1
|
Sodhi RK, Kumar H, Singh R, Bansal Y, Kondepudi KK, Bishnoi M, Kuhad A. Protective effects of menthol against olanzapine-induced metabolic alterations in female mice. Eur J Pharmacol 2024; 983:177010. [PMID: 39299481 DOI: 10.1016/j.ejphar.2024.177010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/08/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
AIM Metabolic comorbidities such as obesity type 2 diabetes, insulin resistance, glucose intolerance, dyslipidemia are the major contributors for lower life expectancy and reduced patient compliance during antipsychotic therapy in patients with severe mental illnesses such as schizophrenia, bipolar disorder, and depression. TRPM8 activation by menthol is also reported to alleviate high fat diet-induced obesity in mice. Additionally, this TRPM8 activation leads to increase in gene expression of thermogenic genes in white adipocytes and dietary menthol was found to increase browning of WAT along with improved glucose utilization. Therefore, we aimed to evaluate the plausible role of TRPM8 channels in olanzapine-induced metabolic alterations in female balb/c mice. METHODS 6 weeks olanzapine (6 mg kg-1, per oral) model was used in female balb/c mice. Pharmacological manipulation of TRPM8 channel was done using menthol and N-(3-aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)-benzamide (AMTB), the agonist and antagonist respectively. KEY RESULTS Menthol co-treatment for six weeks prevented olanzapine-induced metabolic alterations such as weight gain, increased food intake, decreased energy expenditure, adiposity, liver lipid accumulation, systemic inflammation and insulin resistance. Although no significant change in TRPM8 mRNA expression was found in the hypothalamus, however, some of the protective effects of menthol were absent in presence of AMTB indicating possible involvement of TRPM8 channels. CONCLUSION Our results suggest possible therapeutic implications of menthol in the management of antipsychotic-induced weight gain and other metabolic alterations.
Collapse
Affiliation(s)
- Rupinder Kaur Sodhi
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh, India
| | - Hemant Kumar
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh, India
| | - Raghunath Singh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Kanthi Kiran Kondepudi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, Sahibzada Ajit Singh Nagar (SAS Nagar), Punjab, India
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, Sahibzada Ajit Singh Nagar (SAS Nagar), Punjab, India.
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Sector 14, Chandigarh, India.
| |
Collapse
|
2
|
Sepulveda DE, Vrana KE, Kellogg JJ, Bisanz JE, Desai D, Graziane NM, Raup-Konsavage WM. The Potential of Cannabichromene (CBC) as a Therapeutic Agent. J Pharmacol Exp Ther 2024; 391:206-213. [PMID: 38777605 PMCID: PMC11493452 DOI: 10.1124/jpet.124.002166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
There is a growing interest in the use of medicinal plants to treat a variety of diseases, and one of the most commonly used medicinal plants globally is Cannabis sativa The two most abundant cannabinoids (Δ9-tetrahydrocannabinol and cannabidiol) have been governmentally approved to treat selected medical conditions; however, the plant produces over 100 cannabinoids, including cannabichromene (CBC). Although the cannabinoids share a common precursor molecule, cannabigerol, they are structurally and pharmacologically unique. These differences may engender differing therapeutic potentials. In this review, we will examine what is currently known about CBC with regards to pharmacodynamics, pharmacokinetics, and receptor profile. We will also discuss the therapeutic areas that have been examined for this cannabinoid, notably antinociceptive, antibacterial, and anti-seizure activities. Finally, we will discuss areas where new research is needed and potential novel medicinal applications for CBC. SIGNIFICANCE STATEMENT: Cannabichromene (CBC) has been suggested to have disparate therapeutic benefits such as anti-inflammatory, anticonvulsant, antibacterial, and antinociceptive effects. Most of the focus on the medical benefits of cannabinoids has been focused on Δ9-tetrahydrocannabinol and cannabidiol. The preliminary studies on CBC indicate that this phytocannabinoid may have unique therapeutic potential that warrants further investigation. Following easier access to hemp, CBC products are commercially available over-the-counter and are being widely utilized with little or no evidence of their safety or efficacy.
Collapse
Affiliation(s)
- Diana E Sepulveda
- Departments of Pharmacology (D.E.S., K.E.V., D.D., N.M.G., W.M.R.-K.) and Anesthesiology and Perioperative Medicine (D.E.S., N.M.G.), and Penn State Center for Cannabis & Natural Product Pharmaceutics (D.E.S., K.E.V., J.J.K., J.E.B., D.D., N.M.G., W.M.R.-K.), Penn State University College of Medicine, Hershey, Pennsylvania; and Departments of Veterinary and Biomedical Sciences (J.J.K.) and Biochemistry and Molecular Biology (J.E.B.), Pennsylvania State University, University Park, State College, Pennsylvania
| | - Kent E Vrana
- Departments of Pharmacology (D.E.S., K.E.V., D.D., N.M.G., W.M.R.-K.) and Anesthesiology and Perioperative Medicine (D.E.S., N.M.G.), and Penn State Center for Cannabis & Natural Product Pharmaceutics (D.E.S., K.E.V., J.J.K., J.E.B., D.D., N.M.G., W.M.R.-K.), Penn State University College of Medicine, Hershey, Pennsylvania; and Departments of Veterinary and Biomedical Sciences (J.J.K.) and Biochemistry and Molecular Biology (J.E.B.), Pennsylvania State University, University Park, State College, Pennsylvania
| | - Joshua J Kellogg
- Departments of Pharmacology (D.E.S., K.E.V., D.D., N.M.G., W.M.R.-K.) and Anesthesiology and Perioperative Medicine (D.E.S., N.M.G.), and Penn State Center for Cannabis & Natural Product Pharmaceutics (D.E.S., K.E.V., J.J.K., J.E.B., D.D., N.M.G., W.M.R.-K.), Penn State University College of Medicine, Hershey, Pennsylvania; and Departments of Veterinary and Biomedical Sciences (J.J.K.) and Biochemistry and Molecular Biology (J.E.B.), Pennsylvania State University, University Park, State College, Pennsylvania
| | - Jordan E Bisanz
- Departments of Pharmacology (D.E.S., K.E.V., D.D., N.M.G., W.M.R.-K.) and Anesthesiology and Perioperative Medicine (D.E.S., N.M.G.), and Penn State Center for Cannabis & Natural Product Pharmaceutics (D.E.S., K.E.V., J.J.K., J.E.B., D.D., N.M.G., W.M.R.-K.), Penn State University College of Medicine, Hershey, Pennsylvania; and Departments of Veterinary and Biomedical Sciences (J.J.K.) and Biochemistry and Molecular Biology (J.E.B.), Pennsylvania State University, University Park, State College, Pennsylvania
| | - Dhimant Desai
- Departments of Pharmacology (D.E.S., K.E.V., D.D., N.M.G., W.M.R.-K.) and Anesthesiology and Perioperative Medicine (D.E.S., N.M.G.), and Penn State Center for Cannabis & Natural Product Pharmaceutics (D.E.S., K.E.V., J.J.K., J.E.B., D.D., N.M.G., W.M.R.-K.), Penn State University College of Medicine, Hershey, Pennsylvania; and Departments of Veterinary and Biomedical Sciences (J.J.K.) and Biochemistry and Molecular Biology (J.E.B.), Pennsylvania State University, University Park, State College, Pennsylvania
| | - Nicholas M Graziane
- Departments of Pharmacology (D.E.S., K.E.V., D.D., N.M.G., W.M.R.-K.) and Anesthesiology and Perioperative Medicine (D.E.S., N.M.G.), and Penn State Center for Cannabis & Natural Product Pharmaceutics (D.E.S., K.E.V., J.J.K., J.E.B., D.D., N.M.G., W.M.R.-K.), Penn State University College of Medicine, Hershey, Pennsylvania; and Departments of Veterinary and Biomedical Sciences (J.J.K.) and Biochemistry and Molecular Biology (J.E.B.), Pennsylvania State University, University Park, State College, Pennsylvania
| | - Wesley M Raup-Konsavage
- Departments of Pharmacology (D.E.S., K.E.V., D.D., N.M.G., W.M.R.-K.) and Anesthesiology and Perioperative Medicine (D.E.S., N.M.G.), and Penn State Center for Cannabis & Natural Product Pharmaceutics (D.E.S., K.E.V., J.J.K., J.E.B., D.D., N.M.G., W.M.R.-K.), Penn State University College of Medicine, Hershey, Pennsylvania; and Departments of Veterinary and Biomedical Sciences (J.J.K.) and Biochemistry and Molecular Biology (J.E.B.), Pennsylvania State University, University Park, State College, Pennsylvania
| |
Collapse
|
3
|
Lewis CM, Griffith TN. Ion channels of cold transduction and transmission. J Gen Physiol 2024; 156:e202313529. [PMID: 39051992 PMCID: PMC11273221 DOI: 10.1085/jgp.202313529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/04/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Thermosensation requires the activation of a unique collection of ion channels and receptors that work in concert to transmit thermal information. It is widely accepted that transient receptor potential melastatin 8 (TRPM8) activation is required for normal cold sensing; however, recent studies have illuminated major roles for other ion channels in this important somatic sensation. In addition to TRPM8, other TRP channels have been reported to contribute to cold transduction mechanisms in diverse sensory neuron populations, with both leak- and voltage-gated channels being identified for their role in the transmission of cold signals. Whether the same channels that contribute to physiological cold sensing also mediate noxious cold signaling remains unclear; however, recent work has found a conserved role for the kainite receptor, GluK2, in noxious cold sensing across species. Additionally, cold-sensing neurons likely engage in functional crosstalk with nociceptors to give rise to cold pain. This Review will provide an update on our understanding of the relationship between various ion channels in the transduction and transmission of cold and highlight areas where further investigation is required.
Collapse
Affiliation(s)
- Cheyanne M Lewis
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Theanne N Griffith
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
4
|
Dangi A, Sharma SS. Pharmacological agents targeting transient receptor potential (TRP) channels in neuropathic pain: Preclinical and clinical status. Eur J Pharmacol 2024; 980:176845. [PMID: 39067564 DOI: 10.1016/j.ejphar.2024.176845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Neuropathic pain generally affects 7-10% population worldwide and an estimated ∼1 in every 20 individuals in western countries suffer and burden to society. The most limiting factor with existing therapies includes dose escalation issues, off-target side effects and poor translation of randomized trials into clinical practice. Neuropathic pain is a broad term that comprises direct injury/damage to the central and/or peripheral nervous system, leads to maladaptive changes in neuronal as well as in non-neuronal cells, which further contributes to the spontaneous pain, sensory and motor deficit along with altered sensitivity towards the noxious as well as non-noxious stimulus. Transient receptor potential (TRP) channels are polymodal, non-specific cation channels that operate as biosensors to various mechanical and chemical stimuli, including hyperosmolarity, shear stress, heat, mechanical stretch, extracellular ATP, and other products of inflammation. Modulation of these channels leads to various physiological and pathophysiological manifestations at molecular and cellular levels, leading to diseases including neuropathic pain. There are several molecules targeting TRP channels for neuropathic pain in pre-clinical studies, clinical trials and in the market. This review highlights the critical involvement of various pharmacological modulators for TRP channels targeting neuropathic pain and their possible outcomes to harness the therapeutic potential of TRP channels.
