LL, Romanova DY. Alternative neural systems: What is a neuron? (Ctenophores, sponges and placozoans). Front Cell Dev Biol 2022; 10:1071961. [PMID: 36619868 PMCID: PMC9816575 DOI: 10.3389/fcell.2022.1071961] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
How to make a neuron, a synapse, and a neural circuit? Is there only one 'design' for a neural architecture with a universally shared genomic blueprint across species? The brief answer is "No." Four early divergent lineages from the nerveless common ancestor of all animals independently evolved distinct neuroid-type integrative systems. One of these is a subset of neural nets in comb jellies with unique synapses; the second lineage is the well-known Cnidaria + Bilateria; the two others are non-synaptic neuroid systems in sponges and placozoans. By integrating scRNA-seq and microscopy data, we revise the definition of neurons as synaptically-coupled polarized and highly heterogenous secretory cells at the top of behavioral hierarchies with learning capabilities. This physiological (not phylogenetic) definition separates 'true' neurons from non-synaptically and gap junction-coupled integrative systems executing more stereotyped behaviors. Growing evidence supports the hypothesis of multiple origins of neurons and synapses. Thus, many non-bilaterian and bilaterian neuronal classes, circuits or systems are considered functional rather than genetic categories, composed of non-homologous cell types. In summary, little-explored examples of convergent neuronal evolution in representatives of early branching metazoans provide conceptually novel microanatomical and physiological architectures of behavioral controls in animals with prospects of neuro-engineering and synthetic biology.
Collapse
Affiliation(s)
- Leonid L. Moroz
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| | - Daria Y. Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, 5A Butlerova, Moscow, Russia
| |
Collapse
|
4
|
Miller CT, Gire D, Hoke K, Huk AC, Kelley D, Leopold DA, Smear MC, Theunissen F, Yartsev M, Niell CM. Natural behavior is the language of the brain. Curr Biol 2022; 32:R482-R493. [PMID: 35609550 PMCID: PMC10082559 DOI: 10.1016/j.cub.2022.03.031] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The breadth and complexity of natural behaviors inspires awe. Understanding how our perceptions, actions, and internal thoughts arise from evolved circuits in the brain has motivated neuroscientists for generations. Researchers have traditionally approached this question by focusing on stereotyped behaviors, either natural or trained, in a limited number of model species. This approach has allowed for the isolation and systematic study of specific brain operations, which has greatly advanced our understanding of the circuits involved. At the same time, the emphasis on experimental reductionism has left most aspects of the natural behaviors that have shaped the evolution of the brain largely unexplored. However, emerging technologies and analytical tools make it possible to comprehensively link natural behaviors to neural activity across a broad range of ethological contexts and timescales, heralding new modes of neuroscience focused on natural behaviors. Here we describe a three-part roadmap that aims to leverage the wealth of behaviors in their naturally occurring distributions, linking their variance with that of underlying neural processes to understand how the brain is able to successfully navigate the everyday challenges of animals' social and ecological landscapes. To achieve this aim, experimenters must harness one challenge faced by all neurobiological systems, namely variability, in order to gain new insights into the language of the brain.
Collapse
Affiliation(s)
- Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92039, USA.
| | - David Gire
- Department of Psychology, University of Washington, Guthrie Hall, Seattle, WA 98105, USA
| | - Kim Hoke
- Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523, USA
| | - Alexander C Huk
- Center for Perceptual Systems, Departments of Neuroscience and Psychology, University of Texas at Austin, 116 Inner Campus Drive, Austin, TX 78712, USA
| | - Darcy Kelley
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - David A Leopold
- Section of Cognitive Neurophysiology and Imaging, National Institute of Mental Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | - Matthew C Smear
- Department of Psychology and Institute of Neuroscience, University of Oregon, 1227 University Street, Eugene, OR 97403, USA
| | - Frederic Theunissen
- Department of Psychology, University of California Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA
| | - Michael Yartsev
- Department of Bioengineering, University of California Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, 222 Huestis Hall, Eugene, OR 97403, USA.
