1
|
Soeda Y, Hayashi E, Nakatani N, Ishigaki S, Takaichi Y, Tachibana T, Riku Y, Chambers JK, Koike R, Mohammad M, Takashima A. A novel monoclonal antibody generated by immunization with granular tau oligomers binds to tau aggregates at 423-430 amino acid sequence. Sci Rep 2024; 14:16391. [PMID: 39060263 PMCID: PMC11282240 DOI: 10.1038/s41598-024-65949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Prior to the formation of amyloid fibrils, the pathological hallmark in tau-related neurodegenerative disease, tau monomers aggregate into a diverse range of oligomers. Granular tau oligomers, consisting of approximately 40 tau protein molecules, are present in the prefrontal cortex of patients at Braak stages I-II, preclinical stages of Alzheimer's disease (AD). Antibodies to granular tau oligomers as antigens have not been reported. Therefore, we generated new rat monoclonal antibodies by immunization with granular tau oligomers. Three antibodies from different hybridoma clones showed stronger immunoreactivity to granular tau oligomers and tau fibrils compared with monomeric tau. Of the three antibodies, 2D6-2C6 showed 3000-fold greater immunoreactivity in P301L-tau transgenic (rTg4510) mice than in non-transgenic mice, while MC1 antibody, which detects pathological conformations of tau, showed a 5.5-fold increase. These results suggest that 2D6-2C6 recognizes aggregates more specifically than MC1. In AD subjects, 2D6-2C6 recognized neurofibrillary tangles and pretangles, and co-localized within AT8-positive cells containing phosphorylated tau aggregates. The epitope of 2D6-2C6 is the 423-430 amino acid (AA) sequence of C-terminal regions. Taken together, a novel monoclonal antibody, 2D6-2C6, generated by immunization with granular tau oligomers binds to tau aggregates at the 423-430 AA sequence.
Collapse
Affiliation(s)
- Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan.
| | - Emi Hayashi
- Cell Engineering Corporation, 5-12-14 Nishinakajima, Yodogawa-ku, Osaka, 532-0011, Japan
| | - Naoko Nakatani
- Cell Engineering Corporation, 5-12-14 Nishinakajima, Yodogawa-ku, Osaka, 532-0011, Japan
| | - Shinsuke Ishigaki
- Department of Diagnostics and Therapeutics for Brain Disease, Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Yuta Takaichi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Taro Tachibana
- Cell Engineering Corporation, 5-12-14 Nishinakajima, Yodogawa-ku, Osaka, 532-0011, Japan
- Graduate School of Engineering Division of Science and Engineering for Materials, Chemistry and Biology, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka-shi, Osaka, 558-0022, Japan
| | - Yuichi Riku
- Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
- Department of Neurology, Nagoya University, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Riki Koike
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan
| | - Moniruzzaman Mohammad
- Department of Diagnostics and Therapeutics for Brain Disease, Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan
| |
Collapse
|
2
|
Farris T, González-Ochoa S, Mohammed M, Rajakaruna H, Tonello J, Kanagasabai T, Korolkova O, Shimamoto A, Ivanova A, Shanker A. Loss of Mitochondrial Tusc2/Fus1 Triggers a Brain Pro-Inflammatory Microenvironment and Early Spatial Memory Impairment. Int J Mol Sci 2024; 25:7406. [PMID: 39000512 PMCID: PMC11242373 DOI: 10.3390/ijms25137406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Brain pathological changes impair cognition early in disease etiology. There is an urgent need to understand aging-linked mechanisms of early memory loss to develop therapeutic strategies and prevent the development of cognitive impairment. Tusc2 is a mitochondrial-resident protein regulating Ca2+ fluxes to and from mitochondria impacting overall health. We previously reported that Tusc2-/- female mice develop chronic inflammation and age prematurely, causing age- and sex-dependent spatial memory deficits at 5 months old. Therefore, we investigated Tusc2-dependent mechanisms of memory impairment in 4-month-old mice, comparing changes in resident and brain-infiltrating immune cells. Interestingly, Tusc2-/- female mice demonstrated a pro-inflammatory increase in astrocytes, expression of IFN-γ in CD4+ T cells and Granzyme-B in CD8+T cells. We also found fewer FOXP3+ T-regulatory cells and Ly49G+ NK and Ly49G+ NKT cells in female Tusc2-/- brains, suggesting a dampened anti-inflammatory response. Moreover, Tusc2-/- hippocampi exhibited Tusc2- and sex-specific protein changes associated with brain plasticity, including mTOR activation, and Calbindin and CamKII dysregulation affecting intracellular Ca2+ dynamics. Overall, the data suggest that dysregulation of Ca2+-dependent processes and a heightened pro-inflammatory brain microenvironment in Tusc2-/- mice could underlie cognitive impairment. Thus, strategies to modulate the mitochondrial Tusc2- and Ca2+- signaling pathways in the brain should be explored to improve cognitive health.
Collapse
Affiliation(s)
- Tonie Farris
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Salvador González-Ochoa
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Muna Mohammed
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Harshana Rajakaruna
- The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA;
| | - Jane Tonello
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Thanigaivelan Kanagasabai
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Olga Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Alla Ivanova
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
- The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
3
|
Ellis MJ, Lekka C, Holden KL, Tulmin H, Seedat F, O'Brien DP, Dhayal S, Zeissler ML, Knudsen JG, Kessler BM, Morgan NG, Todd JA, Richardson SJ, Stefana MI. Identification of high-performing antibodies for the reliable detection of Tau proteoforms by Western blotting and immunohistochemistry. Acta Neuropathol 2024; 147:87. [PMID: 38761203 PMCID: PMC11102361 DOI: 10.1007/s00401-024-02729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 05/20/2024]
Abstract
Antibodies are essential research tools whose performance directly impacts research conclusions and reproducibility. Owing to its central role in Alzheimer's disease and other dementias, hundreds of distinct antibody clones have been developed against the microtubule-associated protein Tau and its multiple proteoforms. Despite this breadth of offer, limited understanding of their performance and poor antibody selectivity have hindered research progress. Here, we validate a large panel of Tau antibodies by Western blot (79 reagents) and immunohistochemistry (35 reagents). We address the reagents' ability to detect the target proteoform, selectivity, the impact of protein phosphorylation on antibody binding and performance in human brain samples. While most antibodies detected Tau at high levels, many failed to detect it at lower, endogenous levels. By WB, non-selective binding to other proteins affected over half of the antibodies tested, with several cross-reacting with the related MAP2 protein, whereas the "oligomeric Tau" T22 antibody reacted with monomeric Tau by WB, thus calling into question its specificity to Tau oligomers. Despite the presumption that "total" Tau antibodies are agnostic to post-translational modifications, we found that phosphorylation partially inhibits binding for many such antibodies, including the popular Tau-5 clone. We further combine high-sensitivity reagents, mass-spectrometry proteomics and cDNA sequencing to demonstrate that presumptive Tau "knockout" human cells continue to express residual protein arising through exon skipping, providing evidence of previously unappreciated gene plasticity. Finally, probing of human brain samples with a large panel of antibodies revealed the presence of C-term-truncated versions of all main Tau brain isoforms in both control and tauopathy donors. Ultimately, we identify a validated panel of Tau antibodies that can be employed in Western blotting and/or immunohistochemistry to reliably detect even low levels of Tau expression with high selectivity. This work represents an extensive resource that will enable the re-interpretation of published data, improve reproducibility in Tau research, and overall accelerate scientific progress.
Collapse
Affiliation(s)
- Michael J Ellis
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Christiana Lekka
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - Katie L Holden
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Hanna Tulmin
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Faheem Seedat
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, Women's Centre, University of Oxford, John Radcliffe Hospital, Level 3, Oxford, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Shalinee Dhayal
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - Marie-Louise Zeissler
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Radcliffe, UK
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Noel G Morgan
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Sarah J Richardson
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - M Irina Stefana
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK.
| |
Collapse
|
4
|
Buchholz S, Zempel H. The six brain-specific TAU isoforms and their role in Alzheimer's disease and related neurodegenerative dementia syndromes. Alzheimers Dement 2024; 20:3606-3628. [PMID: 38556838 PMCID: PMC11095451 DOI: 10.1002/alz.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 04/02/2024]
Abstract
INTRODUCTION Alternative splicing of the human MAPT gene generates six brain-specific TAU isoforms. Imbalances in the TAU isoform ratio can lead to neurodegenerative diseases, underscoring the need for precise control over TAU isoform balance. Tauopathies, characterized by intracellular aggregates of hyperphosphorylated TAU, exhibit extensive neurodegeneration and can be classified by the TAU isoforms present in pathological accumulations. METHODS A comprehensive review of TAU and related dementia syndromes literature was conducted using PubMed, Google Scholar, and preprint server. RESULTS While TAU is recognized as key driver of neurodegeneration in specific tauopathies, the contribution of the isoforms to neuronal function and disease development remains largely elusive. DISCUSSION In this review we describe the role of TAU isoforms in health and disease, and stress the importance of comprehending and studying TAU isoforms in both, physiological and pathological context, in order to develop targeted therapeutic interventions for TAU-associated diseases. HIGHLIGHTS MAPT splicing is tightly regulated during neuronal maturation and throughout life. TAU isoform expression is development-, cell-type and brain region specific. The contribution of TAU to neurodegeneration might be isoform-specific. Ineffective TAU-based therapies highlight the need for specific targeting strategies.
