1
|
Olson KL, Ingebretson AE, Vogiatzoglou E, Mermelstein PG, Lemos JC. Cholinergic interneurons in the nucleus accumbens are a site of cellular convergence for corticotropin-releasing factor and estrogen regulation in male and female mice. Eur J Neurosci 2024; 60:4937-4953. [PMID: 39080914 DOI: 10.1111/ejn.16477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Cholinergic interneurons (ChIs) act as master regulators of striatal output, finely tuning neurotransmission to control motivated behaviours. ChIs are a cellular target of many peptide and hormonal neuromodulators, including corticotropin-releasing factor, opioids, insulin and leptin, which can influence an animal's behaviour by signalling stress, pleasure, pain and nutritional status. However, little is known about how sex hormones via estrogen receptors influence the function of these other neuromodulators. Here, we performed in situ hybridisation on mouse striatal tissue to characterise the effect of sex and sex hormones on choline acetyltransferase (Chat), estrogen receptor alpha (Esr1) and corticotropin-releasing factor type 1 receptor (Crhr1) expression. Although we did not detect sex differences in ChAT protein levels in the dorsal striatum or nucleus accumbens, we found that female mice have more Chat mRNA-expressing neurons than males in both the dorsal striatum and nucleus accumbens. At the population level, we observed a sexually dimorphic distribution of Esr1- and Crhr1-expressing ChIs in the ventral striatum that was negatively correlated in intact females, which was abolished by ovariectomy and not present in males. Only in the NAc did we find a significant population of ChIs that co-express Crhr1 and Esr1 in females and to a lesser extent in males. At the cellular level, Crhr1 and Esr1 transcript levels were negatively correlated only during the estrus phase in females, indicating that changes in sex hormone levels can modulate the interaction between Crhr1 and Esr1 mRNA levels.
Collapse
Affiliation(s)
- Kendra L Olson
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna E Ingebretson
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eleftheria Vogiatzoglou
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia C Lemos
- Department of Neuroscience, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Proffitt MR, Smith GT. Species variation in steroid hormone-related gene expression contributes to species diversity in sexually dimorphic communication in electric fishes. Horm Behav 2024; 164:105576. [PMID: 38852479 PMCID: PMC11330740 DOI: 10.1016/j.yhbeh.2024.105576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Sexually dimorphic behaviors are often regulated by gonadal steroid hormones. Species diversity in behavioral sex differences may arise as expression of genes mediating steroid action in brain regions controlling these behaviors evolves. The electric communication signals of apteronotid knifefishes are an excellent model for comparatively studying neuroendocrine regulation of sexually dimorphic behavior. These fish produce and detect weak electric organ discharges (EODs) for electrolocation and communication. EOD frequency (EODf), controlled by the medullary pacemaker nucleus (Pn), is sexually dimorphic and regulated by androgens and estrogens in some species, but is sexually monomorphic and unaffected by hormones in other species. We quantified expression of genes for steroid receptors, metabolizing enzymes, and cofactors in the Pn of two species with sexually dimorphic EODf (Apteronotus albifrons and Apteronotus leptorhynchus) and two species with sexually monomorphic EODf ("Apteronotus" bonapartii and Parapteronotus hasemani). The "A." bonapartii Pn expressed lower levels of androgen receptor (AR) genes than the Pn of species with sexually dimorphic EODf. In contrast, the P. hasemani Pn robustly expressed AR genes, but expressed lower levels of genes for 5α-reductases, which convert androgens to more potent metabolites, and higher levels of genes for 17β-hydroxysteroid dehydrogenases that oxidize androgens and estrogens to less potent forms. These findings suggest that sexual monomorphism of EODf arose convergently via two different mechanisms. In "A." bonapartii, reduced Pn expression of ARs likely results in insensitivity of EODf to androgens, whereas in P. hasemani, gonadal steroids may be metabolically inactivated in the Pn, reducing their potential to influence EODf.
Collapse
Affiliation(s)
- Melissa R Proffitt
- Department of Biology, Indiana University, 1001 E. 3(rd) St., Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave., Bloomington, IN 47505, USA
| | - G Troy Smith
- Department of Biology, Indiana University, 1001 E. 3(rd) St., Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave., Bloomington, IN 47505, USA.
| |
Collapse
|
3
|
Van Zandt M, Flanagan D, Pittenger C. Sex differences in the distribution and density of regulatory interneurons in the striatum. Front Cell Neurosci 2024; 18:1415015. [PMID: 39045533 PMCID: PMC11264243 DOI: 10.3389/fncel.2024.1415015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction Dysfunction of the cortico-basal circuitry - including its primary input nucleus, the striatum - contributes to neuropsychiatric disorders, such as autism and Tourette Syndrome (TS). These conditions show marked sex differences, occurring more often in males than in females. Regulatory interneurons, such as cholinergic interneurons (CINs) and parvalbumin-expressing GABAergic fast spiking interneurons (FSIs), are implicated in human neuropsychiatric disorders such as TS, and ablation of these interneurons produces relevant behavioral pathology in male mice, but not in females. Here we investigate sex differences in the density and distribution of striatal interneurons. Methods We use stereological quantification of CINs, FSIs, and somatostatin-expressing (SOM) GABAergic interneurons in the dorsal striatum (caudate-putamen) and the ventral striatum (nucleus accumbens) in male and female mice. Results Males have a higher density of CINs than females, especially in the dorsal striatum; females have equal distribution between dorsal and ventral striatum. FSIs showed similar distributions, with a greater dorsal-ventral density gradient in males than in females. SOM interneurons were denser in the ventral than in the dorsal striatum, with no sex differences. Discussion These sex differences in the density and distribution of FSIs and CINs may contribute to sex differences in basal ganglia function, particularly in the context of psychopathology.
