1
|
Oñate-Ponce A, Muñoz-Muñoz C, Catenaccio A, Court FA, Henny P. Applying the area fraction fractionator (AFF) probe for total volume estimations of somatic, dendritic and axonal domains of the nigrostriatal dopaminergic system in a murine model. J Neurosci Methods 2024; 410:110226. [PMID: 39038717 DOI: 10.1016/j.jneumeth.2024.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND The Cavalieri estimator is used for volume measurement of brain and brain regions. Derived from this estimator is the Area Fraction Fractionator (AFF), used for efficient area and number estimations of small 2D elements, such as axons in cross-sectioned nerves. However, to our knowledge, the AFF has not been combined with serial sectioning analysis to measure the volume of small-size nervous structures. NEW METHOD Using the nigrostriatal dopaminergic system as an illustrative case, we describe a protocol based on Cavalieri's principle and AFF to estimate the volume of its somatic, nuclear, dendritic, axonal and axon terminal cellular compartments in the adult mouse. The protocol consists of (1) systematic random sampling of sites within and across sections in regions of interest (substantia nigra, the nigrostriatal tract, caudate-putamen), (2) confocal image acquisition of sites, (3) marking of cellular domains using Cavalieri's 2D point-counting grids, and 4) determination of compartments' total volume using the estimated area of each compartment, and between-sections distance. RESULTS The volume of the nigrostriatal system per hemisphere is ∼0.38 mm3, with ∼5 % corresponding to perikarya and cell nuclei, ∼10 % to neuropil/dendrites, and ∼85 % to axons and varicosities. COMPARISON WITH EXISTING METHODS In contrast to other methods to measure volume of discrete objects, such as the optical nucleator or 3D reconstructions, it stands out for its versatility and ease of use. CONCLUSIONS The use of a simple quantitative, unbiased approach to assess the global state of a system may allow quantification of compartment-specific changes that may accompany neurodegenerative processes.
Collapse
Affiliation(s)
- Alejandro Oñate-Ponce
- Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Catalina Muñoz-Muñoz
- Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Alejandra Catenaccio
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Pablo Henny
- Laboratorio de Neuroanatomía, Departamento de Anatomía, and Centro Interdisciplinario de Neurociencia, NeuroUC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Chile; Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
2
|
Kleinfeld D, Deschênes M, Economo MN, Elbaz M, Golomb D, Liao SM, O'Connor DH, Wang F. Low- and high-level coordination of orofacial motor actions. Curr Opin Neurobiol 2023; 83:102784. [PMID: 37757586 PMCID: PMC11034851 DOI: 10.1016/j.conb.2023.102784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Orofacial motor actions are movements that, in rodents, involve whisking of the vibrissa, deflection of the nose, licking and lapping with the tongue, and consumption through chewing. These actions, along with bobbing and turning of the head, coordinate to subserve exploration while not conflicting with life-supporting actions such as breathing and swallowing. Orofacial and head movements are comprised of two additive components: a rhythm that can be entrained by the breathing oscillator and a broadband component that directs the actuator to the region of interest. We focus on coordinating the rhythmic component of actions into a behavior. We hypothesize that the precise timing of each constituent action is continually adjusted through the merging of low-level oscillator input with sensory-derived, high-level rhythmic feedback. Supporting evidence is discussed.