Collapse
Affiliation(s)
- Sarah Buchholz
- Institute of Human GeneticsFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Present address:
Department Schaefer, Neurobiology of AgeingMax Planck Institute for Biology of AgeingCologneGermany
| | - Hans Zempel
- Institute of Human GeneticsFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| |
Collapse
|
5
|
Ding J, Wu J, Hou X, Yang L, Gao Y, Zheng J, Jia N, He Z, Zhang H, Wang C, Qi X, Huang J, Pei X, Wang J. α-synuclein-lack expression rescues methamphetamine-induced mossy fiber degeneration in dorsal hippocampal CA3. Neurotoxicology 2024; 101:36-45. [PMID: 38311184 DOI: 10.1016/j.neuro.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Methamphetamine (METH) - induced cognitive impairments may be related to synaptic degeneration at mossy fiber terminals, critical for spatial memory formation in hippocampal circuits. We have previously found METH-induced neurodegeneration in the striatum by increasing the α-synuclein (α-SYN) level. However, whether and how the METH-induced mossy fiber degeneration is also blamed for the abnormal accumulation of α-SYN remains to be elucidated. Chronic METH exposure decreased mossy fiber density but upregulatedα-SYN and phosphorylated TAU (TAU-pSer396) in hippocampal CA3, associated with glial cell overactivation, axonal neuropathies, and memory impairment. Notably, the knockout of the α-SYN gene significantly alleviated the METH-induced mossy fiber degeneration and memory impairment. Meanwhile, the TAU-pSer396 accumulation and glial activation were ameliorated by α-SYN knockout. Our findings suggest an essential role of α-SYN in mediating METH-induced mossy fiber degeneration, providing promising therapeutic and prophylactic targets for METH-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jun Wu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaotao Hou
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China; Guangdong Provincial Key Laboratory of Genetic Disease Diagnostic, Guangzhou, China
| | - Li Yang
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Yingdong Gao
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Juan Zheng
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Nannan Jia
- Neonatal Screening Center, Taian Maternity and Child Health Hospital, Taian, China
| | - Zheng He
- Neonatal Screening Center, Taian Maternity and Child Health Hospital, Taian, China
| | - Hui Zhang
- Department of Reproductive Medicine, Taian Maternity and Child Health Hospital, Taian, China
| | - Chengfei Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang China.
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
6
|
Kanaan NM. Tau here, tau there, tau almost everywhere: Clarifying the distribution of tau in the adult CNS. Cytoskeleton (Hoboken) 2024; 81:107-115. [PMID: 38102924 PMCID: PMC10851165 DOI: 10.1002/cm.21820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
The microtubule-associated protein tau has gained significant attention over the last several decades primarily due to its apparent role in the pathogenesis of several diseases, most notably Alzheimer's disease. While the field has focused largely on tau's potential contributions to disease mechanisms, comparably less work has focused on normal tau physiology. Moreover, as the field has grown, some misconceptions and dogmas regarding normal tau physiology have become engrained in the traditional narrative. Here, one of the most common misconceptions regarding tau, namely its normal cellular/subcellular distribution in the CNS, is discussed. The literature describing the presence of tau in neuronal somata, dendrites, axons and synapses, as well as in glial cells is described. The origins for the erroneous description of tau as an "axon-specific," "axon-enriched" and/or "neuron-specific" protein are discussed as well. The goal of this work is to help address these specific dogmatic misconceptions and provide a concise description of tau's normal cellular/subcellular localization in the adult CNS. This information can help refine our collective understanding of- and hypotheses about tau biology and pathobiology.
Collapse
Affiliation(s)
- Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Tian S, Ye T, Cheng X. The behavioral, pathological and therapeutic features of the triple transgenic Alzheimer's disease (3 × Tg-AD) mouse model strain. Exp Neurol 2023; 368:114505. [PMID: 37597764 DOI: 10.1016/j.expneurol.2023.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
As a classic animal model of Alzheimer's disease (AD), the 3 × Tg-AD mouse not only recapitulates most of anatomical hallmarks observed in AD pathology but also displays cognitive alterations in memory and learning tasks. The 3 × Tg-AD can better show the two characteristics of AD, amyloid β (Aβ) and neurofibrillary tangles (NFT). Therefore, 3 × Tg-AD strain is widely used in AD pathogenesis research and new drug development of AD. In this paper, the construction methods, pathological changes, and treatment characteristics of 3 × Tg-AD mouse models commonly used in AD research are summarized and commented, hoping to provide reference for researchers to choose and establish experimental patterns.
Collapse
Affiliation(s)
- Sheng Tian
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Tianyuan Ye
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xiaorui Cheng
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| |
Collapse
|
8
|
Yu F, Iacono D, Perl DP, Lai C, Gill J, Le TQ, Lee P, Sukumar G, Armstrong RC. Neuronal tau pathology worsens late-phase white matter degeneration after traumatic brain injury in transgenic mice. Acta Neuropathol 2023; 146:585-610. [PMID: 37578550 PMCID: PMC10499978 DOI: 10.1007/s00401-023-02622-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Traumatic brain injury (TBI) causes diffuse axonal injury which can produce chronic white matter pathology and subsequent post-traumatic neurodegeneration with poor patient outcomes. Tau modulates axon cytoskeletal functions and undergoes phosphorylation and mis-localization in neurodegenerative disorders. The effects of tau pathology on neurodegeneration after TBI are unclear. We used mice with neuronal expression of human mutant tau to examine effects of pathological tau on white matter pathology after TBI. Adult male and female hTau.P301S (Tg2541) transgenic and wild-type (Wt) mice received either moderate single TBI (s-TBI) or repetitive mild TBI (r-mTBI; once daily × 5), or sham procedures. Acutely, s-TBI produced more extensive axon damage in the corpus callosum (CC) as compared to r-mTBI. After s-TBI, significant CC thinning was present at 6 weeks and 4 months post-injury in Wt and transgenic mice, with homozygous tau expression producing additional pathology of late demyelination. In contrast, r-mTBI did not produce significant CC thinning except at the chronic time point of 4 months in homozygous mice, which exhibited significant CC atrophy (- 29.7%) with increased microgliosis. Serum neurofilament light quantification detected traumatic axonal injury at 1 day post-TBI in Wt and homozygous mice. At 4 months, high tau and neurofilament in homozygous mice implicated tau in chronic axon pathology. These findings did not have sex differences detected. Conclusions: Neuronal tau pathology differentially exacerbated CC pathology based on injury severity and chronicity. Ongoing CC atrophy from s-TBI became accompanied by late demyelination. Pathological tau significantly worsened CC atrophy during the chronic phase after r-mTBI.
Collapse
Affiliation(s)
- Fengshan Yu
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Diego Iacono
- Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Daniel P Perl
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Chen Lai
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Tuan Q Le
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Patricia Lee
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Regina C Armstrong
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA.
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
9
|
Benskey MJ, Panoushek S, Saito T, Saido TC, Grabinski T, Kanaan NM. Behavioral and neuropathological characterization over the adult lifespan of the human tau knock-in mouse. Front Aging Neurosci 2023; 15:1265151. [PMID: 37842124 PMCID: PMC10576558 DOI: 10.3389/fnagi.2023.1265151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Tau is a microtubule-associated protein with a diverse functional repertoire linked to neurodegenerative disease. Recently, a human tau knock-in (MAPT KI) mouse was developed that may overcome many limitations associated with current animal models used to study tau. In MAPT KI mice, the entire murine Mapt gene was replaced with the human MAPT gene under control of the endogenous Mapt promoter. This model represents an ideal in vivo platform to study the function and dysfunction of human tau protein. Accordingly, a detailed understanding of the effects MAPT KI has on structure and function of the CNS is warranted. Here, we provide a detailed behavioral and neuropathological assessment of MAPT KI mice. We compared MAPT KI to wild-type (WT) C57BL/6j mice in behavioral assessments of anxiety, attention, working memory, spatial memory, and motor performance from 6 to 24 months (m) of age. Using immunohistological and biochemical assays, we quantified markers of glia (microglia, astrocytes and oligodendrocytes), synaptic integrity, neuronal integrity and the cytoskeleton. Finally, we quantified levels of total tau, tau isoforms, tau phosphorylation, and tau conformations. MAPT KI mice show normal cognitive and locomotor behavior at all ages, and resilience to mild age-associated locomotor deficits observed in WT mice. Markers of neuronal and synaptic integrity are unchanged in MAPT KI mice with advancing age. Glial markers are largely unchanged in MAPT KI mice, but glial fibrillary acidic protein is increased in the hippocampus of WT and MAPT KI mice at 24 m. MAPT KI mice express all 6 human tau isoforms and levels of tau remain stable throughout adulthood. Hippocampal tau in MAPT KI and WT mice is phosphorylated at serine 396/404 (PHF1) and murine tau in WT animals displays more PHF1 phosphorylation at 6 and 12 m. Lastly, we extended previous reports showing that MAPT KI mice do not display overt pathology. No evidence of other tau phosphorylation residues (AT8, pS422) or abnormal conformations (TNT2 or TOC1) associated with pathogenic tau were detected. The lack of overt pathological changes in MAPT KI mice make this an ideal platform for future investigations into the function and dysfunction of tau protein in vivo.
Collapse
Affiliation(s)
- Matthew J. Benskey
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Spencer Panoushek
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Laboratory for Proteolytic Neuroscience, Riken Center for Brain Science, Wako, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, Riken Center for Brain Science, Wako, Japan
| | - Tessa Grabinski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
10
|
Johansson B, Oasa S, Muntsant Soria A, Tiiman A, Söderberg L, Amandius E, Möller C, Lannfelt L, Terenius L, Giménez-Llort L, Vukojević V. The interwoven fibril-like structure of amyloid-beta plaques in mouse brain tissue visualized using super-resolution STED microscopy. Cell Biosci 2023; 13:142. [PMID: 37542303 PMCID: PMC10403925 DOI: 10.1186/s13578-023-01086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Standard neuropathologic analysis of Alzheimer's brain relies on traditional fluorescence microscopy, which suffers from limited spatial resolution due to light diffraction. As a result, it fails to reveal intricate details of amyloid plaques. While electron microscopy (EM) offers higher resolution, its extensive sample preparation, involving fixation, dehydration, embedding, and sectioning, can introduce artifacts and distortions in the complex brain tissue. Moreover, EM lacks molecular specificity and has limited field of view and imaging depth. RESULTS In our study, we employed super-resolution Stimulated Emission Depletion (STED) microscopy in conjunction with the anti-human APP recombinant antibody 1C3 fluorescently labelled with DyLightTM633 (1C3-DyLight633). This combination allowed us to visualize amyloidogenic aggregates in vitro and in brain sections from a 17-month-old 3×Tg-AD mouse with sub-diffraction limited spatial resolution. Remarkably, we achieved a spatial resolution of 29 nm in vitro and 62 nm in brain tissue sections, surpassing the capabilities of conventional confocal microscopy by 5-10 times. Consequently, we could discern individual fibrils within plaques, an achievement previously only possible with EM. CONCLUSIONS The utilization of STED microscopy represents a groundbreaking advancement in the field, enabling researchers to delve into the characterization of local mechanisms that underlie Amyloid (Aβ) deposition into plaques and their subsequent clearance. This unprecedented level of detail is especially crucial for comprehending the etiology of Alzheimer's disease and developing the next generation of anti-amyloid treatments. By facilitating the evaluation of drug candidates and non-pharmacological interventions aiming to reduce amyloid burden, STED microscopy emerges as an indispensable tool for driving scientific progress in Alzheimer's research.