| |
Collapse
|
5
|
Stern‐Mentch N, Bostwick GW, Belenky M, Moroz L, Hochner B. Neurotransmission and neuromodulation systems in the learning and memory network of Octopus vulgaris. J Morphol 2022; 283:557-584. [PMID: 35107842 PMCID: PMC9303212 DOI: 10.1002/jmor.21459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/15/2022]
Abstract
The vertical lobe (VL) in the octopus brain plays an essential role in its sophisticated learning and memory. Early anatomical studies suggested that the VL is organized in a "fan-out fan-in" connectivity matrix comprising only three morphologically identified neuron types; input axons from the median superior frontal lobe (MSFL) innervating en passant millions of small amacrine interneurons (AMs), which converge sharply onto large VL output neurons (LNs). Recent physiological studies confirmed the feedforward excitatory connectivity; a glutamatergic synapse at the first MSFL-to-AM synaptic layer and a cholinergic AM-to-LNs synapse. MSFL-to-AMs synapses show a robust hippocampal-like activity-dependent long-term potentiation (LTP) of transmitter release. 5-HT, octopamine, dopamine and nitric oxide modulate short- and long-term VL synaptic plasticity. Here, we present a comprehensive histolabeling study to better characterize the neural elements in the VL. We generally confirmed glutamatergic MSFLs and cholinergic AMs. Intense labeling for NOS activity in the AMs neurites were in-line with the NO-dependent presynaptic LTP mechanism at the MSFL-to-AM synapse. New discoveries here reveal more heterogeneity of the VL neurons than previously thought. GABAergic AMs suggest a subpopulation of inhibitory interneurons in the first input layer. Clear γ-amino butyric acid labeling in the cell bodies of LNs supported an inhibitory VL output, yet the LNs co-expressed FMRFamide-like neuropeptides, suggesting an additional neuromodulatory role of the VL output. Furthermore, a group of LNs was glutamatergic. A new cluster of cells organized as a "deep nucleus" showed rich catecholaminergic labeling and may play a role in intrinsic neuromodulation. In-situ hybridization and immunolabeling allowed characterization and localization of a rich array of neuropeptides and neuromodulators, likely involved in reward/punishment signals. This analysis of the fast transmission system, together with the newly found cellular elements, help integrate behavioral, physiological, pharmacological and connectome findings into a more comprehensive understanding of an efficient learning and memory network.
Collapse
Affiliation(s)
- Naama Stern‐Mentch
- Department of Neurobiology, Silberman Institute of Life SciencesHebrew UniversityJerusalemIsrael
| | - Gabrielle Winters Bostwick
- Department of Neuroscience and McKnight Brain Institute, and Whitney Laboratory for Marine BioscienceUniversity of FloridaGainesvilleFloridaUSA
- Ocean Genome Atlas ProjectSan FranciscoUSA
| | - Michael Belenky
- Department of Neurobiology, Silberman Institute of Life SciencesHebrew UniversityJerusalemIsrael
| | - Leonid Moroz
- Department of Neuroscience and McKnight Brain Institute, and Whitney Laboratory for Marine BioscienceUniversity of FloridaGainesvilleFloridaUSA
| | - Binyamin Hochner
- Department of Neurobiology, Silberman Institute of Life SciencesHebrew UniversityJerusalemIsrael
| |
Collapse
|
6
|
DeSilva JM, Traniello JFA, Claxton AG, Fannin LD. When and Why Did Human Brains Decrease in Size? A New Change-Point Analysis and Insights From Brain Evolution in Ants. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.742639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human brain size nearly quadrupled in the six million years since Homo last shared a common ancestor with chimpanzees, but human brains are thought to have decreased in volume since the end of the last Ice Age. The timing and reason for this decrease is enigmatic. Here we use change-point analysis to estimate the timing of changes in the rate of hominin brain evolution. We find that hominin brains experienced positive rate changes at 2.1 and 1.5 million years ago, coincident with the early evolution of Homo and technological innovations evident in the archeological record. But we also find that human brain size reduction was surprisingly recent, occurring in the last 3,000 years. Our dating does not support hypotheses concerning brain size reduction as a by-product of body size reduction, a result of a shift to an agricultural diet, or a consequence of self-domestication. We suggest our analysis supports the hypothesis that the recent decrease in brain size may instead result from the externalization of knowledge and advantages of group-level decision-making due in part to the advent of social systems of distributed cognition and the storage and sharing of information. Humans live in social groups in which multiple brains contribute to the emergence of collective intelligence. Although difficult to study in the deep history of Homo, the impacts of group size, social organization, collective intelligence and other potential selective forces on brain evolution can be elucidated using ants as models. The remarkable ecological diversity of ants and their species richness encompasses forms convergent in aspects of human sociality, including large group size, agrarian life histories, division of labor, and collective cognition. Ants provide a wide range of social systems to generate and test hypotheses concerning brain size enlargement or reduction and aid in interpreting patterns of brain evolution identified in humans. Although humans and ants represent very different routes in social and cognitive evolution, the insights ants offer can broadly inform us of the selective forces that influence brain size.
Collapse
|
7
|
Muzik O, Baajour S, Chowdury A, Diwadkar VA. Effective connectivity of brain networks controlling human thermoregulation. Brain Struct Funct 2021; 227:299-312. [PMID: 34605996 DOI: 10.1007/s00429-021-02401-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/26/2021] [Indexed: 12/01/2022]
Abstract
Homeostatic centers in the mammalian brainstem are critical in responding to thermal challenges. These centers play a prominent role in human thermoregulation, but humans also respond to thermal challenges through behavior modification. Behavioral modifications are presumably sub served by interactions between the brainstem and interoceptive, cognitive and affective elements in human brain networks. Prior evidence suggests that interoceptive regions such as the insula, and cognitive/affective regions such as the orbitofrontal cortex and anterior cingulate cortex are crucial. Here we used dynamic causal modeling (DCM) to discover likely generative network architectures and estimate changes in the effective connectivity between nodes in a hierarchically organized thermoregulatory network (homeostatic-interoceptive-cognitive/affective). fMRI data were acquired while participants (N = 20) were subjected to a controlled whole body thermal challenge that alternatingly evoked sympathetic and parasympathetic responses. Using a competitive modeling framework (ten competing modeling architectures), we demonstrated that sympathetic responses (evoked by whole-body cooling) resulted in more complex network interactions along two ascending pathways: (i) homeostatic interoceptive and (ii) homeostatic cognitive/affective. Analyses of estimated connectivity coefficients demonstrated that sympathetic responses evoked greater network connectivity in key pathways compared to parasympathetic responses. These results reveal putative mechanisms by which human thermoregulatory networks evince a high degree of contextual sensitivity to thermoregulatory challenges. The patterns of the discovered interactions also reveal how information propagation from homeostatic regions to both interoceptive and cognitive/affective regions sub serves the behavioral repertoire that is an important aspect of thermoregulatory defense in humans.
