1
|
Chen J, Zhao F, Hong J, Li C, Zhang J, Shan Y, Ye Q, Wen H. Effect of high-frequency repetitive transcranial magnetic stimulation on swallowing function and pneumonia in poststroke dysphagia in rats. Brain Res 2024; 1832:148846. [PMID: 38432259 DOI: 10.1016/j.brainres.2024.148846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Post-stroke dysphagia (PSD) is a common symptom of stroke. Clinical complications of PSD include malnutrition and pneumonia. Clinical studies have shown that high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) can improve the swallowing function in stroke patients. However, few studies have elucidated the underlying molecular mechanisms. METHODS A PSD rat model was established using transient middle cerebral artery occlusion (tMCAO). Rats were randomly divided into sham-operated groups, PSD groups, PSD + sham-rTMS groups, PSD + 5 Hz-rTMS groups, PSD + 10 Hz-rTMS groups and PSD + 20 Hz-rTMS groups. Rats were weighed and videofluoroscopic swallowing studies were conducted. Pulmonary inflammation, levels of substance P (SP) and calcitonin gene-related peptide (CGRP) in the serum, lung, and nucleus tractus solitarius (NTS), brain-derived neurotrophic factor (BDNF) and 5-hydroxytryptamine (5HT) in NTS were evaluated. RESULTS Rats in the PSD group experienced weight loss, reduced bolus area and pharyngeal bolus speed, and increased pharyngeal transit time (PTT) and inter-swallow interval (ISI) on day 7 and day 14 after operation. Moreover, PSD rats showed pulmonary inflammation, reduced levels of SP in the lung and serum, increased levels of CGRP in the lung and NTS, reduced levels of BDNF and 5HT in the NTS. There was no significant difference between the PSD group and the PSD + sham-rTMS group in the results of weight and VFSS. Comparing with the PSD group, there significant increases in the bolus area, decreases in PTT of rats following 5 Hz rTMS intervention. HF-rTMS at 10 Hz significantly increased the weight, bolus area, pharyngeal bolus speed and decreased the PTT and ISI of rats. There were also significant increases in the bolus area (p < 0.01) and pharyngeal bolus speed, decreases in PTT and ISI of rats following 20 Hz rTMS intervention. Furthermore, compared with the PSD + 5 Hz-rTMS group, there were significant increases in the bolus area and pharyngeal bolus speed, decreases in ISI in the swallowing function of rats in the PSD + 10 Hz-rTMS group. Besides, compared with the PSD + 5 Hz-rTMS group, there were significant decreases in ISI in the swallowing function of rats in the PSD + 20 Hz-rTMS group. HF-rTMS at 10 Hz alleviated pulmonary inflammation, increased the levels of SP in the lung, serum, and NTS, CGRP in the serum and NTS, 5HT in the NTS of PSD rats. CONCLUSION Compared with 5 Hz and 20 Hz rTMS, 10 Hz rTMS more effectively improved the swallowing function of rats with PSD. HF-rTMS at 10 Hz improved the swallowing function and alleviated pneumonia in PSD rats. The mechanism may be related to increased levels of SP in the lung, serum and NTS, levels of CGRP in the serum and NTS, 5HT in the NTS after HF-rTMS treatment.
Collapse
Affiliation(s)
- Jiemei Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| | - Fei Zhao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| | - Jiena Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| | - Chao Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| | - Jiantao Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| | - Yilong Shan
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| | - Qiuping Ye
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China; Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Traditional Chinese Medicine, 232 East Waihuan Road, Guangzhou 510006, Guangdong Province, China.
