1
|
Phu J, Khuu SK, Nivison-Smith L, Kalloniatis M. Standard automated perimetry for glaucoma and diseases of the retina and visual pathways: current and future perspectives. Prog Retin Eye Res 2024:101307. [PMID: 39413870 DOI: 10.1016/j.preteyeres.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Static automated perimetry (SAP) remains a mainstay of functional assessment of the visual field in diseases of the visual pathway, such as glaucoma and age-related macular degeneration. The fundamental psychophysical task of responding to stimuli of different levels of contrast has remained minimally changed since its inception in the 1980s, and this is potentially the root of several unresolved issues involving the technique. Enduring issues include the optimisation of SAP parameters for maximising defect detection, the influence of subjective behaviour on the response, structure-function discordance, and ageing- and disease-related changes of the visual pathway. Addressing these issues has been a focus of our research program and is the subject of this manuscript. We will review some of the basic psychophysical principles and methods that have contributed to the development of SAP and their contributions to its output measurements. Parameters that are interrogated include stimulus size and background luminance and their modification to improve defect defection in glaucoma and age-related macular degeneration. We propose frameworks for optimising testing parameters and leveraging the results for changing clinical care. In our pursuit of optimising the structure-function relationship in the eye, several areas of research have been developed and explored, including: the reconciliation of subjective responses in perimetry; by minimising sources of biases, such as Method of Limits we have been able to equate static and kinetic perimetry outputs in relation to underlying structural loci. This also formed the basis for our clustering framework, which groups together statistically similar structural and functional test locations to maximise structure-function concordance. Throughout the manuscript, we review the scientific underpinnings of clinical measurements, framing application into real-world patients to improve clinical practice.
Collapse
Affiliation(s)
- Jack Phu
- School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, Australia; Centre for Eye Health, University of New South Wales, Kensington, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Concord Clinical School, Concord Repatriation General Hospital, Concord, NSW, Australia; School of Medicine (Optometry), Deakin University, Waurn Ponds, VIC, Australia.
| | - Sieu K Khuu
- School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, Australia.
| | - Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, Australia; Centre for Eye Health, University of New South Wales, Kensington, NSW, Australia.
| | - Michael Kalloniatis
- School of Optometry and Vision Science, University of New South Wales, Kensington, NSW, Australia; School of Medicine (Optometry), Deakin University, Waurn Ponds, VIC, Australia; College of Optometry, University of Houston, Houston, TX, USA.
| |
Collapse
|
2
|
Sigulinsky CL, Pfeiffer RL, Jones BW. Retinal Connectomics: A Review. Annu Rev Vis Sci 2024; 10:263-291. [PMID: 39292552 DOI: 10.1146/annurev-vision-102122-110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The retina is an ideal model for understanding the fundamental rules for how neural networks are constructed. The compact neural networks of the retina perform all of the initial processing of visual information before transmission to higher visual centers in the brain. The field of retinal connectomics uses high-resolution electron microscopy datasets to map the intricate organization of these networks and further our understanding of how these computations are performed by revealing the fundamental topologies and allowable networks behind retinal computations. In this article, we review some of the notable advances that retinal connectomics has provided in our understanding of the specific cells and the organization of their connectivities within the retina, as well as how these are shaped in development and break down in disease. Using these anatomical maps to inform modeling has been, and will continue to be, instrumental in understanding how the retina processes visual signals.
Collapse
Affiliation(s)
- Crystal L Sigulinsky
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| | - Rebecca L Pfeiffer
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| | - Bryan William Jones
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, Utah, USA;
| |
Collapse
|
3
|
Phu J, Wang H, Kalloniatis M. Comparing a head-mounted virtual reality perimeter and the Humphrey Field Analyzer for visual field testing in healthy and glaucoma patients. Ophthalmic Physiol Opt 2024; 44:83-95. [PMID: 37803502 PMCID: PMC10952716 DOI: 10.1111/opo.13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 10/08/2023]
Abstract
PURPOSE To compare clinical visual field outputs in glaucoma and healthy patients returned by the Humphrey Field Analyzer (HFA) and virtual reality (Virtual Field, VF) perimetry. METHODS One eye of 54 glaucoma patients and 41 healthy subjects was prospectively tested (three times each in random order) using the HFA and VF perimeters (24-2 test grids). We extracted and compared global indices (mean deviation [MD] and pattern standard deviation [PSD]), pointwise sensitivity (and calculated 'equivalent' sensitivity after accounting for differences in background luminance) and pointwise defects. Bland-Altman (mean difference [Mdiff ] and 95% limits of agreement [LoA]) and intraclass correlation analyses were performed. RESULTS The VF test was shorter (by 76 s) and had lower fixation losses (by 0.08) and false-positive rate (by 0.01) compared to the HFA (all p < 0.0001). Intraclass correlations were 0.86, 0.82 and 0.47 for MD, PSD and pointwise sensitivity between devices, respectively. Test-retest variability was higher for VF (Mdiff 0.3 dB, LoA -7.6 to 8.2 dB) compared to the HFA (Mdiff -0.3 dB, LoA -6.4 to 5.9 dB), indicating greater test-retest variability. When using each device's underlying normative database, the HFA detected, on average, 7 more defects (at the p < 0.05 level) out of the 52 test locations compared to this iteration of VF in the glaucoma cohort. CONCLUSIONS Virtual Field returns global results that are correlated with the HFA, but pointwise sensitivities were more variable. Differences in test-retest variability and defect detection by its current normative database raise questions about the widespread adoption of VF in lieu of the HFA.