Collapse
Affiliation(s)
- Meghan Van Zandt
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Deirdre Flanagan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Psychology, Yale School of Arts and Sciences, New Haven, CT, United States
- Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, United States
- Wu-Tsai Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
4
|
Copenhaver AE, LeGates TA. Sex-Specific Mechanisms Underlie Long-Term Potentiation at Hippocampus→Medium Spiny Neuron Synapses in the Medial Shell of the Nucleus Accumbens. J Neurosci 2024; 44:e0100242024. [PMID: 38806250 PMCID: PMC11223474 DOI: 10.1523/jneurosci.0100-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Sex differences have complicated our understanding of the neurobiological basis of many behaviors that are key for survival. As such, continued elucidation of the similarities and differences between sexes is necessary to gain insight into brain function and vulnerability. The connection between the hippocampus (Hipp) and nucleus accumbens (NAc) is a crucial site where modulation of neuronal activity mediates reward-related behavior. Our previous work demonstrated that long-term potentiation (LTP) of Hipp→NAc synapses is rewarding, and mice can establish learned associations between LTP of these synapses and the contextual environment in which LTP occurred. Here, we investigated sex differences in the mechanisms underlying Hipp→NAc LTP using whole-cell electrophysiology and pharmacology. We observed similarities in basal synaptic strength between males and females and found that LTP occurs postsynaptically with similar magnitudes in both sexes. However, key sex differences emerged as LTP in males required NMDA receptors (NMDAR), whereas LTP in females utilized an NMDAR-independent mechanism involving L-type voltage-gated Ca2+ channels (VGCCs) and estrogen receptor α (ERα). We also uncovered sex-similar features as LTP in both sexes depended on CaMKII activity and occurred independently of dopamine-1 receptor (D1R) activation. Our results have elucidated sex-specific molecular mechanisms for LTP in an integral pathway that mediates reward-related behaviors, emphasizing the importance of considering sex as a variable in mechanistic studies. Continued characterization of sex-specific mechanisms underlying plasticity will offer novel insight into the neurophysiological basis of behavior, with significant implications for understanding how diverse processes mediate behavior and contribute to vulnerability to developing psychiatric disorders.
Collapse
Affiliation(s)
- Ashley E Copenhaver
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
| | - Tara A LeGates
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland 21250
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
5
|
Chapp AD, Nwakama CA, Jagtap PP, Phan CMH, Thomas MJ, Mermelstein PG. Fundamental Sex Differences in Cocaine-Induced Plasticity of Dopamine D1 Receptor- and D2 Receptor-Expressing Medium Spiny Neurons in the Mouse Nucleus Accumbens Shell. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100295. [PMID: 38533248 PMCID: PMC10963205 DOI: 10.1016/j.bpsgos.2024.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 03/28/2024] Open
Abstract
Background Cocaine-induced plasticity in the nucleus accumbens shell of males occurs primarily in dopamine D1 receptor-expressing medium spiny neurons (D1R-MSNs), with little if any impact on dopamine D2 receptor-expressing medium spiny neurons (D2R-MSNs). In females, the effect of cocaine on accumbens shell D1R- and D2R-MSN neurophysiology has yet to be reported, nor have estrous cycle effects been accounted for. Methods We used a 5-day locomotor sensitization paradigm followed by a 10- to 14-day drug-free abstinence period. We then obtained ex vivo whole-cell recordings from fluorescently labeled D1R-MSNs and D2R-MSNs in the nucleus accumbens shell of male and female mice during estrus and diestrus. We examined accumbens shell neuronal excitability as well as miniature excitatory postsynaptic currents (mEPSCs). Results In females, we observed alterations in D1R-MSN excitability across the estrous cycle similar in magnitude to the effects of cocaine in males. Furthermore, cocaine shifted estrous cycle-dependent plasticity from intrinsic excitability changes in D1R-MSNs to D2R-MSNs. In males, cocaine treatment produced the anticipated drop in D1R-MSN excitability with no effect on D2R-MSN excitability. Cocaine increased mEPSC frequencies and amplitudes in D2R-MSNs from females in estrus and mEPSC amplitudes of D2R-MSNs from females in diestrus. In males, cocaine increased both D1R- and D2R-MSN mEPSC amplitudes with no effect on mEPSC frequencies. Conclusions Overall, while there are similar cocaine-induced disparities regarding the relative excitability of D1R-MSNs versus D2R-MSNs between the sexes, this is mediated through reduced D1R-MSN excitability in males, whereas it is due to heightened D2R-MSN excitability in females.
Collapse
Affiliation(s)
- Andrew D. Chapp
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Chinonso A. Nwakama
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pramit P. Jagtap
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Chau-Mi H. Phan
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Mark J. Thomas
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
- Center for Neural Circuits in Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Paul G. Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
- Center for Neural Circuits in Addiction, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
6
|
Bendis PC, Zimmerman S, Onisiforou A, Zanos P, Georgiou P. The impact of estradiol on serotonin, glutamate, and dopamine systems. Front Neurosci 2024; 18:1348551. [PMID: 38586193 PMCID: PMC10998471 DOI: 10.3389/fnins.2024.1348551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Abstract
Estradiol, the most potent and prevalent member of the estrogen class of steroid hormones and is expressed in both sexes. Functioning as a neuroactive steroid, it plays a crucial role in modulating neurotransmitter systems affecting neuronal circuits and brain functions including learning and memory, reward and sexual behaviors. These neurotransmitter systems encompass the serotonergic, dopaminergic, and glutamatergic signaling pathways. Consequently, this review examines the pivotal role of estradiol and its receptors in the regulation of these neurotransmitter systems in the brain. Through a comprehensive analysis of current literature, we investigate the multifaceted effects of estradiol on key neurotransmitter signaling systems, namely serotonin, dopamine, and glutamate. Findings from rodent models illuminate the impact of hormone manipulations, such as gonadectomy, on the regulation of neuronal brain circuits, providing valuable insights into the connection between hormonal fluctuations and neurotransmitter regulation. Estradiol exerts its effects by binding to three estrogen receptors: estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G protein-coupled receptor (GPER). Thus, this review explores the promising outcomes observed with estradiol and estrogen receptor agonists administration in both gonadectomized and/or genetically knockout rodents, suggesting potential therapeutic avenues. Despite limited human studies on this topic, the findings underscore the significance of translational research in bridging the gap between preclinical findings and clinical applications. This approach offers valuable insights into the complex relationship between estradiol and neurotransmitter systems. The integration of evidence from neurotransmitter systems and receptor-specific effects not only enhances our understanding of the neurobiological basis of physiological brain functioning but also provides a comprehensive framework for the understanding of possible pathophysiological mechanisms resulting to disease states. By unraveling the complexities of estradiol's impact on neurotransmitter regulation, this review contributes to advancing the field and lays the groundwork for future research aimed at refining understanding of the relationship between estradiol and neuronal circuits as well as their involvement in brain disorders.