Collapse
Affiliation(s)
- Björn Johansson
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Sho Oasa
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Aida Muntsant Soria
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Ann Tiiman
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | | | | | | | | | - Lars Terenius
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Vladana Vukojević
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17176, Stockholm, Sweden.
| |
Collapse
|
11
|
Gambardella JC, Schoephoerster W, Bondarenko V, Yandell BS, Emborg ME. Expression of tau and phosphorylated tau in the brain of normal and hemiparkinsonian rhesus macaques. J Comp Neurol 2023; 531:1198-1216. [PMID: 37098996 PMCID: PMC10247506 DOI: 10.1002/cne.25490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/27/2023]
Abstract
Tau is a neuronal protein involved in microtubule stabilization and intracellular vesicle transport in axons. In neurodegenerative disorders termed "tauopathies," like Alzheimer's and Parkinson's disease, tau becomes hyperphosphorylated and forms intracellular inclusions. Rhesus macaques are widely used for studying ageing processes and modeling neurodegenerative disorders, yet little is known about endogenous tau expression in their brains. In this study, immunohistochemical methods were used to map and characterize total tau, 3R- and 4R-tau isoforms, and phosphorylated tau (pThr231-tau and pSer202/Thr205-tau/AT8) expression bilaterally in 16 brain regions of normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian adult rhesus macaques. Tau-immunoreactivity (-ir), including both 3R and 4R isoforms, was observed throughout the brain, with varying regional intensities. The anterior cingulate cortex, entorhinal cortex, and hippocampus displayed the most robust tau-ir, while the subthalamic nucleus and white matter regions had minimal expression. Tau was present in neurons of gray matter regions; it was preferentially observed in fibers of the globus pallidus and substantia nigra and in cell bodies of the thalamus and subthalamic nucleus. In white matter regions, tau was abundantly present in oligodendrocytes. Additionally, neuronal pThr231-tau-ir was abundant in all brain regions, but not AT8-ir. Differences in regional and intracellular protein expression were not detected between control subjects and both brain hemispheres of MPTP-treated animals. Specifically, tau-ir in the substantia nigra of all subjects colocalized with GABAergic neurons. Overall, this report provides an in-depth characterization of tau expression in the rhesus macaque brain to facilitate future investigations for understanding and modeling tau pathology in this species.
Collapse
Affiliation(s)
- Julia C. Gambardella
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison
| | - Wyatt Schoephoerster
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison
| | - Viktoriya Bondarenko
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison
| | | | - Marina E. Emborg
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison
- Department of Medical Physics, University of Wisconsin-Madison
| |
Collapse
|
12
|
Dimou E, Katsinelos T, Meisl G, Tuck BJ, Keeling S, Smith AE, Hidari E, Lam JYL, Burke M, Lövestam S, Ranasinghe RT, McEwan WA, Klenerman D. Super-resolution imaging unveils the self-replication of tau aggregates upon seeding. Cell Rep 2023; 42:112725. [PMID: 37393617 PMCID: PMC7614924 DOI: 10.1016/j.celrep.2023.112725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023] Open
Abstract
Tau is a soluble protein interacting with tubulin to stabilize microtubules. However, under pathological conditions, it becomes hyperphosphorylated and aggregates, a process that can be induced by treating cells with exogenously added tau fibrils. Here, we employ single-molecule localization microscopy to resolve the aggregate species formed in early stages of seeded tau aggregation. We report that entry of sufficient tau assemblies into the cytosol induces the self-replication of small tau aggregates, with a doubling time of 5 h inside HEK cells and 1 day in murine primary neurons, which then grow into fibrils. Seeding occurs in the vicinity of the microtubule cytoskeleton, is accelerated by the proteasome, and results in release of small assemblies into the media. In the absence of seeding, cells still spontaneously form small aggregates at lower levels. Overall, our work provides a quantitative picture of the early stages of templated seeded tau aggregation in cells.
Collapse
Affiliation(s)
- Eleni Dimou
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK.
| | - Taxiarchis Katsinelos
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Georg Meisl
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Benjamin J Tuck
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Sophie Keeling
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Annabel E Smith
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Eric Hidari
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Jeff Y L Lam
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Melanie Burke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - Sofia Lövestam
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Rohan T Ranasinghe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - William A McEwan
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Hills Road, Cambridge CB2 0AH, UK.
| |
Collapse
|
13
|
Yonemura Y, Sakai Y, Nakata R, Hagita-Tatsumoto A, Miyasaka T, Misonou H. Active Transport by Cytoplasmic Dynein Maintains the Localization of MAP2 in Developing Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538370. [PMID: 37163107 PMCID: PMC10168327 DOI: 10.1101/2023.04.26.538370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
MAP2 has been widely used as a marker of neuronal dendrites because of its extensive restriction in the somatodendritic region of neurons. Despite that, how the precise localization of such a soluble protein is established and maintained against thermal forces and diffusion has been elusive and long remained a mystery in neuroscience. In this study, we aimed to uncover the mechanism behind how MAP2 is retained in the somatodendritic region. Using GFP-tagged MAP2 expressed in cultured hippocampal neurons, we discovered a crucial protein region responsible for the localization of MAP2, the serine/proline-rich (S/P) region. Our pulse-chase live-cell imaging revealed the slow but steady migration of MAP2 toward distal dendrites, which was not observed in a MAP2 mutant lacking the S/P region, indicating that S/P-dependent transport is vital for the proper localization of MAP2. Furthermore, our experiments using an inhibitor of cytoplasmic Dynein, ciliobrevin D, as well as Dynein knockdown, showed that cytoplasmic Dynein is involved in the transport of MAP2 in dendrites. We also found that Dynein complex binds to MAP2 through the S/P region in heterologous cells. Using mathematical modeling based on experimental data, we confirmed that an intermittent active transport mechanism is essential. Thus, we propose that the cytoplasmic Dynein recruits and transports free MAP2 toward distal dendrites, thereby maintaining the precise dendritic localization of MAP2 in neurons. Our findings shed light on the previously unknown mechanism behind MAP2 localization and provide a new direction for soluble protein trafficking research in the field of cell biology of neurons.
Collapse
|
14
|
Torii T, Miyamoto Y, Nakata R, Higashi Y, Shinmyo Y, Kawasaki H, Miyasaka T, Misonou H. Identification of Tau protein as a novel marker for maturation and pathological changes of oligodendrocytes. Glia 2023; 71:1002-1017. [PMID: 36565228 DOI: 10.1002/glia.24322] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022]
Abstract
Microtubule-associated protein Tau is primarily expressed in axons of neurons, but also in Olig2-positive oligodendrocytes in adult rodent and monkey brains. In this study, we sought to determine at what cell stage Tau becomes expressed in the oligodendrocyte lineage. We performed immunostaining of adult mouse brain sections using well-known markers of oligodendrocyte lineage and found that Tau is expressed in mature oligodendrocytes, but not in oligodendrocyte progenitors and immature pre-oligodendrocytes. We also investigated Tau expression in developing mouse brain. Surprisingly, Tau expression occurred after the peak of myelination and even exceeded GSTπ expression, which has been considered as a marker of myelinating oligodendrocytes. These results suggest Tau as a novel marker of oligodendrocyte maturation. We then investigated whether Tau is important for oligodendrocyte development and/or myelination and how Tau changes in demyelination. First, we found no changes in myelination and oligodendrocyte markers in Tau knockout mice, suggesting that Tau is dispensable. Next, we analyzed the proteolipid protein 1 transgenic model of Pelizaeus-Merzbacher disease, which is a rare leukodystrophy. In hemizygous transgenic mice, the number of Tau-positive cells were significantly increased as compared with wild type mice. These cells were also positive for Olig2, CC1, and GSTπ, but not PDGFRα and GPR17. In stark contrast, the expression level of Tau, as well as GSTπ, was dramatically decreased in the cuprizone-induced model of multiple sclerosis. Taken together, we propose Tau as a new marker of oligodendrocyte lineage and for investigating demyelination lesions.
Collapse
Affiliation(s)
- Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi, Kyoto, Japan.,Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagayaku, Tokyo, Japan
| | - Rinaho Nakata
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Yuto Higashi
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa-shi, Ishikawa, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa-shi, Ishikawa, Japan
| | - Tomohiro Miyasaka
- Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe-shi, Kyoto, Japan.,Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Hiroaki Misonou
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi, Kyoto, Japan.,Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| |
Collapse
|
15
|
Oligodendrocytes Prune Axons Containing α-Synuclein Aggregates In Vivo: Lewy Neurites as Precursors of Glial Cytoplasmic Inclusions in Multiple System Atrophy? Biomolecules 2023; 13:biom13020269. [PMID: 36830639 PMCID: PMC9953613 DOI: 10.3390/biom13020269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
α-Synucleinopathies are spreading neurodegenerative disorders characterized by the intracellular accumulation of insoluble aggregates populated by α-Synuclein (α-Syn) fibrils. In Parkinson's disease (PD) and dementia with Lewy bodies, intraneuronal α-Syn aggregates are referred to as Lewy bodies in the somata and as Lewy neurites in the neuronal processes. In multiple system atrophy (MSA) α-Syn aggregates are also found within mature oligodendrocytes (OLs) where they form Glial Cytoplasmic Inclusions (GCIs). However, the origin of GCIs remains enigmatic: (i) mature OLs do not express α-Syn, precluding the seeding and the buildup of inclusions and (ii) the artificial overexpression of α-Syn in OLs of transgenic mice results in a burden of soluble phosphorylated α-Syn but fails to form α-Syn fibrils. In contrast, mass spectrometry of α-Syn fibrillar aggregates from MSA patients points to the neuronal origin of the proteins intimately associated with the fibrils within the GCIs. This suggests that GCIs are preassembled in neurons and only secondarily incorporated into OLs. Interestingly, we recently isolated a synthetic human α-Syn fibril strain (1B fibrils) capable of seeding a type of neuronal inclusion observed early and specifically during MSA. Our goal was thus to investigate whether the neuronal α-Syn pathology seeded by 1B fibrils could eventually be transmitted to OLs to form GCIs in vivo. After confirming that mature OLs did not express α-Syn to detectable levels in the adult mouse brain, a series of mice received unilateral intra-striatal injections of 1B fibrils. The resulting α-Syn pathology was visualized using phospho-S129 α-Syn immunoreactivity (pSyn). We found that even though 1B fibrils were injected unilaterally, many pSyn-positive neuronal somas were present in layer V of the contralateral perirhinal cortex after 6 weeks. This suggested a fast retrograde spread of the pathology along the axons of crossing cortico-striatal neurons. We thus scrutinized the posterior limb of the anterior commissure, i.e., the myelinated interhemispheric tract containing the axons of these neurons: we indeed observed numerous pSyn-positive linear Lewy Neurites oriented parallel to the commissural axis, corresponding to axonal segments filled with aggregated α-Syn, with no obvious signs of OL α-Syn pathology at this stage. After 6 months however, the commissural Lewy neurites were no longer parallel but fragmented, curled up, sometimes squeezed in-between two consecutive OLs in interfascicular strands, or even engulfed inside OL perikarya, thus forming GCIs. We conclude that the 1B fibril strain can rapidly induce an α-Syn pathology typical of MSA in mice, in which the appearance of GCIs results from the pruning of diseased axonal segments containing aggregated α-Syn.
