1
|
Seo Y, Bang S, Son J, Kim D, Jeong Y, Kim P, Yang J, Eom JH, Choi N, Kim HN. Brain physiome: A concept bridging in vitro 3D brain models and in silico models for predicting drug toxicity in the brain. Bioact Mater 2022; 13:135-148. [PMID: 35224297 PMCID: PMC8843968 DOI: 10.1016/j.bioactmat.2021.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, adverse reactions to pharmaceuticals have been evaluated using 2D in vitro models and animal models. However, with increasing computational power, and as the key drivers of cellular behavior have been identified, in silico models have emerged. These models are time-efficient and cost-effective, but the prediction of adverse reactions to unknown drugs using these models requires relevant experimental input. Accordingly, the physiome concept has emerged to bridge experimental datasets with in silico models. The brain physiome describes the systemic interactions of its components, which are organized into a multilevel hierarchy. Because of the limitations in obtaining experimental data corresponding to each physiome component from 2D in vitro models and animal models, 3D in vitro brain models, including brain organoids and brain-on-a-chip, have been developed. In this review, we present the concept of the brain physiome and its hierarchical organization, including cell- and tissue-level organizations. We also summarize recently developed 3D in vitro brain models and link them with the elements of the brain physiome as a guideline for dataset collection. The connection between in vitro 3D brain models and in silico modeling will lead to the establishment of cost-effective and time-efficient in silico models for the prediction of the safety of unknown drugs.
Collapse
Affiliation(s)
- Yoojin Seo
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seokyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongtae Son
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dongsup Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jihun Yang
- Next&Bio Inc., Seoul, 02841, Republic of Korea
| | - Joon-Ho Eom
- Medical Device Research Division, National Institute of Food and Drug Safety Evaluation, Cheongju, 28159, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
2
|
Velasco-Estevez M, Koch N, Klejbor I, Caratis F, Rutkowska A. Mechanoreceptor Piezo1 Is Downregulated in Multiple Sclerosis Brain and Is Involved in the Maturation and Migration of Oligodendrocytes in vitro. Front Cell Neurosci 2022; 16:914985. [PMID: 35722613 PMCID: PMC9204635 DOI: 10.3389/fncel.2022.914985] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Mechanical properties of the brain such as intracranial pressure or stiffness of the matrix play an important role in the brain’s normal physiology and pathophysiology. The physical properties are sensed by the cells through mechanoreceptors and translated into ion currents which activate multiple biochemical cascades allowing the cells to adapt and respond to changes in their microenvironment. Piezo1 is one of the first identified mechanoreceptors. It modulates various central nervous system functions such as axonal growth or activation of astrocytes. Piezo1 signaling was also shown to play a role in the pathophysiology of Alzheimer’s disease. Here, we explore the expression of the mechanoreceptor Piezo1 in human MO3.13 oligodendrocytes and human MS/non-MS patients’ brains and investigate its putative effects on oligodendrocyte proliferation, maturation, and migration. We found that Piezo1 is expressed in human oligodendrocytes and oligodendrocyte progenitor cells in the human brain and that its inhibition with GsMTx4 leads to an increment in proliferation and migration of MO3.13 oligodendrocytes. Activation of Piezo1 with Yoda-1 induced opposite effects. Further, we observed that expression of Piezo1 decreased with MO3.13 maturation in vitro. Differences in expression were also observed between healthy and multiple sclerosis brains. Remarkably, the data showed significantly lower expression of Piezo1 in the white matter in multiple sclerosis brains compared to its expression in the white matter in healthy controls. There were no differences in Piezo1 expression between the white matter plaque and healthy-appearing white matter in the multiple sclerosis brain. Taken together, we here show that Piezo1-induced signaling can be used to modulate oligodendrocyte function and that it may be an important player in the pathophysiology of multiple sclerosis.
Collapse
Affiliation(s)
- Maria Velasco-Estevez
- H12O-CNIO Hematological Malignancies Group, Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Nina Koch
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Ilona Klejbor
- Department of Anatomy, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Fionä Caratis
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Rutkowska
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland
- *Correspondence: Aleksandra Rutkowska,
| |
Collapse
|
3
|
Valcárcel-Hernández V, López-Espíndola D, Guillén-Yunta M, García-Aldea Á, López de Toledo Soler I, Bárez-López S, Guadaño-Ferraz A. Deficient thyroid hormone transport to the brain leads to impairments in axonal caliber and oligodendroglial development. Neurobiol Dis 2021; 162:105567. [PMID: 34838669 DOI: 10.1016/j.nbd.2021.105567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/04/2023] Open
Abstract
Mutations in the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) lead to profound brain alterations, including myelination impairments, in humans. We aimed to further explore the pathophysiological mechanisms underlying the MCT8 deficiency-associated myelination impairments to unravel new biomarkers and therapeutic targets. We have performed brain histological analysis on an MCT8-deficient subject and histological, ultrastructural, and magnetic resonance imaging (MRI) analysis in the brain of a mouse model of the syndrome, lacking MCT8 and enzyme deiodinase type 2 (DIO2, Mct8/Dio2 KO). We have found that the MCT8-deficient subject presents severely reduced myelin lipid and protein staining and increased proportion of small-caliber myelinated axons in detriment of large-caliber ones. Mct8/Dio2 KO mice present myelination impairments and abnormal oligodendroglial development. We conclude that the greater proportion of small-caliber axons and impairments in the oligodendroglia lineage progression arise as potential mechanisms underlying the permanent myelination defects in MCT8-deficiency. Moreover, we present the Mct8/Dio2 KO mouse model, and MRI as a non-invasive biomarker, as highly valuable tools for preclinical studies involving MCT8 deficiency. These findings contribute to the understanding of the pathological mechanisms in MCT8 deficiency and suggest new biomarkers and therapeutic targets to consider therapeutic options for the neurological defects in patients.