Collapse
Affiliation(s)
- Jack Phu
- School of Optometry and Vision ScienceUniversity of New South Wales SydneyKensingtonNew South WalesAustralia
- Centre for Eye HealthUniversity of New South Wales SydneyKensingtonNew South WalesAustralia
- Faculty of Medicine and HealthUniversity of SydneyCamperdownNew South WalesAustralia
- Concord Clinical SchoolConcord Repatriation General HospitalConcordNew South WalesAustralia
- School of Medicine (Optometry)Deakin UniversityWaurn PondsVictoriaAustralia
| | - Henrietta Wang
- School of Optometry and Vision ScienceUniversity of New South Wales SydneyKensingtonNew South WalesAustralia
- Centre for Eye HealthUniversity of New South Wales SydneyKensingtonNew South WalesAustralia
| | - Michael Kalloniatis
- School of Optometry and Vision ScienceUniversity of New South Wales SydneyKensingtonNew South WalesAustralia
- School of Medicine (Optometry)Deakin UniversityWaurn PondsVictoriaAustralia
| |
Collapse
|
4
|
Hunter AML, Anderson RS, Redmond T, Garway-Heath DF, Mulholland PJ. Investigating the linkage between mesopic spatial summation and variations in retinal ganglion cell density across the central visual field. Ophthalmic Physiol Opt 2023; 43:1179-1189. [PMID: 37118942 DOI: 10.1111/opo.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/29/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
PURPOSE The relationship between perimetric stimulus area and Ricco's area (RA) determines measured thresholds and the sensitivity of perimetry to retinal disease. The nature of this relationship, in addition to effect of retinal ganglion cell (RGC) number on this, is currently unknown for the adaptation conditions of mesopic microperimetry. In this study, achromatic mesopic spatial summation was measured across the central visual field to estimate RA with the number of RGCs underlying RA also being established. METHODS Achromatic luminance thresholds were measured for six incremental spot stimuli (0.009-2.07 deg2 ) and 190.4 ms duration, at four locations, each at 2.5°, 5° and 10° eccentricity in five healthy observers (mean age 61.4 years) under mesopic conditions (background 1.58 cd/m2 ). RA was estimated using two-phase regression analysis with the number of RGCs underlying RA being calculated using normative histological RGC counts. RESULTS Ricco's area exhibited a small but statistically insignificant increase between 2.5° and 10° eccentricity. Compared with photopic conditions, RA was larger, with the difference between RA and the Goldmann III stimulus (0.43°) being minimised. RGC number underlying RA was also higher than reported for photopic conditions (median 70 cells, IQR 36-93), with no significant difference being observed across test locations. CONCLUSIONS Ricco's area and the number of RGCs underlying RA do not vary significantly across the central visual field in mesopic conditions. However, RA is larger and more similar to the standard perimetric Goldmann III stimulus under mesopic compared with photopic adaptation conditions. Further work is required to determine if compensatory enlargements in RA occur in age-related macular degeneration, to establish the optimal stimulus parameters for AMD-specific microperimetry.
Collapse
Affiliation(s)
- Aoife M L Hunter
- Centre for Optometry and Vision Science, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
| | - Roger S Anderson
- Centre for Optometry and Vision Science, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and University College London Institute of Ophthalmology, London, UK
| | - Tony Redmond
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, UK
| | - David F Garway-Heath
- National Institute for Health Research (NIHR) Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and University College London Institute of Ophthalmology, London, UK
| | - Pádraig J Mulholland
- Centre for Optometry and Vision Science, Biomedical Sciences Research Institute, Ulster University, Coleraine, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and University College London Institute of Ophthalmology, London, UK
| |
Collapse
|
5
|
Mu S, Turner NL, Silversmith WM, Jordan CS, Kemnitz N, Sorek M, David C, Jones DL, Bland D, Moore M, Sterling AR, Seung HS. Special nuclear layer contacts between starburst amacrine cells in the mouse retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1129463. [PMID: 38983098 PMCID: PMC11182129 DOI: 10.3389/fopht.2023.1129463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 07/11/2024]
Abstract
Starburst amacrine cells are a prominent neuron type in the mammalian retina that has been well-studied for its role in direction-selective information processing. One specific property of these cells is that their dendrites tightly stratify at specific depths within the inner plexiform layer (IPL), which, together with their unique expression of choline acetyltransferase (ChAT), has made them the most common depth marker for studying other retinal neurons in the IPL. This stratifying property makes it unexpected that they could routinely have dendrites reaching into the nuclear layer or that they could have somatic contact specializations, which is exactly what we have found in this study. Specifically, an electron microscopic image volume of sufficient size from a mouse retina provided us with the opportunity to anatomically observe both microscopic details and collective patterns, and our detailed cell reconstructions revealed interesting cell-cell contacts between starburst amacrine neurons. The contact characteristics differ between the respective On and Off starburst amacrine subpopulations, but both occur within the soma layers, as opposed to their regular contact laminae within the inner plexiform layer.