Collapse
Affiliation(s)
- Ashish Dangi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India.
| |
Collapse
|
5
|
Sharma V, Sharma P, Singh TG. Therapeutic potential of transient receptor potential (TRP) channels in psychiatric disorders. J Neural Transm (Vienna) 2024; 131:1025-1037. [PMID: 39007920 DOI: 10.1007/s00702-024-02803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Psychiatric disorders such as Bipolar disorder, Anxiety, Major depressive disorder, Schizophrenia, Attention-deficit/hyperactivity disorder, as well as neurological disorders such as Migraine, are linked by the evidence of altered calcium homeostasis. The disturbance of intra-cellular calcium homeostasis disrupts the activity of numerous ion channels including transient receptor potential (TRP) channels. TRP channel families comprise non-selective calcium-permeable channels that have been implicated in variety of physiological processes in the brain, as well as in the pathogenesis of psychiatric disorders. Through a comprehensive review of current research and experimentation, this investigation elucidates the role of TRP channels in psychiatric disorders. Furthermore, this review discusses about the exploration of epigenetics and TRP channels in psychiatric disorders.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
6
|
Weise S, Hanslik P, Mignot C, Glushkov E, Bertsch A, Dubreuil R, Bensafi M, Fuessel S, Hummel T. Hot topic: Mapping of the human intranasal mucosal thermal sensitivity: A clinical study on thermal threshold and trigeminal receptors. PLoS One 2024; 19:e0304874. [PMID: 39106272 DOI: 10.1371/journal.pone.0304874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 05/20/2024] [Indexed: 08/09/2024] Open
Abstract
INTRODUCTION The olfactory and trigeminal system are closely interlinked. Existing literature has primarily focused on characterizing trigeminal stimulation through mechanical and chemical stimulation, neglecting thermal stimulation thus far. The present study aimed to characterize the intranasal sensitivity to heat and the expression of trigeminal receptors (transient receptor potential channels, TRP). METHODS A total of 20 healthy participants (aged 21-27 years, 11 women) were screened for olfactory function and trigeminal sensitivity using several tests. Under endoscopic control, a thermal stimulator was placed in 7 intranasal locations: anterior septum, lateral vestibulum, interior nose tip, lower turbinate, middle septum, middle turbinate, and olfactory cleft to determine the thermal threshold. Nasal swabs were obtained in 3 different locations (anterior septum, middle turbinate, olfactory cleft) to analyze the expression of trigeminal receptors TRP: TRPV1, TRPV3, TRPA1, TRPM8. RESULTS The thermal threshold differed between locations (p = 0.018), with a trend for a higher threshold at the anterior septum (p = 0.092). There were no differences in quantitative receptor expression (p = 0.46) at the different sites. The highest overall receptor RNA expression was detected for TRPV1 over all sites (p<0.001). The expression of TRPV3 was highest at the anterior septum compared to the middle turbinate or the olfactory cleft. The thermal sensitivity correlated with olfactory sensitivity and results from tests were related to trigeminal function like intensity ratings of ammonium, a questionnaire regarding trigeminal function, nasal patency, and CO2 thresholds. However, no correlation was found between receptor expression and psychophysical measures of trigeminal function. DISCUSSION This study provided the first insights about intranasal thermal sensitivity and suggested the presence of topographical differences in thermal thresholds. There was no correlation between thermal sensitivity and trigeminal mRNA receptor expression. However, thermal sensitivity was found to be associated with psychophysical measures of trigeminal and olfactory function.
Collapse
Affiliation(s)
- Susanne Weise
- Smell & Taste Clinic, Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Pauline Hanslik
- Smell & Taste Clinic, Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Coralie Mignot
- Smell & Taste Clinic, Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Evgenii Glushkov
- Microsystem Laboratory 4 (LMIS4), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Arnaud Bertsch
- Microsystem Laboratory 4 (LMIS4), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Moustafa Bensafi
- Lyon Neuroscience Research Center, CNRS UMR5292-INSERM U1028-University Claude Bernard Lyon 1, Bron, France
| | - Susanne Fuessel
- Department of Urology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Shikha D, Chang YT, Goswami C. TRPM8 affects relative "cooling and heating" of subcellular organelles in microglia in a context-dependent manner. Int J Biochem Cell Biol 2024; 173:106615. [PMID: 38908471 DOI: 10.1016/j.biocel.2024.106615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Thermoregulation and thermal homeostasis at the cellular and subcellular organelle level are poorly understood events. In this work, we used BV2, a microglial cell line, and a series of thermo-sensitive subcellular organelle-specific probes to analyze the relative changes in the spatio-temporal temperatures of different subcellular organelles, both qualitatively and quantitatively. These methodologies allowed us to understand the thermal relationship of different subcellular organelles also. We modulated BV2 cells by pharmacological application of activator or inhibitor of TRPM8 ion channel (a cold-sensitive ion channel) and/or by treating the cells with LPS, a molecule that induces pathogen-associated molecular patterns (PAMPs) signaling. We demonstrate that the temperatures of individual organelles remain variable within a physiological range, yet vary in different conditions. We also demonstrate that treating BV2 cells by TRPM8 modulators and/or LPS alters the organelle temperatures in a specific and context-dependent manner. We show that TRPM8 modulation and/or LPS can alter the relationship of mitochondrial membrane potential to mitochondrial temperature. Our work suggests that mitochondrial temperature positively influences ER temperature and negatively influences Golgi temperature. Golgi temperature positively influences membrane temperature. This understanding of thermal relationships may be crucial for dissecting cellular structures, function, and stress signaling and may be relevant for different diseases.
Collapse
Affiliation(s)
- Deep Shikha
- School of Biological Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Khordha, Jatni, Odisha 752050, India
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Khordha, Jatni, Odisha 752050, India.
| |
Collapse
|
8
|
Bradshaw JL, Wilson EN, Mabry S, Shrestha P, Gardner JJ, Cunningham RL. Impact of sex and hypoxia on brain region-specific expression of membrane androgen receptor AR45 in rats. Front Endocrinol (Lausanne) 2024; 15:1420144. [PMID: 39092288 PMCID: PMC11291194 DOI: 10.3389/fendo.2024.1420144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Background Sex differences in oxidative stress-associated cognitive decline are influenced by sex hormone levels. Notably, oxidative stress-associated neuronal cell death can be exacerbated through testosterone signaling via membrane androgen receptor AR45, which is complexed with G protein Gαq within plasma membrane-associated lipid rafts. The objective of this study was to elucidate the impact of sex on the expression of AR45 and Gαq in brain regions associated with cognitive function, specifically hippocampus subregions and entorhinal cortex. Additionally, we investigated whether chronic intermittent hypoxia (CIH), an oxidative stressor with sex-specific effects, would modulate AR45 and Gαq expression in these brain regions. Methods Adult male and female Sprague-Dawley rats were exposed to CIH or normoxia (room air) during their sleep phase for 14 days. We quantified AR45 and Gαq protein expression in various cognition-associated brain regions [dorsal hippocampal CA1, CA3, dentate gyrus (DG), and entorhinal cortex (ETC)] via western blotting. For comparisons, AR45 and Gαq protein expression were also assessed in brain regions outside the hippocampal-ETC circuit [thalamus (TH) and striatum (STR)]. Results The highest AR45 levels were expressed in the hippocampal CA1 and DG while the lowest expression was observed in the extrahippocampal STR. The highest Gαq levels were expressed in the hippocampal-associated ETC while the lowest expression was observed in the extrahippocampal TH. Females expressed higher levels of AR45 in the hippocampal DG compared to males, while no sex differences in Gαq expression were observed regardless of brain region assessed. Moreover, there was no effect of CIH on AR45 or Gαq expression in any of the brain regions examined. AR45 expression was positively correlated with Gαq expression in the CA1, DG, ETC, TH, and STR in a sex-dependent manner. Conclusion Our findings reveal enrichment of AR45 and Gαq protein expression within the hippocampal-ETC circuit, which is vulnerable to oxidative stress and neurodegeneration during cognitive decline. Nonetheless, CIH does not modulate the expression of AR45 or Gαq. Importantly, there are sex differences in AR45 expression and its association with Gαq expression in various brain regions, which may underlie sex-specific differences in cognitive and motor function-associated declines with aging.
Collapse
Affiliation(s)
- Jessica L. Bradshaw
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - E. Nicole Wilson
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Steve Mabry
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Pawan Shrestha
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Jennifer J. Gardner
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rebecca L. Cunningham
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
9
|
Kozyreva TV, Orlov IV, Boyarskaya AR, Voronova IP. Hypothalamic TRPM8 and TRPA1 ion channel genes in the regulation of temperature homeostasis at water balance changes. Neurosci Lett 2024; 828:137763. [PMID: 38574849 DOI: 10.1016/j.neulet.2024.137763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
The role of the hypothalamic cold-sensitive ion channels - transient receptor potential melastatin 8 (TRPM8) and transient receptor potential ankyrin 1 (TRPA1) in homeostatic systems of thermoregulation and water-salt balance - is not clear. The interaction of homeostatic systems of thermoregulation and water-salt balance without additional temperature load did not receive due attention, too. On the models of water-balance disturbance, we tried to elucidate some aspect of these problems. Body temperature (Tbody), O2 consumption, CO2 excretion, electrical muscle activity (EMA), temperature of tail skin (Ttail), plasma osmolality, as well as gene expression of hypothalamic TRPM8 and TRPA1 have been registered in rats of 3 groups: control; water-deprived (3 days under dry-eating); and hyperhydrated (6 days without dry food, drinking liquid 4 % sucrose). No relationship was observed between plasma osmolality and gene expression of Trpm8 and Trpa1. In water-deprived rats, the constriction of skin vessels, increased fat metabolism by 10 % and increased EMA by 48 % allowed the animals to maintain Tbody unchanged. The hyperhydrated rats did not develop sufficient mechanisms, and their Tbody decreased by 0.8 °C. The development of reactions was correlated with the expression of genes of thermosensitive ion channels in the anterior hypothalamus. Ttail had a direct correlation with the expression of the Trpm8 gene, whereas EMA directly correlated with the expression of the Trpa1 gene in water-deprived group. The obtained data attract attention from the point of view of management and correction of physiological functions by modulating the ion channel gene expression.