Collapse
Affiliation(s)
- David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Martin Deschênes
- Department of Psychiatry and Neuroscience, Laval University, Québec City, G1J 2R3 Canada
| | - Michael N Economo
- Department of Bioengineering, Boston University, Boston, MA 02215, USA
| | - Michaël Elbaz
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - David Golomb
- Department of Physiology and Cell Biology, Ben Gurion University, Be'er-Sheba 8410501, Israel; Department of Physics, Ben Gurion University, Be'er-Sheba 8410501, Israel
| | - Song-Mao Liao
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Daniel H O'Connor
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Zynval Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Fan Wang
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Kaya B, Geha P, de Araujo I, Cioffi I, Moayedi M. Identification of central amygdala and trigeminal motor nucleus connectivity in humans: An ultra-high field diffusion MRI study. Hum Brain Mapp 2023; 44:1309-1319. [PMID: 36217737 PMCID: PMC9921240 DOI: 10.1002/hbm.26104] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023] Open
Abstract
The neuroanatomical circuitry of jaw muscles has been mostly explored in non-human animals. A recent rodent study revealed a novel circuit from the central amygdala (CeA) to the trigeminal motor nucleus (5M), which controls biting attacks. This circuit has yet to be delineated in humans. Ultra-high diffusion-weighted imaging data from the Human Connectome Project (HCP) allow in vivo delineation of circuits identified in other species-for example, the CeA-5M pathway-in humans. We hypothesized that the CeA-5M circuit could be resolved in humans at both 7 and 3 T. We performed probabilistic tractography between the CeA and 5M in 30 healthy young adults from the HCP database. As a negative control, we performed tractography between the basolateral amygdala (BLAT) and 5M, as CeA is the only amygdalar nucleus with extensive projections to the brainstem. Connectivity strength was operationalized as the number of streamlines between each region of interest. Connectivity strength between CeA-5M and BLAT-5M within each hemisphere was compared, and CeA-5M circuit had significantly stronger connectivity than the BLAT-5M circuit, bilaterally at both 7 T (all p < .001) and 3 T (all p < .001). This study is the first to delineate the CeA-5M circuit in humans.
Collapse
Affiliation(s)
- Batu Kaya
- Faculty of Dentistry, Centre for Multimodal Sensorimotor and Pain ResearchUniversity of TorontoTorontoOntarioCanada
- University of Toronto Centre for the Study of PainTorontoOntarioCanada
| | - Paul Geha
- Department of Psychiatry, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
- The Del Monte Institute of NeuroscienceRochesterNew YorkUSA
| | - Ivan de Araujo
- Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Iacopo Cioffi
- Faculty of Dentistry, Centre for Multimodal Sensorimotor and Pain ResearchUniversity of TorontoTorontoOntarioCanada
- University of Toronto Centre for the Study of PainTorontoOntarioCanada
- Department of DentistryMount Sinai HospitalTorontoOntarioCanada
| | - Massieh Moayedi
- Faculty of Dentistry, Centre for Multimodal Sensorimotor and Pain ResearchUniversity of TorontoTorontoOntarioCanada
- University of Toronto Centre for the Study of PainTorontoOntarioCanada
- Department of DentistryMount Sinai HospitalTorontoOntarioCanada
- Clinical & Computational Neuroscience, Krembil Research InstituteUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
4
|
Ni L, Chen H, Xu X, Sun D, Cai H, Wang L, Tang Q, Hao Y, Cao S, Hu X. Neurocircuitry underlying the antidepressant effect of retrograde facial botulinum toxin in mice. Cell Biosci 2023; 13:30. [PMID: 36782335 PMCID: PMC9926702 DOI: 10.1186/s13578-023-00964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUNDS Botulinum toxin type A (BoNT/A) is extensively applied in spasticity and dystonia as it cleaves synaptosome-associated protein 25 (SNAP25) in the presynaptic terminals, thereby inhibiting neurotransmission. An increasing number of randomized clinical trials have suggested that glabellar BoNT/A injection improves depressive symptoms in patients with major depressive disorder (MDD). However, the underlying neuronal circuitry of BoNT/A-regulated depression remains largely uncharacterized. RESULTS Here, we modeled MDD using mice subjected to chronic restraint stress (CRS). By pre-injecting BoNT/A into the unilateral whisker intrinsic musculature (WIM), and performing behavioral testing, we showed that pre-injection of BoNT/A attenuated despair- and anhedonia-like phenotypes in CRS mice. By applying immunostaining of BoNT/A-cleaved SNAP25 (cl.SNAP25197), subcellular spatial localization of SNAP25 with markers of cholinergic neurons (ChAT) and post-synaptic membrane (PSD95), and injection of monosynaptic retrograde tracer CTB-488-mixed BoNT/A to label the primary nucleus of the WIM, we demonstrated that BoNT/A axonal retrograde transported to the soma of whisker-innervating facial motoneurons (wFMNs) and subsequent transcytosis to synaptic terminals of second-order neurons induced central effects. Furthermore, using transsynaptic retrograde and monosynaptic antegrade viral neural circuit tracing with c-Fos brain mapping and co-staining of neural markers, we observed that the CRS-induced expression of c-Fos and CaMKII double-positive neurons in the