Collapse
Affiliation(s)
- Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Nicholas L Turner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
- Computer Science Department, Princeton University, Princeton, NJ, United States
| | - William M Silversmith
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Marissa Sorek
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Celia David
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Devon L Jones
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Doug Bland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Merlin Moore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Amy Robinson Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
- Computer Science Department, Princeton University, Princeton, NJ, United States
| |
Collapse
|
6
|
Yu WQ, Swanstrom R, Sigulinsky CL, Ahlquist RM, Knecht S, Jones BW, Berson DM, Wong RO. Distinctive synaptic structural motifs link excitatory retinal interneurons to diverse postsynaptic partner types. Cell Rep 2023; 42:112006. [PMID: 36680773 PMCID: PMC9946794 DOI: 10.1016/j.celrep.2023.112006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/09/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Neurons make converging and diverging synaptic connections with distinct partner types. Whether synapses involving separate partners demonstrate similar or distinct structural motifs is not yet well understood. We thus used serial electron microscopy in mouse retina to map output synapses of cone bipolar cells (CBCs) and compare their structural arrangements across bipolar types and postsynaptic partners. Three presynaptic configurations emerge-single-ribbon, ribbonless, and multiribbon synapses. Each CBC type exploits these arrangements in a unique combination, a feature also found among rabbit ON CBCs. Though most synapses are dyads, monads and triads are also seen. Altogether, mouse CBCs exhibit at least six motifs, and each CBC type uses these in a stereotypic pattern. Moreover, synapses between CBCs and particular partner types appear biased toward certain motifs. Our observations reveal synaptic strategies that diversify the output within and across CBC types, potentially shaping the distinct functions of retinal microcircuits.
Collapse
Affiliation(s)
- Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Rachael Swanstrom
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA,The authors contributed equally
| | - Crystal L. Sigulinsky
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA,The authors contributed equally
| | - Richard M. Ahlquist
- Department of Physiology and Biophysics, University of Washington, Seattle, 98195 WA, USA,The authors contributed equally
| | - Sharm Knecht
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Bryan W. Jones
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - David M. Berson
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Rachel O. Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA,Lead contact,Correspondence:
| |
Collapse
|
7
|
Pfeiffer RL, Jones BW. Retinal Pathoconnectomics: A Window into Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:297-301. [PMID: 37440048 PMCID: PMC11342915 DOI: 10.1007/978-3-031-27681-1_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Over the past decade, the field of retinal connectomics has made huge strides in describing the precise topologies underlying retinal visual processing. The same techniques that allowed these advancements are also applicable to understanding the progression of rewiring in retinal remodeling: retinal pathoconnectomics. Pathoconnectomics is unique in its unbiased approach to understanding the impacts of deafferentation on the remaining network components and identifying aberrant connectivities leading to visual processing defects. Pathoconnectomics also paves the way for identifying underlying rules of rewiring that may be recapitulated throughout the nervous system in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebecca L Pfeiffer
- John A. Moran Eye Center, Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA.
| | - Bryan W Jones
- John A. Moran Eye Center, Department of Ophthalmology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Tong J, Phu J, Alonso‐Caneiro D, Khuu SK, Kalloniatis M. High sampling resolution optical coherence tomography reveals potential concurrent reductions in ganglion cell-inner plexiform and inner nuclear layer thickness but not in outer retinal thickness in glaucoma. Ophthalmic Physiol Opt 2023; 43:46-63. [PMID: 36416369 PMCID: PMC10947055 DOI: 10.1111/opo.13065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE To analyse optical coherence tomography (OCT)-derived inner nuclear layer (INL) and outer retinal complex (ORC) measurements relative to ganglion cell-inner plexiform layer (GCIPL) measurements in glaucoma. METHODS Glaucoma participants (n = 271) were categorised by 10-2 visual field defect type. Differences in GCIPL, INL and ORC thickness were calculated between glaucoma and matched healthy eyes (n = 548). Hierarchical cluster algorithms were applied to generate topographic patterns of retinal thickness change, with agreement between layers assessed using Cohen's kappa (κ). Differences in GCIPL, INL and ORC thickness within and outside GCIPL regions showing the greatest reductions and Spearman's correlations between layer pairs were compared with 10-2 mean deviation (MD) and pattern standard deviation (PSD) to determine trends with glaucoma severity. RESULTS Glaucoma participants with inferior and superior defects presented with concordant GCIPL and INL defects demonstrating mostly fair-to-moderate agreement (κ = 0.145-0.540), which was not observed in eyes with no or ring defects (κ = -0.067-0.230). Correlations (r) with MD and PSD were moderate and weak in GCIPL and INL thickness differences, respectively (GCIPL vs. MD r = 0.479, GCIPL vs. PSD r = -0.583, INL vs. MD r = 0.259, INL vs. PSD r = -0.187, p = <0.0001-0.002), and weak in GCIPL-INL correlations (MD r = 0.175, p = 0.004 and PSD r = 0.154, p = 0.01). No consistent patterns in ORC thickness or correlations were observed. CONCLUSIONS In glaucoma, concordant reductions in macular INL and GCIPL thickness can be observed, but reductions in ORC thickness appear unlikely. These findings suggest that trans-synaptic retrograde degeneration may occur in glaucoma and could indicate the usefulness of INL thickness in evaluating glaucomatous damage.