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| |
Collapse
|
2
|
Yin DX, Toyoda H, Nozaki K, Satoh K, Katagiri A, Adachi K, Kato T, Sato H. Taste Impairments in a Parkinson’s Disease Model Featuring Intranasal Rotenone Administration in Mice. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1863-1880. [PMID: 35848036 PMCID: PMC9535587 DOI: 10.3233/jpd-223273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Taste impairments are often accompanied by olfactory impairments in the early stage of Parkinson’s disease (PD). The development of animal models is required to elucidate the mechanisms underlying taste impairments in PD. Objective: This study was conducted to clarify whether the intranasal administration of rotenone causes taste impairments prior to motor deficits in mice. Methods: Rotenone was administrated to the right nose of mice once a day for 1 or 4 week(s). In the 1-week group, taste, olfactory, and motor function was assessed before and after a 1-week recovery period following the rotenone administration. Motor function was also continuously examined in the 4-weeks group from 0 to 5 weeks. After a behavioral test, the number of catecholamine neurons (CA-Nos) was counted in the regions responsible for taste, olfactory, and motor function. Results: taste and olfactory impairments were simultaneously observed without locomotor impairments in the 1-week group. The CA-Nos was significantly reduced in the olfactory bulb and nucleus of the solitary tract. In the 4-week group, locomotor impairments were observed from the third week, and a significant reduction in the CA-Nos was observed in the substantia nigra (SN) and ventral tegmental area (VTA) at the fifth week along with the weight loss. Conclusion: The intranasal administration of rotenone caused chemosensory and motor impairments in an administration time-period dependent manner. Since chemosensory impairments were expressed prior to the locomotor impairments followed by SN/VTA CA neurons loss, this rotenone administration model may contribute to the clarification of the prodromal symptoms of PD.
Collapse
Affiliation(s)
- Dong Xu Yin
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazunori Nozaki
- Division of Medical Information, Osaka University Dental Hospital, Suita, Osaka, Japan
| | - Keitaro Satoh
- Division of Pharmacology, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazunori Adachi
- Division of Pharmacology, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hajime Sato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Division of Pharmacology, Meikai University School of Dentistry, Sakado, Saitama, Japan
| |
Collapse
|
3
|
Zhang J, Lee H, Macpherson LJ. Mechanisms for the Sour Taste. Handb Exp Pharmacol 2021; 275:229-245. [PMID: 34117536 DOI: 10.1007/164_2021_476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sour, the taste of acids, provides important sensory information to prevent the ingestion of unripe, spoiled, or fermented foods. In mammals, acids elicit disgust and pain by simultaneously activating taste and somatosensory neurons innervating the oral cavity. Early researchers detected electrical activity in taste nerves upon presenting acids to the tongue, establishing this as the bona fide sour taste. Recent studies have made significant contributions to our understanding of the mechanisms underlying acid sensing in the taste receptor cells at the periphery and the neural circuitry that convey this information to the brain. In this chapter, we discuss the characterization of sour taste receptor cells, the twists and turns eventually leading to the identification of Otopetrin1 (OTOP1) as the sour taste receptor, the pathway of sour taste signaling from the tongue to the brainstem, and other roles sour taste receptor cells play in the taste bud.
Collapse
Affiliation(s)
- Jin Zhang
- Mortimer B. Zukerman Mind Brain and Behavior Institute, Columbia University, New York, NY, USA.
| | - Hojoon Lee
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Lindsey J Macpherson
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
4
|
Neurotrophin-4 is essential for survival of the majority of vagal afferents to the mucosa of the small intestine, but not the stomach. Auton Neurosci 2021; 233:102811. [PMID: 33932866 DOI: 10.1016/j.autneu.2021.102811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/03/2021] [Accepted: 04/14/2021] [Indexed: 01/06/2023]
Abstract
Vagal afferents form the primary gut-to-brain neural axis, communicating signals that regulate gastrointestinal (GI) function and promote satiation, appetition and reward. Neurotrophin-4 (NT-4) is essential for the survival of vagal smooth muscle afferents of the small intestine, but not the stomach. Here we took advantage of near-complete labeling of GI vagal mucosal afferents in Nav1.8cre-Rosa26tdTomato transgenic mice to determine whether these afferents depend on NT-4 for survival. We quantified the density and distribution of vagal afferent terminals in the stomach and small intestine mucosa and their central terminals in the solitary tract nucleus (NTS) and area postrema in NT-4 knockout (KO) and control mice. NT-4KO mice exhibited a 75% reduction in vagal afferent terminals in proximal duodenal villi and a 55% decrease in the distal ileum, whereas, those in the stomach glands remained intact. Vagal crypt afferents were also reduced in some regions of the small intestine, but to a lesser degree. Surprisingly, NT-4KO mice exhibited an increase in labeled terminals in the medial NTS. These findings, combined with previous results, suggest NT-4 is essential for survival of a large proportion of all classes of vagal afferents that innervate the small intestine, but not those that supply the stomach. Thus, NT-4KO mice could be valuable for distinguishing gastric and intestinal vagal afferent regulation of GI function and feeding. The apparent plasticity of central vagal afferent terminals - an increase in their density - could have compensated for loss of peripheral terminals by maintaining near-normal levels of satiety signaling.