ventrolateral periaqueductal grey (vlPAG), which sent afferents to wFMNs, was down-regulated 3 weeks after BoNT/A facial pre-administration. Strikingly, the repeated and targeted silencing of the wFMNs-projecting CaMKII-positive neurons in vlPAG with a chemogenetic approach via stereotactic injection of recombinant adeno-associated virus into specific brain regions of CRS mice mimicked the antidepressant-like action of BoNT/A pre-treatment. Conversely, repeated chemogenetic activation of this potential subpopulation counteracted the BoNT/A-improved significant antidepressant behavior. CONCLUSION We reported for the first time that BoNT/A inhibited the wFMNs-projecting vlPAG excitatory neurons through axonal retrograde transport and cell-to-cell transcytosis from the injected location of the WIM to regulate depressive-like phenotypes of CRS mice. For the limited and the reversibility of side effects, BoNT/A has substantial advantages and potential application in MDD.
Collapse
Affiliation(s)
- Linhui Ni
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Hanze Chen
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Xinxin Xu
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China ,grid.13402.340000 0004 1759 700XDepartment of Ultrasonography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Di Sun
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Huaying Cai
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Li Wang
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Qiwen Tang
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Yonggang Hao
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China ,grid.263761.70000 0001 0198 0694Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215125 China
| | - Shuxia Cao
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053, China.
| | - Xingyue Hu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
5
|
The Cell Autonomous and Non-Cell Autonomous Aspects of Neuronal Vulnerability and Resilience in Amyotrophic Lateral Sclerosis. BIOLOGY 2022; 11:biology11081191. [PMID: 36009818 PMCID: PMC9405388 DOI: 10.3390/biology11081191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by a progressive paralysis due to the loss of particular neurons in our nervous system called motor neurons, that exert voluntary control of all our skeletal muscles. It is not entirely understood why motor neurons are particularly vulnerable in ALS, neither is it completely clear why certain groups of motor neurons, including those that regulate eye movement, are rather resilient to this disease. However, both vulnerability and resilience to ALS likely reflect cell intrinsic properties of different motor neuron subpopulations as well as non-cell autonomous events regulated by surrounding cell types. In this review we dissect the particular properties of different motor neuron types and their responses to disease that may underlie their respective vulnerabilities and resilience. Disease progression in ALS involves multiple cell types that are closely connected to motor neurons and we here also discuss their contributions to the differential vulnerability of motor neurons. Abstract Amyotrophic lateral sclerosis (ALS) is defined by the loss of upper motor neurons (MNs) that project from the cerebral cortex to the brain stem and spinal cord and of lower MNs in the brain stem and spinal cord which innervate skeletal muscles, leading to spasticity, muscle atrophy, and paralysis. ALS involves several disease stages, and multiple cell types show dysfunction and play important roles during distinct phases of disease initiation and progression, subsequently leading to selective MN loss. Why MNs are particularly vulnerable in this lethal disease is still not entirely clear. Neither is it fully understood why certain MNs are more resilient to degeneration in ALS than others. Brain stem MNs of cranial nerves III, IV, and VI, which innervate our eye muscles, are highly resistant and persist until the end-stage of the disease, enabling paralyzed patients to communicate through ocular tracking devices. MNs of the Onuf’s nucleus in the sacral spinal cord, that innervate sphincter muscles and control urogenital functions, are also spared throughout the disease. There is also a differential vulnerability among MNs that are intermingled throughout the spinal cord, that directly relate to their physiological properties. Here, fast-twitch fatigable (FF) MNs, which innervate type IIb muscle fibers, are affected early, before onset of clinical symptoms, while slow-twitch (S) MNs, that innervate type I muscle fibers, remain longer throughout the disease progression. The resilience of particular MN subpopulations has been attributed to intrinsic determinants and multiple studies have demonstrated their unique gene regulation and protein content in health and in response to disease. Identified factors within resilient MNs have been utilized to protect more vulnerable cells. Selective vulnerability may also, in part, be driven by non-cell autonomous processes and the unique surroundings and constantly changing environment close to particular MN groups. In this article, we review in detail the cell intrinsic properties of resilient and vulnerable MN groups, as well as multiple additional cell types involved in disease initiation and progression and explain how these may contribute to the selective MN resilience and vulnerability in ALS.