Collapse
Affiliation(s)
- Janelle Tong
- Centre for Eye HealthUniversity of New South WalesNew South WalesSydneyAustralia
- School of Optometry and Vision ScienceUniversity of New South WalesNew South WalesSydneyAustralia
| | - Jack Phu
- Centre for Eye HealthUniversity of New South WalesNew South WalesSydneyAustralia
- School of Optometry and Vision ScienceUniversity of New South WalesNew South WalesSydneyAustralia
- Faculty of MedicineUniversity of SydneySydneyNew South WalesAustralia
| | - David Alonso‐Caneiro
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Sieu K. Khuu
- School of Optometry and Vision ScienceUniversity of New South WalesNew South WalesSydneyAustralia
| | - Michael Kalloniatis
- School of Optometry and Vision ScienceUniversity of New South WalesNew South WalesSydneyAustralia
- School of Medicine (Optometry)Deakin UniversityWaurn PondsVictoriaAustralia
| |
Collapse
|
9
|
Flood MD, Eggers ED. Dopamine D1 and D4 receptors contribute to light adaptation in ON-sustained retinal ganglion cells. J Neurophysiol 2021; 126:2039-2052. [PMID: 34817291 PMCID: PMC8715048 DOI: 10.1152/jn.00218.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 01/21/2023] Open
Abstract
The adaptation of ganglion cells to increasing light levels is a crucial property of the retina. The retina must respond to light intensities that vary by 10-12 orders of magnitude, but the dynamic range of ganglion cell responses covers only ∼3 orders of magnitude. Dopamine is a crucial neuromodulator for light adaptation and activates receptors in the D1 and D2 families. Dopamine type D1 receptors (D1Rs) are expressed on horizontal cells and some bipolar, amacrine, and ganglion cells. In the D2 family, D2Rs are expressed on dopaminergic amacrine cells and D4Rs are primarily expressed on photoreceptors. However, the roles of activating these receptors to modulate the synaptic properties of the inputs to ganglion cells are not yet clear. Here, we used single-cell retinal patch-clamp recordings from the mouse retina to determine how activating D1Rs and D4Rs changed the light-evoked and spontaneous excitatory inputs to ON-sustained (ON-s) ganglion cells. We found that both D1R and D4R activation decrease the light-evoked excitatory inputs to ON-s ganglion cells, but that only the sum of the peak response decrease due to activating the two receptors was similar to the effect of light adaptation to a rod-saturating background. The largest effects on spontaneous excitatory activity of both D1R and D4R agonists was on the frequency of events, suggesting that both D1Rs and D4Rs are acting upstream of the ganglion cells.NEW & NOTEWORTHY Dopamine by bright light conditions allows retinal neurons to reduce sensitivity to adapt to bright light conditions. It is not clear how and why dopamine receptors modulate retinal ganglion cell signaling. We found that both D1 and D4 dopamine receptors in photoreceptors and inner retinal neurons contribute significantly to the reduction in sensitivity of ganglion cells with light adaptation. However, light adaptation also requires dopamine-independent mechanisms that could reflect inherent sensitivity changes in photoreceptors.
Collapse
Affiliation(s)
- Michael D Flood
- Department of Physiology, University of Arizona, Tucson, Arizona
- Department Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Erika D Eggers
- Department of Physiology, University of Arizona, Tucson, Arizona
- Department Biomedical Engineering, University of Arizona, Tucson, Arizona
| |
Collapse
|
10
|
Pfeiffer RL, Anderson JR, Dahal J, Garcia JC, Yang JH, Sigulinsky CL, Rapp K, Emrich DP, Watt CB, Johnstun HA, Houser AR, Marc RE, Jones BW. A pathoconnectome of early neurodegeneration: Network changes in retinal degeneration. Exp Eye Res 2020; 199:108196. [PMID: 32810483 DOI: 10.1016/j.exer.2020.108196] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/27/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Connectomics has demonstrated that synaptic networks and their topologies are precise and directly correlate with physiology and behavior. The next extension of connectomics is pathoconnectomics: to map neural network synaptology and circuit topologies corrupted by neurological disease in order to identify robust targets for therapeutics. In this report, we characterize a pathoconnectome of early retinal degeneration. This pathoconnectome was generated using serial section transmission electron microscopy to achieve an ultrastructural connectome with 2.18nm/px resolution for accurate identification of all chemical and gap junctional synapses. We observe aberrant connectivity in the rod-network pathway and novel synaptic connections deriving from neurite sprouting. These observations reveal principles of neuron responses to the loss of network components and can be extended to other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebecca L Pfeiffer
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA.
| | - James R Anderson
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Jeebika Dahal
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Jessica C Garcia
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Jia-Hui Yang
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | | | - Kevin Rapp
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Daniel P Emrich
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Carl B Watt
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Hope Ab Johnstun
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Alexis R Houser
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Robert E Marc
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA; Signature Immunologics, Torrey, UT, USA
| | - Bryan W Jones
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
11
|
Park SJH, Lieberman EE, Ke JB, Rho N, Ghorbani P, Rahmani P, Jun NY, Lee HL, Kim IJ, Briggman KL, Demb JB, Singer JH. Connectomic analysis reveals an interneuron with an integral role in the retinal circuit for night vision. eLife 2020; 9:e56077. [PMID: 32412412 PMCID: PMC7228767 DOI: 10.7554/elife.56077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
Night vision in mammals depends fundamentally on rod photoreceptors and the well-studied rod bipolar (RB) cell pathway. The central neuron in this pathway, the AII amacrine cell (AC), exhibits a spatially tuned receptive field, composed of an excitatory center and an inhibitory surround, that propagates to ganglion cells, the retina's projection neurons. The circuitry underlying the surround of the AII, however, remains unresolved. Here, we combined structural, functional and optogenetic analyses of the mouse retina to discover that surround inhibition of the AII depends primarily on a single interneuron type, the NOS-1 AC: a multistratified, axon-bearing GABAergic cell, with dendrites in both ON and OFF synaptic layers, but with a pure ON (depolarizing) response to light. Our study demonstrates generally that novel neural circuits can be identified from targeted connectomic analyses and specifically that the NOS-1 AC mediates long-range inhibition during night vision and is a major element of the RB pathway.