Collapse
|
5
|
Adjustment of Whey:Casein Ratio from 20:80 to 60:40 in Milk Formulation Affects Food Intake and Brainstem and Hypothalamic Neuronal Activation and Gene Expression in Laboratory Mice. Foods 2021; 10:foods10030658. [PMID: 33808819 PMCID: PMC8003661 DOI: 10.3390/foods10030658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Adjustment of protein content in milk formulations modifies protein and energy levels, ensures amino acid intake and affects satiety. The shift from the natural whey:casein ratio of ~20:80 in animal milk is oftentimes done to reflect the 60:40 ratio of human milk. Studies show that 20:80 versus 60:40 whey:casein milks differently affect glucose metabolism and hormone release; these data parallel animal model findings. It is unknown whether the adjustment from the 20:80 to 60:40 ratio affects appetite and brain processes related to food intake. In this set of studies, we focused on the impact of the 20:80 vs. 60:40 whey:casein content in milk on food intake and feeding-related brain processes in the adult organism. By utilising laboratory mice, we found that the 20:80 whey:casein milk formulation was consumed less avidly and was less preferred than the 60:40 formulation in short-term choice and no-choice feeding paradigms. The relative PCR analyses in the hypothalamus and brain stem revealed that the 20:80 whey:casein milk intake upregulated genes involved in early termination of feeding and in an interplay between reward and satiety, such as melanocortin 3 receptor (MC3R), oxytocin (OXT), proopiomelanocortin (POMC) and glucagon-like peptide-1 receptor (GLP1R). The 20:80 versus 60:40 whey:casein formulation intake differently affected brain neuronal activation (assessed through c-Fos, an immediate-early gene product) in the nucleus of the solitary tract, area postrema, ventromedial hypothalamic nucleus and supraoptic nucleus. We conclude that the shift from the 20:80 to 60:40 whey:casein ratio in milk affects short-term feeding and relevant brain processes.
Collapse
|
6
|
Yu T, Wilson CE, Stratford JM, Finger TE. Genetic Deletion of TrpV1 and TrpA1 Does Not Alter Avoidance of or Patterns of Brainstem Activation to Citric Acid in Mice. Chem Senses 2020; 45:573-579. [PMID: 32572463 DOI: 10.1093/chemse/bjaa043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exposure of the oral cavity to acidic solutions evokes not only a sensation of sour, but also of sharp or tangy. Acidic substances potentially stimulate both taste buds and acid-sensitive mucosal free nerve endings. Mice lacking taste function (P2X2/P2X3 double-KO mice) refuse acidic solutions similar to wildtype (WT) mice and intraoral infusion of acidic solutions in these KO animals evokes substantial c-Fos activity within orosensory trigeminal nuclei as well as of the nucleus of the solitary tract (nTS) (Stratford, Thompson, et al. 2017). This residual acid-evoked, non-taste activity includes areas that receive inputs from trigeminal and glossopharyngeal peptidergic (CGRP-containing) nerve fibers that express TrpA1 and TrpV1 both of which are activated by low pH. We compared avoidance responses in WT and TrpA1/V1 double-KO (TRPA1/V1Dbl-/-) mice in brief-access behavioral assay (lickometer) to 1, 3, 10, and 30 mM citric acid, along with 100 µM SC45647 and H2O. Both WT and TRPA1/V1Dbl-/- show similar avoidance, including to higher concentrations of citric acid (10 and 30 mM; pH 2.62 and pH 2.36, respectively), indicating that neither TrpA1 nor TrpV1 is necessary for the acid-avoidance behavior in animals with an intact taste system. Similarly, induction of c-Fos in the nTS and dorsomedial spinal trigeminal nucleus was similar in the WT and TRPA1/V1Dbl-/- animals. Taken together these results suggest non-TrpV1 and non-TrpA1 receptors underlie the residual responses to acids in mice lacking taste function.