Collapse
Affiliation(s)
- T V Kozyreva
- Institute of Neuroscience and Medicine, Timakov str. 4, Novosibirsk 630117, Russia; Novosibirsk State University, Pirogov str. 2, Novosibirsk 630090, Russia.
| | - I V Orlov
- Institute of Neuroscience and Medicine, Timakov str. 4, Novosibirsk 630117, Russia; Novosibirsk State University, Pirogov str. 2, Novosibirsk 630090, Russia.
| | - A R Boyarskaya
- Institute of Neuroscience and Medicine, Timakov str. 4, Novosibirsk 630117, Russia.
| | - I P Voronova
- Institute of Neuroscience and Medicine, Timakov str. 4, Novosibirsk 630117, Russia.
| |
Collapse
|
10
|
Selescu T, Bivoleanu RA, Iodi Carstens M, Manolache A, Caragea VM, Hutanu DE, Meerupally R, Wei ET, Carstens E, Zimmermann K, Babes A. TRPM8-dependent shaking in mammals and birds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573364. [PMID: 38234797 PMCID: PMC10793462 DOI: 10.1101/2023.12.27.573364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Removing water from wet fur or feathers is important for thermoregulation in warm-blooded animals. The "wet dog shake" (WDS) behavior has been largely characterized in mammals but to a much lesser extent in birds. Although it is known that TRPM8 is the main molecular transducer of low temperature in mammals, it is not clear if wetness-induced shaking in furred and feathered animals is dependent on TRPM8. Here, we show that a novel TRPM8 agonist induces WDS in rodents and, importantly, in birds, similar to the shaking behavior evoked by water-spraying. Furthermore, the WDS onset depends on TRPM8, as we show in water-sprayed mice. Overall, our results provide multiple evidence for a TRPM8 dependence of WDS behaviors in all tested species. These suggest that a convergent evolution selected similar shaking behaviors to expel water from fur and feathers, with TRPM8 being involved in wetness sensing in both mammals and birds.
Collapse
|
11
|
Tsuneoka Y, Nishikawa T, Furube E, Okamoto K, Yoshimura R, Funato H, Miyata S. Characterization of TRPM8-expressing neurons in the adult mouse hypothalamus. Neurosci Lett 2023; 814:137463. [PMID: 37640249 DOI: 10.1016/j.neulet.2023.137463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a menthol receptor that detects cold temperatures and influences behaviors and autonomic functions under cold stimuli. Despite the well-documented peripheral roles of TRPM8, the evaluation of its central functions is still of great interest. The present study clarifies the nature of a subpopulation of TRPM8-expressing neurons in the adult mice. Combined in situ hybridization and immunohistochemistry revealed that TRPM8-expressing neurons are exclusively positive for glutamate decarboxylase 67 mRNA signals in the lateral septal nucleus (LS) and preoptic area (POA) but produced no positive signal for vesicular glutamate transporter 2. Double labeling immunohistochemistry showed the colocalization of TRPM8 with vesicular GABA transporter at axonal terminals. Immunohistochemistry further revealed that TRPM8-expressing neurons frequently expressed calbindin and calretinin in the LS, but not in the POA. TRPM8-expressing neurons in the POA expressed a prostaglandin E2 receptor, EP3, and neurotensin, whereas expression in the LS was minimal. These results indicate that hypothalamic TRPM8-expressing neurons are inhibitory GABAergic, while the expression profile of calcium-binding proteins, neurotensin, and EP3 differs between the POA and LS.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Taichi Nishikawa
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eriko Furube
- Department of Anatomy, Asahikawa Medical University School of Medicine, Midorigaoka, Asahikawa, Hokkaido 078-8510, Japan
| | - Kaho Okamoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryoichi Yoshimura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan; International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki 305-8575, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
12
|
Moriyama H, Nomura S, Imoto H, Oka F, Maruta Y, Mori N, Fujii N, Suzuki M, Ishihara H. Suppressive effects of a transient receptor potential melastatin 8 (TRPM8) agonist on hyperthermia-induced febrile seizures in infant mice. Front Pharmacol 2023; 14:1138673. [PMID: 36969879 PMCID: PMC10033885 DOI: 10.3389/fphar.2023.1138673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Background: Febrile seizures (FSs) are the most frequent type of seizures in infancy and childhood. Epileptiform discharges (EDs) on electroencephalogram at the time of first FS recurrence can increase the risk of epilepsy development. Therefore, inhibition of EDs is important. Recently, WS-3, a transient receptor potential melastatin 8 (TRPM8) agonist, reportedly suppressed penicillin G-induced cortical-focal EDs. However, the effects of TRPM8 agonists on FSs remain unknown. In this study, we aimed to clarify the effects of the TRPM8 agonist, and the absence of TRPM8 channels, on hyperthermia-induced FS by analyzing the fast ripple band.Methods: Hyperthermia (43°C for 30 min) induced by a heating pad caused FSs in postnatal day 7 wild-type (WT) and TRPM8 knockout (TRPM8KO) mice. FSs were defined as EDs occurring during behavioral seizures involving hindlimb clonus and loss of the righting reflex. Mice were injected with 1% dimethyl sulfoxide or 1 mM WS-3 20 min before the onset of hyperthermia, and electroencephalograms; movies; and rectal, brain and heating pad temperatures were recorded.Results: In wild-type mice, WS-3 reduced the fast ripple amplitude in the first FS without changing rectal and brain temperature thresholds. In contrast, the anti-FS effect induced by the TRPM8 agonist was not observed in TRPM8KO mice and, compared with wild-type mice, TRPM8 deficiency lowered the rectal and brain temperature thresholds for FSs, exacerbated the fast ripple amplitude, and prolonged the duration of the initial FS induced by hyperthermia.Conclusion: Our findings suggest that TRPM8 agonists can be used to treat hyperthermia-induced FSs.
Collapse
Affiliation(s)
- Hiroshi Moriyama
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
- *Correspondence: Hiroshi Moriyama,
| | - Sadahiro Nomura
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
- Epilepsy Center, Yamaguchi University Hospital, Ube, Yamaguchi, Japan
| | - Hirochika Imoto
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
- Epilepsy Center, Yamaguchi University Hospital, Ube, Yamaguchi, Japan
| | - Fumiaki Oka
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Yuichi Maruta
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Naomasa Mori
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Natsumi Fujii
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Michiyasu Suzuki
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Hideyuki Ishihara
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| |
Collapse
|
13
|
Liskiewicz D, Zhang Q, Barthem C, Jastroch M, Liskiewicz A, Khajavi N, Grandl G, Coupland C, Kleinert M, Garcia-Caceres C, Novikoff A, Maity G, Boehm U, Tschöp M, Müller T. Neuronal loss of TRPM8 leads to obesity and glucose intolerance in male mice. Mol Metab 2023; 72:101714. [PMID: 36966947 PMCID: PMC10106965 DOI: 10.1016/j.molmet.2023.101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVE Mice with global deletion of the transient receptor potential channel melastatin family member 8 (TRPM8) are obese, and treatment of diet-induced obese (DIO) mice with TRPM8 agonists decrease body weight. Whether TRPM8 signaling regulates energy metabolism via central or peripheral effects is unknow. Here we assessed the metabolic phenotype of mice with either Nestin Cre-mediated neuronal loss of TRPM8, or with deletion of TRPM8 in Advillin Cre positive sensory neurons of the peripheral nervous system (PNS). METHODS Nestin Cre- and Advillin Cre-Trpm8 knock-out (KO) mice were metabolically phenotyped under chronic exposure to either chow or high-fat diet (HFD), followed by assessment of energy and glucose metabolism. RESULTS At room temperature, chow-fed neuronal Trpm8 KO are obese and show decreased energy expenditure when acutely treated with the TRPM8 selective agonist icilin. But body weight of neuronal Trpm8 KO mice is indistinguishable from wildtype controls at thermoneutrality, or when mice are chronically exposed to HFD-feeding. In contrast to previous studies, we show that the TRPM8 agonist icilin has no direct effect on brown adipocytes, but that icilin stimulates energy expenditure, at least in part, via neuronal TRPM8 signaling. We further show that lack of TRPM8 in sensory neurons of the PNS does not lead to a metabolically relevant phenotype. CONCLUSIONS Our data indicate that obesity in TRPM8-deficient mice is centrally mediated and likely originates from alterations in energy expenditure and/or thermal conductance, but does not depend on TRPM8 signaling in brown adipocytes or sensory neurons of the PVN.
Collapse
|
14
|
Mishra SK, Gaddameedhi S. A new role of TRPM8 in circadian rhythm and molecular clock. Acta Physiol (Oxf) 2023; 237:e13934. [PMID: 36636860 DOI: 10.1111/apha.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Affiliation(s)
- Santosh K Mishra
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, North Carolina, Raleigh, USA
| | - Shobhan Gaddameedhi
- Department of Biological Sciences and Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
15
|
Reimúndez A, Fernández-Peña C, Ordás P, Hernández-Ortego P, Gallego R, Morenilla-Palao C, Navarro J, Martín-Cora F, Pardo-Vázquez JL, Schwarz LA, Arce V, Viana F, Señarís R. The cold-sensing ion channel TRPM8 regulates central and peripheral clockwork and the circadian oscillations of body temperature. Acta Physiol (Oxf) 2023; 237:e13896. [PMID: 36251565 DOI: 10.1111/apha.13896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
AIM Physiological functions in mammals show circadian oscillations, synchronized by daily cycles of light and temperature. Central and peripheral clocks participate in this regulation. Since the ion channel TRPM8 is a critical cold sensor, we investigated its role in circadian function. METHODS We used TRPM8 reporter mouse lines and TRPM8-deficient mice. mRNA levels were determined by in situ hybridization or RT-qPCR and protein levels by immunofluorescence. A telemetry system was used to measure core body temperature (Tc). RESULTS TRPM8 is expressed in the retina, specifically in cholinergic amacrine interneurons and in a subset of melanopsin-positive ganglion cells which project to the central pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus. TRPM8-positive fibres were also found innervating choroid and ciliary body vasculature, with a putative function in intraocular temperature, as shown in TRPM8-deficient mice. Interestingly, Trpm8-/- animals displayed increased expression of the clock gene Per2 and vasopressin (AVP) in the SCN, suggesting a regulatory role of TRPM8 on the central oscillator. Since SCN AVP neurons control body temperature, we studied Tc in driven and free-running conditions. TRPM8-deficiency increased the amplitude of Tc oscillations and, under dim constant light, induced a greater phase delay and instability of Tc rhythmicity. Finally, TRPM8-positive fibres innervate peripheral organs, like liver and white adipose tissue. Notably, Trpm8-/- mice displayed a dysregulated expression of Per2 mRNA in these metabolic tissues. CONCLUSION Our findings support a function of TRPM8 as a temperature sensor involved in the regulation of central and peripheral clocks and the circadian control of Tc.