Collapse
Affiliation(s)
- Silvia JH Park
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Evan E Lieberman
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Jiang-Bin Ke
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Nao Rho
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Padideh Ghorbani
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Pouyan Rahmani
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Na Young Jun
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Hae-Lim Lee
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
| | - In-Jung Kim
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Jonathan B Demb
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
| | - Joshua H Singer
- Department of Biology, University of MarylandCollege ParkUnited States
| |
Collapse
|
12
|
Long Y, Seilheimer RL, Wu SM. Glycinergic and GABAergic interneurons shift the location and differentially alter the size of ganglion cell receptive field centers in the mammalian retina. Vision Res 2020; 170:18-24. [PMID: 32217368 PMCID: PMC7872144 DOI: 10.1016/j.visres.2020.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 11/23/2022]
Abstract
By using the multi-electrode array (MEA) recording technique in conjunction with white-noise checkerboard stimuli and reverse correlation methods, we studied modulatory actions of glycinergic and GABAergic interneurons on spatiotemporal profiles of ganglion cells (GCs) in dark-adapted mouse retinas. We found that application of 2 µM strychnine decreased receptive field center radii of GCs by a mean value of 11%, and shifted the GC receptive field (RF) centers by a mean distance of 28.3 µm. On the other hand, 200 µM picrotoxin + 100 µM bicuculline + 50 µM TPMPA increased GC receptive field center radii by a mean value of 19%, and shifted the GC RF centers by a mean distance of 53.7 µm. Glycinergic neurons in the mouse retina are narrow-field amacrine cells that have been shown to mediate ON-OFF crossover inhibitory synapses within the RGs' RF center, therefore they may increase the size and shift the location of GC RF center by synergistic addition to bipolar cell inputs to GCs. GABAergic neurons are wide-field amacrine cells and horizontal cells that are known to mediate antagonistic surround responses of GCs, and thus they decrease the GCs' RF center size. Our results suggest that a major global function of glycinergic and GABAergic interneurons in the mammalian retina is to provide the flexibility for adjusting the size and location of GCs' RF centers. The apparent shifts of GC RF centers suggest that the synergistic addition by GlyACs and the surround inhibition by GABAergic interneurons are not spatially symmetrical within GC RFs.
Collapse
Affiliation(s)
- Y Long
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - R L Seilheimer
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - S M Wu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
13
|
Network Architecture of Gap Junctional Coupling among Parallel Processing Channels in the Mammalian Retina. J Neurosci 2020; 40:4483-4511. [PMID: 32332119 DOI: 10.1523/jneurosci.1810-19.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 03/27/2020] [Accepted: 04/12/2020] [Indexed: 01/04/2023] Open
Abstract
Gap junctions are ubiquitous throughout the nervous system, mediating critical signal transmission and integration, as well as emergent network properties. In mammalian retina, gap junctions within the Aii amacrine cell-ON cone bipolar cell (CBC) network are essential for night vision, modulation of day vision, and contribute to visual impairment in retinal degenerations, yet neither the extended network topology nor its conservation is well established. Here, we map the network contribution of gap junctions using a high-resolution connectomics dataset of an adult female rabbit retina. Gap junctions are prominent synaptic components of ON CBC classes, constituting 5%-25% of all axonal synaptic contacts. Many of these mediate canonical transfer of rod signals from Aii cells to ON CBCs for night vision, and we find that the uneven distribution of Aii signals to ON CBCs is conserved in rabbit, including one class entirely lacking direct Aii coupling. However, the majority of gap junctions formed by ON CBCs unexpectedly occur between ON CBCs, rather than with Aii cells. Such coupling is extensive, creating an interconnected network with numerous lateral paths both within, and particularly across, these parallel processing streams. Coupling patterns are precise with ON CBCs accepting and rejecting unique combinations of partnerships according to robust rulesets. Coupling specificity extends to both size and spatial topologies, thereby rivaling the synaptic specificity of chemical synapses. These ON CBC coupling motifs dramatically extend the coupled Aii-ON CBC network, with implications for signal flow in both scotopic and photopic retinal networks during visual processing and disease.SIGNIFICANCE STATEMENT Electrical synapses mediated by gap junctions are fundamental components of neural networks. In retina, coupling within the Aii-ON CBC network shapes visual processing in both the scotopic and photopic networks. In retinal degenerations, these same gap junctions mediate oscillatory activity that contributes to visual impairment. Here, we use high-resolution connectomics strategies to identify gap junctions and cellular partnerships. We describe novel, pervasive motifs both within and across classes of ON CBCs that dramatically extend the Aii-ON CBC network. These motifs are highly specific with implications for both signal processing within the retina and therapeutic interventions for blinding conditions. These findings highlight the underappreciated contribution of coupling motifs in retinal circuitry and the necessity of their detection in connectomics studies.