Collapse
|
6
|
Postnatal Maturation of Glutamatergic Inputs onto Rat Jaw-closing and Jaw-opening Motoneurons. Neuroscience 2022; 480:42-55. [PMID: 34780923 DOI: 10.1016/j.neuroscience.2021.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/15/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022]
Abstract
Motoneurons that innervate the jaw-closing and jaw-opening muscles play a critical role in oro-facial behaviors, including mastication, suckling, and swallowing. These motoneurons can alter their physiological properties through the postnatal period during which feeding behavior shifts from suckling to mastication; however, the functional synaptic properties of developmental changes in these neurons remain unknown. Thus, we explored the postnatal changes in glutamatergic synaptic transmission onto the motoneurons that innervate the jaw-closing and jaw-opening musculatures during early postnatal development in rats. We measured miniature excitatory postsynaptic currents (mEPSCs) mediated by non-NMDA receptors (non-NMDA mEPSCs) and NMDA receptors in the masseter and digastric motoneurons. The amplitude, frequency, and rise time of non-NMDA mEPSCs remained unchanged among postnatal day (P)2-5, P9-12, and P14-17 age groups in masseter motoneurons, whereas the decay time dramatically decreased with age. The properties of the NMDA mEPSCs were more predominant at P2-5 masseter motoneurons, followed by reduction as neurons matured. The decay time of NMDA mEPSCs of masseter motoneurons also shortened remarkably across development. Furthermore, the proportion of NMDA/non-NMDA EPSCs induced in response to the electrical stimulation of the supratrigeminal region was quite high in P2-5 masseter motoneurons, and then decreased toward P14-17. In contrast to masseter motoneurons, digastric motoneurons showed unchanged properties in non-NMDA and NMDA EPSCs throughout postnatal development. Our results suggest that the developmental patterns of non-NMDA and NMDA receptor-mediated inputs vary among jaw-closing and jaw-opening motoneurons, possibly related to distinct roles of respective motoneurons in postnatal development of feeding behavior.