Collapse
Affiliation(s)
- Alfonso Reimúndez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos Fernández-Peña
- Institute of Neuroscience. UMH-CSIC, Alicante, Spain.,St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | - Rosalía Gallego
- Department of Morphological Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Juan Navarro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Martín-Cora
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Luís Pardo-Vázquez
- Department Physiotherapy, Medicine and Biomedical Sciences, CICA, University of A Coruña, A Coruña, Spain
| | | | - Victor Arce
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Félix Viana
- Institute of Neuroscience. UMH-CSIC, Alicante, Spain
| | - Rosa Señarís
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
16
|
Evtushenko AA, Voronova IP, Kozyreva TV. Effect of Long-Term Adaptation to Cold and Short-Term Cooling on the Expression of the TRPM2 Ion Channel Gene in the Hypothalamus of Rats. Curr Issues Mol Biol 2023; 45:1002-1011. [PMID: 36826010 PMCID: PMC9955288 DOI: 10.3390/cimb45020065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The present study is aimed to elucidate the possible involvement of the thermosensitive TRPM2 ion channel in changing of the temperature sensitivity of the hypothalamus after different cold exposures-long-term adaptation to cold and short-term cooling. Quantitative RT-PCR was used to study the expression of the gene of thermosensitive TRPM2 ion channel in the hypothalamus in the groups of control (kept for 5 weeks at +20 to +22 °C) and cold-adapted (5 weeks at +4 to +6 °C) rats, as well as in the groups of animals which were subjected to acute cooling (rapid or slow) with subsequent restoration of body temperature to the initial level. It has been shown that after long-term adaptation to cold, the decrease in the Trpm2 gene expression was observed in the hypothalamus, while a short-term cooling does not affect the expression of the gene of this ion channel. Thus, long-term adaptation to cold results in the decrease in the activity not only of the TRPV3 ion channel gene, as shown earlier, but also of the Trpm2 gene in the hypothalamus. The overlapping temperature ranges of the functioning of these ion channels and their unidirectional changes during the adaptation of the homoeothermic organism to cold suggest their functional interaction. The decrease in the Trpm2 gene expression may indicate the participation of this ion channel in adaptive changes in hypothalamic thermosensitivity, but only as a result of long-term cold exposure and not of a short-term cooling. These processes occurring at the genomic level are one of the molecular mechanisms of the adaptive changes.
Collapse
|
17
|
Progress in the Structural Basis of thermoTRP Channel Polymodal Gating. Int J Mol Sci 2023; 24:ijms24010743. [PMID: 36614186 PMCID: PMC9821180 DOI: 10.3390/ijms24010743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The thermosensory transient receptor potential (thermoTRP) family of ion channels is constituted by several nonselective cation channels that are activated by physical and chemical stimuli functioning as paradigmatic polymodal receptors. Gating of these ion channels is achieved through changes in temperature, osmolarity, voltage, pH, pressure, and by natural or synthetic chemical compounds that directly bind to these proteins to regulate their activity. Given that thermoTRP channels integrate diverse physical and chemical stimuli, a thorough understanding of the molecular mechanisms underlying polymodal gating has been pursued, including the interplay between stimuli and differences between family members. Despite its complexity, recent advances in cryo-electron microscopy techniques are facilitating this endeavor by providing high-resolution structures of these channels in different conformational states induced by ligand binding or temperature that, along with structure-function and molecular dynamics, are starting to shed light on the underlying allosteric gating mechanisms. Because dysfunctional thermoTRP channels play a pivotal role in human diseases such as chronic pain, unveiling the intricacies of allosteric channel gating should facilitate the development of novel drug-based resolving therapies for these disorders.
Collapse
|
18
|
Fernández-Peña C, Reimúndez A, Viana F, Arce VM, Señarís R. Sex differences in thermoregulation in mammals: Implications for energy homeostasis. Front Endocrinol (Lausanne) 2023; 14:1093376. [PMID: 36967809 PMCID: PMC10030879 DOI: 10.3389/fendo.2023.1093376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/06/2023] [Indexed: 03/10/2023] Open
Abstract
Thermal homeostasis is a fundamental process in mammals, which allows the maintenance of a constant internal body temperature to ensure an efficient function of cells despite changes in ambient temperature. Increasing evidence has revealed the great impact of thermoregulation on energy homeostasis. Homeothermy requires a fine regulation of food intake, heat production, conservation and dissipation and energy expenditure. A great interest on this field of research has re-emerged following the discovery of thermogenic brown adipose tissue and browning of white fat in adult humans, with a potential clinical relevance on obesity and metabolic comorbidities. However, most of our knowledge comes from male animal models or men, which introduces unwanted biases on the findings. In this review, we discuss how differences in sex-dependent characteristics (anthropometry, body composition, hormonal regulation, and other sexual factors) influence numerous aspects of thermal regulation, which impact on energy homeostasis. Individuals of both sexes should be used in the experimental paradigms, considering the ovarian cycles and sexual hormonal regulation as influential factors in these studies. Only by collecting data in both sexes on molecular, functional, and clinical aspects, we will be able to establish in a rigorous way the real impact of thermoregulation on energy homeostasis, opening new avenues in the understanding and treatment of obesity and metabolic associated diseases.
Collapse
Affiliation(s)
| | - Alfonso Reimúndez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Félix Viana
- Institute of Neuroscience, University Miguel Hernández (UMH)-CSIC, Alicante, Spain
| | - Victor M. Arce
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Rosa Señarís, ; Victor M. Arce,
| | - Rosa Señarís
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Rosa Señarís, ; Victor M. Arce,
| |
Collapse
|
19
|
Spekker E, Körtési T, Vécsei L. TRP Channels: Recent Development in Translational Research and Potential Therapeutic Targets in Migraine. Int J Mol Sci 2022; 24:ijms24010700. [PMID: 36614146 PMCID: PMC9820749 DOI: 10.3390/ijms24010700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Migraine is a chronic neurological disorder that affects approximately 12% of the population. The cause of migraine headaches is not yet known, however, when the trigeminal system is activated, neuropeptides such as calcitonin gene-related peptide (CGRP) and substance P (SP) are released, which cause neurogenic inflammation and sensitization. Advances in the understanding of migraine pathophysiology have identified new potential pharmacological targets. In recent years, transient receptor potential (TRP) channels have been the focus of attention in the pathophysiology of various pain disorders, including primary headaches. Genetic and pharmacological data suggest the role of TRP channels in pain sensation and the activation and sensitization of dural afferents. In addition, TRP channels are widely expressed in the trigeminal system and brain regions which are associated with the pathophysiology of migraine and furthermore, co-localize several neuropeptides that are implicated in the development of migraine attacks. Moreover, there are several migraine trigger agents known to activate TRP channels. Based on these, TRP channels have an essential role in migraine pain and associated symptoms, such as hyperalgesia and allodynia. In this review, we discuss the role of the certain TRP channels in migraine pathophysiology and their therapeutic applicability.
Collapse
Affiliation(s)
- Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Tamás Körtési
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, H-6726 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545351; Fax: +36-62-545597
| |
Collapse
|
20
|
Hernández-Ortego P, Torres-Montero R, de la Peña E, Viana F, Fernández-Trillo J. Validation of Six Commercial Antibodies for the Detection of Heterologous and Endogenous TRPM8 Ion Channel Expression. Int J Mol Sci 2022; 23:ijms232416164. [PMID: 36555804 PMCID: PMC9784522 DOI: 10.3390/ijms232416164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
TRPM8 is a non-selective cation channel expressed in primary sensory neurons and other tissues, including the prostate and urothelium. Its participation in different physiological and pathological processes such as thermoregulation, pain, itch, inflammation and cancer has been widely described, making it a promising target for therapeutic approaches. The detection and quantification of TRPM8 seems crucial for advancing the knowledge of the mechanisms underlying its role in these pathophysiological conditions. Antibody-based techniques are commonly used for protein detection and quantification, although their performance with many ion channels, including TRPM8, is suboptimal. Thus, the search for reliable antibodies is of utmost importance. In this study, we characterized the performance of six TRPM8 commercial antibodies in three immunodetection techniques: Western blot, immunocytochemistry and immunohistochemistry. Different outcomes were obtained for the tested antibodies; two of them proved to be successful in detecting TRPM8 in the three approaches while, in the conditions tested, the other four were acceptable only for specific techniques. Considering our results, we offer some insight into the usefulness of these antibodies for the detection of TRPM8 depending on the methodology of choice.
Collapse
|
21
|
Cabañero D, Villalba-Riquelme E, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. ThermoTRP channels in pain sexual dimorphism: new insights for drug intervention. Pharmacol Ther 2022; 240:108297. [PMID: 36202261 DOI: 10.1016/j.pharmthera.2022.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Chronic pain is a major burden for the society and remains more prevalent and severe in females. The presence of chronic pain is linked to persistent alterations in the peripheral and the central nervous system. One of the main types of peripheral pain transducers are the transient receptor potential channels (TRP), also known as thermoTRP channels, which intervene in the perception of hot and cold external stimuli. These channels, and especially TRPV1, TRPA1 and TRPM8, have been subjected to profound investigation because of their role as thermosensors and also because of their implication in acute and chronic pain. Surprisingly, their sensitivity to endogenous signaling has been far less studied. Cumulative evidence suggests that the function of these channels may be differently modulated in males and females, in part through sexual hormones, and this could constitute a significant contributor to the sex differences in chronic pain. Here, we review the exciting advances in thermoTRP pharmacology for males and females in two paradigmatic types of chronic pain with a strong peripheral component: chronic migraine and chemotherapy-induced peripheral neuropathy (CIPN). The possibilities of peripheral druggability offered by these channels and the differential exploitation for men and women represent a development opportunity that will lead to a significant increment of the armamentarium of analgesic medicines for personalized chronic pain treatment.
Collapse
Affiliation(s)
- David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Eva Villalba-Riquelme
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
22
|
Alarcón-Alarcón D, Cabañero D, de Andrés-López J, Nikolaeva-Koleva M, Giorgi S, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. TRPM8 contributes to sex dimorphism by promoting recovery of normal sensitivity in a mouse model of chronic migraine. Nat Commun 2022; 13:6304. [PMID: 36272975 PMCID: PMC9588003 DOI: 10.1038/s41467-022-33835-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/30/2022] [Indexed: 12/25/2022] Open
Abstract
TRPA1 and TRPM8 are transient receptor potential channels expressed in trigeminal neurons that are related to pathophysiology in migraine models. Here we use a mouse model of nitroglycerine-induced chronic migraine that displays a sexually dimorphic phenotype, characterized by mechanical hypersensitivity that develops in males and females, and is persistent up to day 20 in female mice, but disappears by day 18 in male mice. TRPA1 is required for development of hypersensitivity in males and females, whereas TRPM8 contributes to the faster recovery from hypersensitivity in males. TRPM8-mediated antinociception effects required the presence of endogenous testosterone in males. Administration of exogenous testosterone to females and orchidectomized males led to recovery from hypersensitivity. Calcium imaging and electrophysiological recordings in in vitro systems confirmed testosterone activity on murine and human TRPM8, independent of androgen receptor expression. Our findings suggest a protective function of TRPM8 in shortening the time frame of hypersensitivity in a mouse model of migraine.