Collapse
|
16
|
Torii T, Miyasaka T, Misonou H. The organization of microtubules and Tau in oligodendrocytes: Tau pathology in damaged oligodendrocytes. Front Cell Dev Biol 2022; 10:950682. [PMID: 36274848 PMCID: PMC9579343 DOI: 10.3389/fcell.2022.950682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Tau is abundantly expressed in neurons, however previous reports and our recent study showed tau also exist in oligodendrocytes. Also the expression levels of tau are dramatical changed in hypomyelination model rat and in demyelination region of stroke model mice. The review demonstrate microtubule and its binding partner Tau might be necessary for oligodendrocyte function based on previous reports.
Collapse
Affiliation(s)
- Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
- Center for Research in Neurodegenerative Diseases, Doshisha University, Kyoto, Japan
- *Correspondence: Tomohiro Torii, ; Hiroaki Misonou,
| | - Tomohiro Miyasaka
- Center for Research in Neurodegenerative Diseases, Doshisha University, Kyoto, Japan
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Hiroaki Misonou
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
- Center for Research in Neurodegenerative Diseases, Doshisha University, Kyoto, Japan
- *Correspondence: Tomohiro Torii, ; Hiroaki Misonou,
| |
Collapse
|
17
|
Katiyar P, Singh Rathore A, Banerjee S, Nathani S, Zahra W, Singh SP, Sircar D, Roy P. Wheatgrass extract imparts neuroprotective actions against scopolamine-induced amnesia in mice. Food Funct 2022; 13:8474-8488. [PMID: 35861716 DOI: 10.1039/d2fo00423b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rich and diverse phytoconstituents of wheatgrass have established it as a natural antioxidant and detoxifying agent. The anti-inflammatory potential of wheatgrass has been studied extensively. However, the neuroprotective potential of wheatgrass has not been studied in depth. In this study, we investigated the neuroprotective response of wheatgrass against age-related scopolamine-induced amnesia in mice. Scopolamine is an established anticholinergic drug that demonstrates the behavioural and molecular characteristics of Alzheimer's disease. In the current study, wheatgrass extracts (prepared from 5 and 7 day old plantlets) were administered to scopolamine-induced memory deficit mice. The Morris water maze (MWM) and Y-maze tests demonstrated that wheatgrass treatment improves the behavior and simultaneously enhances the memory of amnesic mice. We further evaluated the expression of neuroinflammation related genes and proteins in the hippocampal region of mice. Wheatgrass significantly upregulated the mRNA and protein expression of neuroprotective markers such as BDNF and CREB in scopolamine-induced mice. Simultaneously, wheatgrass also downregulated the expression of inflammatory markers such as TNF-α and tau genes in these mice. The treatment of scopolamine-induced memory impaired mice with wheatgrass resulted in an elevation in the level of the phosphorylated form of ERK and Akt proteins. Wheatgrass treatment of mice also regulated the phosphorylation of tau protein and simultaneously prevented its aggregation in the hippocampal region of the brain. Overall, this study suggests the therapeutic potential of wheatgrass in the treatment of age-related memory impairment, possibly through the involvement of ERK/Akt-CREB-BDNF pathway and concomitantly ameliorating the tau-related pathogenesis.
Collapse
Affiliation(s)
- Parul Katiyar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Somesh Banerjee
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Sandip Nathani
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
18
|
Situ J, Huang X, Zuo M, Huang Y, Ren B, Liu Q. Comparative Proteomic Analysis Reveals the Effect of Selenoprotein W Deficiency on Oligodendrogenesis in Fear Memory. Antioxidants (Basel) 2022; 11:antiox11050999. [PMID: 35624863 PMCID: PMC9138053 DOI: 10.3390/antiox11050999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
The essential trace element selenium plays an important role in maintaining brain function. Selenoprotein W (SELENOW), the smallest selenoprotein that has been identified in mammals, is sensitive to selenium levels and abundantly expressed in the brain. However, its biological role in the brain remains to be clarified. Here, we studied the morphological and functional changes in the brain caused by SELENOW deficiency using its gene knockout (KO) mouse models. Histomorphological alterations of the amygdala and hippocampus, specifically in the female SELENOW KO mice, were observed, ultimately resulting in less anxiety-like behavior and impaired contextual fear memory. Fear conditioning (FC) provokes rapidly intricate responses involving neuroplasticity and oligodendrogenesis. During this process, the females generally show stronger contextual FC than males. To characterize the effect of SELENOW deletion on FC, specifically in the female mice, a Tandem mass tag (TMT)-based comparative proteomic approach was applied. Notably, compared to the wildtype (WT) no shock (NS) mice, the female SELENOW KO NS mice shared lots of common differentially expressed proteins (DEPs) with the WT FC mice in the hippocampus, enriched in the biological process of ensheathment and oligodendrocyte differentiation. Immunostaining and Western blotting analyses further confirmed the proteomic results. Our work may provide a holistic perspective of gender-specific SELENOW function in the brain and highlighted its role in oligodendrogenesis during fear memory.
Collapse
Affiliation(s)
- Jiaxin Situ
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (J.S.); (X.H.); (M.Z.); (Y.H.)
| | - Xuelian Huang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518000, China
| | - Mingyang Zuo
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (J.S.); (X.H.); (M.Z.); (Y.H.)
| | - Yingying Huang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518000, China
| | - Bingyu Ren
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (J.S.); (X.H.); (M.Z.); (Y.H.)
- Shenzhen Bay Laboratory, Shenzhen 518000, China
- Correspondence: (B.R.); (Q.L.)
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (J.S.); (X.H.); (M.Z.); (Y.H.)
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518000, China
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China
- Correspondence: (B.R.); (Q.L.)
| |
Collapse
|
19
|
Shao E, Chang CW, Li Z, Yu X, Ho K, Zhang M, Wang X, Simms J, Lo I, Speckart J, Holtzman J, Yu GQ, Roberson ED, Mucke L. TAU ablation in excitatory neurons and postnatal TAU knockdown reduce epilepsy, SUDEP, and autism behaviors in a Dravet syndrome model. Sci Transl Med 2022; 14:eabm5527. [PMID: 35476595 DOI: 10.1126/scitranslmed.abm5527] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular accumulation of TAU aggregates is a hallmark of several neurodegenerative diseases. However, global genetic reduction of TAU is beneficial also in models of other brain disorders that lack such TAU pathology, suggesting a pathogenic role of nonaggregated TAU. Here, conditional ablation of TAU in excitatory, but not inhibitory, neurons reduced epilepsy, sudden unexpected death in epilepsy, overactivation of the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway, brain overgrowth (megalencephaly), and autism-like behaviors in a mouse model of Dravet syndrome, a severe epileptic encephalopathy of early childhood. Furthermore, treatment with a TAU-lowering antisense oligonucleotide, initiated on postnatal day 10, had similar therapeutic effects in this mouse model. Our findings suggest that excitatory neurons are the critical cell type in which TAU has to be reduced to counteract brain dysfunctions associated with Dravet syndrome and that overall cerebral TAU reduction could have similar benefits, even when initiated postnatally.
Collapse
Affiliation(s)
- Eric Shao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Che-Wei Chang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zhiyong Li
- Alzheimer's Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michelle Zhang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Xin Wang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jeffrey Simms
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jessica Speckart
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julia Holtzman
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
20
|
Hori T, Eguchi K, Wang HY, Miyasaka T, Guillaud L, Taoufiq Z, Mahapatra S, Yamada H, Takei K, Takahashi T. Microtubule assembly by soluble tau impairs vesicle endocytosis and excitatory neurotransmission via dynamin sequestration in Alzheimer's disease mice synapse model. eLife 2022; 11:73542. [PMID: 35471147 PMCID: PMC9071263 DOI: 10.7554/elife.73542] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/20/2022] [Indexed: 11/27/2022] Open
Abstract
Elevation of soluble wild-type (WT) tau occurs in synaptic compartments in Alzheimer’s disease. We addressed whether tau elevation affects synaptic transmission at the calyx of Held in slices from mice brainstem. Whole-cell loading of WT human tau (h-tau) in presynaptic terminals at 10–20 µM caused microtubule (MT) assembly and activity-dependent rundown of excitatory neurotransmission. Capacitance measurements revealed that the primary target of WT h-tau is vesicle endocytosis. Blocking MT assembly using nocodazole prevented tau-induced impairments of endocytosis and neurotransmission. Immunofluorescence imaging analyses revealed that MT assembly by WT h-tau loading was associated with an increased MT-bound fraction of the endocytic protein dynamin. A synthetic dodecapeptide corresponding to dynamin 1-pleckstrin-homology domain inhibited MT-dynamin interaction and rescued tau-induced impairments of endocytosis and neurotransmission. We conclude that elevation of presynaptic WT tau induces de novo assembly of MTs, thereby sequestering free dynamins. As a result, endocytosis and subsequent vesicle replenishment are impaired, causing activity-dependent rundown of neurotransmission.