Collapse
|
14
|
Synaptic inputs from identified bipolar and amacrine cells to a sparsely branched ganglion cell in rabbit retina. Vis Neurosci 2020; 36:E004. [PMID: 31199211 DOI: 10.1017/s0952523819000014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There are more than 30 distinct types of mammalian retinal ganglion cells, each sensitive to different features of the visual environment. In rabbit retina, they can be grouped into four classes according to their morphology and stratification of their dendrites in the inner plexiform layer (IPL). The goal of this study was to describe the synaptic inputs to one type of Class IV ganglion cell, the third member of the sparsely branched Class IV cells (SB3). One cell of this type was partially reconstructed in a retinal connectome developed using automated transmission electron microscopy (ATEM). It had slender, relatively straight dendrites that ramify in the sublamina a of the IPL. The dendrites of the SB3 cell were always postsynaptic in the IPL, supporting its identity as a ganglion cell. It received 29% of its input from bipolar cells, a value in the middle of the range for rabbit retinal ganglion cells studied previously. The SB3 cell typically received only one synapse per bipolar cell from multiple types of presumed OFF bipolar cells; reciprocal synapses from amacrine cells at the dyad synapses were infrequent. In a few instances, the bipolar cells presynaptic to the SB3 ganglion cell also provided input to an amacrine cell presynaptic to the ganglion cell. There was apparently no crossover inhibition from narrow-field ON amacrine cells. Most of the amacrine cell inputs were from axons and dendrites of GABAergic amacrine cells, likely providing inhibitory input from outside the classical receptive field.
Collapse
|
15
|
Thoreson WB, Dacey DM. Diverse Cell Types, Circuits, and Mechanisms for Color Vision in the Vertebrate Retina. Physiol Rev 2019; 99:1527-1573. [PMID: 31140374 PMCID: PMC6689740 DOI: 10.1152/physrev.00027.2018] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/13/2023] Open
Abstract
Synaptic interactions to extract information about wavelength, and thus color, begin in the vertebrate retina with three classes of light-sensitive cells: rod photoreceptors at low light levels, multiple types of cone photoreceptors that vary in spectral sensitivity, and intrinsically photosensitive ganglion cells that contain the photopigment melanopsin. When isolated from its neighbors, a photoreceptor confounds photon flux with wavelength and so by itself provides no information about color. The retina has evolved elaborate color opponent circuitry for extracting wavelength information by comparing the activities of different photoreceptor types broadly tuned to different parts of the visible spectrum. We review studies concerning the circuit mechanisms mediating opponent interactions in a range of species, from tetrachromatic fish with diverse color opponent cell types to common dichromatic mammals where cone opponency is restricted to a subset of specialized circuits. Distinct among mammals, primates have reinvented trichromatic color vision using novel strategies to incorporate evolution of an additional photopigment gene into the foveal structure and circuitry that supports high-resolution vision. Color vision is absent at scotopic light levels when only rods are active, but rods interact with cone signals to influence color perception at mesopic light levels. Recent evidence suggests melanopsin-mediated signals, which have been identified as a substrate for setting circadian rhythms, may also influence color perception. We consider circuits that may mediate these interactions. While cone opponency is a relatively simple neural computation, it has been implemented in vertebrates by diverse neural mechanisms that are not yet fully understood.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center , Omaha, Nebraska ; and Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle, Washington
| | - Dennis M Dacey
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center , Omaha, Nebraska ; and Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle, Washington
| |
Collapse
|
16
|
Marc RE, Sigulinsky CL, Pfeiffer RL, Emrich D, Anderson JR, Jones BW. Heterocellular Coupling Between Amacrine Cells and Ganglion Cells. Front Neural Circuits 2018; 12:90. [PMID: 30487737 PMCID: PMC6247779 DOI: 10.3389/fncir.2018.00090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
All superclasses of retinal neurons, including bipolar cells (BCs), amacrine cells (ACs) and ganglion cells (GCs), display gap junctional coupling. However, coupling varies extensively by class. Heterocellular AC coupling is common in many mammalian GC classes. Yet, the topology and functions of coupling networks remains largely undefined. GCs are the least frequent superclass in the inner plexiform layer and the gap junctions mediating GC-to-AC coupling (GC::AC) are sparsely arrayed amidst large cohorts of homocellular AC::AC, BC::BC, GC::GC and heterocellular AC::BC gap junctions. Here, we report quantitative coupling for identified GCs in retinal connectome 1 (RC1), a high resolution (2 nm) transmission electron microscopy-based volume of rabbit retina. These reveal that most GC gap junctions in RC1 are suboptical. GC classes lack direct cross-class homocellular coupling with other GCs, despite opportunities via direct membrane contact, while OFF alpha GCs and transient ON directionally selective (DS) GCs are strongly coupled to distinct AC cohorts. Integrated small molecule immunocytochemistry identifies these as GABAergic ACs (γ+ ACs). Multi-hop synaptic queries of RC1 connectome further profile these coupled γ+ ACs. Notably, OFF alpha GCs couple to OFF γ+ ACs and transient ON DS GCs couple to ON γ+ ACs, including a large interstitial amacrine cell, revealing matched ON/OFF photic drive polarities within coupled networks. Furthermore, BC input to these γ+ ACs is tightly matched to the GCs with which they couple. Evaluation of the coupled versus inhibitory targets of the γ+ ACs reveals that in both ON and OFF coupled GC networks these ACs are presynaptic to GC classes that are different than the classes with which they couple. These heterocellular coupling patterns provide a potential mechanism for an excited GC to indirectly inhibit nearby GCs of different classes. Similarly, coupled γ+ ACs engaged in feedback networks can leverage the additional gain of BC synapses in shaping the signaling of downstream targets based on their own selective coupling with GCs. A consequence of coupling is intercellular fluxes of small molecules. GC::AC coupling involves primarily γ+ cells, likely resulting in GABA diffusion into GCs. Surveying GABA signatures in the GC layer across diverse species suggests the majority of vertebrate retinas engage in GC::γ+ AC coupling.