Collapse
Affiliation(s)
- David Alarcón-Alarcón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.
| | - Jorge de Andrés-López
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Magdalena Nikolaeva-Koleva
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Simona Giorgi
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain.
| |
Collapse
|
23
|
Sun Y, Wang H, Wang W, Lu J, Zhang J, Luo X, Luan L, Wang K, Jia J, Yan J, Qin L. Glutamatergic and GABAergic neurons in the preoptic area of the hypothalamus play key roles in menopausal hot flashes. Front Aging Neurosci 2022; 14:993955. [PMID: 36313017 PMCID: PMC9614233 DOI: 10.3389/fnagi.2022.993955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
During menopause, when estrogen levels are low, abnormalities in the hypothalamic preoptic area (POA) of the thermoregulatory center can cause hot flashes. However, the involved neural population has not been identified. Proteomics showed that under low estrogen, differentially expressed proteins in the hypothalamus were associated with glutamatergic and GABAergic synapses. RNAscope, Western blotting and qRT-PCR indicated that the number of glutamatergic neurons in the POA was decreased, while the number of GABAergic neurons was increased. Chemogenetics showed that the rat body temperature decreased slowly after glutamatergic neurons were activated and increased quickly after glutamatergic neurons were inhibited, while it increased quickly after GABAergic neurons were activated and decreased slowly after GABAergic neurons were inhibited. RNAscope, immunofluorescence, Western blotting and qRT-PCR further showed that glutamate decarboxylase (GAD) 1 expression in the POA was increased, while GAD2 expression in the POA was decreased; that thermosensitive transient receptor potential protein (ThermoTRP) M (TRPM) 2 expression in glutamatergic neurons was decreased, while TRPM8 expression in GABAergic neurons was increased; and that estrogen receptor (ER) α and β expression in the POA was decreased, and ERα and ERβ expressed in both glutamatergic and GABAergic neurons. Estrogen therapy corrected these abnormalities. In addition, CUT&Tag and Western blot after injection of agonists and inhibitors of ERs showed that ERα and ERβ were both transcription factors in glutamatergic and GABAergic synapses. Mechanistically, during menopause, estrogen may regulate the transcription and expression of GADs and ThermoTRPs through ERs, impacting the number and function of glutamatergic and GABAergic neurons, resulting in unbalanced heat dissipation and production in the POA and ultimately triggering hot flashes.
Collapse
Affiliation(s)
- Yanrong Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hanfei Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenjuan Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiali Lu
- Department of Stomatology, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Jinglin Zhang
- Department of Stomatology, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Xiaofeng Luo
- Department of Stomatology, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Liju Luan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ke Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Jia
- Department of Stomatology, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
- Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junhao Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Beijing Key Lab of Magnetic Resonance Imaging Technology, Peking University Third Hospital, Beijing, China
| | - Lihua Qin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
24
|
Matouk AI, El-Daly M, Habib HA, Senousy S, Naguib Abdel Hafez SM, Kasem AW, Almalki WH, Alzahrani A, Alshehri A, Ahmed ASF. Protective effects of menthol against sepsis-induced hepatic injury: Role of mediators of hepatic inflammation, apoptosis, and regeneration. Front Pharmacol 2022; 13:952337. [PMID: 36120368 PMCID: PMC9476320 DOI: 10.3389/fphar.2022.952337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Liver dysfunction in sepsis is a major complication that amplifies multiple organ failure and increases the risk of death. Inflammation and oxidative stress are the main mediators in the pathophysiology of sepsis. Therefore, we investigated the role of menthol, a natural antioxidant, against sepsis-induced liver injury in female Wistar rats. Sepsis was induced by cecal ligation and puncture (CLP). Menthol (100 mg/kg) was given intragastric 2 h after CLP. Blood samples and liver tissues were collected 24 h after surgery. Menthol significantly (p < 0.05) attenuated the sepsis-induced elevation in serum liver enzymes and improved the hepatic histopathological changes. Menthol treatment significantly (p < 0.05) decreased hepatic levels of tumor necrosis factor-alpha, malondialdehyde, total nitrite, and cleaved caspase-3. It restored the hepatic levels of superoxide dismutase and reduced glutathione. Additionally, menthol significantly (p < 0.05) increased hepatic levels of B-cell lymphoma 2 (Bcl-2); an anti-apoptotic factor, and proliferating cell nuclear antigen (PCNA), a biomarker of regeneration and survival. Our results showed the therapeutic potential of menthol against liver injury induced by sepsis.
Collapse
Affiliation(s)
- Asmaa I. Matouk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Heba A. Habib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Shaymaa Senousy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | | | - AlShaimaa W. Kasem
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minya, Egypt
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulaziz Alzahrani
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, AlBaha University, Al Bahah, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, AlBaha University, Al Bahah, Saudi Arabia
| | - Al-Shaimaa F. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
- *Correspondence: Al-Shaimaa F. Ahmed,
| |
Collapse
|
25
|
Petitjean H, Héberlé E, Hilfiger L, Łapieś O, Rodrigue G, Charlet A. TRP channels and monoterpenes: Past and current leads on analgesic properties. Front Mol Neurosci 2022; 15:945450. [PMID: 35966017 PMCID: PMC9373873 DOI: 10.3389/fnmol.2022.945450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The activation of the transient receptor potential (TRP) channels expressed by sensory neurons is essential to the transduction of thermal and mechanical sensory information. In the setting of chronic inflammatory conditions, the activation of the melastatin family member 8 (TRPM8), the TRP vanilloid 1 (TRPV1), and the TRP ankyrin 1 (TRPA1) is correlated with pain hypersensitivity reactions. Monoterpenes, among which pulegone and menthol, a major class of phytocompounds present in essential oils of medicinal plants, are known modulators of those TRP channels activity. In the present review, we correlate the monoterpene content of plants with their historical therapeutic properties. We then describe how monoterpenes exert their anti-inflammatory and antihyperalgesia effects through modulation of TRP channels activity. Finally, we discuss the importance and the potential of characterizing new plant extracts and reassessing studied plant extracts for the development of ethnopharmacology-based innovative treatments for chronic pain. This review suggests that monoterpene solutions, based on composition from traditional healing herbs, offer an interesting avenue for the development of new phytotherapeutic treatments to alleviate chronic inflammatory pain conditions.
Collapse
Affiliation(s)
| | | | - Louis Hilfiger
- Benephyt, Strasbourg, France
- Centre National de la Recherche Scientifique, University of Strasbourg, Institute of Cellular and Integrative Neuroscience, INCI UPR3212, Strasbourg, France
| | - Olga Łapieś
- Centre National de la Recherche Scientifique, University of Strasbourg, Institute of Cellular and Integrative Neuroscience, INCI UPR3212, Strasbourg, France
| | | | - Alexandre Charlet
- Centre National de la Recherche Scientifique, University of Strasbourg, Institute of Cellular and Integrative Neuroscience, INCI UPR3212, Strasbourg, France
| |
Collapse
|
26
|
Kashio M, Tominaga M. TRP channels in thermosensation. Curr Opin Neurobiol 2022; 75:102591. [PMID: 35728275 DOI: 10.1016/j.conb.2022.102591] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022]
Abstract
The ability to sense external temperature is assumed by somatosensory neurons, in which temperature information is converted to neural activity by afferent input to the central nervous system. Somatosensory neurons consist of various populations with specialized gene expression, including thermosensitive transient receptor potential ion channels (thermo-TRPs). Thermo-TRPs are responsible for thermal transduction at the peripheral ends of somatosensory neurons and over a wide range of temperatures. In this review, we focus on several thermo-TRPs expressed in sensory neurons: TRPV1, TRPV4, TRPM2, TRPM3, TRPM8, TRPC5, and TRPA1. TRPV3, TRPV4, and TRPC5 expressed in non-neuronal cells that are also involved in somatosensation are also discussed, whereas TRPM2 and TRPM8 are involved in thermosensation in the brain.
Collapse
Affiliation(s)
- Makiko Kashio
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan; Institute for Environmental and Gender-Specific Medicine, Juntendo University, Chiba, Japan.
| |
Collapse
|
27
|
Kurganov E, Okamoto K, Miyata S. Distribution of TRPM8-expressing trigeminal nerve fibers in the pons and medulla oblongata of the mouse brain. J Chem Neuroanat 2022; 122:102104. [PMID: 35561876 DOI: 10.1016/j.jchemneu.2022.102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
Transient receptor potential melastatin 8 (TRPM8), a cold-mediated ion channel, is well known to be expressed in primary sensory neurons; however, limited information is currently available on the distribution of TRPM8-expressing trigeminal nerve fibers in the brainstem. The present study showed the distribution of TRPM8-expressing fibers in the pons and medulla oblongata of the TRPM8 KO mice engineered by knocking in EGFP at the frame of the start codon of TRPM8. In addition, TRPM8-expressing fibers were also observed in the brachium pontis, middle cerebellar peduncle, the sensory root of the trigeminal nerve, and spinal trigeminal tract (sp5). Furthermore, TRPM8-expressing nerve fibers surrounded the somata of HuC/D-positive neurons in the sp5. Moreover, the distribution of TRPM8-expressing fibers from rostral to caudal was visualized in sagittal sections of the mouse brain. The present results also revealed that a high number of TRPM8-expressing fibers colocalized with CTB-labeled fibers in the sp5 following an injection of CTB into the whisker compared to mice's eye and ear. These results show the distribution pathway of TRPM8-expressing fibers in the pons and medulla oblongata and possible involvement in peripheral signaling from the trigeminal nerve.
Collapse
Affiliation(s)
- Erkin Kurganov
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Kaho Okamoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
28
|
Role of TRPM8 in cold avoidance behaviors and brain activation during innocuous and nocuous cold stimuli. Physiol Behav 2022; 248:113729. [DOI: 10.1016/j.physbeh.2022.113729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
|
29
|
Sauna-like conditions or menthol treatment reduce tau phosphorylation through mild hyperthermia. Neurobiol Aging 2022; 113:118-130. [DOI: 10.1016/j.neurobiolaging.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/02/2022] [Accepted: 02/20/2022] [Indexed: 02/08/2023]
|
30
|
Politi M, Ferrante C, Menghini L, Angelini P, Flores GA, Muscatello B, Braca A, De Leo M. Hydrosols from Rosmarinus officinalis, Salvia officinalis, and Cupressus sempervirens: Phytochemical Analysis and Bioactivity Evaluation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030349. [PMID: 35161330 PMCID: PMC8840401 DOI: 10.3390/plants11030349] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 05/12/2023]
Abstract
The present work evaluates the aromatic waters of rosemary (Salvia rosmarinus Spenn. syn. Rosmarinus officinalis L.), sage (Salvia officinalis L.), and cypress (Cupressus sempervirens L.) obtained as innovative commercial products of a hydrodistillation process. All extracts were exhaustively analysed by GC-MS, 1H-NMR, and LC-MS in order to evaluate potential metabolite fingerprint differences. GC-MS appears to be the most exhaustive technique for the qualitative identification of the single constituents, although in this case, the use of 1H-NMR and LC-MS techniques allowed some useful considerations in semi-quantitative terms. Antimycotic effects were studied against Tricophyton, Candida, and Arthroderma species, resulting in weak activity. The toxicological impact was partly evaluated in vitro by means of allelopathy and brine shrimp lethality. Cytotoxicity was investigated in human colon cancer cells (HCT116) and in hypothalamic cells (Hypo-E22) challenged with hydrogen peroxide. Sage and rosemary hydrosols were the most effective antimycotics, whereas all hydrosols displayed antiradical effects. Cytotoxic effects against HCT116 cells (at 500 µL/mL) were related in silico to the endovanilloid TRPM8 and TRPV1 receptors. At lower concentrations (5-50 µL/mL), the hydrosols protected hypothalamic neurons Hypo-E22 cells from hydrogen peroxide-induced toxicity. The overall experience indicates that hydrolates are an important source of relevant phytochemicals with significant pharmacological potential.