Collapse
|
7
|
Gatica RI, Aguilar-Rivera M, Henny P, Fuentealba JA. Susceptibility to express amphetamine locomotor sensitization correlates with dorsolateral striatum bursting activity and GABAergic synapses in the globus pallidus. Brain Res Bull 2021; 179:83-96. [PMID: 34920034 DOI: 10.1016/j.brainresbull.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/09/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022]
Abstract
Repeated psychostimulant administration results in behavioral sensitization, a process that is relevant in the early phases of drug addiction. Critically, behavioral sensitization is not observed in all subjects. Evidence shows that differential neuronal activity in the dorsolateral striatum (DLS) accompanies the expression of amphetamine (AMPH) locomotor sensitization. However, whether individual differences in DLS activity previous to AMPH administration can predict the expression of locomotor sensitization has not been assessed. Here, we examined DLS neuronal activity before and after repeated AMPH administration and related it to the susceptibility of rats to sensitize. For that, single-unit recordings on DLS medium spiny neurons (MSNs) were carried out in freely moving male Sprague Dawley rats during repeated AMPH administration. We also examined differences in neurostructure that could accompany sensitization. We quantified the density of the inhibitory postsynaptic marker gephyrin (Geph) in the entopeduncular nucleus (EP) and globus pallidus (GP). A higher burst firing and a lower percentage of correlation between MSNs post-Saline firing rate vs. locomotion predicted the expression of locomotor sensitization. Moreover, during the AMPH challenge, we observed that burst firing decreased in sensitized rats, in contrast to non-sensitized rats in which burst firing was maintained. Finally, a higher Geph density on GP but not EP was observed in non-sensitized rats after AMPH challenge. These results indicate that initial differences in DLS burst firing might underlie the susceptibility to express locomotor sensitization and suggest that the potentiation of dorsal striatum indirect pathway could be considered a protective mechanism to locomotor sensitization.
Collapse
Affiliation(s)
- Rafael Ignacio Gatica
- Laboratorio de Neuroquímica, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile; Laboratorio de Neuroanatomía, Departamento de Anatomía, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330023, Chile; Centro Interdisciplinario de Neurociencia, Pontificia Universidad Catolica de Chile, Santiago 8330023, Chile
| | - Marcelo Aguilar-Rivera
- Department of Bioengineering, University of California, La Jolla, San Diego, CA 92093, USA
| | - Pablo Henny
- Laboratorio de Neuroanatomía, Departamento de Anatomía, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330023, Chile; Centro Interdisciplinario de Neurociencia, Pontificia Universidad Catolica de Chile, Santiago 8330023, Chile
| | - José Antonio Fuentealba
- Laboratorio de Neuroquímica, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile; Centro Interdisciplinario de Neurociencia, Pontificia Universidad Catolica de Chile, Santiago 8330023, Chile.
| |
Collapse
|
8
|
Arredondo SB, Guerrero FG, Herrera-Soto A, Jensen-Flores J, Bustamante DB, Oñate-Ponce A, Henny P, Varas-Godoy M, Inestrosa NC, Varela-Nallar L. Wnt5a promotes differentiation and development of adult-born neurons in the hippocampus by noncanonical Wnt signaling. Stem Cells 2019; 38:422-436. [PMID: 31721364 DOI: 10.1002/stem.3121] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/08/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
In the adult hippocampus, new neurons are generated in the dentate gyrus. The Wnt signaling pathway regulates this process, but little is known about the endogenous Wnt ligands involved. We investigated the role of Wnt5a on adult hippocampal neurogenesis. Wnt5a regulates neuronal morphogenesis during embryonic development, and maintains dendritic architecture of pyramidal neurons in the adult hippocampus. Here, we determined that Wnt5a knockdown in the mouse dentate gyrus by lentivirus-mediated shRNA impaired neuronal differentiation of progenitor cells, and reduced dendritic development of adult-born neurons. In cultured adult hippocampal progenitors (AHPs), Wnt5a knockdown reduced neuronal differentiation and morphological development of AHP-derived neurons, whereas treatment with Wnt5a had the opposite effect. Interestingly, no changes in astrocytic differentiation were observed in vivo or in vitro, suggesting that Wnt5a does not affect fate-commitment. By using specific inhibitors, we determined that Wnt5a signals through CaMKII to induce neurogenesis, and promotes dendritic development of newborn neurons through activating Wnt/JNK and Wnt/CaMKII signaling. Our results indicate Wnt5a as a niche factor in the adult hippocampus that promotes neuronal differentiation and development through activation of noncanonical Wnt signaling pathways.