Collapse
Affiliation(s)
- Peyton Christine Bendis
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| | - Sydney Zimmerman
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| | - Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
- Laboratory of Epigenetics and Gene Regulation, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
7
|
Copenhaver AE, LeGates TA. Sex-specific mechanisms underlie long-term potentiation at hippocampus-nucleus accumbens synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575709. [PMID: 38293132 PMCID: PMC10827060 DOI: 10.1101/2024.01.15.575709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Sex differences have complicated our understanding of the neurobiological basis of many behaviors that are key for survival. As such, continued elucidation of the similarities and differences between sexes is necessary in order to gain insight into brain function and vulnerability. The connection between the hippocampus (Hipp) and nucleus accumbens (NAc) is a crucial site where modulation of neuronal activity mediates reward-related behavior. Our previous work demonstrated that long-term potentiation (LTP) of Hipp-NAc synapses is rewarding, and that mice can make learned associations between LTP of these synapses and the contextual environment in which LTP occurred. Here, we investigate sex differences in the mechanisms underlying Hipp-NAc LTP using whole-cell electrophysiology and pharmacology. We found that males and females display similar magnitudes of Hipp-NAc LTP which occurs postsynaptically. However, LTP in females requires L-type voltage-gated Ca 2+ channels (VGCC) for postsynaptic Ca 2+ influx, while males rely on NMDA receptors (NMDAR). Additionally, females require estrogen receptor α (ERα) activity for LTP while males do not. These differential mechanisms converge as LTP in both sexes depends on CAMKII activity and occurs independently of dopamine-1 receptor (D1R) activation. Our results have elucidated sex-specific molecular mechanisms for LTP in an integral excitatory pathway that mediates reward-related behaviors, emphasizing the importance of considering sex as a variable in mechanistic studies. Continued characterization of sex-specific mechanisms underlying plasticity will offer novel insight into the neurophysiological basis of behavior, with significant implications for understanding how diverse processes mediate behavior and contribute to vulnerability to developing psychiatric disorders. SIGNIFICANCE STATEMENT Strengthening of Hipp-NAc synapses drives reward-related behaviors. Male and female mice have similar magnitudes of long-term potentiation (LTP) and both sexes have a predicted postsynaptic locus of plasticity. Despite these similarities, we illustrate here that sex-specific molecular mechanisms are used to elicit LTP. Given the bidirectional relationship between Hipp-NAc synaptic strength in mediating reward-related behaviors, the use of distinct molecular mechanisms may explain sex differences observed in stress susceptibility or response to rewarding stimuli. Discovery and characterization of convergent sex differences provides mechanistic insight into the sex-specific function of Hipp-NAc circuitry and has widespread implications for circuits mediating learning and reward-related behavior.
Collapse
|
8
|
Proaño SB, Miller CK, Krentzel AA, Dorris DM, Meitzen J. Sex steroid hormones, the estrous cycle, and rapid modulation of glutamatergic synapse properties in the striatal brain regions with a focus on 17β-estradiol and the nucleus accumbens. Steroids 2024; 201:109344. [PMID: 37979822 PMCID: PMC10842710 DOI: 10.1016/j.steroids.2023.109344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
The striatal brain regions encompassing the nucleus accumbens core (NAcc), shell (NAcs) and caudate-putamen (CPu) regulate cognitive functions including motivated behaviors, habit, learning, and sensorimotor action, among others. Sex steroid hormone sensitivity and sex differences have been documented in all of these functions in both normative and pathological contexts, including anxiety, depression and addiction. The neurotransmitter glutamate has been implicated in regulating these behaviors as well as striatal physiology, and there are likewise documented sex differences in glutamate action upon the striatal output neurons, the medium spiny neurons (MSNs). Here we review the available data regarding the role of steroid sex hormones such as 17β-estradiol (estradiol), progesterone, and testosterone in rapidly modulating MSN glutamatergic synapse properties, presented in the context of the estrous cycle as appropriate. Estradiol action upon glutamatergic synapse properties in female NAcc MSNs is most comprehensively discussed. In the female NAcc, MSNs exhibit development period-specific sex differences and estrous cycle variations in glutamatergic synapse properties as shown by multiple analyses, including that of miniature excitatory postsynaptic currents (mEPSCs). Estrous cycle-differences in NAcc MSN mEPSCs can be mimicked by acute exposure to estradiol or an ERα agonist. The available evidence, or lack thereof, is also discussed concerning estrogen action upon MSN glutamatergic synapse in the other striatal regions as well as the underexplored roles of progesterone and testosterone. We conclude that there is strong evidence regarding estradiol action upon glutamatergic synapse function in female NAcs MSNs and call for more research regarding other hormones and striatal regions.
Collapse
Affiliation(s)
- Stephanie B Proaño
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Christiana K Miller
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Amanda A Krentzel
- Office of Research and Innovation, North Carolina State University, Raleigh, NC, USA
| | - David M Dorris
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - John Meitzen
- Dept. of Biological Sciences, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
9
|
Santos-Toscano R, Arevalo MA, Garcia-Segura LM, Grassi D, Lagunas N. Interaction of gonadal hormones, dopaminergic system, and epigenetic regulation in the generation of sex differences in substance use disorders: A systematic review. Front Neuroendocrinol 2023; 71:101085. [PMID: 37543184 DOI: 10.1016/j.yfrne.2023.101085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Substance use disorder (SUD) is a chronic condition characterized by pathological drug-taking and seeking behaviors. Remarkably different between males and females, suggesting that drug addiction is a sexually differentiated disorder. The neurobiological bases of sex differences in SUD include sex-specific reward system activation, influenced by interactions between gonadal hormone level changes, dopaminergic reward circuits, and epigenetic modifications of key reward system genes. This systematic review, adhering to PICOS and PRISMA-P 2015 guidelines, highlights the sex-dependent roles of estrogens, progesterone, and testosterone in SUD. In particular, estradiol elevates and progesterone reduces dopaminergic activity in SUD females, whilst testosterone and progesterone augment SUD behavior in males. Finally, SUD is associated with a sex-specific increase in the rate of opioid and monoaminergic gene methylation. The study reveals the need for detailed research on gonadal hormone levels, dopaminergic or reward system activity, and epigenetic landscapes in both sexes for efficient SUD therapy development.
Collapse
Affiliation(s)
- Raquel Santos-Toscano
- School of Medicine, University of Central Lancashire, 135A Adelphi St, Preston PR1 7BH, United Kingdom
| | - Maria Angeles Arevalo
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Miguel Garcia-Segura
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniela Grassi
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, 28029 Madrid, Spain.
| | - Natalia Lagunas
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Ciudad Universitaria, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
10
|
Seib DR, Tobiansky DJ, Meitzen J, Floresco SB, Soma KK. Neurosteroids and the mesocorticolimbic system. Neurosci Biobehav Rev 2023; 153:105356. [PMID: 37567491 DOI: 10.1016/j.neubiorev.2023.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The mesocorticolimbic system coordinates executive functions, such as working memory and behavioral flexibility. This circuit includes dopaminergic projections from the ventral tegmental area to the nucleus accumbens and medial prefrontal cortex. In this review, we summarize evidence that cells in multiple nodes of the mesocorticolimbic system produce neurosteroids (steroids synthesized in the nervous system) and express steroid receptors. Here, we focus on neuroandrogens (androgens synthesized in the nervous system), neuroestrogens (estrogens synthesized in the nervous system), and androgen and estrogen receptors. We also summarize how (neuro)androgens and (neuro)estrogens affect dopamine signaling in the mesocorticolimbic system and regulate executive functions. Taken together, the data suggest that steroids produced in the gonads and locally in the brain modulate higher-order cognition and executive functions.