Collapse
Affiliation(s)
- Tetsuya Hori
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
| | - Kohgaku Eguchi
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Han-Ying Wang
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
| | - Tomohiro Miyasaka
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Laurent Guillaud
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
| | - Zacharie Taoufiq
- Cellular and Molecular Synaptic Function Unit,, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
| | - Satyajit Mahapatra
- Cellular and Molecular Synaptic Function Unit,, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
| | - Hiroshi Yamada
- Department of Neuroscience, Okayama University, Okayama, Japan
| | - Kohji Takei
- Department of Neuroscience, Okayama University, Okayama, Japan
| | - Tomoyuki Takahashi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate University, Okinawa, Japan
| |
Collapse
|
21
|
Lippa SM, Gill J, Brickell TA, Guedes VA, French LM, Lange RT. Blood Biomarkers Predict Future Cognitive Decline after Military-Related Traumatic Brain Injury. Curr Alzheimer Res 2022; 19:351-363. [PMID: 35362372 DOI: 10.2174/1567205019666220330144432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) has been associated with increased likelihood of late-life dementia; however, the mechanisms driving this relationship are elusive. Blood-based biomarkers may provide insight into these mechanisms and serve as useful prognostic indicators of cognitive recovery or decline following a TBI. OBJECTIVE The aim of this study was to examine blood biomarkers within one year of TBI and explore their relationship with cognitive decline. METHODS Service members and veterans (n=224) without injury (n=77), or with history of bodily injury (n=37), uncomplicated mild TBI (n=55), or more severe TBI (n=55), underwent a blood draw and neuropsychological assessment within one year of their injury as part of a case-control study. A subsample (n=87) completed follow-up cognitive assessment. RESULTS In the more severe TBI group, baseline glial fibrillary acidic protein (p=.008) and ubiquitin C-terminal hydrolase-L1 (p=.026) were associated with processing speed at baseline, and baseline ubiquitin C-terminal hydrolase-L1 predicted change in immediate (R2Δ=.244, p=.005) and delayed memory (R2Δ=.390, p=.003) over time. In the mild TBI group, higher baseline tau predicted greater negative change in perceptual reasoning (R2Δ=.188, p=.033) and executive functioning (R2Δ=.298, p=.007); higher baseline neurofilament light predicted greater negative change in perceptual reasoning (R2Δ=.211, p=.012). CONCLUSION Baseline ubiquitin C-terminal hydrolase-L1 strongly predicted memory decline in the more severe TBI group, while tau and neurofilament light strongly predicted decline in the mild TBI group. A panel including these biomarkers could be particularly helpful in identifying those at risk for future cognitive decline following TBI.
Collapse
Affiliation(s)
- Sara M Lippa
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jessica Gill
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| | - Tracey A Brickell
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Contractor, General Dynamics Information Technology, Falls Church, VA, USA
- Centre of Excellence on Post-traumatic Stress Disorder, Ottawa, ON, Canada
| | - Vivian A Guedes
- National Institutes of Health, National Institute of Nursing Research, Bethesda, MD, USA
| | - Louis M French
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Rael T Lange
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Contractor, General Dynamics Information Technology, Falls Church, VA, USA
- Centre of Excellence on Post-traumatic Stress Disorder, Ottawa, ON, Canada
- University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Yin X, Zhao C, Qiu Y, Zhou Z, Bao J, Qian W. Dendritic/Post-synaptic Tau and Early Pathology of Alzheimer's Disease. Front Mol Neurosci 2021; 14:671779. [PMID: 34248498 PMCID: PMC8270001 DOI: 10.3389/fnmol.2021.671779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/27/2021] [Indexed: 01/21/2023] Open
Abstract
Microtubule-associated protein tau forms insoluble neurofibrillary tangles (NFTs), which is one of the major histopathological hallmarks of Alzheimer's disease (AD). Many studies have demonstrated that tau causes early functional deficits prior to the formation of neurofibrillary aggregates. The redistribution of tau from axons to the somatodendritic compartment of neurons and dendritic spines causes synaptic impairment, and then leads to the loss of synaptic contacts that correlates better with cognitive deficits than amyloid-β (Aβ) aggregates do in AD patients. In this review, we discuss the underlying mechanisms by which tau is mislocalized to dendritic spines and contributes to synaptic dysfunction in AD. We also discuss the synergistic effects of tau and oligomeric forms of Aβ on promoting synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China.,Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Chenhao Zhao
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China
| | - Yanyan Qiu
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China
| | - Zheng Zhou
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China
| | - Junze Bao
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China
| | - Wei Qian
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China.,Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
23
|
Narayanasamy KK, Stojic A, Li Y, Sass S, Hesse MR, Deussner-Helfmann NS, Dietz MS, Kuner T, Klevanski M, Heilemann M. Visualizing Synaptic Multi-Protein Patterns of Neuronal Tissue With DNA-Assisted Single-Molecule Localization Microscopy. Front Synaptic Neurosci 2021; 13:671288. [PMID: 34220481 PMCID: PMC8247585 DOI: 10.3389/fnsyn.2021.671288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/25/2021] [Indexed: 02/04/2023] Open
Abstract
The development of super-resolution microscopy (SRM) has widened our understanding of biomolecular structure and function in biological materials. Imaging multiple targets within a single area would elucidate their spatial localization relative to the cell matrix and neighboring biomolecules, revealing multi-protein macromolecular structures and their functional co-dependencies. SRM methods are, however, limited to the number of suitable fluorophores that can be imaged during a single acquisition as well as the loss of antigens during antibody washing and restaining for organic dye multiplexing. We report the visualization of multiple protein targets within the pre- and postsynapse in 350–400 nm thick neuronal tissue sections using DNA-assisted single-molecule localization microscopy (SMLM). In a single labeling step, antibodies conjugated with short DNA oligonucleotides visualized multiple targets by sequential exchange of fluorophore-labeled complementary oligonucleotides present in the imaging buffer. This approach avoids potential effects on structural integrity when using multiple rounds of immunolabeling and eliminates chromatic aberration, because all targets are imaged using a single excitation laser wavelength. This method proved robust for multi-target imaging in semi-thin tissue sections with a lateral resolution better than 25 nm, paving the way toward structural cell biology with single-molecule SRM.
Collapse
Affiliation(s)
- Kaarjel K Narayanasamy
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.,Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Aleksandar Stojic
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Yunqing Li
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Steffen Sass
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Marina R Hesse
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Nina S Deussner-Helfmann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Marina S Dietz
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Maja Klevanski
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Mike Heilemann
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.,Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
24
|
Kanaan NM, Grabinski T. Neuronal and Glial Distribution of Tau Protein in the Adult Rat and Monkey. Front Mol Neurosci 2021; 14:607303. [PMID: 33986642 PMCID: PMC8112591 DOI: 10.3389/fnmol.2021.607303] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Tau is a microtubule-associated protein for which the physiological functions remain a topic of vigorous investigation. Additionally, tau is a central player in the pathogenesis of several diseases such as Alzheimer's disease and several frontotemporal dementias. A critical variable to understanding tau in physiological and disease contexts is its normal localization within cells of the adult CNS. Tau is often described as an axon-specific (or enriched) and neuron-specific protein with little to no expression in glial cells, all of which are untrue. Understanding normal tau distribution also impacts interpretation of experimental results and hypotheses regarding its role in disease. Thus, we set out to help clarify the normal localization of tau in the adult CNS of middle-aged rats and rhesus macaque using the hippocampus as a representative brain structure. The physiological concentration of tau in the rat hippocampus was 6.6 μM and in white matter was 3.6 μM as determined by quantitative sandwich ELISAs. We evaluated the cellular localization of tau using multiple tau-specific antibodies with epitopes to different regions, including Tau1, Tau5, Tau7, R1, and two novel primate-specific antibodies NT9 and NT15. In the rat and monkey, tau was localized within the somatodendritic and axonal compartments, as well as a subset of neuronal nuclei. Semi-quantitative fluorescence intensity measurements revealed that depending on the specific reagent used the somatodendritic tau is relatively equal to, higher than, or lower than axonal tau, highlighting differential labeling of tau with various antibodies despite its distribution throughout the neuron. Tau was strongly expressed in mature oligodendrocytes and displayed little to no expression in oligodendrocyte precursor cells, astrocytes or microglia. Collectively, the data indicate tau is ∼3 - 7 μM under physiological conditions, is not specifically enriched in axons, and is normally found in both neurons and mature oligodendrocytes in the adult CNS. The full landscape of tau distribution is not revealed by all antibodies suggesting availability of the epitopes is different within specific neuronal compartments. These findings set the stage for better understanding normal tau distributions and interpreting data regarding the presence of tau in different compartments or cell types within disease conditions.
Collapse
Affiliation(s)
- Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- Mercy Health Hauenstein Neuroscience Center, Grand Rapids, MI, United States
| | - Tessa Grabinski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| |
Collapse
|
25
|
Tau Is Truncated in Five Regions of the Normal Adult Human Brain. Int J Mol Sci 2021; 22:ijms22073521. [PMID: 33805376 PMCID: PMC8036332 DOI: 10.3390/ijms22073521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
The truncation of Tau is thought to be important in promoting aggregation, with this feature characterising the pathology of dementias such as Alzheimer disease. Antibodies to the C-terminal and N-terminal regions of Tau were employed to examine Tau cleavage in five human brain regions: the entorhinal cortex, prefrontal cortex, motor cortex, hippocampus, and cerebellum. These were obtained from normal subjects ranging in age from 18 to 104 years. Tau fragments of approximately 40 kDa and 45 kDa with an intact N-terminus retained were found in soluble and insoluble brain fractions. In addition, smaller C-terminal Tau fragments ranging in mass from 17 kDa to 25 kDa were also detected. These findings are consistent with significant Tau cleavage taking place in brain regions from 18 years onwards. It appears that site-specific cleavage of Tau is widespread in the normal human brain, and that large Tau fragments that contain the N-terminus, as well as shorter C-terminal Tau fragments, are present in brain cells across the age range.
Collapse
|
26
|
Pizzarelli R, Pediconi N, Di Angelantonio S. Molecular Imaging of Tau Protein: New Insights and Future Directions. Front Mol Neurosci 2021; 13:586169. [PMID: 33384582 PMCID: PMC7769805 DOI: 10.3389/fnmol.2020.586169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Tau is a microtubule-associated protein (MAPT) that is highly expressed in neurons and implicated in several cellular processes. Tau misfolding and self-aggregation give rise to proteinaceous deposits known as neuro-fibrillary tangles. Tau tangles play a key role in the genesis of a group of diseases commonly referred to as tauopathies; notably, these aggregates start to form decades before any clinical symptoms manifest. Advanced imaging methodologies have clarified important structural and functional aspects of tau and could have a role as diagnostic tools in clinical research. In the present review, recent progresses in tau imaging will be discussed. We will focus mainly on super-resolution imaging methods and the development of near-infrared fluorescent probes.