Collapse
Affiliation(s)
| | | | | | | | | | - Bryan William Jones
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, The University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
17
|
Hellmer CB, Clemons MR, Nawy S, Ichinose T. A group I metabotropic glutamate receptor controls synaptic gain between rods and rod bipolar cells in the mouse retina. Physiol Rep 2018; 6:e13885. [PMID: 30338673 PMCID: PMC6194217 DOI: 10.14814/phy2.13885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/10/2018] [Accepted: 09/16/2018] [Indexed: 11/24/2022] Open
Abstract
The canonical mGluR6-Trpm1 pathway that generates the sign-inverting signal between photoreceptors and ON bipolar cells has been well described. However, one type of ON bipolar cell, the rod bipolar cell (RBC), additionally is thought to express the group I mGluRs whose function is unknown. We examined the role of group I mGluRs in mouse RBCs and here provide evidence that it controls synaptic gain between rods and RBCs. In dark-adapted conditions, the mGluR1 antagonists LY367385 and (RS)-1-Aminoindan-1,5-dicarboxylic acid, but not the mGluR5 antagonist 2-Methyl-6-(phenylethynyl)pyridine hydrochloride reduced the light-evoked responses in RBCs indicating that mGluR1, but not mGluR5, serves to potentiate RBC responses. Perturbing the downstream phospholipase C (PLC)-protein kinase C (PKC) pathway by inhibiting PLC, tightly buffering intracellular Ca2+ , or preventing its release from intracellular stores reduced the synaptic potentiation by mGluR1. The effect of mGluR1 activation was dependent upon adaptation state, strongly increasing the synaptic gain in dark-, but not in light-adapted retinas, or in the presence of a moderate background light, consistent with the idea that mGluR1 activation requires light-dependent glutamate release from rods. Moreover, immunostaining revealed that protein kinase Cα (PKCα) is more strongly expressed in RBC dendrites in dark-adapted conditions, revealing an additional mechanism behind the loss of mGluR1 potentiation. In light-adapted conditions, exogenous activation of mGluR1 with the agonist 3,5-Dihydroxyphenylglycine increased the mGluR6 currents in some RBCs and decreased it in others, suggesting an additional action of mGluR1 that is unmasked in the light-adapted state. Elevating intracellular free Ca2+ , consistently resulted in a decrease in synaptic gain. Our results provide evidence that mGluR1 controls the synaptic gain in RBCs.
Collapse
Affiliation(s)
- Chase B. Hellmer
- Department of Ophthalmology, Visual and Anatomical SciencesWayne State University School of MedicineDetroitMichigan48201
| | - Melissa Rampino Clemons
- Dominic P Purpura Dept. of NeuroscienceAlbert Einstein College of Medicine BronxBronxNew York10461
| | - Scott Nawy
- Dominic P Purpura Dept. of NeuroscienceAlbert Einstein College of Medicine BronxBronxNew York10461
- Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaNebraska68198
| | - Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical SciencesWayne State University School of MedicineDetroitMichigan48201
| |
Collapse
|
18
|
O'Brien J. Design principles of electrical synaptic plasticity. Neurosci Lett 2017; 695:4-11. [PMID: 28893590 DOI: 10.1016/j.neulet.2017.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/09/2017] [Accepted: 09/01/2017] [Indexed: 01/19/2023]
Abstract
Essentially all animals with nervous systems utilize electrical synapses as a core element of communication. Electrical synapses, formed by gap junctions between neurons, provide rapid, bidirectional communication that accomplishes tasks distinct from and complementary to chemical synapses. These include coordination of neuron activity, suppression of voltage noise, establishment of electrical pathways that define circuits, and modulation of high order network behavior. In keeping with the omnipresent demand to alter neural network function in order to respond to environmental cues and perform tasks, electrical synapses exhibit extensive plasticity. In some networks, this plasticity can have dramatic effects that completely remodel circuits or remove the influence of certain cell types from networks. Electrical synaptic plasticity occurs on three distinct time scales, ranging from milliseconds to days, with different mechanisms accounting for each. This essay highlights principles that dictate the properties of electrical coupling within networks and the plasticity of the electrical synapses, drawing examples extensively from retinal networks.