Collapse
Affiliation(s)
- Matteo Politi
- Dipartimento di Farmacia, Botanic Garden “Giardino dei Semplici”, Università di Chieti-Pescara, Via Vestini 1, 66100 Chieti Scalo, Italy; (M.P.); (C.F.); (L.M.)
| | - Claudio Ferrante
- Dipartimento di Farmacia, Botanic Garden “Giardino dei Semplici”, Università di Chieti-Pescara, Via Vestini 1, 66100 Chieti Scalo, Italy; (M.P.); (C.F.); (L.M.)
| | - Luigi Menghini
- Dipartimento di Farmacia, Botanic Garden “Giardino dei Semplici”, Università di Chieti-Pescara, Via Vestini 1, 66100 Chieti Scalo, Italy; (M.P.); (C.F.); (L.M.)
| | - Paola Angelini
- Dipartimento di Chimica, Biologia e Biotecnologia, Università di Perugia, Via del Giochetto 6, 06122 Perugia, Italy; (P.A.); (G.A.F.)
| | - Giancarlo Angeles Flores
- Dipartimento di Chimica, Biologia e Biotecnologia, Università di Perugia, Via del Giochetto 6, 06122 Perugia, Italy; (P.A.); (G.A.F.)
| | - Beatrice Muscatello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.M.); (M.D.L.)
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Alessandra Braca
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.M.); (M.D.L.)
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
- Correspondence: ; Tel.: +39-050-221-9688
| | - Marinella De Leo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy; (B.M.); (M.D.L.)
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| |
Collapse
|
31
|
Sumien N, Cunningham JT, Davis DL, Engelland R, Fadeyibi O, Farmer GE, Mabry S, Mensah-Kane P, Trinh OTP, Vann PH, Wilson EN, Cunningham RL. Neurodegenerative Disease: Roles for Sex, Hormones, and Oxidative Stress. Endocrinology 2021; 162:6360925. [PMID: 34467976 PMCID: PMC8462383 DOI: 10.1210/endocr/bqab185] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Neurodegenerative diseases cause severe impairments in cognitive and motor function. With an increasing aging population and the onset of these diseases between 50 and 70 years, the consequences are bound to be devastating. While age and longevity are the main risk factors for neurodegenerative diseases, sex is also an important risk factor. The characteristic of sex is multifaceted, encompassing sex chromosome complement, sex hormones (estrogens and androgens), and sex hormone receptors. Sex hormone receptors can induce various signaling cascades, ranging from genomic transcription to intracellular signaling pathways that are dependent on the health of the cell. Oxidative stress, associated with aging, can impact the health of the cell. Sex hormones can be neuroprotective under low oxidative stress conditions but not in high oxidative stress conditions. An understudied sex hormone receptor that can induce activation of oxidative stress signaling is the membrane androgen receptor (mAR). mAR can mediate nicotinamide adenine dinucleotide-phosphate (NADPH) oxidase (NOX)-generated oxidative stress that is associated with several neurodegenerative diseases, such as Alzheimer disease. Further complicating this is that aging can alter sex hormone signaling. Prior to menopause, women experience more estrogens than androgens. During menopause, this sex hormone profile switches in women due to the dramatic ovarian loss of 17β-estradiol with maintained ovarian androgen (testosterone, androstenedione) production. Indeed, aging men have higher estrogens than aging women due to aromatization of androgens to estrogens. Therefore, higher activation of mAR-NOX signaling could occur in menopausal women compared with aged men, mediating the observed sex differences. Understanding of these signaling cascades could provide therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Nathalie Sumien
- Department of Pharmacology & Neuroscience, Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - J Thomas Cunningham
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Delaney L Davis
- Department of Pharmacology & Neuroscience, Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rachel Engelland
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Oluwadarasimi Fadeyibi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - George E Farmer
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Steve Mabry
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Paapa Mensah-Kane
- Department of Pharmacology & Neuroscience, Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Oanh T P Trinh
- Department of Pharmacology & Neuroscience, Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Philip H Vann
- Department of Pharmacology & Neuroscience, Center for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - E Nicole Wilson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: Rebecca L. Cunningham, PhD, Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3400 Camp Bowie Boulevard, Fort Worth, TX, USA, 76107-2699.
| |
Collapse
|
32
|
Fedinec AL, Liu J, Zhang R, Harsono M, Pourcyrous M, Parfenova H. The cold receptor TRPM8 activation leads to attenuation of endothelium-dependent cerebral vascular functions during head cooling. J Cereb Blood Flow Metab 2021; 41:2897-2906. [PMID: 34013806 PMCID: PMC8756482 DOI: 10.1177/0271678x211018035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using the cranial window technique, we investigated acute effects of head cooling on cerebral vascular functions in newborn pigs. Head cooling lowered the rectal and extradural brain temperatures to 34.3 ± 0.6°C and 26.1 ± 0.6°C, respectively. During the 3-h hypothermia period, responses of pial arterioles to endothelium-dependent dilators bradykinin and glutamate were reduced, whereas the responses to hypercapnia and an endothelium-independent dilator sodium nitroprusside (SNP) remained intact. All vasodilator responses were restored after rewarming, suggesting that head cooling did not produce endothelial injury. We tested the hypothesis that the cold-sensitive TRPM8 channel is involved in attenuation of cerebrovascular functions. TRPM8 is immunodetected in cerebral vessels and in the brain parenchyma. During normothermia, the TRPM8 agonist icilin produced constriction of pial arterioles that was antagonized by the channel blocker AMTB. Icilin reduced dilation of pial arterioles to bradykinin and glutamate but not to hypercapnia and SNP, thus mimicking the effects of head cooling on vascular functions. AMTB counteracted the impairment of endothelium-dependent vasodilation caused by hypothermia or icilin. Overall, mild hypothermia produced by head cooling leads to acute reversible reduction of selected endothelium-dependent cerebral vasodilator functions via TRPM8 activation, whereas cerebral arteriolar smooth muscle functions are largely preserved.
Collapse
Affiliation(s)
| | | | | | | | | | - Helena Parfenova
- Helena Parfenova, Department of Physiology, University of Tennessee Health Science Center, 956 Court Avenue, Suite E332, Memphis, TN 38163, USA.
| |
Collapse
|
33
|
Moriyama H, Nomura S, Imoto H, Inoue T, Fujiyama Y, Haji K, Maruta Y, Ishihara H, Suzuki M. Suppressive Effects of Transient Receptor Potential Melastatin 8 Agonist on Epileptiform Discharges and Epileptic Seizures. Front Pharmacol 2021; 12:766782. [PMID: 34658898 PMCID: PMC8517222 DOI: 10.3389/fphar.2021.766782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 01/12/2023] Open
Abstract
Epilepsy is a relatively common condition, but more than 30% of patients have refractory epilepsy that is inadequately controlled by or is resistant to multiple drug treatments. Thus, new antiepileptic drugs based on newly identified mechanisms are required. A previous report revealed the suppressive effects of transient receptor potential melastatin 8 (TRPM8) activation on penicillin G-induced epileptiform discharges (EDs). However, it is unclear whether TRPM8 agonists suppress epileptic seizures or affect EDs or epileptic seizures in TRPM8 knockout (TRPM8KO) mice. We investigated the effects of TRPM8 agonist and lack of TRPM8 channels on EDs and epileptic seizures. Mice were injected with TRPM8 agonist 90 min after or 30 min before epilepsy-inducer injection, and electrocorticograms (ECoGs) were recorded under anesthesia, while behavior was monitored when awake. TRPM8 agonist suppressed EDs and epileptic seizures in wildtype (WT) mice, but not in TRPM8KO mice. In addition, TRPM8KO mice had a shorter firing latency of EDs, and EDs and epileptic seizures were deteriorated by the epilepsy inducer compared with those in WT mice, with the EDs being more easily propagated to the contralateral side. These findings suggest that TRPM8 activation in epileptic regions has anti-epileptic effects.
Collapse
Affiliation(s)
- Hiroshi Moriyama
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Sadahiro Nomura
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan.,Epilepsy Center, Yamaguchi University Hospital, Ube, Japan
| | - Hirochika Imoto
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan.,Epilepsy Center, Yamaguchi University Hospital, Ube, Japan
| | - Takao Inoue
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Yuichi Fujiyama
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Kohei Haji
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Yuichi Maruta
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Hideyuki Ishihara
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Michiyasu Suzuki
- Departments of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| |
Collapse
|
34
|
Shiraki C, Horikawa R, Oe Y, Fujimoto M, Okamoto K, Kurganov E, Miyata S. Role of TRPM8 in switching between fever and hypothermia in adult mice during endotoxin-induced inflammation. Brain Behav Immun Health 2021; 16:100291. [PMID: 34589786 PMCID: PMC8474285 DOI: 10.1016/j.bbih.2021.100291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 01/11/2023] Open
Abstract
Transient receptor potential melastatin 8 (TRPM8) functions in the sensing of noxious and innocuous colds; however, its significance in pathogen-induced thermoregulation remains unclear. In the present study, we investigated the role of TRPM8 in the regulation of endotoxin-induced body temperature control. The peripheral administration of low-dose lipopolysaccharide (LPS) at 50 μg/kg generated fever in wild-type (WT) mice, whereas it caused hypothermia in TRPM8 knockout (KO) animals. LPS-induced sickness responses such as decrease in body weight, and food and water intake were not different between WT and TRPM8 KO mice. TRPM8 KO mice exhibited more severe hypothermia and lower locomotor activity following the peripheral administration of high-dose LPS at 5 mg/kg compared with WT ones. An intracerebroventricular (i.c.v.) injection of either LPS at 3.6 μg/kg or interleukin-1β at 400 ng/kg elicited hypothermia in TRPM8 KO mice, in contrast to fever in WT animals. The peripheral administration of zymosan at 3 mg/kg also induced hypothermia in contrast to fever in WT mice. An i.c.v. injection of prostaglandin E2 at 16 or 160 nmol/kg induced normal fever in both WT and TRPM8 KO mice. Infrared thermography showed significant decline of the interscapular skin temperature that estimates temperature of the brown adipose tissue, regardless of no alteration of its temperature in WT animals. Fos immunohistochemistry showed stronger Fos activation of hypothalamic thermoregulation-associated nuclei in TRPM8 KO mice compared with WT animals following the peripheral administration of low-dose LPS. Therefore, the present study indicates that TRPM8 is necessary for switching between fever and hypothermia during endotoxin-induced inflammation.