Collapse
Affiliation(s)
- Désirée R Seib
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Daniel J Tobiansky
- Department of Biology and Neuroscience Program, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - John Meitzen
- Department of Biological Sciences and Center for Human Health and the Environment, NC State University, Raleigh, NC, USA
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Plaza-Briceño W, Velásquez VB, Silva-Olivares F, Ceballo K, Céspedes R, Jorquera G, Cruz G, Martínez-Pinto J, Bonansco C, Sotomayor-Zárate R. Chronic Exposure to High Fat Diet Affects the Synaptic Transmission That Regulates the Dopamine Release in the Nucleus Accumbens of Adolescent Male Rats. Int J Mol Sci 2023; 24:ijms24054703. [PMID: 36902133 PMCID: PMC10003643 DOI: 10.3390/ijms24054703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 03/05/2023] Open
Abstract
Obesity is a pandemic caused by many factors, including a chronic excess in hypercaloric and high-palatable food intake. In addition, the global prevalence of obesity has increased in all age categories, such as children, adolescents, and adults. However, at the neurobiological level, how neural circuits regulate the hedonic consumption of food intake and how the reward circuit is modified under hypercaloric diet consumption are still being unraveled. We aimed to determine the molecular and functional changes of dopaminergic and glutamatergic modulation of nucleus accumbens (NAcc) in male rats exposed to chronic consumption of a high-fat diet (HFD). Male Sprague-Dawley rats were fed a chow diet or HFD from postnatal day (PND) 21 to 62, increasing obesity markers. In addition, in HFD rats, the frequency but not amplitude of the spontaneous excitatory postsynaptic current is increased in NAcc medium spiny neurons (MSNs). Moreover, only MSNs expressing dopamine (DA) receptor type 2 (D2) increase the amplitude and glutamate release in response to amphetamine, downregulating the indirect pathway. Furthermore, NAcc gene expression of inflammasome components is increased by chronic exposure to HFD. At the neurochemical level, DOPAC content and tonic dopamine (DA) release are reduced in NAcc, while phasic DA release is increased in HFD-fed rats. In conclusion, our model of childhood and adolescent obesity functionally affects the NAcc, a brain nucleus involved in the hedonic control of feeding, which might trigger addictive-like behaviors for obesogenic foods and, through positive feedback, maintain the obese phenotype.
Collapse
Affiliation(s)
- Wladimir Plaza-Briceño
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Victoria B. Velásquez
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Francisco Silva-Olivares
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Viña del Mar 2520000, Chile
| | - Karina Ceballo
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Ricardo Céspedes
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: (C.B.); (R.S.-Z.)
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: (C.B.); (R.S.-Z.)
| |
Collapse
|
12
|
Miller CK, Krentzel AA, Meitzen J. ERα Stimulation Rapidly Modulates Excitatory Synapse Properties in Female Rat Nucleus Accumbens Core. Neuroendocrinology 2023; 113:1140-1153. [PMID: 36746131 PMCID: PMC10623399 DOI: 10.1159/000529571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The nucleus accumbens core (NAcc) is a sexually differentiated brain region that is modulated by steroid hormones such as 17β-estradiol (estradiol), with consequential impacts on relevant motivated behaviors and disorders such as addiction, anxiety, and depression. NAcc estradiol levels naturally fluctuate, including during the estrous cycle in adult female rats, which is analogous to the menstrual cycle in adult humans. Across the estrous cycle, excitatory synapse properties of medium spiny neurons rapidly change, as indicated by analysis of miniature excitatory postsynaptic currents (mEPSCs). mEPSC frequency decreases during estrous cycle phases associated with high estradiol levels. This decrease in mEPSC frequency is mimicked by acute topical exposure to estradiol. The identity of the estrogen receptor (ER) underlying this estradiol action is unknown. Adult rat NAcc expresses three ERs, all extranuclear: membrane ERα, membrane ERβ, and GPER1. METHODS In this brief report, we take a first step toward addressing this challenge by testing whether activation of ERs via acute topical agonist application is sufficient for inducing changes in mEPSC properties recorded via whole-cell patch clamp. RESULTS An agonist of ERα induced large decreases in mEPSC frequency, while agonists of ERβ and GPER1 did not robustly modulate mEPSC properties. CONCLUSIONS These data provide evidence that activation of ERα is sufficient for inducing changes in mEPSC frequency and is a likely candidate underlying the estradiol-induced changes observed during the estrous cycle. Overall, these findings extend our understanding of the neuroendocrinology of the NAcc and implicate ERα as a primary target for future studies.
Collapse
Affiliation(s)
- Christiana K. Miller
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Amanda A. Krentzel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
13
|
Kövesdi E, Udvarácz I, Kecskés A, Szőcs S, Farkas S, Faludi P, Jánosi TZ, Ábrahám IM, Kovács G. 17β-estradiol does not have a direct effect on the function of striatal cholinergic interneurons in adult mice in vitro. Front Endocrinol (Lausanne) 2023; 13:993552. [PMID: 36686456 PMCID: PMC9848397 DOI: 10.3389/fendo.2022.993552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
The striatum is an essential component of the basal ganglia that is involved in motor control, action selection and motor learning. The pathophysiological changes of the striatum are present in several neurological and psychiatric disorder including Parkinson's and Huntington's diseases. The striatal cholinergic neurons are the main regulators of striatal microcircuitry. It has been demonstrated that estrogen exerts various effects on neuronal functions in dopaminergic and medium spiny neurons (MSN), however little is known about how the activity of cholinergic interneurons are influenced by estrogens. In this study we examined the acute effect of 17β-estradiol on the function of striatal cholinergic neurons in adult mice in vitro. We also tested the effect of estrus cycle and sex on the spontaneous activity of cholinergic interneurons in the striatum. Our RNAscope experiments showed that ERα, ERβ, and GPER1 receptor mRNAs are expressed in some striatal cholinergic neurons at a very low level. In cell-attached patch clamp experiments, we found that a high dose of 17β-estradiol (100 nM) affected the spontaneous firing rate of these neurons only in old males. Our findings did not demonstrate any acute effect of a low concentration of 17β-estradiol (100 pM) or show any association of estrus cycle or sex with the activity of striatal cholinergic neurons. Although estrogen did not induce changes in the intrinsic properties of neurons, indirect effects via modulation of the synaptic inputs of striatal cholinergic interneurons cannot be excluded.