Collapse
Affiliation(s)
- Otto Muzik
- Departments of Pediatrics, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Departments of Radiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,KCI PET Center, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI, 48201, USA.
| | - Shahira Baajour
- Departments of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Asadur Chowdury
- Departments of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Vaibhav A Diwadkar
- Departments of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
8
|
Moroz LL. Multiple Origins of Neurons From Secretory Cells. Front Cell Dev Biol 2021; 9:669087. [PMID: 34307354 PMCID: PMC8293673 DOI: 10.3389/fcell.2021.669087] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| |
Collapse
|
9
|
Gignac PM, O'Brien HD, Sanchez J, Vazquez-Sanroman D. Multiscale imaging of the rat brain using an integrated diceCT and histology workflow. Brain Struct Funct 2021; 226:2153-2168. [PMID: 34173869 DOI: 10.1007/s00429-021-02316-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/07/2021] [Indexed: 11/27/2022]
Abstract
Advancements in tissue visualization techniques have spurred significant gains in the biomedical sciences by enabling researchers to integrate their datasets across anatomical scales. Of particular import are techniques that enable the interpolation of multiple hierarchical scales in samples taken from the same individuals. In this study, we demonstrate that two-dimensional histology techniques can be employed on neural tissues following three-dimensional diffusible iodine-based contrast-enhanced computed tomography (diceCT) without causing tissue degradation. This represents the first step toward a multiscale pipeline for brain visualization. We studied brains from adolescent male Sprague-Dawley rats, comparing experimental (diceCT-stained then de-stained) to control (without diceCT) brains to examine neural tissues for immunolabeling integrity, compare somata sizes, and distinguish neurons from glial cells within the telencephalon and diencephalon. We hypothesized that if experimental and control samples do not differ significantly in morphological cell analysis, then brain tissues are robust to the chemical, temperature, and radiation environments required for these multiple, successive imaging protocols. Visualizations for experimental brains were first captured via micro-computed tomography scanning of isolated, iodine-infused specimens. Samples were then cleared of iodine, serially sectioned, and prepared again using immunofluorescent, fluorescent, and cresyl violet labeling, followed by imaging with confocal and light microscopy, respectively. Our results show that many neural targets are resilient to diceCT imaging and compatible with downstream histological staining as part of a low-cost, multiscale brain imaging pipeline.
Collapse
Affiliation(s)
- Paul M Gignac
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Haley D O'Brien
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Jimena Sanchez
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
| | - Dolores Vazquez-Sanroman
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA.
| |
Collapse
|
10
|
Glycine as a signaling molecule and chemoattractant in Trichoplax (Placozoa): insights into the early evolution of neurotransmitters. Neuroreport 2021; 31:490-497. [PMID: 32243353 DOI: 10.1097/wnr.0000000000001436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The origin and early evolution of neurotransmitter signaling in animals are unclear due to limited comparative information, primarily about prebilaterian animals. Here, we performed the comparative survey of signal molecules in placozoans - the simplest known free-living animals without canonical synapses, but with complex behaviors. First, using capillary electrophoresis with laser-induced fluorescence detection, we performed microchemical analyses of transmitter candidates in Trichoplax adhaerens - the classical reference species in comparative biology. We showed that the endogenous level of glycine (about 3 mM) was significantly higher than for other candidates such as L-glutamate, L-aspartate, or gamma-aminobutyric acid. Neither serotonin nor dopamine were detected. The absolute glycine concentrations in Trichoplax were even higher than we measured in ctenophores (Beroe) and cnidarians (Aequorea). We found that at millimolar concentrations of glycine (similar to the endogenous level), induced muscle-like contractions in free behaving animals. But after long incubation (24 h), 10 M of glycine could induce cytotoxicity and cell dissociation. In contrast, micromolar concentrations (10-10 M) increased Trichoplax ciliated locomotion, suggesting that glycine might act as an endogenous signal molecule. However, we showed than glycine (10 M) can also be a chemoattractant (a guiding factor for food sources), and therefore, act as the exogenous signal. These findings provide an evolutionary base for the origin of transmitters as a result of the interplay between exogenous and endogenous signaling systems early in animal evolution.