Collapse
Affiliation(s)
- John O'Brien
- McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St., MSB 7.024, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Rogerson LE, Behrens C, Euler T, Berens P, Schubert T. Connectomics of synaptic microcircuits: lessons from the outer retina. J Physiol 2017; 595:5517-5524. [PMID: 28295344 PMCID: PMC5556146 DOI: 10.1113/jp273671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/10/2017] [Indexed: 01/16/2023] Open
Abstract
Photoreceptors form a sophisticated synaptic complex with bipolar and horizontal cells, transmitting the signals generated by the phototransduction cascade to downstream retinal circuitry. The cone photoreceptor synapse shows several characteristic anatomical connectivity motifs that shape signal transfer: typically, ON-cone bipolar cells receive photoreceptor input through invaginating synapses; OFF-cone bipolar cells form basal synapses with photoreceptors. Both ON- and OFF-cone bipolar cells are believed to sample from all cone photoreceptors within their dendritic span. Electron microscopy and immunolabelling studies have established the robustness of these motifs, but have been limited by trade-offs in sample size and spatial resolution, respectively, constraining precise quantitative investigation to a few individual cells. 3D-serial electron microscopy overcomes these limitations and has permitted complete sets of neurons to be reconstructed over a comparatively large section of retinal tissue. Although the published mouse dataset lacks labels for synaptic structures, the characteristic anatomical motifs at the photoreceptor synapse can be exploited to identify putative synaptic contacts, which has enabled the development of a quantitative description of outer retinal connectivity. This revealed unexpected exceptions to classical motifs, including substantial interaction between rod and cone pathways at the photoreceptor synapse, sparse photoreceptor sampling and atypical contacts. Here, we summarize what was learned from this study in a more general context: we consider both the implications and limitations of the study and identify promising avenues for future research.
Collapse
Affiliation(s)
- Luke Edward Rogerson
- Institute for Ophthalmic ResearchUniversity of Tübingen72076TübingenGermany
- Centre for Integrative NeuroscienceUniversity of Tübingen72076TübingenGermany
- Bernstein Center for Computational NeuroscienceUniversity of Tübingen72076TübingenGermany
- Graduate Training Centre of NeuroscienceUniversity of Tübingen72076TübingenGermany
| | - Christian Behrens
- Institute for Ophthalmic ResearchUniversity of Tübingen72076TübingenGermany
- Centre for Integrative NeuroscienceUniversity of Tübingen72076TübingenGermany
- Bernstein Center for Computational NeuroscienceUniversity of Tübingen72076TübingenGermany
- Graduate Training Centre of NeuroscienceUniversity of Tübingen72076TübingenGermany
| | - Thomas Euler
- Institute for Ophthalmic ResearchUniversity of Tübingen72076TübingenGermany
- Centre for Integrative NeuroscienceUniversity of Tübingen72076TübingenGermany
- Bernstein Center for Computational NeuroscienceUniversity of Tübingen72076TübingenGermany
| | - Philipp Berens
- Institute for Ophthalmic ResearchUniversity of Tübingen72076TübingenGermany
- Centre for Integrative NeuroscienceUniversity of Tübingen72076TübingenGermany
- Bernstein Center for Computational NeuroscienceUniversity of Tübingen72076TübingenGermany
| | - Timm Schubert
- Institute for Ophthalmic ResearchUniversity of Tübingen72076TübingenGermany
- Centre for Integrative NeuroscienceUniversity of Tübingen72076TübingenGermany
| |
Collapse
|
20
|
Kerzner E, Lex A, Sigulinsky CL, Umess T, Jones BW, Marc RE, Meyer M. Graffinity: Visualizing Connectivity in Large Graphs. COMPUTER GRAPHICS FORUM : JOURNAL OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS 2017; 36:251-260. [PMID: 29479126 PMCID: PMC5821473 DOI: 10.1111/cgf.13184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multivariate graphs are prolific across many fields, including transportation and neuroscience. A key task in graph analysis is the exploration of connectivity, to, for example, analyze how signals flow through neurons, or to explore how well different cities are connected by flights. While standard node-link diagrams are helpful in judging connectivity, they do not scale to large networks. Adjacency matrices also do not scale to large networks and are only suitable to judge connectivity of adjacent nodes. A key approach to realize scalable graph visualization are queries: instead of displaying the whole network, only a relevant subset is shown. Query-based techniques for analyzing connectivity in graphs, however, can also easily suffer from cluttering if the query result is big enough. To remedy this, we introduce techniques that provide an overview of the connectivity and reveal details on demand. We have two main contributions: (1) two novel visualization techniques that work in concert for summarizing graph connectivity; and (2) Graffinity, an open-source implementation of these visualizations supplemented by detail views to enable a complete analysis workflow. Graffinity was designed in a close collaboration with neuroscientists and is optimized for connectomics data analysis, yet the technique is applicable across domains. We validate the connectivity overview and our open-source tool with illustrative examples using flight and connectomics data.
Collapse
|
21
|
Goodwin S, Mears C, Dwyer T, de la Banda MG, Tack G, Wallace M. What do Constraint Programming Users Want to See? Exploring the Role of Visualisation in Profiling of Models and Search. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:281-290. [PMID: 27875144 DOI: 10.1109/tvcg.2016.2598545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Constraint programming allows difficult combinatorial problems to be modelled declaratively and solved automatically. Advances in solver technologies over recent years have allowed the successful use of constraint programming in many application areas. However, when a particular solver's search for a solution takes too long, the complexity of the constraint program execution hinders the programmer's ability to profile that search and understand how it relates to their model. Therefore, effective tools to support such profiling and allow users of constraint programming technologies to refine their model or experiment with different search parameters are essential. This paper details the first user-centred design process for visual profiling tools in this domain. We report on: our insights and opportunities identified through an on-line questionnaire and a creativity workshop with domain experts carried out to elicit requirements for analytical and visual profiling techniques; our designs and functional prototypes realising such techniques; and case studies demonstrating how these techniques shed light on the behaviour of the solvers in practice.
Collapse
|