Collapse
Affiliation(s)
- Rocco Pizzarelli
- Center for Life Nanoscience, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Natalia Pediconi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia (IIT), Rome, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
27
|
John A, Reddy PH. Synaptic basis of Alzheimer's disease: Focus on synaptic amyloid beta, P-tau and mitochondria. Ageing Res Rev 2021; 65:101208. [PMID: 33157321 PMCID: PMC7770124 DOI: 10.1016/j.arr.2020.101208] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a progressive and synaptic failure disease. Despite the many years of research, AD still harbors many secrets. As more of the world's population grows older, researchers are striving to find greater information on disease progression and pathogenesis. Identifying and treating the markers of this disease, or better yet, preventing it all together, are the hopes of those investing in this field of study. Several years of research revealed that synaptic pathology and mitochondrial oxidative damage are early events in disease progression. Loss of synapses and synaptic damage are the best correlates of cognitive deficits found in AD patients. As the disease progresses, there are significant changes at the synapse. These changes can both shed greater light onto the progression of the disease and serve as markers and therapeutic targets. This article addresses the mechanisms of synaptic action, mitochondrial regulation/dysregulation, resulting synaptic changes caused by amyloid beta and phosphorylated tau in AD progression. This article also highlights recent developments of risk factors, genetics and ApoE4 involvement, factors related to synaptic damage and loss, mislocalization of amyloid beta and phosphorylated tau, mitophagy, microglial activation and synapse-based therapies in AD. Furthermore, impairments in LTD and reactivation of microglia are discussed.
Collapse
Affiliation(s)
- Albin John
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
28
|
Lemke N, Melis V, Lauer D, Magbagbeolu M, Neumann B, Harrington CR, Riedel G, Wischik CM, Theuring F, Schwab K. Differential compartmental processing and phosphorylation of pathogenic human tau and native mouse tau in the line 66 model of frontotemporal dementia. J Biol Chem 2020; 295:18508-18523. [PMID: 33127647 PMCID: PMC7939472 DOI: 10.1074/jbc.ra120.014890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/09/2020] [Indexed: 12/23/2022] Open
Abstract
Synapse loss is associated with motor and cognitive decline in multiple neurodegenerative disorders, and the cellular redistribution of tau is related to synaptic impairment in tauopathies, such as Alzheimer's disease and frontotemporal dementia. Here, we examined the cellular distribution of tau protein species in human tau overexpressing line 66 mice, a transgenic mouse model akin to genetic variants of frontotemporal dementia. Line 66 mice express intracellular tau aggregates in multiple brain regions and exhibit sensorimotor and motor learning deficiencies. Using a series of anti-tau antibodies, we observed, histologically, that nonphosphorylated transgenic human tau is enriched in synapses, whereas phosphorylated tau accumulates predominantly in cell bodies and axons. Subcellular fractionation confirmed that human tau is highly enriched in insoluble cytosolic and synaptosomal fractions, whereas endogenous mouse tau is virtually absent from synapses. Cytosolic tau was resistant to solubilization with urea and Triton X-100, indicating the formation of larger tau aggregates. By contrast, synaptic tau was partially soluble after Triton X-100 treatment and most likely represents aggregates of smaller size. MS corroborated that synaptosomal tau is nonphosphorylated. Tau enriched in the synapse of line 66 mice, therefore, appears to be in an oligomeric and nonphosphorylated state, and one that could have a direct impact on cognitive function.
Collapse
Affiliation(s)
- Nora Lemke
- Charité-Universitätsmedizin Berlin, Berlin, Germany; Bundesanstalt für Materialforschung und-prüfung, Berlin, Germany
| | - Valeria Melis
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | | | | | - Boris Neumann
- Charité-Universitätsmedizin Berlin, Berlin, Germany; Proteome Factory AG, Berlin, Germany
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom; TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom; TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | | | - Karima Schwab
- Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
29
|
Reproductive status impact on tau phosphorylation induced by chronic stress. Neurobiol Stress 2020; 13:100241. [PMID: 33344697 PMCID: PMC7739034 DOI: 10.1016/j.ynstr.2020.100241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 01/20/2023] Open
Abstract
Sex and exposure to chronic stress have been identified as risk factors for developing Alzheimer's disease (AD). Although AD has been demonstrated to be more prevalent in females, sex is often overlooked in research studies, likely due to the complexity of the hormonal status. In female rats, the reproductive status can modulate the well-known increase in tau phosphorylation (pTau) caused by the exposure to acute physical and psychological stressors. To test the hypothesis that reproductive status can impact hippocampal pTau induced by chronic stress, cohorts of virgin, lactating (4–5 days pp), and post-maternal (1-month post-weaned) rats were subjected to a daily 30-min episode of restraint stress for 14 days and were sacrificed either 20 min or 24 h after their last stress/handling episode. Western blot analysis of two well-characterized AD-relevant pTau epitopes (AT8 and PHF-1) and upstream pTau mechanisms (e.g. GSK3β) analysis, showed that stressed post-maternal rats have increased pTau in comparison to stressed lactating rats 20 min after their last stress episode. Furthermore, an increase in pTau was also seen 24 h after the last stress episode in stressed post-maternal rats in comparison to their non-stressed controls in the detergent-soluble fraction. GSK3 analysis showed an increase in total levels of GSK3β in virgin rats and an increase of inactive levels of GSK3β in post-maternal rats, which suggests a different stress response in pTau after the rat has gone through the maternal experience. Interestingly, post-maternal rats also presented the more variability in their estrous cycles in response to stress. Besides no differences in pTau, non-stressed lactating rats showed an increase in inactive GSK3β 24 h after the last handling episode. Immunohistochemical detection of the PHF-1 epitope revealed increased pTau in the CA4/hilar subfield of the hippocampus of virgin and post-maternal rats exposed to chronic stress shortly after their last stress episode. Overall, lactating rats remained unresponsive to chronic restraint stress. These results suggest increased sensitivity of the virgin and post-maternal rats to hippocampal stress-induced pTau with chronic restraint stress compared to lactating rats. Because no differences were detected in response to stress by lactating rats and an exaggerated response was observed in post-maternal rats, current results support the hypothesis that lactation affects tau processing in the brain of the female. pTau increases in the hippocampus of stressed virgin and especially post-maternal rats but not in that of lactating dams. The hippocampal area CA4 of virgin and post-maternal rats is most affected by the chronic restraint stress. GSK3β overall levels and activity are modified by the reproductive condition and stress. Reproductive experience modifies pTau induced by chronic stress.
Collapse
|
30
|
Alyenbaawi H, Allison WT, Mok SA. Prion-Like Propagation Mechanisms in Tauopathies and Traumatic Brain Injury: Challenges and Prospects. Biomolecules 2020; 10:E1487. [PMID: 33121065 PMCID: PMC7692808 DOI: 10.3390/biom10111487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
The accumulation of tau protein in the form of filamentous aggregates is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). These dementias share traumatic brain injury (TBI) as a prominent risk factor. Tau aggregates can transfer between cells and tissues in a "prion-like" manner, where they initiate the templated misfolding of normal tau molecules. This enables the spread of tau pathology to distinct parts of the brain. The evidence that tauopathies spread via prion-like mechanisms is considerable, but work detailing the mechanisms of spread has mostly used in vitro platforms that cannot fully reveal the tissue-level vectors or etiology of progression. We review these issues and then briefly use TBI and CTE as a case study to illustrate aspects of tauopathy that warrant further attention in vivo. These include seizures and sleep/wake disturbances, emphasizing the urgent need for improved animal models. Dissecting these mechanisms of tauopathy progression continues to provide fresh inspiration for the design of diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hadeel Alyenbaawi
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Laboratories, Majmaah University, Majmaah 11952, Saudi Arabia
| | - W. Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sue-Ann Mok
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
31
|
Abstract
It is increasingly recognized that local protein synthesis (LPS) contributes to fundamental aspects of axon biology, in both developing and mature neurons. Mutations in RNA-binding proteins (RBPs), as central players in LPS, and other proteins affecting RNA localization and translation are associated with a range of neurological disorders, suggesting disruption of LPS may be of pathological significance. In this review, we substantiate this hypothesis by examining the link between LPS and key axonal processes, and the implicated pathophysiological consequences of dysregulated LPS. First, we describe how the length and autonomy of axons result in an exceptional reliance on LPS. We next discuss the roles of LPS in maintaining axonal structural and functional polarity and axonal trafficking. We then consider how LPS facilitates the establishment of neuronal connectivity through regulation of axonal branching and pruning, how it mediates axonal survival into adulthood and its involvement in neuronal stress responses.
Collapse
Affiliation(s)
- Julie Qiaojin Lin
- UK Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Laing KK, Simoes S, Baena-Caldas GP, Lao PJ, Kothiya M, Igwe KC, Chesebro AG, Houck AL, Pedraza L, Hernández AI, Li J, Zimmerman ME, Luchsinger JA, Barone FC, Moreno H, Brickman AM. Cerebrovascular disease promotes tau pathology in Alzheimer's disease. Brain Commun 2020; 2:fcaa132. [PMID: 33215083 PMCID: PMC7660042 DOI: 10.1093/braincomms/fcaa132] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 01/04/2023] Open
Abstract
Small vessel cerebrovascular disease, visualized as white matter hyperintensities on T2-weighted magnetic resonance imaging, contributes to the clinical presentation of Alzheimer's disease. However, the extent to which cerebrovascular disease represents an independent pathognomonic feature of Alzheimer's disease or directly promotes Alzheimer's pathology is unclear. The purpose of this study was to examine the association between white matter hyperintensities and plasma levels of tau and to determine if white matter hyperintensities and tau levels interact to predict Alzheimer's disease diagnosis. To confirm that cerebrovascular disease promotes tau pathology, we examined tau fluid biomarker concentrations and pathology in a mouse model of ischaemic injury. Three hundred ninety-one participants from the Alzheimer's Disease Neuroimaging Initiative (74.5 ± 7.1 years of age) were included in this cross-sectional analysis. Participants had measurements of plasma total-tau, cerebrospinal fluid beta-amyloid, and white matter hyperintensities, and were diagnosed clinically as Alzheimer's disease (n = 97), mild cognitive impairment (n = 186) or cognitively normal control (n = 108). We tested the relationship between plasma tau concentration and white matter hyperintensity volume across diagnostic groups. We also examined the extent to which white matter hyperintensity volume, plasma tau, amyloid positivity status and the interaction between white matter hyperintensities and plasma tau correctly classifies diagnostic category. Increased white matter hyperintensity volume was associated with higher plasma tau concentration, particularly among those diagnosed clinically with Alzheimer's disease. Presence of brain amyloid and the interaction between plasma tau and white matter hyperintensity volume distinguished Alzheimer's disease and mild cognitive impairment participants from controls with 77.6% and 63.3% accuracy, respectively. In 63 Alzheimer's Disease Neuroimaging Initiative participants who came to autopsy (82.33 ± 7.18 age at death), we found that higher degrees of arteriosclerosis were associated with higher Braak staging, indicating a positive relationship between cerebrovascular disease and neurofibrillary pathology. In a transient middle cerebral artery occlusion mouse model, aged mice that received transient middle cerebral artery occlusion, but not sham surgery, had increased plasma and cerebrospinal fluid tau concentrations, induced myelin loss, and hyperphosphorylated tau pathology in the ipsilateral hippocampus and cerebral hemisphere. These findings demonstrate a relationship between cerebrovascular disease, operationalized as white matter hyperintensities, and tau levels, indexed in the plasma, suggesting that hypoperfusive injury promotes tau pathology. This potential causal association is supported by the demonstration that transient cerebral artery occlusion induces white matter damage, increases biofluidic markers of tau, and promotes cerebral tau hyperphosphorylation in older-adult mice.