Collapse
|
11
|
Moroz LL, Romanova DY, Nikitin MA, Sohn D, Kohn AB, Neveu E, Varoqueaux F, Fasshauer D. The diversification and lineage-specific expansion of nitric oxide signaling in Placozoa: insights in the evolution of gaseous transmission. Sci Rep 2020; 10:13020. [PMID: 32747709 PMCID: PMC7400543 DOI: 10.1038/s41598-020-69851-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) is a ubiquitous gaseous messenger, but we know little about its early evolution. Here, we analyzed NO synthases (NOS) in four different species of placozoans-one of the early-branching animal lineages. In contrast to other invertebrates studied, Trichoplax and Hoilungia have three distinct NOS genes, including PDZ domain-containing NOS. Using ultra-sensitive capillary electrophoresis assays, we quantified nitrites (products of NO oxidation) and L-citrulline (co-product of NO synthesis from L-arginine), which were affected by NOS inhibitors confirming the presence of functional enzymes in Trichoplax. Using fluorescent single-molecule in situ hybridization, we showed that distinct NOSs are expressed in different subpopulations of cells, with a noticeable distribution close to the edge regions of Trichoplax. These data suggest both the compartmentalized release of NO and a greater diversity of cell types in placozoans than anticipated. NO receptor machinery includes both canonical and novel NIT-domain containing soluble guanylate cyclases as putative NO/nitrite/nitrate sensors. Thus, although Trichoplax and Hoilungia exemplify the morphologically simplest free-living animals, the complexity of NO-cGMP-mediated signaling in Placozoa is greater to those in vertebrates. This situation illuminates multiple lineage-specific diversifications of NOSs and NO/nitrite/nitrate sensors from the common ancestor of Metazoa and the preservation of conservative NOS architecture from prokaryotic ancestors.
Collapse
Affiliation(s)
- Leonid L Moroz
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience, University of Florida, St. Augustine and Gainesville, FL, 32080, USA.
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Dosung Sohn
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience, University of Florida, St. Augustine and Gainesville, FL, 32080, USA
| | - Andrea B Kohn
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience, University of Florida, St. Augustine and Gainesville, FL, 32080, USA
| | - Emilie Neveu
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Frederique Varoqueaux
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| |
Collapse
|
12
|
Norekian TP, Moroz LL. Atlas of the neuromuscular system in the Trachymedusa Aglantha digitale: Insights from the advanced hydrozoan. J Comp Neurol 2019; 528:1231-1254. [PMID: 31749185 DOI: 10.1002/cne.24821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/26/2023]
Abstract
Cnidaria is the sister taxon to bilaterian animals, and therefore, represents a key reference lineage to understand early origins and evolution of the neural systems. The hydromedusa Aglantha digitale is arguably the best electrophysiologically studied jellyfish because of its system of giant axons and unique fast swimming/escape behaviors. Here, using a combination of scanning electron microscopy and immunohistochemistry together with phalloidin labeling, we systematically characterize both neural and muscular systems in Aglantha, summarizing and expanding further the previous knowledge on the microscopic neuroanatomy of this crucial reference species. We found that the majority, if not all (~2,500) neurons, that are labeled by FMRFamide antibody are different from those revealed by anti-α-tubulin immunostaining, making these two neuronal markers complementary to each other and, therefore, expanding the diversity of neural elements in Aglantha with two distinct neural subsystems. Our data uncovered the complex organization of neural networks forming a functional "annulus-type" central nervous system with three subsets of giant axons, dozen subtypes of neurons, muscles, and a variety of receptors fully integrated with epithelial conductive pathways supporting swimming, escape and feeding behaviors. The observed unique adaptations within the Aglantha lineage (including giant axons innervating striated muscles) strongly support an extensive and wide-spread parallel evolution of integrative and effector systems across Metazoa.
Collapse
Affiliation(s)
- Tigran P Norekian
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, Florida.,Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, Florida.,Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
13
|
Norekian TP, Moroz LL. Comparative neuroanatomy of ctenophores: Neural and muscular systems in
Euplokamis dunlapae
and related species. J Comp Neurol 2019; 528:481-501. [DOI: 10.1002/cne.24770] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Tigran P. Norekian
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Friday Harbor Laboratories University of Washington Friday Harbor Washington
- Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences Moscow Russia
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Department of Neuroscience and McKnight Brain Institute University of Florida Gainesville Florida
| |
Collapse
|
14
|
Norekian TP, Moroz LL. Neural system and receptor diversity in the ctenophore
Beroe abyssicola. J Comp Neurol 2019; 527:1986-2008. [DOI: 10.1002/cne.24633] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Tigran P. Norekian
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Friday Harbor Laboratories University of Washington Friday Harbor Washington
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences Moscow Russia
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Department of Neuroscience and McKnight Brain Institute University of Florida Gainesville Florida
| |
Collapse
|
15
|
Miller CT, Hale ME, Okano H, Okabe S, Mitra P. Comparative Principles for Next-Generation Neuroscience. Front Behav Neurosci 2019; 13:12. [PMID: 30787871 PMCID: PMC6373779 DOI: 10.3389/fnbeh.2019.00012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/15/2019] [Indexed: 01/10/2023] Open
Abstract
Neuroscience is enjoying a renaissance of discovery due in large part to the implementation of next-generation molecular technologies. The advent of genetically encoded tools has complemented existing methods and provided researchers the opportunity to examine the nervous system with unprecedented precision and to reveal facets of neural function at multiple scales. The weight of these discoveries, however, has been technique-driven from a small number of species amenable to the most advanced gene-editing technologies. To deepen interpretation and build on these breakthroughs, an understanding of nervous system evolution and diversity are critical. Evolutionary change integrates advantageous variants of features into lineages, but is also constrained by pre-existing organization and function. Ultimately, each species’ neural architecture comprises both properties that are species-specific and those that are retained and shared. Understanding the evolutionary history of a nervous system provides interpretive power when examining relationships between brain structure and function. The exceptional diversity of nervous systems and their unique or unusual features can also be leveraged to advance research by providing opportunities to ask new questions and interpret findings that are not accessible in individual species. As new genetic and molecular technologies are added to the experimental toolkits utilized in diverse taxa, the field is at a key juncture to revisit the significance of evolutionary and comparative approaches for next-generation neuroscience as a foundational framework for understanding fundamental principles of neural function.