Collapse
Affiliation(s)
- Erzsébet Kövesdi
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Ildikó Udvarácz
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Angéla Kecskés
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Szilárd Szőcs
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Szidónia Farkas
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Péter Faludi
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Tibor Z. Jánosi
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - István M. Ábrahám
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| | - Gergely Kovács
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Pécs, Hungary
| |
Collapse
|
14
|
Aghi K, Goetz TG, Pfau DR, Sun SED, Roepke TA, Guthman EM. Centering the Needs of Transgender, Nonbinary, and Gender-Diverse Populations in Neuroendocrine Models of Gender-Affirming Hormone Therapy. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1268-1279. [PMID: 35863692 PMCID: PMC10472479 DOI: 10.1016/j.bpsc.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Most studies attempting to address the health care needs of the millions of transgender, nonbinary, and/or gender-diverse (TNG) individuals rely on human subjects, overlooking the benefits of translational research in animal models. Researchers have identified many ways in which gonadal steroid hormones regulate neuronal gene expression, connectivity, activity, and function across the brain to control behavior. However, these discoveries primarily benefit cisgender populations. Research into the effects of exogenous hormones such as estradiol, testosterone, and progesterone has a direct translational benefit for TNG individuals on gender-affirming hormone therapies (GAHTs). Despite this potential, endocrinological health care for TNG individuals remains largely unimproved. Here, we outline important areas of translational research that could address the unique health care needs of TNG individuals on GAHT. We highlight key biomedical questions regarding GAHT that can be investigated using animal models. We discuss how contemporary research fails to address the needs of GAHT users and identify equitable practices for cisgender scientists engaging with this work. We conclude that if necessary and important steps are taken to address these issues, translational research on GAHTs will greatly benefit the health care outcomes of TNG people.
Collapse
Affiliation(s)
- Krisha Aghi
- Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Teddy G Goetz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel R Pfau
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Center for Applied Transgender Studies, Chicago, Illinois
| | - Troy A Roepke
- Department of Animal Sciences, School of Biological and Environmental Sciences, Rutgers University, New Brunswick
| | - Eartha Mae Guthman
- Center for Applied Transgender Studies, Chicago, Illinois; Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey.
| |
Collapse
|
15
|
Troshev D, Bannikova A, Blokhin V, Kolacheva A, Pronina T, Ugrumov M. Striatal Neurons Partially Expressing a Dopaminergic Phenotype: Functional Significance and Regulation. Int J Mol Sci 2022; 23:ijms231911054. [PMID: 36232359 PMCID: PMC9570204 DOI: 10.3390/ijms231911054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of striatal neurons expressing dopamine-synthesizing enzymes, researchers have attempted to identify their phenotype and functional significance. In this study, it was shown that in transgenic mice expressing green fluorescent protein (GFP) under the tyrosine hydroxylase (TH) gene promoter, (i) there are striatal neurons expressing only TH, only aromatic L-amino acid decarboxylase (AADC), or both enzymes of dopamine synthesis; (ii) striatal neurons expressing dopamine-synthesizing enzymes are not dopaminergic since they lack a dopamine transporter; (iii) monoenzymatic neurons expressing individual complementary dopamine-synthesizing enzymes produce this neurotransmitter in cooperation; (iv) striatal nerve fibers containing only TH, only AADC, or both enzymes project into the lateral ventricles, providing delivery pathways for L-3,4-dihydroxyphenylalanine and dopamine to the cerebrospinal fluid; and (v) striatal GFP neurons express receptor genes for various signaling molecules, i.e., classical neurotransmitters, neuropeptides, and steroids, indicating fine regulation of these neurons. Based on our data, it is assumed that the synthesis of dopamine by striatal neurons is a compensatory response to the death of nigral dopaminergic neurons in Parkinson’s disease, which opens broad prospects for the development of a fundamentally novel antiparkinsonian therapy.
Collapse
|
16
|
Immunofluorescent Evidence for Nuclear Localization of Aromatase in Astrocytes in the Rat Central Nervous System. Int J Mol Sci 2022; 23:ijms23168946. [PMID: 36012212 PMCID: PMC9408820 DOI: 10.3390/ijms23168946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022] Open
Abstract
Estrogens regulate a variety of neuroendocrine, reproductive and also non-reproductive brain functions. Estradiol biosynthesis in the central nervous system (CNS) is catalyzed by the enzyme aromatase, which is expressed in several brain regions by neurons, astrocytes and microglia. In this study, we performed a complex fluorescent immunocytochemical analysis which revealed that aromatase is colocalized with the nuclear stain in glial fibrillary acidic protein (GFAP) positive astrocytes in cell cultures. Confocal immunofluorescent Z-stack scanning analysis confirmed the colocalization of aromatase with the nuclear DAPI signal. Nuclear aromatase was also detectable in the S100β positive astrocyte subpopulation. When the nuclear aromatase signal was present, estrogen receptor alpha was also abundant in the nucleus. Immunostaining of frozen brain tissue sections showed that the nuclear colocalization of the enzyme in GFAP-positive astrocytes is also detectable in the adult rat brain. CD11b/c labelled microglial cells express aromatase, but the immunopositive signal was distributed only in the cytoplasm both in the ramified and amoeboid microglial forms. Immunostaining of rat ovarian tissue sections and human granulosa cells revealed that aromatase was present only in the cytoplasm. This novel observation suggests a new unique mechanism in astrocytes that may regulate certain CNS functions via estradiol production.
Collapse
|
17
|
Krentzel AA, Proaño SB, Dorris DM, Setzer B, Meitzen J. The estrous cycle and 17β-estradiol modulate the electrophysiological properties of rat nucleus accumbens core medium spiny neurons. J Neuroendocrinol 2022; 34:e13122. [PMID: 35365910 PMCID: PMC9250601 DOI: 10.1111/jne.13122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 12/03/2022]
Abstract
The nucleus accumbens core is a key nexus within the mammalian brain for integrating the premotor and limbic systems and regulating important cognitive functions such as motivated behaviors. Nucleus accumbens core functions show sex differences and are sensitive to the presence of hormones such as 17β-estradiol (estradiol) in normal and pathological contexts. The primary neuron type of the nucleus accumbens core, the medium spiny neuron (MSN), exhibits sex differences in both intrinsic excitability and glutamatergic excitatory synapse electrophysiological properties. Here, we provide a review of recent literature showing how estradiol modulates rat nucleus accumbens core MSN electrophysiology within the context of the estrous cycle. We review the changes in MSN electrophysiological properties across the estrous cycle and how these changes can be mimicked in response to exogenous estradiol exposure. We discuss in detail recent findings regarding how acute estradiol exposure rapidly modulates excitatory synapse properties in nucleus accumbens core but not caudate-putamen MSNs, which mirror the natural changes seen across estrous cycle phases. These recent insights demonstrate the strong impact of sex-specific estradiol action upon nucleus accumbens core neuron electrophysiology.