Collapse
Affiliation(s)
- Sebastian B Arredondo
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Fernanda G Guerrero
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Andrea Herrera-Soto
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Joaquin Jensen-Flores
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Daniel B Bustamante
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Oñate-Ponce
- Laboratorio de Neuroanatomía, Departamento de Anatomía, Facultad de Medicina and Centro Interdisciplinario de Neurociencias, NeuroUC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Henny
- Laboratorio de Neuroanatomía, Departamento de Anatomía, Facultad de Medicina and Centro Interdisciplinario de Neurociencias, NeuroUC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Varas-Godoy
- Cancer Cell Biology Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
9
|
Zhang FX, Ge SN, Dong YL, Shi J, Feng YP, Li Y, Li YQ, Li JL. Vesicular glutamate transporter isoforms: The essential players in the somatosensory systems. Prog Neurobiol 2018; 171:72-89. [PMID: 30273635 DOI: 10.1016/j.pneurobio.2018.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 02/08/2023]
Abstract
In nervous system, glutamate transmission is crucial for centripetal conveyance and cortical perception of sensory signals of different modalities, which necessitates vesicular glutamate transporters 1-3 (VGLUT 1-3), the three homologous membrane-bound protein isoforms, to load glutamate into the presysnaptic vesicles. These VGLUTs, especially VGLUT1 and VGLUT2, selectively label and define functionally distinct neuronal subpopulations at each relay level of the neural hierarchies comprising spinal and trigeminal sensory systems. In this review, by scrutinizing each structure of the organism's fundamental hierarchies including dorsal root/trigeminal ganglia, spinal dorsal horn/trigeminal sensory nuclear complex, somatosensory thalamic nuclei and primary somatosensory cortex, we summarize and characterize in detail within each relay the neuronal clusters expressing distinct VGLUT protein/transcript isoforms, with respect to their regional distribution features (complementary distribution in some structures), axonal terminations/peripheral innervations and physiological functions. Equally important, the distribution pattern and characteristics of VGLUT1/VGLUT2 axon terminals within these structures are also epitomized. Finally, the correlation of a particular VGLUT isoform and its physiological role, disclosed thus far largely via studying the peripheral receptors, is generalized by referring to reports on global and conditioned VGLUT-knockout mice. Also, researches on VGLUTs relating to future direction are tentatively proposed, such as unveiling the elusive differences between distinct VGLUTs in mechanism and/or pharmacokinetics at ionic/molecular level, and developing VGLUT-based pain killers.
Collapse
Affiliation(s)
- Fu-Xing Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Shun-Nan Ge
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China; Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China
| | - Yu-Lin Dong
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Juan Shi
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Yu-Peng Feng
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Yang Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China.
| | - Jin-Lian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
10
|
Vesicular glutamate transporter 1 (VGLUT1)- and VGLUT2-immunopositive axon terminals on the rat jaw-closing and jaw-opening motoneurons. Brain Struct Funct 2018; 223:2323-2334. [DOI: 10.1007/s00429-018-1636-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/19/2018] [Indexed: 12/16/2022]
|
11
|
Molecular specification of facial branchial motor neurons in vertebrates. Dev Biol 2018; 436:5-13. [PMID: 29391164 DOI: 10.1016/j.ydbio.2018.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/27/2018] [Accepted: 01/28/2018] [Indexed: 02/02/2023]
Abstract
Orofacial muscles are critical for life-sustaining behaviors, such as feeding and breathing. Centuries of work by neuroanatomists and surgeons resulted in the mapping of bulbar motor neurons in the brainstem and the course of the cranial nerves that carry their axons. Despite the sophisticated understanding of the anatomy of the region, the molecular mechanisms that dictate the development and maturation of facial motor neurons remain poorly understood. This fundamental problem has been recently revisited by physiologists with novel techniques of studying the rhythmic contraction of orofacial muscles in relationship to breathing. The molecular understanding of facial motor neuron development will not only lead to the comprehension of the neural basis of facial expression but may also unlock new avenues to generate stem cell-derived replacements. This review summarizes the current understanding of molecular programs involved in facial motor neuron generation, migration, and maturation, including neural circuit assembly.