Collapse
Affiliation(s)
- Cory T Miller
- Cortical Systems and Behavior Laboratory, Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science (CBS), Wako, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Partha Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| |
Collapse
|
16
|
Norekian TP, Moroz LL. Neuromuscular organization of the Ctenophore
Pleurobrachia bachei. J Comp Neurol 2018; 527:406-436. [DOI: 10.1002/cne.24546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Tigran P. Norekian
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Friday Harbor Laboratories University of Washington Friday Harbor Washington
- Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences Moscow Russia
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Friday Harbor Laboratories University of Washington Friday Harbor Washington
- Departments of Neuroscience and McKnight Brain Institute University of Florida Gainesville Florida
| |
Collapse
|
17
|
Dheerendra P, Lynch NM, Crutwell J, Cunningham MO, Smulders TV. In vitro characterization of gamma oscillations in the hippocampal formation of the domestic chick. Eur J Neurosci 2018; 48:2807-2815. [PMID: 29120510 PMCID: PMC6220815 DOI: 10.1111/ejn.13773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 11/30/2022]
Abstract
Avian and mammalian brains have evolved independently from each other for about 300 million years. During that time, the hippocampal formation (HF) has diverged in morphology and cytoarchitecture, but seems to have conserved much of its function. It is therefore an open question how seemingly different neural organizations can generate the same function. A prominent feature of the mammalian hippocampus is that it generates different neural oscillations, including the gamma rhythm, which plays an important role in memory processing. In this study, we investigate whether the avian hippocampus also generates gamma oscillations, and whether similar pharmacological mechanisms are involved in this function. We investigated the existence of gamma oscillations in avian HF using in vitro electrophysiology in P0–P12 domestic chick (Gallus gallus domesticus) HF brain slices. Persistent gamma frequency oscillations were induced by the bath application of the cholinergic agonist carbachol, but not by kainate, a glutamate receptor agonist. Similar to other species, carbachol‐evoked gamma oscillations were sensitive to GABAA, AMPA/kainate and muscarinic (M1) receptor antagonism. Therefore, similar to mammalian species, muscarinic receptor‐activated avian HF gamma oscillations may arise via a pyramidal‐interneuron gamma (PING)‐based mechanism. Gamma oscillations are most prominent in the ventromedial area of the hippocampal slices, and gamma power is reduced more laterally and dorsally in the HF. We conclude that similar micro‐circuitry may exist in the avian and mammalian hippocampal formation, and this is likely to relate to the shared function of the two structures.
Collapse
Affiliation(s)
- Pradeep Dheerendra
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Nicholas M Lynch
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.,University of Louisville, Louisville, KY, USA
| | - Joseph Crutwell
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Mark O Cunningham
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Tom V Smulders
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.,Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
18
|
Lowe JWE. Normal development and experimental embryology: Edmund Beecher Wilson and Amphioxus. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 57:44-59. [PMID: 27054569 DOI: 10.1016/j.shpsc.2016.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/26/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
This paper concerns the concept of normal development, and how it is enacted in experimental procedures. To that end, I use an historical case study to assess the three ways in which normal development is and has been produced, used, and interpreted in the practice of experimental biology. I argue that each of these approaches involves different processes of abstraction, which manage biological variation differently. I then document the way in which Edmund Beecher Wilson, a key contributor to late-nineteenth century experimental embryology, approached the study of normal development and show that his work does not fit any of the three established categories in the taxonomy. On the basis of this new case study, I present a new interpretation of normal development as a methodological norm which operates as a technical condition in various experimental systems. I close by suggesting the questions, and ways of investigating developmental biology, that are opened up by this perspective.