Collapse
Affiliation(s)
- Krystal K Laing
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sabrina Simoes
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gloria P Baena-Caldas
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
- School of Biomedical Sciences, Health Sciences Division, Universidad del Valle, Cali, Colombia, USA
| | - Patrick J Lao
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Milankumar Kothiya
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kay C Igwe
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Anthony G Chesebro
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Alexander L Houck
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lina Pedraza
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
| | - A Iván Hernández
- Department of Pathology. SUNY Downstate, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Jie Li
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
| | | | - José A Luchsinger
- Department of Medicine, College of Physicians and Surgeons, Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frank C Barone
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Herman Moreno
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | |
Collapse
|
33
|
Villa González M, Vallés-Saiz L, Hernández IH, Avila J, Hernández F, Pérez-Alvarez MJ. Focal cerebral ischemia induces changes in oligodendrocytic tau isoforms in the damaged area. Glia 2020; 68:2471-2485. [PMID: 32515854 DOI: 10.1002/glia.23865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022]
Abstract
Ischemic stroke is a major cause of death and the first leading cause of long-term disability worldwide. The only therapeutic strategy available to date is reperfusion and not all the patients are suitable for this treatment. Blood flow blockage or reduction leads to considerable brain damage, affecting both gray and white matter. The detrimental effects of ischemia have been studied extensively in the former but not in the latter. Previous reports indicate that preservation of white matter integrity reduces deleterious effect of ischemia on the brain. Oligodendrocytes are sensitive to ischemic damage, however, some reports demonstrate that oligodendrogenesis occurs after ischemia. These glial cells have a complex cytoskeletal network, including tau, that plays a key role to proper myelination. 4R-Tau/3R-Tau, which differ in the presence/absence of Exon 10, are found in oligodendrocytes; but the precise role of each isoform is not understood. Using permanent middle cerebral artery occlusion model and immunofluorescence, we demonstrate that cerebral ischemia induces an increase in 3R-Tau versus 4R-Tau in oligodendrocytes in the damaged area. In addition, cellular distribution of Tau undergoes a change after ischemia, with some oligodendrocytic processes showing positive staining for 3R-Tau. This occurs simultaneously with the amelioration of neurological damage in ischemic rats. We propose that ischemia triggers an endogenous mechanism involving 3R-Tau, that induces colonization of the ischemic damaged area by oligodendrocytes in an attempt to myelinate-injured axons. Understanding the molecular mechanism of this phenomenon could pave the way for the design of therapeutic strategies that exploit glial cells for the treatment of ischemia.
Collapse
Affiliation(s)
- Mario Villa González
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain
| | - Laura Vallés-Saiz
- Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain
| | - Ivó H Hernández
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesús Avila
- Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Félix Hernández
- Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain.,Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María José Pérez-Alvarez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Neuropatología Molecular CSIC-UAM, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
34
|
Abstract
The microtubule-associated protein tau has been identified in several intraneuronal compartments, including in association with synapses. In Alzheimer's disease, frontotemporal dementia and related tauopathies, highly phosphorylated tau accumulates as intraneuronal protein aggregates that are likely responsible for the demise of neurons and the subsequent progressive cognitive decline. However, the molecular mechanisms underlying such tau-mediated damage in the tauopathies is not fully understood. Tauopathy induces loss of synapses, which is one of the earliest structural correlates of cognitive dysfunction and disease progression. Notably, altered post-translational modifications of tau, including increased phosphorylation and acetylation, augment the mislocalisation of tau to synapses, impair synaptic vesicle release and might influence the activity-dependent release of tau from neurons. Thus, disease-associated accumulation of modified tau at the synapse adversely affects critical neuronal processes that are linked to neuronal activity and synaptic function. These findings emphasise the importance of gaining a comprehensive understanding of the diverse roles of tau at distinct intraneuronal locations. An improved knowledge of the impact of synaptic tau under physiological and pathological conditions and how tau localisation impacts on neuronal function will provide valuable insights that may lead to the development of new therapies for the tauopathies.
Collapse
|
35
|
Regan P, Cho K. The Role of Tau in the Post-synapse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1184:113-121. [PMID: 32096033 DOI: 10.1007/978-981-32-9358-8_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
It is well documented that tauopathy is involved in various forms of neurodegenerative disease. However, there is a huge gap in terms of our understanding of the neurophysiological roles of tau, and how these can be aberrantly regulated by pathological processes. Tau is enriched in the axon but is also localized to synapses. The finding of synaptically localised tau has undoubtedly created more questions than it has answered. What is the physiological role of tau at the synapse? Whether and how does tau interact with and effect other synaptic proteins to mediate this function? Are these effects regulated by post-translational modifications of tau, such as phosphorylation? Such questions require significant attention from the scientific community if we are to resolve this critical aspect of tau biology. This chapter will describe our current understanding of synaptic tau and its functions and illuminate the numerous remaining challenges in this evolving research area.
Collapse
Affiliation(s)
- Philip Regan
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Kwangwook Cho
- UK-Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.
| |
Collapse
|
36
|
Fujiwara H, Watanabe S, Iwata M, Ueda S, Nobuhara M, Wada-Kakuda S, Misonou H, Miyasaka T. Inhibition of microtubule assembly competent tubulin synthesis leads to accumulation of phosphorylated tau in neuronal cell bodies. Biochem Biophys Res Commun 2020; 521:779-785. [DOI: 10.1016/j.bbrc.2019.10.191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/29/2019] [Indexed: 11/29/2022]
|
37
|
Cavedo E, Lista S, Houot M, Vergallo A, Grothe MJ, Teipel S, Zetterberg H, Blennow K, Habert MO, Potier MC, Dubois B, Hampel H. Plasma tau correlates with basal forebrain atrophy rates in people at risk for Alzheimer disease. Neurology 2019; 94:e30-e41. [DOI: 10.1212/wnl.0000000000008696] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022] Open
Abstract
ObjectiveTo investigate whether baseline concentrations of plasma total tau (t-tau) and neurofilament light (NfL) chain proteins are associated with annual percent change (APC) of the basal forebrain cholinergic system (BFCS) in cognitively intact older adults at risk for Alzheimer disease (AD).MethodsThis was a large-scale study of 276 cognitively intact older adults from the monocentric INSIGHT-preAD (Investigation of Alzheimer's Predictors in Subjective Memory Complainers) cohort. Participants underwent baseline assessment of plasma t-tau and NfL concentrations as well as baseline and 24-month follow-up MRI scans. Linear models with and without influential observations (calculated using the Cook distance) were carried out to investigate the effect of plasma NfL and t-tau concentrations, and their interaction effect with β-amyloid status and APOE genotype, on the APC of the whole BFCS and its anterior (Ch1/2) and posterior (Ch4) subdivisions separately.ResultsHigher plasma t-tau concentrations at baseline were associated with higher BFCS rate of atrophy (model without influencers: n = 251, F value = 4.6815; p value = 0.031). Subregional analyses showed similar results for both the APC of the Ch1/2 (model without influencers: n = 256, F value = 3.9535, p corrected = 0.047) and Ch4 BFCS sectors (model without influencers: n = 253, F value = 4.9090, p corrected = 0.047). Baseline NfL, β-amyloid load, and APOE ε4 carrier status did not affect APC of the BFCS.ConclusionIncreased concentrations of baseline plasma t-tau may predict in vivo structural BFCS atrophy progression in older adults at risk for AD, independently of β-amyloid status and APOE genotype.
Collapse
|
38
|
Kobayashi S, Tanaka T, Soeda Y, Takashima A. Enhanced Tau Protein Translation by Hyper-Excitation. Front Aging Neurosci 2019; 11:322. [PMID: 31824301 PMCID: PMC6879554 DOI: 10.3389/fnagi.2019.00322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/05/2019] [Indexed: 12/04/2022] Open
Abstract
Tau is a microtubule-associated protein, localizing mainly in the axon of mature neurons. Phenotypic analysis of Tau knockout mice has revealed an impairment of synaptic plasticity but without gross changes in brain morphology. Since we previously described the presence of tau mRNA in the somatodendritic compartment, including the postsynapse, and demonstrated that it could be locally translated in response to glutamate, it appears that the regulated translation of synaptic tau can have a direct impact on synaptic function. Using SH-SY5Y cells, we herein confirm that glutamate dose-dependently regulates the translation of tau protein without altering tau mRNA levels. This is supported by the finding that cycloheximide blocks glutamate-stimulated increases in tau protein levels. Our observation that neural excitation can directly upregulate tau mRNA translation helps explain the pathological accumulation of tau in the somatodendrite.
Collapse
Affiliation(s)
- Shunsuke Kobayashi
- Department of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Japan
| | - Toru Tanaka
- Department of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Japan
| | - Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
39
|
Iwata M, Watanabe S, Yamane A, Miyasaka T, Misonou H. Regulatory mechanisms for the axonal localization of tau protein in neurons. Mol Biol Cell 2019; 30:2441-2457. [PMID: 31364926 PMCID: PMC6743362 DOI: 10.1091/mbc.e19-03-0183] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tau is a microtubule (MT)-associated protein that is thought to be localized to the axon. However, its precise localization in developing neurons and mechanisms for the axonal localization have not been fully addressed. In this study, we found that the axonal localization of tau in cultured rat hippocampal neurons mainly occur during early neuronal development. Interestingly, transient expression of human tau in very immature neurons, but not in mature neurons, mimicked the developmental localization of endogenous tau to the axon. We therefore were able to establish an experimental model, in which exogenously expressed tau can be properly localized to the axon. Using this model, we obtained a surprising finding that the axonal localization of tau did not require stable MT binding. Tau lacking the MT-binding domain (MTBD) exhibited high diffusivity but localized properly to the axon. In contrast, a dephosphorylation-mimetic mutant of the proline-rich region 2 showed reinforced MT binding and mislocalization. Our results suggest that tight binding to MTs prevents tau from entering the axon and results in mislocalization in the soma and dendrites when expressed in mature neurons. This study therefore provides a novel mechanism independent of MTBD for the axonal localization of tau.