Collapse
Affiliation(s)
- Amanda A. Krentzel
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Stephanie B. Proaño
- Neurobiology LaboratoryNational Institute of Environmental Health Sciences, NIHResearch Triangle ParkNCUSA
| | - David M. Dorris
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Beverly Setzer
- Graduate Program for Neuroscience and Department of Biomedical EngineeringBoston UniversityBostonMAUSA
| | - John Meitzen
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNCUSA
- Center for Human Health and the EnvironmentNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
18
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
19
|
Almey A, Milner TA, Brake WG. Estrogen receptors observed at extranuclear neuronal sites and in glia in the nucleus accumbens core and shell of the female rat: Evidence for localization to catecholaminergic and GABAergic neurons. J Comp Neurol 2022; 530:2056-2072. [PMID: 35397175 PMCID: PMC9167786 DOI: 10.1002/cne.25320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/08/2022]
Abstract
Estrogens affect dopamine-dependent diseases/behavior and have rapid effects on dopamine release and receptor availability in the nucleus accumbens (NAc). Low levels of nuclear estrogen receptor (ER) α and ERβ are seen in the NAc, which cannot account for the rapid effects of estrogens in this region. G-protein coupled ER 1 (GPER1) is observed at low levels in the NAc shell, which also likely does not account for the array of estrogens' effects in this region. Prior studies demonstrated membrane-associated ERs in the dorsal striatum; these experiments extend those findings to the NAc core and shell. Single- and dual-immunolabeling electron microscopy determined whether ERα, ERβ, and GPER1 are at extranuclear sites in the NAc core and shell and whether ERα and GPER1 were localized to catecholaminergic or γ-aminobutyric acid-ergic (GABAergic) neurons. All three ERs are observed, almost exclusively, at extranuclear sites in the NAc, and similarly distributed in the core and shell. ERα, ERβ, and GPER1 are primarily in axons and axon terminals suggesting that estrogens affect transmission in the NAc via presynaptic mechanisms. About 10% of these receptors are found on glia. A small proportion of ERα and GPER1 are localized to catecholaminergic terminals, suggesting that binding at these ERs alters release of catecholamines, including dopamine. A larger proportion of ERα and GPER1 are localized to GABAergic dendrites and terminals, suggesting that estrogens alter GABAergic transmission to indirectly affect dopamine transmission in the NAc. Thus, the localization of ERs could account for the rapid effects of estrogen in the NAc.
Collapse
Affiliation(s)
- Anne Almey
- Department of Psychology, Centre for Studies in Behavioral Neurobiology (CSBN), Concordia University, Montreal, Canada
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA.,Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York City, New York, USA
| | - Wayne G Brake
- Department of Psychology, Centre for Studies in Behavioral Neurobiology (CSBN), Concordia University, Montreal, Canada
| |
Collapse
|
20
|
Joue G, Chakroun K, Bayer J, Gläscher J, Zhang L, Fuss J, Hennies N, Sommer T. Sex Differences and Exogenous Estrogen Influence Learning and Brain Responses to Prediction Errors. Cereb Cortex 2021; 32:2022-2036. [PMID: 34649284 DOI: 10.1093/cercor/bhab334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/14/2022] Open
Abstract
Animal studies show marked sex differences as well as effects of estrogen (E2) in the mesocorticolimbic dopaminergic (DA) pathways, which play a critical role in reward processing and reinforcement learning and are also implicated in drug addiction. In this computational pharmacological fMRI study, we investigate the effects of both factors, sex and estrogen, on reinforcement learning and the dopaminergic system in humans; 67 male and 64 naturally cycling female volunteers, the latter in their low-hormone phase, were randomly assigned, double-blind, to take E2 or placebo. They completed a reinforcement learning task in the MRI scanner for which we have previously shown reward prediction error (RPE)-related activity to be dopaminergic. We found RPE-related brain activity to be enhanced in women compared with men and to a greater extent when E2 levels were elevated in both sexes. However, both factors, female sex and E2, slowed adaptation to RPEs (smaller learning rate). This discrepancy of larger RPE-related activity yet smaller learning rates can be explained by organizational sex differences and activational effects of circulating E2, which both affect DA release differently to DA receptor binding capacities.
Collapse
Affiliation(s)
- Gina Joue
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Karima Chakroun
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Janine Bayer
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan Gläscher
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lei Zhang
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Johannes Fuss
- Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nora Hennies
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tobias Sommer
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
21
|
Quigley JA, Logsdon MK, Graham BC, Beaudoin KG, Becker JB. Activation of G protein-coupled estradiol receptor 1 in the dorsolateral striatum enhances motivation for cocaine and drug-induced reinstatement in female but not male rats. Biol Sex Differ 2021; 12:46. [PMID: 34391470 PMCID: PMC8364009 DOI: 10.1186/s13293-021-00389-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/24/2021] [Indexed: 01/06/2023] Open
Abstract
Background Estradiol potentiates drug-taking behaviors, including motivation to self-administer cocaine and reinstatement of drug-seeking after extinction in females, but not males. The dorsolateral stratum (DLS) is a region of the brain implicated in mediating drug-seeking behaviors and, more specifically, is a target brain area to study how estradiol regulates these behaviors. The estradiol receptors α, β, and G protein-coupled estradiol receptor 1 (GPER1) are all present in the DLS. In this study, the effects of activating GPER1 in the DLS on drug-seeking are investigated. Methods Gonad-intact male and female rats were trained to self-administer cocaine (0.4 mg/kg/inf) on a fixed-ratio 1 schedule of reinforcement. For 4 weeks, animals underwent testing on a progressive ratio schedule of reinforcement to determine their motivation to attain cocaine. Halfway through progressive ratio testing, a selective agonist targeting GPER1 (G1) was administered intra-DLS to determine the contribution of GPER1 activation on motivation for cocaine. The effects of intra-DLS GPER1 activation on drug-induced reinstatement after extinction were subsequently determined. Results Activation of GPER1, via intra-DLS G1 administration, potentiated females’ motivation to self-administer cocaine. There was no effect of prior G1 treatment on extinction of cocaine-taking in females; however, G1 treatment resulted in greater drug-induced reinstatement (10 mg/kg cocaine, i.p.). There were no effects of intra-DLS GPER1 activation observed on motivation for cocaine or cocaine-induced reinstatement of responding in males. Conclusions These results support the conclusion that activation of GPER1 in the DLS enhances cocaine-seeking behaviors for female, but not male rats.