Collapse
Affiliation(s)
- James W E Lowe
- Department of Sociology, Philosophy and Anthropology, and Egenis, The Centre for the Study of Life Sciences, University of Exeter, UK.
| |
Collapse
|
19
|
Hughes DF, Walker EM, Gignac PM, Martinez A, Negishi K, Lieb CS, Greenbaum E, Khan AM. Rescuing Perishable Neuroanatomical Information from a Threatened Biodiversity Hotspot: Remote Field Methods for Brain Tissue Preservation Validated by Cytoarchitectonic Analysis, Immunohistochemistry, and X-Ray Microcomputed Tomography. PLoS One 2016; 11:e0155824. [PMID: 27196138 PMCID: PMC4873048 DOI: 10.1371/journal.pone.0155824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/04/2016] [Indexed: 11/19/2022] Open
Abstract
Biodiversity hotspots, which harbor more endemic species than elsewhere on Earth, are increasingly threatened. There is a need to accelerate collection efforts in these regions before threatened or endangered species become extinct. The diverse geographical, ecological, genetic, morphological, and behavioral data generated from the on-site collection of an individual specimen are useful for many scientific purposes. However, traditional methods for specimen preparation in the field do not permit researchers to retrieve neuroanatomical data, disregarding potentially useful data for increasing our understanding of brain diversity. These data have helped clarify brain evolution, deciphered relationships between structure and function, and revealed constraints and selective pressures that provide context about the evolution of complex behavior. Here, we report our field-testing of two commonly used laboratory-based techniques for brain preservation while on a collecting expedition in the Congo Basin and Albertine Rift, two poorly known regions associated with the Eastern Afromontane biodiversity hotspot. First, we found that transcardial perfusion fixation and long-term brain storage, conducted in remote field conditions with no access to cold storage laboratory equipment, had no observable impact on cytoarchitectural features of lizard brain tissue when compared to lizard brain tissue processed under laboratory conditions. Second, field-perfused brain tissue subjected to prolonged post-fixation remained readily compatible with subsequent immunohistochemical detection of neural antigens, with immunostaining that was comparable to that of laboratory-perfused brain tissue. Third, immersion-fixation of lizard brains, prepared under identical environmental conditions, was readily compatible with subsequent iodine-enhanced X-ray microcomputed tomography, which facilitated the non-destructive imaging of the intact brain within its skull. In summary, we have validated multiple approaches to preserving intact lizard brains in remote field conditions with limited access to supplies and a high degree of environmental exposure. This protocol should serve as a malleable framework for researchers attempting to rescue perishable and irreplaceable morphological and molecular data from regions of disappearing biodiversity. Our approach can be harnessed to extend the numbers of species being actively studied by the neuroscience community, by reducing some of the difficulty associated with acquiring brains of animal species that are not readily available in captivity.
Collapse
Affiliation(s)
- Daniel F. Hughes
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, Texas, United States of America
- UTEP Biodiversity Collections, University of Texas at El Paso, El Paso, Texas, United States of America
- Doctoral Program in Ecology & Evolutionary Biology, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Ellen M. Walker
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, Texas, United States of America
- Doctoral Program in Environmental Pathobiology, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Paul M. Gignac
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, United States of America
| | - Anais Martinez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, Texas, United States of America
- Doctoral Program in Environmental Pathobiology, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Kenichiro Negishi
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, Texas, United States of America
- Masters Program in Biology, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Carl S. Lieb
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
- UTEP Biodiversity Collections, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Eli Greenbaum
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
- UTEP Biodiversity Collections, University of Texas at El Paso, El Paso, Texas, United States of America
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Arshad M. Khan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, Texas, United States of America
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, United States of America
| |
Collapse
|
20
|
Abstract
The neocortex is found only in mammals, and the fossil record is silent on how this soft tissue evolved. Understanding neocortex evolution thus devolves to a search for candidate homologous neocortex traits in the extant nonmammalian amniotes. The difficulty is that homology is based on similarity, and the six-layered neocortex structure could hardly be more dissimilar in appearance from the nuclear organization that is so conspicuous in the dorsal telencephalon of birds and other reptiles. Recent molecular data have, however, provided new support for one prominent hypothesis, based on neuronal circuits, that proposes the principal neocortical input and output cell types are a conserved feature of amniote dorsal telencephalon. Many puzzles remain, the greatest being understanding the selective pressures and molecular mechanisms that underlie such tremendous morphological variation in telencephalon structure.
Collapse
Affiliation(s)
- Jennifer Dugas-Ford
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637;
| | | |
Collapse
|
21
|
Moltesen M, Vindas MA, Winberg S, Ebbesson L, de Lourdes Ruiz-Gomez M, Skov PV, Dabelsteen T, Øverli Ø, Höglund E. Cognitive appraisal of aversive stimulus differs between individuals with contrasting stress coping styles; evidences from selected rainbow trout (Oncorhynchus mykiss) strains. BEHAVIOUR 2016. [DOI: 10.1163/1568539x-00003405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In animals, personality variations in response to stress and energy demands have been established. Cognitive processing of negative stimuli correlates with stress response patterns. Still, the relative contribution of cognitive appraisal or physiological demands to the behavioural output needs to be clarified. In this study we utilized reactive (high-responsive, HR) and proactive (low-responsive, LR) rainbow trout strains to investigate how contrasting reactions to hypoxia are related to individual variation in metabolism and/or cognition. The HR-LR strains did not differ in standard metabolic rate or hypoxia tolerance. HR trout displayed more pronounced avoidance to a signal cue after being conditioned with hypoxia, suggesting that they experienced this stimulus more aversive than LR trout. Together with differences in forebrain c-fos activation patterns in dorsomedial pallium, these results suggest cognitive differences between the strains. These results demonstrate that differences in personality/stress coping style can be related to contrasts in cognition, which are independent of metabolic differences.