Collapse
Affiliation(s)
- Chinatsu Shiraki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ririka Horikawa
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuzuki Oe
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Momoka Fujimoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kaho Okamoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Erkin Kurganov
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
35
|
Izquierdo C, Martín-Martínez M, Gómez-Monterrey I, González-Muñiz R. TRPM8 Channels: Advances in Structural Studies and Pharmacological Modulation. Int J Mol Sci 2021; 22:ijms22168502. [PMID: 34445208 PMCID: PMC8395166 DOI: 10.3390/ijms22168502] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
The transient receptor potential melastatin subtype 8 (TRPM8) is a cold sensor in humans, activated by low temperatures (>10, <28 °C), but also a polymodal ion channel, stimulated by voltage, pressure, cooling compounds (menthol, icilin), and hyperosmolarity. An increased number of experimental results indicate the implication of TRPM8 channels in cold thermal transduction and pain detection, transmission, and maintenance in different tissues and organs. These channels also have a repercussion on different kinds of life-threatening tumors and other pathologies, which include urinary and respiratory tract dysfunctions, dry eye disease, and obesity. This compendium firstly covers newly described papers on the expression of TRPM8 channels and their correlation with pathological states. An overview on the structural knowledge, after cryo-electron microscopy success in solving different TRPM8 structures, as well as some insights obtained from mutagenesis studies, will follow. Most recently described families of TRPM8 modulators are also covered, along with a section of molecules that have reached clinical trials. To finalize, authors provide an outline of the potential prospects in the TRPM8 field.
Collapse
Affiliation(s)
- Carolina Izquierdo
- Departamento de Biomiméticos, Instituto de Química Médica, Juan de la Cierva 3, 28006 Madrid, Spain; (C.I.); (M.M.-M.)
- Programa de Doctorado en Química Orgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mercedes Martín-Martínez
- Departamento de Biomiméticos, Instituto de Química Médica, Juan de la Cierva 3, 28006 Madrid, Spain; (C.I.); (M.M.-M.)
| | - Isabel Gómez-Monterrey
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
- Correspondence: (I.G.-M.); (R.G.-M.)
| | - Rosario González-Muñiz
- Departamento de Biomiméticos, Instituto de Química Médica, Juan de la Cierva 3, 28006 Madrid, Spain; (C.I.); (M.M.-M.)
- Correspondence: (I.G.-M.); (R.G.-M.)
| |
Collapse
|
36
|
Diminished Cold Avoidance Behaviours after Chronic Cold Exposure - Potential Involvement of TRPM8. Neuroscience 2021; 469:17-30. [PMID: 34139303 DOI: 10.1016/j.neuroscience.2021.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
Ambient temperature changes trigger plastic biological responses. Cold temperature is detected by the somatosensory system and evokes perception of cold together with adaptive physiological responses. We addressed whether chronic cold exposure induces adaptive adjustments of (1) thermosensory behaviours, and (2) the principle molecular cold sensor in the transduction machinery, transient receptor potential melastatin subtype 8 (TRPM8). Mice in two groups were exposed to either cold (6 °C) or thermoneutral (27 °C) ambient temperatures for 4 weeks and subjected to thermosensory behavioural testing. Cold group mice behaved different from Thermoneutral group in the Thermal Gradient Test: the former occupied a wider temperature range and was less cold avoidant. Furthermore, subcutaneous injection of the TRPM8 agonist icilin, enhanced cold avoidance in both groups in the Thermal Gradient Test, but Cold group mice were significantly less affected by icilin. Primary sensory neuron soma are located in dorsal root ganglia (DRGs), and western blotting showed diminished TRPM8 levels in DRGs of Cold group mice, as compared to the Thermoneutral group. We conclude that acclimation to chronic cold altered thermosensory behaviours, so that mice appeared less cold sensitive, and potentially, TRPM8 is involved.
Collapse
|
37
|
Phenylalanine-Derived β-Lactam TRPM8 Modulators. Configuration Effect on the Antagonist Activity. Int J Mol Sci 2021; 22:ijms22052370. [PMID: 33673444 PMCID: PMC7956626 DOI: 10.3390/ijms22052370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential cation channel subfamily M member 8 (TRPM8) is a Ca2+ non-selective ion channel implicated in a variety of pathological conditions, including cancer, inflammatory and neuropathic pain. In previous works we identified a family of chiral, highly hydrophobic β–lactam derivatives, and began to intuit a possible effect of the stereogenic centers on the antagonist activity. To investigate the influence of configuration on the TRPM8 antagonist properties, here we prepare and characterize four possible diastereoisomeric derivatives of 4-benzyl-1-[(3′-phenyl-2′-dibenzylamino)prop-1′-yl]-4-benzyloxycarbonyl-3-methyl-2-oxoazetidine. In microfluorography assays, all isomers were able to reduce the menthol-induced cell Ca2+ entry to larger or lesser extent. Potency follows the order 3R,4R,2′R > 3S,4S,2′R ≅ 3R,4R,2′S > 3S,4S,2′S, with the most potent diastereoisomer showing a half inhibitory concentration (IC50) in the low nanomolar range, confirmed by Patch-Clamp electrophysiology experiments. All four compounds display high receptor selectivity against other members of the TRP family. Furthermore, in primary cultures of rat dorsal root ganglion (DRG) neurons, the most potent diastereoisomers do not produce any alteration in neuronal excitability, indicating their high specificity for TRPM8 channels. Docking studies positioned these β-lactams at different subsites by the pore zone, suggesting a different mechanism than the known N-(3-aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)-benzamide (AMTB) antagonist.
Collapse
|
38
|
Vaidya B, Sharma SS. Transient Receptor Potential Channels as an Emerging Target for the Treatment of Parkinson's Disease: An Insight Into Role of Pharmacological Interventions. Front Cell Dev Biol 2020; 8:584513. [PMID: 33330461 PMCID: PMC7714790 DOI: 10.3389/fcell.2020.584513] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the symptoms of motor deficits and cognitive decline. There are a number of therapeutics available for the treatment of PD, but most of them suffer from serious side effects such as bradykinesia, dyskinesia and on-off effect. Therefore, despite the availability of these pharmacological agents, PD patients continue to have an inferior quality of life. This has warranted a need to look for alternate strategies and molecular targets. Recent evidence suggests the Transient Receptor Potential (TRP) channels could be a potential target for the management of motor and non-motor symptoms of PD. Though still in the preclinical stages, agents targeting these channels have shown immense potential in the attenuation of behavioral deficits and signaling pathways. In addition, these channels are known to be involved in the regulation of ionic homeostasis, which is disrupted in PD. Moreover, activation or inhibition of many of the TRP channels by calcium and oxidative stress has also raised the possibility of their paramount involvement in affecting the other molecular mechanisms associated with PD pathology. However, due to the paucity of information available and lack of specificity, none of these agents have gone into clinical trials for PD treatment. Considering their interaction with oxidative stress, apoptosis and excitotoxicity, TRP channels could be considered as a potential future target for the treatment of PD.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India
| |
Collapse
|
39
|
Silverman HA, Chen A, Kravatz NL, Chavan SS, Chang EH. Involvement of Neural Transient Receptor Potential Channels in Peripheral Inflammation. Front Immunol 2020; 11:590261. [PMID: 33193423 PMCID: PMC7645044 DOI: 10.3389/fimmu.2020.590261] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential (TRP) channels are a superfamily of non-selective cation channels that act as polymodal sensors in many tissues throughout mammalian organisms. In the context of ion channels, they are unique for their broad diversity of activation mechanisms and their cation selectivity. TRP channels are involved in a diverse range of physiological processes including chemical sensing, nociception, and mediating cytokine release. They also play an important role in the regulation of inflammation through sensory function and the release of neuropeptides. In this review, we discuss the functional contribution of a subset of TRP channels (TRPV1, TRPV4, TRPM3, TRPM8, and TRPA1) that are involved in the body’s immune responses, particularly in relation to inflammation. We focus on these five TRP channels because, in addition to being expressed in many somatic cell types, these channels are also expressed on peripheral ganglia and nerves that innervate visceral organs and tissues throughout the body. Activation of these neural TRP channels enables crosstalk between neurons, immune cells, and epithelial cells to regulate a wide range of inflammatory actions. TRP channels act either through direct effects on cation levels or through indirect modulation of intracellular pathways to trigger pro- or anti-inflammatory mechanisms, depending on the inflammatory disease context. The expression of TRP channels on both neural and immune cells has made them an attractive drug target in diseases involving inflammation. Future work in this domain will likely yield important new pathways and therapies for the treatment of a broad range of disorders including colitis, dermatitis, sepsis, asthma, and pain.
Collapse
Affiliation(s)
- Harold A Silverman
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Adrian Chen
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Nigel L Kravatz
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| | - Eric H Chang
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| |
Collapse
|
40
|
Islam MN, Maeda N, Miyasato E, Jahan MR, Tarif AMM, Ishino T, Nozaki K, Masumoto KH, Yanai A, Shinoda K. Expression of huntingtin-associated protein 1 in adult mouse dorsal root ganglia and its neurochemical characterization in reference to sensory neuron subpopulations. IBRO Rep 2020; 9:258-269. [PMID: 33089002 PMCID: PMC7560692 DOI: 10.1016/j.ibror.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
This study is the first to examine HAP1-expression in dorsal root ganglia (DRG). HAP1 is highly co-expressed with the markers of nociceptive/proprioceptive neurons. HAP1 is completely lacking in the touch-sensitive DRG neurons. HAP1 may play an important role in modulating nociceptive/proprioceptive functions. It will be of great interest to clarify the pathophysiological role of HAP1 in DRG.
Huntingtin-associated protein 1 (HAP1) is a polyglutamine (polyQ) length-dependent interactor with causal agents in several neurodegenerative diseases and has been regarded as a protective factor against neurodegeneration. In normal rodent brain and spinal cord, HAP1 is abundantly expressed in the areas that are spared from neurodegeneration while those areas with little HAP1 are frequent targets of neurodegeneration. We have recently showed that HAP1 is highly expressed in the spinal dorsal horn and may participate in modification/protection of certain sensory functions. Neurons in the dorsal root ganglia (DRG) transmits sensory stimuli from periphery to spinal cord/brain stem. Nevertheless, to date HAP1 expression in DRG remains unreported. In this study, the expression of HAP1 in cervical, thoracic, lumbar and sacral DRG in adult male mice and its relationships with different chemical markers for sensory neurons were examined using Western blot and immunohistochemistry. HAP1-immunoreactivity was detected in the cytoplasm of DRG neurons, and the percentage of HAP1-immunoreactive (ir) DRG neurons was ranged between 28–31 %. HAP1-immunoreactivity was comparatively more in the small cells (47–58 %) and medium cells (40–44 %) than that in the large cells (9–11 %). Double-immunostaining for HAP1 and markers for nociceptive or mechanoreceptive neurons showed that about 70–80 % of CGRP-, SP-, CB-, NOS-, TRPV1-, CR- and PV-ir neurons expressed HAP1. In contrast, HAP1 was completely lacking in TH-ir neurons. Our current study is the first to clarify that HAP1 is highly expressed in nociceptive/proprioceptive neurons but absent in light-touch-sensitive TH neurons, suggesting the potential importance of HAP1 in pain transduction and proprioception.