Collapse
Affiliation(s)
- Tian Yu
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Courtney E Wilson
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer M Stratford
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas E Finger
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
7
|
Dutta Banik D, Benfey ED, Martin LE, Kay KE, Loney GC, Nelson AR, Ahart ZC, Kemp BT, Kemp BR, Torregrossa AM, Medler KF. A subset of broadly responsive Type III taste cells contribute to the detection of bitter, sweet and umami stimuli. PLoS Genet 2020; 16:e1008925. [PMID: 32790785 PMCID: PMC7425866 DOI: 10.1371/journal.pgen.1008925] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Taste receptor cells use multiple signaling pathways to detect chemicals in potential food items. These cells are functionally grouped into different types: Type I cells act as support cells and have glial-like properties; Type II cells detect bitter, sweet, and umami taste stimuli; and Type III cells detect sour and salty stimuli. We have identified a new population of taste cells that are broadly tuned to multiple taste stimuli including bitter, sweet, sour, and umami. The goal of this study was to characterize these broadly responsive (BR) taste cells. We used an IP3R3-KO mouse (does not release calcium (Ca2+) from internal stores in Type II cells when stimulated with bitter, sweet, or umami stimuli) to characterize the BR cells without any potentially confounding input from Type II cells. Using live cell Ca2+ imaging in isolated taste cells from the IP3R3-KO mouse, we found that BR cells are a subset of Type III cells that respond to sour stimuli but also use a PLCβ signaling pathway to respond to bitter, sweet, and umami stimuli. Unlike Type II cells, individual BR cells are broadly tuned and respond to multiple stimuli across different taste modalities. Live cell imaging in a PLCβ3-KO mouse confirmed that BR cells use this signaling pathway to respond to bitter, sweet, and umami stimuli. Short term behavioral assays revealed that BR cells make significant contributions to taste driven behaviors and found that loss of either PLCβ3 in BR cells or IP3R3 in Type II cells caused similar behavioral deficits to bitter, sweet, and umami stimuli. Analysis of c-Fos activity in the nucleus of the solitary tract (NTS) also demonstrated that functional Type II and BR cells are required for normal stimulus induced expression. We use our taste system to decide if we are going to consume or reject a potential food item. This is critical for survival, as we need energy to live but also need to avoid potentially toxic compounds. Therefore, it is important to understand how the taste cells in our mouth detect the chemicals in food and send a message to our brain. Signals from the taste cells form a code that conveys information about the nature of the potential food item to the brain. How this taste coding works is not well understood. Currently, it is thought that taste cells are primarily selective for each taste stimuli and only detect either bitter, sweet, sour, salt, or umami (amino acids) compounds. Our study describes a new population of taste cells that can detect multiple types of stimuli, including chemicals from different taste qualities. Thus, taste cells can be either selective or generally responsive to stimuli which is similar to the cells in the brain that process taste information. The presence of these broadly responsive taste cells provides new insight into how taste information is sent to the brain for processing.
Collapse
Affiliation(s)
- Debarghya Dutta Banik
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Eric D. Benfey
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Laura E. Martin
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Kristen E. Kay
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Gregory C. Loney
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Amy R. Nelson
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Zachary C. Ahart
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Barrett T. Kemp
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Bailey R. Kemp
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Ann-Marie Torregrossa
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
- Center for Ingestive Behavior Research, University at Buffalo, Buffalo, New York, United States of America
| | - Kathryn F. Medler
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
- Center for Ingestive Behavior Research, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Carr R, Frings S. Neuropeptides in sensory signal processing. Cell Tissue Res 2018; 375:217-225. [PMID: 30377783 DOI: 10.1007/s00441-018-2946-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022]
Abstract
Peptides released from trigeminal fibers fulfill well-understood functions in neuroinflammatory processes and in the modulation of nociceptive signal processing. In particular, calcitonin gene-related peptide (CGRP) and substance P (SP), released from afferent nerve terminals, exert paracrine effects on the surrounding tissue and this has been recently highlighted by the prominent parcrine role of CGRP in the development of headache and migraine. Some recent communications suggest that these sensory neuropeptides may also modulate the workings of sensory organs and influence afferent signals from nose, tongue, eyes and ears. Here, we briefly review the evidence for modulatory effects of CGRP and SP in the sensory periphery.