Collapse
Affiliation(s)
- Maria Moltesen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, building 3, 4th floor, DK-2100 Copenhagen Ø, Denmark
- Section for Aquaculture, Institute for Aquatic Resources, Danish Technical University, P.O. Box 101, DK-9850 Hirtshals, Denmark
| | - Marco Antonio Vindas
- Integrative Fish Biology, Uni Research Environment, Uni Research, P.O. Box 7803, NO-5020 Bergen, Norway
| | - Svante Winberg
- Department of Neuroscience, Uppsala University, P.O. Box 593, SE-75124 Uppsala, Sweden
| | - Lars Ebbesson
- Integrative Fish Biology, Uni Research Environment, Uni Research, P.O. Box 7803, NO-5020 Bergen, Norway
| | - Maria de Lourdes Ruiz-Gomez
- Facultad de Ciencias, Universidad Autónoma del Estado de Mexico, Instituto Literario Numero 100 Centro, Toluca, C.P. 50000, Mexico
| | - Peter Vilhelm Skov
- Section for Aquaculture, Institute for Aquatic Resources, Danish Technical University, P.O. Box 101, DK-9850 Hirtshals, Denmark
| | - Torben Dabelsteen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, building 3, 4th floor, DK-2100 Copenhagen Ø, Denmark
| | - Øyvind Øverli
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
| | - Erik Höglund
- Section for Aquaculture, Institute for Aquatic Resources, Danish Technical University, P.O. Box 101, DK-9850 Hirtshals, Denmark
- Niva Region South, Norsk institutt for vannforskning, Gaustadalléen 21, NO-0349 Oslo, Norway
| |
Collapse
|
22
|
Moroz LL. Biodiversity Meets Neuroscience: From the Sequencing Ship (Ship-Seq) to Deciphering Parallel Evolution of Neural Systems in Omic's Era. Integr Comp Biol 2015; 55:1005-17. [PMID: 26163680 DOI: 10.1093/icb/icv084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The origins of neural systems and centralized brains are one of the major transitions in evolution. These events might occur more than once over 570-600 million years. The convergent evolution of neural circuits is evident from a diversity of unique adaptive strategies implemented by ctenophores, cnidarians, acoels, molluscs, and basal deuterostomes. But, further integration of biodiversity research and neuroscience is required to decipher critical events leading to development of complex integrative and cognitive functions. Here, we outline reference species and interdisciplinary approaches in reconstructing the evolution of nervous systems. In the "omic" era, it is now possible to establish fully functional genomics laboratories aboard of oceanic ships and perform sequencing and real-time analyses of data at any oceanic location (named here as Ship-Seq). In doing so, fragile, rare, cryptic, and planktonic organisms, or even entire marine ecosystems, are becoming accessible directly to experimental and physiological analyses by modern analytical tools. Thus, we are now in a position to take full advantages from countless "experiments" Nature performed for us in the course of 3.5 billion years of biological evolution. Together with progress in computational and comparative genomics, evolutionary neuroscience, proteomic and developmental biology, a new surprising picture is emerging that reveals many ways of how nervous systems evolved. As a result, this symposium provides a unique opportunity to revisit old questions about the origins of biological complexity.
Collapse
Affiliation(s)
- Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience and McKnight Brain Institute, University of Florida, 9505 Ocean Shore Blvd., St Augustine, FL 32080, USA
| |
Collapse
|
23
|
Abstract
Neurons are defined as polarized secretory cells specializing in directional propagation of electrical signals leading to the release of extracellular messengers - features that enable them to transmit information, primarily chemical in nature, beyond their immediate neighbors without affecting all intervening cells en route. Multiple origins of neurons and synapses from different classes of ancestral secretory cells might have occurred more than once during ~600 million years of animal evolution with independent events of nervous system centralization from a common bilaterian/cnidarian ancestor without the bona fide central nervous system. Ctenophores, or comb jellies, represent an example of extensive parallel evolution in neural systems. First, recent genome analyses place ctenophores as a sister group to other animals. Second, ctenophores have a smaller complement of pan-animal genes controlling canonical neurogenic, synaptic, muscle and immune systems, and developmental pathways than most other metazoans. However, comb jellies are carnivorous marine animals with a complex neuromuscular organization and sophisticated patterns of behavior. To sustain these functions, they have evolved a number of unique molecular innovations supporting the hypothesis of massive homoplasies in the organization of integrative and locomotory systems. Third, many bilaterian/cnidarian neuron-specific genes and 'classical' neurotransmitter pathways are either absent or, if present, not expressed in ctenophore neurons (e.g. the bilaterian/cnidarian neurotransmitter, γ-amino butyric acid or GABA, is localized in muscles and presumed bilaterian neuron-specific RNA-binding protein Elav is found in non-neuronal cells). Finally, metabolomic and pharmacological data failed to detect either the presence or any physiological action of serotonin, dopamine, noradrenaline, adrenaline, octopamine, acetylcholine or histamine - consistent with the hypothesis that ctenophore neural systems evolved independently from those in other animals. Glutamate and a diverse range of secretory peptides are first candidates for ctenophore neurotransmitters. Nevertheless, it is expected that other classes of signal and neurogenic molecules would be discovered in ctenophores as the next step to decipher one of the most distinct types of neural organization in the animal kingdom.