Collapse
Affiliation(s)
- Minori Iwata
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi, Kyoto 610-0394, Japan
| | - Shoji Watanabe
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi, Kyoto 610-0394, Japan
| | - Ayaka Yamane
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi, Kyoto 610-0394, Japan
| | - Tomohiro Miyasaka
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe-shi, Kyoto 610-0394, Japan.,Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe-shi, Kyoto 610-0394, Japan
| | - Hiroaki Misonou
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi, Kyoto 610-0394, Japan.,Center for Research in Neurodegenerative Diseases, Doshisha University, Kyotanabe-shi, Kyoto 610-0394, Japan
| |
Collapse
|
40
|
Saito T, Mihira N, Matsuba Y, Sasaguri H, Hashimoto S, Narasimhan S, Zhang B, Murayama S, Higuchi M, Lee VMY, Trojanowski JQ, Saido TC. Humanization of the entire murine Mapt gene provides a murine model of pathological human tau propagation. J Biol Chem 2019; 294:12754-12765. [PMID: 31273083 DOI: 10.1074/jbc.ra119.009487] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Indexed: 11/06/2022] Open
Abstract
In cortical regions of brains from individuals with preclinical or clinical Alzheimer's disease (AD), extracellular β-amyloid (Aβ) deposition precedes the aggregation of pathological intracellular tau (the product of the gene microtubule-associated protein tau (MAPT)). To our knowledge, current mouse models of tauopathy reconstitute tau pathology by overexpressing mutant human tau protein. Here, through a homologous recombination approach that replaced the entire murine Mapt gene with the human ortholog, we developed knock-in mice with humanized Mapt to create an in vivo platform for studying human tauopathy. Of note, the humanized Mapt expressed all six tau isoforms present in humans. We next cross-bred the MAPT knock-in mice with single amyloid precursor protein (App) knock-in mice to investigate the Aβ-tau axis in AD etiology. The double-knock-in mice exhibited higher tau phosphorylation than did single MAPT knock-in mice but initially lacked apparent tauopathy and neurodegeneration, as observed in the single App knock-in mice. We further observed that tau humanization significantly accelerates cell-to-cell propagation of AD brain-derived pathological tau both in the absence and presence of Aβ-amyloidosis. In the presence of Aβ-amyloidosis, tau accumulation was intensified and closely associated with dystrophic neurites, consistently showing that Aβ-amyloidosis affects tau pathology. Our results also indicated that the pathological human tau interacts better with human tau than with murine tau, suggesting species-specific differences between these orthologous pathogenic proteins. We propose that the MAPT knock-in mice will make it feasible to investigate the behaviors and characteristics of human tau in an animal model.
Collapse
Affiliation(s)
- Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan .,Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Sneha Narasimhan
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakaecho, Itabashi, Tokyo 173-0015, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| |
Collapse
|
41
|
Ectopic Expression Induces Abnormal Somatodendritic Distribution of Tau in the Mouse Brain. J Neurosci 2019; 39:6781-6797. [PMID: 31235644 DOI: 10.1523/jneurosci.2845-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Tau is a microtubule (MT)-associated protein that is localized to the axon. In Alzheimer's disease, the distribution of tau undergoes a remarkable alteration, leading to the formation of tau inclusions in the somatodendritic compartment. To investigate how this mislocalization occurs, we recently developed immunohistochemical tools that can separately detect endogenous mouse and exogenous human tau with high sensitivity, which allows us to visualize not only the pathological but also the pre-aggregated tau in mouse brain tissues of both sexes. Using these antibodies, we found that in tau-transgenic mouse brains, exogenous human tau was abundant in dendrites and somata even in the presymptomatic period, whereas the axonal localization of endogenous mouse tau was unaffected. In stark contrast, exogenous tau was properly localized to the axon in human tau knock-in mice. We tracked this difference to the temporal expression patterns of tau. Endogenous mouse tau and exogenous human tau in human tau knock-in mice exhibited high expression levels during the neonatal period and strong suppression into the adulthood. However, human tau in transgenic mice was expressed continuously and at high levels in adult animals. These results indicated the uncontrolled expression of exogenous tau beyond the developmental period as a cause of mislocalization in the transgenic mice. Superresolution microscopic and biochemical analyses also indicated that the interaction between MTs and exogenous tau was impaired only in the tau-transgenic mice, but not in knock-in mice. Thus, the ectopic expression of tau may be critical for its somatodendritic mislocalization, a key step of the tauopathy.SIGNIFICANCE STATEMENT Somatodendritic localization of tau may be an early step leading to the neuronal degeneration in tauopathies. However, the mechanisms of the normal axonal distribution of tau and the mislocalization of pathological tau remain obscure. Our immunohistochemical and biochemical analyses demonstrated that the endogenous mouse tau is transiently expressed in neonatal brains, that exogenous human tau expressed corresponding to such tau expression profile can distribute into the axon, and that the constitutive expression of tau into adulthood (e.g., human tau in transgenic mice) results in abnormal somatodendritic localization. Thus, the expression profile of tau is tightly associated with the localization of tau, and the ectopic expression of tau in matured neurons may be involved in the pathogenesis of tauopathy.
Collapse
|
42
|
Moosecker S, Gomes P, Dioli C, Yu S, Sotiropoulos I, Almeida OFX. Activated PPARγ Abrogates Misprocessing of Amyloid Precursor Protein, Tau Missorting and Synaptotoxicity. Front Cell Neurosci 2019; 13:239. [PMID: 31263400 PMCID: PMC6584807 DOI: 10.3389/fncel.2019.00239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/13/2019] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes increases the risk for dementia, including Alzheimer’s disease (AD). Pioglitazone (Pio), a pharmacological agonist of the peroxisome proliferator-activated receptor γ (PPARγ), improves insulin sensitivity and has been suggested to have potential in the management of AD symptoms, albeit through mostly unknown mechanisms. We here investigated the potential of Pio to counter synaptic malfunction and loss, a characteristic of AD pathology and its accompanying cognitive deficits. Results from experiments on primary mouse neuronal cultures and a human neural cell line (SH-SY5Y) show that Pio treatment attenuates amyloid β (Aβ)-triggered the pathological (mis-) processing of amyloid precursor protein (APP) and inhibits Aβ-induced accumulation and hyperphosphorylation of Tau. These events are accompanied by increased glutamatergic receptor 2B subunit (GluN2B) levels that are causally linked with neuronal death. Further, Pio treatment blocks Aβ-triggered missorting of hyperphosphorylated Tau to synapses and the subsequent loss of PSD95-positive synapses. These latter effects of Pio are PPARγ-mediated since they are blocked in the presence of GW9662, a selective PPARγ inhibitor. Collectively, these data show that activated PPARγ buffer neurons against APP misprocessing, Tau hyperphosphorylation and its missorting to synapses and subsequently, synaptic loss. These first insights into the mechanisms through which PPARγ influences synaptic loss make a case for further exploration of the potential usefulness of PPARγ agonists in the prevention and treatment of synaptic pathology in AD.
Collapse
Affiliation(s)
- Susanne Moosecker
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Patrícia Gomes
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Chrysoula Dioli
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Shuang Yu
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Osborne F X Almeida
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
43
|
Kubo A, Misonou H, Matsuyama M, Nomori A, Wada-Kakuda S, Takashima A, Kawata M, Murayama S, Ihara Y, Miyasaka T. Distribution of endogenous normal tau in the mouse brain. J Comp Neurol 2018; 527:985-998. [PMID: 30408165 PMCID: PMC6587864 DOI: 10.1002/cne.24577] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/09/2023]
Abstract
Tau is a microtubule‐associated protein (MAP) that is localized to the axon. In Alzheimer's disease (AD), the distribution of tau undergoes a remarkable alteration, leading to the formation of tau inclusions in the somatodendritic compartment. While the abnormal aggregated tau has been extensively studied in human patient tissues and animal models of AD, how normal tau localizes to the axon, which would be the foundation to understand how the mis‐localization occurs, has not been well studied due to the poor detectability of normal unaggregated tau in vivo. Therefore, we developed immunohistochemical techniques that can detect normal mouse and human tau in brain tissues with high sensitivity. Using these techniques, we demonstrate the global distribution of tau in the mouse brain and confirmed that normal tau is exclusively localized to the axonal compartment in vivo. Interestingly, tau antibodies strongly labeled nonmyelinated axons such as hippocampal mossy fibers, while white matters generally exhibited low levels of immunoreactivity. Furthermore, mouse tau is highly expressed not only in neurons but also in oligodendrocytes. With super resolution imaging using the stimulated‐depletion microscopy, axonal tau appeared punctate rather than fibrous, indicating that tau decorates microtubules sparsely. Co‐labeling with presynaptic and postsynaptic markers revealed that normal tau is not localized to synapses but sparsely distributes in the axon. Taken together, this study reports novel antibodies to investigate the localization and mis‐localization of tau in vivo and novel findings of normal tau localization in the mouse brain.
Collapse
Affiliation(s)
- Atsuko Kubo
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Hiroaki Misonou
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan.,Center for Research in Neurodegenerative Diseases, Doshisha University, Kyoto, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Akane Nomori
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Satoko Wada-Kakuda
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Tokyo, Japan.,Center for Research in Neurodegenerative Diseases, Doshisha University, Kyoto, Japan
| | - Mitsuhiro Kawata
- Department of Physical Therapy, School of Health Sciences, Bukkyo University, Nakagyo-ku, Kyoto, 604-8418, Japan
| | - Shigeo Murayama
- Neuropathology, The Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Yasuo Ihara
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan.,Laboratory of Cognition and Aging, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Tomohiro Miyasaka
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan.,Center for Research in Neurodegenerative Diseases, Doshisha University, Kyoto, Japan
| |
Collapse
|