Collapse
Affiliation(s)
- Richard Carr
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
| | - Stephan Frings
- Department of Animal Physiology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Travers S, Breza J, Harley J, Zhu J, Travers J. Neurons with diverse phenotypes project from the caudal to the rostral nucleus of the solitary tract. J Comp Neurol 2018; 526:2319-2338. [PMID: 30325514 PMCID: PMC6193849 DOI: 10.1002/cne.24501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 12/31/2022]
Abstract
The nucleus of the solitary tract is a potential site for taste-visceral interactions. Connections from the caudal, visceral area of the nucleus (cNST) to the rostral, gustatory zone (rNST) have been described, but the phenotype of cells giving rise to the projection(s) and their distribution among rNST subdivisions are unknown. To determine these characteristics of the intrasolitary pathway, we injected pan-neuronal and floxed AAV viruses into the cNST of mice expressing cre in glutamatergic, GABAergic, or catecholaminergic neurons. Particular attention was paid to the terminal field distribution in rNST subdivisions by simultaneously visualizing P2X2 localized to gustatory afferent terminals. All three phenotypically identified pathways terminated in rNST, with the density greatest for glutamatergic and sparsest for catecholaminergic projections, observations supported by retrograde tracing. Interestingly, cNST neurons had more prominent projections to rNST regions medial and ventral to P2X2 staining, i.e., the medial and ventral subdivisions. In addition, GABAergic neurons projected robustly to the lateral subdivision and adjacent parts of the reticular formation and spinal trigeminal nucleus. Although cNST neurons also projected to the P2X2-rich central subdivision, such projections were sparser. These findings suggest that cNST visceral signals exert stronger excitatory and inhibitory influences on local autonomic and reflex pathways associated with the medial and ventral subdivisions compared to weaker modulation of ascending pathways arising from the central subdivision and ultimately destined for the forebrain.
Collapse
Affiliation(s)
- Susan Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Joseph Breza
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Jacob Harley
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - JiuLin Zhu
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Joseph Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
10
|
Environmental Enrichment Induces Changes in Long-Term Memory for Social Transmission of Food Preference in Aged Mice through a Mechanism Associated with Epigenetic Processes. Neural Plast 2018; 2018:3725087. [PMID: 30123245 PMCID: PMC6079387 DOI: 10.1155/2018/3725087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/17/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Decline in declarative learning and memory performance is a typical feature of normal aging processes. Exposure of aged animals to an enriched environment (EE) counteracts this decline, an effect correlated with reduction of age-related changes in hippocampal dendritic branching, spine density, neurogenesis, gliogenesis, and neural plasticity, including its epigenetic underpinnings. Declarative memories depend on the medial temporal lobe system, including the hippocampus, for their formation, but, over days to weeks, they become increasingly dependent on other brain regions such as the neocortex and in particular the prefrontal cortex (PFC), a process known as system consolidation. Recently, it has been shown that early tagging of cortical networks is a crucial neurobiological process for remote memory formation and that this tagging involves epigenetic mechanisms in the recipient orbitofrontal (OFC) areas. Whether EE can enhance system consolidation in aged animals has not been tested; in particular, whether the early tagging mechanisms in OFC areas are deficient in aged animals and whether EE can ameliorate them is not known. This study aimed at testing whether EE could affect system consolidation in aged mice using the social transmission of food preference paradigm, which involves an ethologically based form of associative olfactory memory. We found that only EE mice successfully performed the remote memory recall task, showed neuronal activation in OFC, assessed with c-fos immunohistochemistry and early tagging of OFC, assessed with histone H3 acetylation, suggesting a defective system consolidation and early OFC tagging in aged mice which are ameliorated by EE.