Collapse
|
12
|
Fukushima N, Karasawa M, Yokouchi K, Sumitomo N, Kawagishi K, Moriizumi T. Stereological assessment of the total number of hypoglossal neurons after repeated crush injuries to the hypoglossal nerve in adult rats. Neurol Res 2017; 39:183-188. [PMID: 28051949 DOI: 10.1080/01616412.2016.1275461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Retrograde neuronal cell death does not occur in mature motoneurons following the axonal injury of peripheral nerves. However, a previous study suggested that retrograde neuronal cell death does occur in adult rats after the creation of double lesions on the hypoglossal (XII) nerve based on a substantial decrease in the number of XII neurons. Using stereological methods, we examined neuronal apoptosis in XII neurons and the total number of XII neurons following repeated crush injuries to the XII nerve. METHODS The right XII nerve of adult rats was crushed three times at one-week intervals with a brain aneurysm clip. At 4 weeks after the final crush, the total numbers of XII neurons on the injured right and uninjured left sides were estimated stereologically. RESULTS After repeated crush injuries, no apoptosis was evident in XII neurons as indicated by immunostaining for cleaved caspase-3. Moreover, immunohistochemistry for the vesicular acetylcholine transporter revealed axonal elongation in the tongue 4 weeks after repeated crush injuries. At 4 weeks, the total numbers of XII neurons were 7800 ± 290 on the injured right side and 8000 ± 230 on the uninjured left side, and no significant difference was evident between the injured and uninjured sides. CONCLUSION Neuronal cell death does not occur in XII neurons and the total number of XII neurons does not decrease after repeated crush injuries of the XII nerve in adult rats.
Collapse
Affiliation(s)
- Nanae Fukushima
- a Department of Anatomy , Shinshu University School of Medicine , Matsumoto , Japan
| | - Mika Karasawa
- a Department of Anatomy , Shinshu University School of Medicine , Matsumoto , Japan
| | - Kumiko Yokouchi
- a Department of Anatomy , Shinshu University School of Medicine , Matsumoto , Japan
| | - Norimi Sumitomo
- a Department of Anatomy , Shinshu University School of Medicine , Matsumoto , Japan
| | - Kyutaro Kawagishi
- a Department of Anatomy , Shinshu University School of Medicine , Matsumoto , Japan
| | - Tetsuji Moriizumi
- a Department of Anatomy , Shinshu University School of Medicine , Matsumoto , Japan
| |
Collapse
|
13
|
Gamma motor neurons survive and exacerbate alpha motor neuron degeneration in ALS. Proc Natl Acad Sci U S A 2016; 113:E8316-E8325. [PMID: 27930290 DOI: 10.1073/pnas.1605210113] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The molecular and cellular basis of selective motor neuron (MN) vulnerability in amyotrophic lateral sclerosis (ALS) is not known. In genetically distinct mouse models of familial ALS expressing mutant superoxide dismutase-1 (SOD1), TAR DNA-binding protein 43 (TDP-43), and fused in sarcoma (FUS), we demonstrate selective degeneration of alpha MNs (α-MNs) and complete sparing of gamma MNs (γ-MNs), which selectively innervate muscle spindles. Resistant γ-MNs are distinct from vulnerable α-MNs in that they lack synaptic contacts from primary afferent (IA) fibers. Elimination of these synapses protects α-MNs in the SOD1 mutant, implicating this excitatory input in MN degeneration. Moreover, reduced IA activation by targeted reduction of γ-MNs in SOD1G93A mutants delays symptom onset and prolongs lifespan, demonstrating a pathogenic role of surviving γ-MNs in ALS. This study establishes the resistance of γ-MNs as a general feature of ALS mouse models and demonstrates that synaptic excitation of MNs within a complex circuit is an important determinant of relative vulnerability in ALS.
Collapse
|