Collapse
Affiliation(s)
- Jacqueline A Quigley
- Psychology Department, University of Michigan, Ann Arbor, MI, 48109, USA. .,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Molly K Logsdon
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brianna C Graham
- Psychology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kendra G Beaudoin
- Psychology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jill B Becker
- Psychology Department, University of Michigan, Ann Arbor, MI, 48109, USA.,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
22
|
Kerkenberg N, Wachsmuth L, Zhang M, Schettler C, Ponimaskin E, Faber C, Baune BT, Zhang W, Hohoff C. Brain microstructural changes in mice persist in adulthood and are modulated by the palmitoyl acyltransferase ZDHHC7. Eur J Neurosci 2021; 54:5951-5967. [PMID: 34355442 DOI: 10.1111/ejn.15415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022]
Abstract
For a long time, mice have been classified as adults with completely mature brains at 8 weeks of age, but recent research suggests that developmental brain changes occur for up to 6 months. In particular, adolescence coincides with dramatic changes of neuronal structure and function in the brain that influence the connectivity between areas like hippocampus and medial prefrontal cortex (mPFC). Neuronal development and plasticity are regulated in part by the palmitoyl acyltransferase ZDHHC7, which modulates structural connectivity between hippocampus and mPFC. The aim of the current study was to investigate whether developmental changes take place in hippocampus and mPFC microstructure even after 8 weeks of age and whether deficiency of ZDHHC7 impacts such age-dependent alterations. Altogether, 46 mice at 11, 14 or 17 weeks of age with a genetic Zdhhc7 knockout (KO) or wild type (WT) were analysed with neuroimaging and diffusion tensor-based fibre tractography. The hippocampus and mPFC regions were compared regarding fibre metrics, supplemented by volumetric and immunohistological analyses of the hippocampus. In WT animals, we identified age-dependent changes in hippocampal fibre lengths that followed a U-shaped pattern, whereas in mPFC, changes were linear. In Zdhhc7-deficient animals, the fibre statistics were reduced in both regions, whereas the hippocampus volume and the intensities of myelin and neurofilament were higher in 11-week-old KO mice compared to WTs. Our results confirmed ongoing changes of microstructure in mice up to 17 weeks old and demonstrate that deleting the Zdhhc7 gene impairs fibre development, suggesting that palmitoylation is important in this process.
Collapse
Affiliation(s)
- Nicole Kerkenberg
- Department of Mental Health, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Mingyue Zhang
- Department of Mental Health, University of Münster, Münster, Germany
| | | | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Cornelius Faber
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.,Clinic of Radiology, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Department of Mental Health, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.,Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia.,Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Weiqi Zhang
- Department of Mental Health, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Christa Hohoff
- Department of Mental Health, University of Münster, Münster, Germany
| |
Collapse
|
23
|
Krentzel AA, Kimble LC, Dorris DM, Horman BM, Meitzen J, Patisaul HB. FireMaster® 550 (FM 550) exposure during the perinatal period impacts partner preference behavior and nucleus accumbens core medium spiny neuron electrophysiology in adult male and female prairie voles, Microtus ochrogaster. Horm Behav 2021; 134:105019. [PMID: 34182292 PMCID: PMC8403633 DOI: 10.1016/j.yhbeh.2021.105019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
One of the most widely used flame retardant (FR) mixtures in household products is Firemaster 550 (FM 550). FM 550 leaches from items such as foam-based furniture and infant products, resulting in contamination of the household environment and biota. Previous studies indicate sex-specific behavioral deficits in rodents and zebrafish in response to developmental FM 550 exposure. These deficits include impacts on social and attachment behaviors in a prosocial rodent: the prairie vole (Microtus ochrogaster). The prairie vole is a laboratory-acclimated rodent that exhibits spontaneous attachment behaviors including pair bonding. Here we extend previous work by addressing how developmental exposure to FM 550 impacts pair bonding strength via an extended-time partner preference test, as well as neuron electrophysiological properties in a region implicated in pair bond behavior, the nucleus accumbens (NAcc) core. Dams were exposed to vehicle or 1000 μg of FM 550 via subcutaneous injections throughout gestation, and female and male pups were directly exposed beginning the day after birth until weaning. Pair bond behavior of adult female and male offspring was assessed using a three hour-long partner preference test. Afterwards, acute brain slices of the NAcc core were produced and medium spiny neuron electrophysiological attributes recorded via whole cell patch-clamp. Behavioral impacts were sex-specific. Partner preference behavior was increased in exposed females but decreased in exposed males. Electrophysiological impacts were similar between sexes and specific to attributes related to input resistance. Input resistance was decreased in neurons recorded from both sexes exposed to FM 550 compared to vehicle. This study supports the hypothesis that developmental exposure to FM 550 impacts attachment behaviors and demonstrates a novel FM 550 effect on neural electrophysiology.
Collapse
Affiliation(s)
- Amanda A Krentzel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Laney C Kimble
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - David M Dorris
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA.
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
24
|
Elgueta-Reyes M, Martínez-Pinto J, Renard GM, Sotomayor-Zárate R. Neonatal programming with sex hormones: Effect on expression of dopamine D 1 receptor and neurotransmitters release in nucleus accumbens in adult male and female rats. Eur J Pharmacol 2021; 902:174118. [PMID: 33905702 DOI: 10.1016/j.ejphar.2021.174118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022]
Abstract
Steroid sex hormones produce physiological effects in reproductive and non-reproductive tissues, such as the brain. In the brain, sex hormones receptors are expressed in cortical, limbic and midbrain areas modulating memory, arousal, fear and motivation between other behaviors. One neurotransmitters system regulated by sex hormones is dopamine (DA), where during adulthood, sex hormones promote neurophysiological and behavioral effects on DA systems such as tuberoinfundibular (prolactin secretion), nigrostriatal (motor circuit regulation) and mesocorticolimbic (driving of motivated behavior). However, the long-term effects induced by neonatal exposure to sex hormones on DA release induced by D1 receptor activation and its expression in nucleus accumbens (NAcc) have not been fully studied. To answer this question, neurochemical, cellular and molecular techniques were used. The data show sex differences in NAcc DA extracellular levels induced by D1 receptor activation and protein content of this receptor in male and female control rats. In addition, neonatal programming with a single dose of TP increases the NAcc protein content of D1 receptors of adult male and female rats. Our results show new evidence related with sex differences that could explain the dependence to drug of abuse in males and females, which may be associated with increased reinforcing effects of drugs of abuse.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/administration & dosage
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Aging
- Animals
- Animals, Newborn
- Dopamine/metabolism
- Dopamine Agonists/administration & dosage
- Dopamine Agonists/pharmacology
- Estradiol/administration & dosage
- Estradiol/pharmacology
- Female
- Glutamic Acid/metabolism
- Gonadal Steroid Hormones/administration & dosage
- Gonadal Steroid Hormones/pharmacology
- Injections
- Male
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Sex Factors
- Testosterone Propionate/administration & dosage
- Testosterone Propionate/pharmacology
- Time
- gamma-Aminobutyric Acid/metabolism
- Rats
Collapse
Affiliation(s)
- Maximiliano Elgueta-Reyes
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile.