Collapse
|
11
|
Aijie C, Huimin L, Jia L, Lingling O, Limin W, Junrong W, Xuan L, Xue H, Longquan S. Central neurotoxicity induced by the instillation of ZnO and TiO 2 nanoparticles through the taste nerve pathway. Nanomedicine (Lond) 2017; 12:2453-2470. [PMID: 28972461 DOI: 10.2217/nnm-2017-0171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To explore whether nanoparticles (NPs) can be transported into the CNS via the taste nerve pathway. MATERIALS & METHODS ZnO and TiO2 NPs were tongue-instilled to male Wistar rats. Toxicity was assessed by Zn/Ti biodistribution, histopathological examination, oxidative stress assay, quantitative reverse-transcriptase PCR analysis, learning and memory capabilities. RESULTS ZnO NPs and TiO2 NPs significantly deposited in the nerves and brain, respectively. The histopathological examination indicated a slight injury in the cerebral cortex and hippocampus. Ultrastructural changes and an imbalanced oxidative stress were observed. The Morris water maze results showed that the learning and memory of rats were impaired. CONCLUSION NPs can enter the CNS via the taste nerve translocation pathway and induce a certain adverse effect.
Collapse
Affiliation(s)
- Chen Aijie
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liang Huimin
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liu Jia
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ou Lingling
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Wei Limin
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Wu Junrong
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lai Xuan
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Han Xue
- The 309th Hospital of Chinese People's Liberation Army, Beijing 100091, China
| | - Shao Longquan
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
12
|
Gaillard D, Bowles SG, Salcedo E, Xu M, Millar SE, Barlow LA. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice. PLoS Genet 2017; 13:e1006990. [PMID: 28846687 PMCID: PMC5591015 DOI: 10.1371/journal.pgen.1006990] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/08/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023] Open
Abstract
Taste stimuli are transduced by taste buds and transmitted to the brain via afferent gustatory fibers. Renewal of taste receptor cells from actively dividing progenitors is finely tuned to maintain taste sensitivity throughout life. We show that conditional β-catenin deletion in mouse taste progenitors leads to rapid depletion of progenitors and Shh+ precursors, which in turn causes taste bud loss, followed by loss of gustatory nerve fibers. In addition, our data suggest LEF1, TCF7 and Wnt3 are involved in a Wnt pathway regulatory feedback loop that controls taste cell renewal in the circumvallate papilla epithelium. Unexpectedly, taste bud decline is greater in the anterior tongue and palate than in the posterior tongue. Mutant mice with this regional pattern of taste bud loss were unable to discern sweet at any concentration, but could distinguish bitter stimuli, albeit with reduced sensitivity. Our findings are consistent with published reports wherein anterior taste buds have higher sweet sensitivity while posterior taste buds are better tuned to bitter, and suggest β-catenin plays a greater role in renewal of anterior versus posterior taste buds. By remaining relatively constant throughout adult life, the sense of taste helps keep the body healthy. However, taste perception can be disrupted by various environmental factors, including cancer therapies. Here, we show that Wnt/β-catenin signaling, a pathway known to control normal tissue maintenance and associated with the development of cancers, is required for taste cell renewal and behavioral taste sensitivity in mice. Our findings are significant as they suggest that chemotherapies targeting the Wnt pathway in cancerous tissues may cause taste dysfunction and further diminish the quality of life of patients.
Collapse
Affiliation(s)
- Dany Gaillard
- Department of Cell & Developmental Biology and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Spencer G. Bowles
- Department of Cell & Developmental Biology and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ernesto Salcedo
- Department of Cell & Developmental Biology and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Mingang Xu
- Departments of Dermatology and Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah E. Millar
- Departments of Dermatology and Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Linda A. Barlow
- Department of Cell & Developmental Biology and the Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
13
|
Stratford JM, Larson ED, Yang R, Salcedo E, Finger TE. 5-HT 3A -driven green fluorescent protein delineates gustatory fibers innervating sour-responsive taste cells: A labeled line for sour taste? J Comp Neurol 2017; 525:2358-2375. [PMID: 28316078 DOI: 10.1002/cne.24209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 12/29/2022]
Abstract
Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT3 receptors on the gustatory nerves. We show here, using 5-HT3A GFP mice, that 5-HT3 -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT3 -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT3 -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT3 -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus.
Collapse
Affiliation(s)
- J M Stratford
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| | - E D Larson
- Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado.,Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - R Yang
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| | - E Salcedo
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| | - T E Finger
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|