Collapse
Key Words
- CB, calbindin
- CGRP, calcitonin gene-related peptide
- CR, calretinin
- DAB, diaminobenzidine
- DRG, dorsal root ganglia
- HAP1, Huntingtin-associated protein 1
- Huntingtin-associated protein 1
- Iba1, ionized calcium-binding adapter molecule 1
- Immunohistochemistry
- LTMRs, low-threshold mechanoreceptors
- MRGPR, Mas-related G-protein-coupled receptor
- NDS, normal donkey serum
- NOS, nitric oxide synthetase
- NeuN, neuronal nuclei
- Neurodegeneration
- Neuroprotection
- PB, phosphate buffer
- PV, parvalbumin
- Peripheral nervous system
- SBMA, spinal and bulbar muscular atrophy
- SP, substance P
- STB, stigmoid body
- Sensory neurons
- TBST, Tris-buffered saline with 0.1 % Tween
- TH, tyrosine hydroxylase
- TRPV1, transient receptor potential vanilloid 1
- VGLUT, vesicular glutamate transporter
- htt, huntingtin
- polyQ, polyglutamine
Collapse
Affiliation(s)
- Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Naoki Maeda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Emi Miyasato
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Mir Rubayet Jahan
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan.,Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Abu Md Mamun Tarif
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Taiga Ishino
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Kanako Nozaki
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Koh-Hei Masumoto
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Akie Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan.,Department of Basic Laboratory Sciences, Faculty of Medicine and Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| |
Collapse
|
41
|
Bonache MÁ, Martín-Escura C, de la Torre Martínez R, Medina A, González-Rodríguez S, Francesch A, Cuevas C, Roa AM, Fernández-Ballester G, Ferrer-Montiel A, Fernández-Carvajal A, González-Muñiz R. Highly functionalized β-lactams and 2-ketopiperazines as TRPM8 antagonists with antiallodynic activity. Sci Rep 2020; 10:14154. [PMID: 32843690 PMCID: PMC7447632 DOI: 10.1038/s41598-020-70691-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
The cool sensor transient receptor potential melastatin channel 8 (TRPM8) is highly expressed in trigeminal and dorsal root ganglia, playing a key role in cold hypersensitivity associated to different peripheral neuropathies. Moreover, these channels are aberrantly expressed in different cancers, and seem to participate in tumor progression, survival and invasion. Accordingly, the search for potent and selective TRPM8 modulators attracted great interest in recent years. We describe new heterocyclic TRPM8 antagonist chemotypes derived from N-cloroalkyl phenylalaninol-Phe conjugates. The cyclization of these conjugates afforded highly substituted β-lactams and/or 2-ketopiperazine (KP) derivatives, with regioselectivity depending on the N-chloroalkyl group and the configuration. These derivatives behave as TRPM8 antagonists in the Ca2+ microfluorometry assay, and confirmed electrophysiologically for the best enantiopure β-lactams 24a and 29a (IC50, 1.4 and 0.8 µM). Two putative binding sites by the pore zone, different from those found for typical agonists and antagonists, were identified by in silico studies for both β-lactams and KPs. β-Lactams 24a and 29a display antitumor activity in different human tumor cell lines (micromolar potencies, A549, HT29, PSN1), but correlation with TRPM8 expression could not be established. Additionally, compound 24a significantly reduced cold allodynia in a mice model of oxaliplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- M Ángeles Bonache
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Cristina Martín-Escura
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
- Alodia Farmacéutica SL, Santiago Grisolia 2, Tres Cantos, 28760, Madrid, Spain
| | | | - Alicia Medina
- IDiBE, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202, Elche, Spain
| | | | - Andrés Francesch
- PharmaMar S.A, Avda. de los Reyes 1, 28770, Colmenar Viejo, Spain
| | - Carmen Cuevas
- PharmaMar S.A, Avda. de los Reyes 1, 28770, Colmenar Viejo, Spain
| | - Ana María Roa
- Alodia Farmacéutica SL, Santiago Grisolia 2, Tres Cantos, 28760, Madrid, Spain
| | | | | | | | | |
Collapse
|
42
|
Bertamino A, Ostacolo C, Medina A, Di Sarno V, Lauro G, Ciaglia T, Vestuto V, Pepe G, Basilicata MG, Musella S, Smaldone G, Cristiano C, Gonzalez-Rodriguez S, Fernandez-Carvajal A, Bifulco G, Campiglia P, Gomez-Monterrey I, Russo R. Exploration of TRPM8 Binding Sites by β-Carboline-Based Antagonists and Their In Vitro Characterization and In Vivo Analgesic Activities. J Med Chem 2020; 63:9672-9694. [PMID: 32787109 PMCID: PMC8009520 DOI: 10.1021/acs.jmedchem.0c00816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Transient
receptor potential melastatin 8 (TRPM8) ion channel represents
a valuable pharmacological option for several therapeutic areas. Here,
a series of conformationally restricted derivatives of the previously
described TRPM8 antagonist N,N′-dibenzyl
tryptophan 4 were prepared and characterized in vitro
by Ca2+-imaging and patch-clamp electrophysiology assays.
Molecular modeling studies led to identification of a broad and well-defined
interaction network of these derivatives inside the TRPM8 binding
site, underlying their antagonist activity. The (5R,11aS)-5-(4-chlorophenyl)-2-(4-fluorobenzyl)-5,6,11,11a-tetrahydro-1H-imidazo[1′,5′:1,6]pyrido[3,4-b]indole-1,3(2H)-dione (31a) emerged as a potent (IC50 = 4.10 ± 1.2 nM), selective,
and metabolically stable TRPM8 antagonist. In vivo, 31a showed significant target coverage in an icilin-induced WDS (at
11.5 mg/kg ip), an oxaliplatin-induced cold allodynia (at 10–30
μg sc), and CCI-induced thermal hyperalgesia (at 11.5 mg/kg
ip) mice models. These results confirm the tryptophan moiety as a
solid pharmacophore template for the design of highly potent modulators
of TRPM8-mediated activities.
Collapse
Affiliation(s)
- Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Alicia Medina
- IDiBE, Universitas Miguel Herna'ndez, Avda de la Universidad, 032020 Elche, Spain
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | | | - Simona Musella
- European Biomedical Research Institute (EBRIS), Via S. De Renzi 50, 84125 Salerno, Italy
| | - Gerardina Smaldone
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Claudia Cristiano
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | | | | | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy.,European Biomedical Research Institute (EBRIS), Via S. De Renzi 50, 84125 Salerno, Italy
| | - Isabel Gomez-Monterrey
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Roberto Russo
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
43
|
Mohandass A, Krishnan V, Gribkova ED, Asuthkar S, Baskaran P, Nersesyan Y, Hussain Z, Wise LM, George RE, Stokes N, Alexander BM, Cohen AM, Pavlov EV, Llano DA, Zhu MX, Thyagarajan B, Zakharian E. TRPM8 as the rapid testosterone signaling receptor: Implications in the regulation of dimorphic sexual and social behaviors. FASEB J 2020; 34:10887-10906. [PMID: 32609392 PMCID: PMC7496617 DOI: 10.1096/fj.202000794r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 01/19/2023]
Abstract
Testosterone regulates dimorphic sexual behaviors in all vertebrates. However, the molecular mechanism underlying these behaviors remains unclear. Here, we report that a newly identified rapid testosterone signaling receptor, Transient Receptor Potential Melastatin 8 (TRPM8), regulates dimorphic sexual and social behaviors in mice. We found that, along with higher steroid levels in the circulation, TRPM8-/- male mice exhibit increased mounting frequency indiscriminate of sex, delayed sexual satiety, and increased aggression compared to wild-type controls, while TRPM8-/- females display an increased olfaction-exploratory behavior. Furthermore, neuronal responses to acute testosterone application onto the amygdala were attenuated in TRPM8-/- males but remained unchanged in females. Moreover, activation of dopaminergic neurons in the ventral tegmental area following mating was impaired in TRPM8-/- males. Together, these results demonstrate that TRPM8 regulates dimorphic sexual and social behaviors, and potentially constitutes a signalosome for mediation of sex-reward mechanism in males. Thus, deficiency of TRPM8 might lead to a delayed sexual satiety phenomenon.
Collapse
Affiliation(s)
- Adithya Mohandass
- College of Health Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Vivek Krishnan
- College of Health Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Ekaterina D Gribkova
- Department of Molecular and Integrative Physiology, Neuroscience Program and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| | - Padmamalini Baskaran
- College of Health Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Yelena Nersesyan
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| | - Zahir Hussain
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA.,Department of Physiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Leslie M Wise
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| | - Robert E George
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| | - Nadarra Stokes
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| | | | - Alejandro M Cohen
- Biological Mass Spectrometry Core Facility, Life Sciences Research Institute, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Evgeny V Pavlov
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - Daniel A Llano
- Department of Molecular and Integrative Physiology, Neuroscience Program and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Baskaran Thyagarajan
- College of Health Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Eleonora Zakharian
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| |
Collapse
|
44
|
González-Muñiz R, Bonache MA, Martín-Escura C, Gómez-Monterrey I. Recent Progress in TRPM8 Modulation: An Update. Int J Mol Sci 2019; 20:ijms20112618. [PMID: 31141957 PMCID: PMC6600640 DOI: 10.3390/ijms20112618] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/30/2022] Open
Abstract
The transient receptor potential melastatin subtype 8 (TRPM8) is a nonselective, multimodal ion channel, activated by low temperatures (<28 °C), pressure, and cooling compounds (menthol, icilin). Experimental evidences indicated a role of TRPM8 in cold thermal transduction, different life-threatening tumors, and other pathologies, including migraine, urinary tract dysfunction, dry eye disease, and obesity. Hence, the modulation of the TRPM8 channel could be essential in order to understand its implications in these pathologies and for therapeutic intervention. This short review will cover recent progress on the TRPM8 agonists and antagonists, describing newly reported chemotypes, and their application in the pharmacological characterization of TRPM8 in health and disease. The recently described structures of the TRPM8 channel alone or complexed with known agonists and PIP2 are also discussed.
Collapse
Affiliation(s)
| | - M Angeles Bonache
- Instituto de Química Médica, IQM-CSIC. Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | - Isabel Gómez-Monterrey
- Dipartimento di Farmacia, Università "Federico II" de Napoli, Via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|