| | - Jonathan Martínez-Pinto
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| | - Georgina M Renard
- Universidad de Santiago de Chile (USACH), Facultad de Ciencias Médicas, Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Santiago, Chile.
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
25
|
Cao J, Meitzen J. Perinatal activation of ER α and ER β but not GPER-1 masculinizes female rat caudate-putamen medium spiny neuron electrophysiological properties. J Neurophysiol 2021; 125:2322-2338. [PMID: 33978486 DOI: 10.1152/jn.00063.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Exposure to steroid sex hormones such as 17β-estradiol (estradiol) during early life potentially permanently masculinize neuron electrophysiological phenotype. In rodents, one crucial component of this developmental process occurs in males, with estradiol aromatized in the brain from testes-sourced testosterone. However, it is unknown whether most neuron electrophysiological phenotypes are altered by this early masculinization process, including medium spiny neurons (MSNs) of the rat caudate-putamen. MSNs are the predominant and primary output neurons of the caudate-putamen and exhibit increased intrinsic excitability in females compared to males. Here, we hypothesize that since perinatal estradiol exposure occurs in males, then a comparable exposure in females to estradiol or its receptor agonists would be sufficient to induce masculinization. To test this hypothesis, we injected perinatal female rats with estradiol or its receptor agonists and then later assessed MSN electrophysiology. Female and male rats on postnatal day 0 and 1 were systemically injected with either vehicle, estradiol, the estrogen receptor (ER)α agonist PPT, the ERβ agonist DPN, or the G-protein-coupled receptor 1 (GPER-1) agonist G1. On postnatal days 19 ± 2, MSN electrophysiological properties were assessed using whole cell patch clamp recordings. Estradiol exposure abolished increased intrinsic excitability in female compared to male MSNs. Exposure to either an ERα or ERβ agonist masculinized female MSN evoked action potential firing rate properties, whereas exposure to an ERβ agonist masculinized female MSN inward rectification properties. Exposure to ER agonists minimally impacted male MSN electrophysiological properties. These findings indicate that perinatal estradiol exposure masculinizes MSN electrophysiological phenotype via activation of ERα and ERβ.NEW & NOTEWORTHY This study is the first to demonstrate that estradiol and estrogen receptor α and β stimulation during early development sexually differentiates the electrophysiological properties of caudate-putamen medium spiny neurons, the primary output neuron of the striatal regions. Overall, this evidence provides new insight into the neuroendocrine mechanism by which caudate-putamen neuron electrophysiology is sexually differentiated and demonstrates the powerful action of early hormone exposure upon individual neuron electrophysiology.
Collapse
Affiliation(s)
- Jinyan Cao
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
26
|
Quigley JA, Becker JB. Activation of G-protein coupled estradiol receptor 1 in the dorsolateral striatum attenuates preference for cocaine and saccharin in male but not female rats. Horm Behav 2021; 130:104949. [PMID: 33609527 PMCID: PMC8012250 DOI: 10.1016/j.yhbeh.2021.104949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
There are sex differences in the response to psychomotor stimulants, where females exhibit a greater response than males, due to the presence of the gonadal hormone estradiol (E2). Extensive research has shown that E2 enhances drug-seeking and the rewarding properties of cocaine for females. The role of E2 in male drug-seeking, however, is not well understood. The current study investigated pharmacological manipulation of E2 receptors in the dorsolateral striatum (DLS) on preference for cocaine in gonad-intact male and female rats. In males, activation of G-protein coupled E2 receptor 1 (GPER1), via administration of ICI 182,780 or G1, attenuated conditioned place preference for 10 mg/kg cocaine, while inhibition of GPER1, via G15, enhanced preference at a 5 mg/kg cocaine dose. Similarly, GPER1 activation, via G1, prevented males from forming a preference for 0.1% saccharin (SACC) versus plain water. Surprisingly, activation of GPER1 did not alter preference for cocaine or SACC in females. These studies also examined the quantity of E2 receptor mRNA in the dorsal striatum, using qPCR. No sex differences in relative mRNA expression of ERα, ERβ, and GPER1 were observed. However, there was greater GPER1 mRNA, relative to ERα and ERβ, in both males and females. The results presented here indicate that E2, acting via GPER1, may be protective against drug preference in male rats.
Collapse
Affiliation(s)
| | - Jill B Becker
- Psychology Department, University of Michigan, Ann Arbor, MI, 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
27
|
Abstract
Estrogens are critical in driving sex-typical social behaviours that are ethologically relevant in mammals. This is due to both production of local estrogens and signaling by these ligands, particularly in an interconnected set of nuclei called the social behavioural network (SBN). The SBN is a sexually dimorphic network studied predominantly in rodents that is thought to underlie the display of social behaviour in mammals. Signalling by the predominant endogenous estrogen, 17β-estradiol, can be either via the classical genomic or non-classical rapid pathway. In the classical genomic pathway, 17β-estradiol binds the intracellular estrogen receptors (ER) α and β which act as ligand-dependent transcription factors to regulate transcription. In the non-genomic pathway, 17β-estradiol binds a putative plasma membrane ER (mER) such as GPR30/GPER1 to rapidly signal via kinases or calcium flux. Though GPER1's role in sexual dimorphism has been explored to a greater extent in cardiovascular physiology, less is known about its role in the brain. In the last decade, activation of GPER1 has been shown to be important for lordosis and social cognition in females. In this review we will focus on several mechanisms that may contribute to sexually dimorphic behaviors including the colocalization of these estrogen receptors in the SBN, interplay between the signaling pathways activated by these different estrogen receptors, and the role of these receptors in development and the maintenance of the SBN, all of which remain underexplored.
Collapse
|