Collapse
Affiliation(s)
- Leonid L Moroz
- The Whitney Laboratory of Marine Biosciences and Department of Neuroscience and McKnight Brain Institute, University of Florida, FL 32080, USA. The Whitney Laboratory, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
| |
Collapse
|
24
|
Taborsky M, Hofmann HA, Beery AK, Blumstein DT, Hayes LD, Lacey EA, Martins EP, Phelps SM, Solomon NG, Rubenstein DR. Taxon matters: promoting integrative studies of social behavior: NESCent Working Group on Integrative Models of Vertebrate Sociality: Evolution, Mechanisms, and Emergent Properties. Trends Neurosci 2015; 38:189-91. [PMID: 25656466 DOI: 10.1016/j.tins.2015.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/11/2015] [Accepted: 01/13/2015] [Indexed: 11/16/2022]
Abstract
The neural and molecular mechanisms underlying social behavior - including their functional significance and evolution - can only be fully understood using data obtained under multiple social, environmental, and physiological conditions. Understanding the complexity of social behavior requires integration across levels of analysis in both laboratory and field settings. However, there is currently a disconnect between the systems studied in the laboratory versus the field. We argue that recent conceptual and technical advances provide exciting new opportunities to close this gap by making non-model organisms accessible to modern approaches in both laboratory and nature.
Collapse
Affiliation(s)
- Michael Taborsky
- Institute of Ecology and Evolution, Division of Behavioural Ecology, University of Bern, Wohlenstrasse 50a, 3032 Hinterkappelen, Switzerland.
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Annaliese K Beery
- Department of Psychology and Program in Neuroscience, Smith College, Northampton, MA, USA
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA
| | - Loren D Hayes
- Department of Biological and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Eileen A Lacey
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California at Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720-3160, USA
| | - Emília P Martins
- Department of Biology, Indiana University, Bloomington IN 47405, USA
| | - Steven M Phelps
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Nancy G Solomon
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
25
|
Rattenborg NC, Martinez-Gonzalez D. Avian Versus Mammalian Sleep: the Fruits of Comparing Apples and Oranges. CURRENT SLEEP MEDICINE REPORTS 2014. [DOI: 10.1007/s40675-014-0001-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
|
27
|
Lengersdorf D, Pusch R, Güntürkün O, Stüttgen MC. Neurons in the pigeon nidopallium caudolaterale signal the selection and execution of perceptual decisions. Eur J Neurosci 2014; 40:3316-27. [PMID: 25146245 DOI: 10.1111/ejn.12698] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/24/2014] [Accepted: 07/17/2014] [Indexed: 01/27/2023]
Abstract
Sensory systems provide organisms with information on the current status of the environment, thus enabling adaptive behavior. The neural mechanisms by which sensory information is exploited for action selection are typically studied with mammalian subjects performing perceptual decision-making tasks, and most of what is known about these mechanisms at the single-neuron level is derived from cortical recordings in behaving monkeys. To explore the generality of neural mechanisms underlying perceptual decision making across species, we recorded single-neuron activity in the pigeon nidopallium caudolaterale (NCL), a non-laminated associative forebrain structure thought to be functionally equivalent to mammalian prefrontal cortex, while subjects performed a visual categorisation task. We found that, whereas the majority of NCL neurons unspecifically upregulated or downregulated activity during stimulus presentation, ~20% of neurons exhibited differential activity for the sample stimuli and predicted upcoming choices. Moreover, neural activity in these neurons was ramping up during stimulus presentation and remained elevated until a choice was initiated, a response pattern similar to that found in monkey prefrontal and parietal cortices in saccadic choice tasks. In addition, many NCL neurons coded for movement direction during choice execution and differentiated between choice outcomes (reward and punishment). Taken together, our results implicate the NCL in the selection and execution of operant responses, an interpretation resonating well with the results of previous lesion studies. The resemblance of the response patterns of NCL neurons to those observed in mammalian cortex suggests that, despite differing neural architectures, mechanisms for perceptual decision making are similar across classes of vertebrates.
Collapse
Affiliation(s)
- Daniel Lengersdorf
- Department of Biopsychology, Faculty of Psychology, University of Bochum, Bochum, Germany
| | | | | | | |
Collapse
|