Collapse
Affiliation(s)
- Víctor Valcárcel-Hernández
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Daniela López-Espíndola
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain; Escuela de Tecnología Médica and Centro de Investigaciones Biomédicas (CIB), Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar, Chile
| | - Marina Guillén-Yunta
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Ángel García-Aldea
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Inés López de Toledo Soler
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Soledad Bárez-López
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain; Translational Health Sciences, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, BS1 3NY Bristol, United Kingdom.
| | - Ana Guadaño-Ferraz
- Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
4
|
Gruber V, Lang J, Endmayr V, Diehm R, Pimpel B, Glatter S, Anink JJ, Bongaarts A, Luinenburg MJ, Reinten RJ, van der Wel N, Larsen P, Hainfellner JA, Rössler K, Aronica E, Scholl T, Mühlebner A, Feucht M. Impaired myelin production due to an intrinsic failure of oligodendrocytes in mTORpathies. Neuropathol Appl Neurobiol 2021; 47:812-825. [PMID: 34173252 PMCID: PMC8518586 DOI: 10.1111/nan.12744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022]
Abstract
AIMS We aim to evaluate if the myelin pathology observed in epilepsy-associated focal cortical dysplasia type 2B (FCD2B) and-histologically indistinguishable-cortical tubers of tuberous sclerosis complex (TSC) is primarily related to the underlying malformation or constitutes a secondary phenomenon due to the toxic microenvironment created by epileptic seizures. We also aim to investigate the possible beneficial effect of the mTOR pathway regulator everolimus on white matter pathology. METHODS Primary mixed glial cell cultures derived from epilepsy surgery specimens of one TSC and seven FCD2B patients were grown on polycaprolactone fibre matrices and analysed using immunofluorescence and electron microscopy. Unaffected white matter from three age-matched epilepsy patients with mild malformations of cortical development (mMCD) and one with FCD3D served as controls. Additionally, TSC2 knock-out was performed using an oligodendroglial cell line. Myelination capacities of nanofibre grown cells in an inflammatory environment after mTOR-inhibitor treatment with everolimus were further investigated. RESULTS Reduced oligodendroglial turnover, directly related to a lower myelin content was found in the patients' primary cells. In our culture model of myelination dynamics, primary cells grown under 'inflammatory condition' showed decreased myelination, that was repaired by treatment with everolimus. CONCLUSIONS Results obtained in patient-derived primary oligodendroglial and TSC2 knock-out cells suggest that maturation of oligodendroglia and production of a proper myelin sheath seem to be impaired as a result of mTOR pathway disturbance. Hence, oligodendroglial pathology may reflect a more direct effect of the abnormal genetic programme rather than to be an inactive bystander of chronic epilepsy.
Collapse
Affiliation(s)
- Victoria‐Elisabeth Gruber
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Judith Lang
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Verena Endmayr
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Robert Diehm
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Birgit Pimpel
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Sarah Glatter
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Jasper J. Anink
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anika Bongaarts
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mark J. Luinenburg
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Roy J. Reinten
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Nicole van der Wel
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Per Larsen
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Johannes A. Hainfellner
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Karl Rössler
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN)HeemstedeThe Netherlands
| | - Theresa Scholl
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| | - Angelika Mühlebner
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Martha Feucht
- Department of Pediatrics and Adolescent MedicineMedical University of Vienna – Affiliated Partner of the ERN EpiCAREViennaAustria
| |
Collapse
|
5
|
Shimizu T, Murakoshi H, Matsumoto H, Ichino K, Hattori A, Ueno S, Ishida A, Tajiri N, Hida H. Tension Sensor Based on Fluorescence Resonance Energy Transfer Reveals Fiber Diameter-Dependent Mechanical Factors During Myelination. Front Cell Neurosci 2021; 15:685044. [PMID: 34408628 PMCID: PMC8364977 DOI: 10.3389/fncel.2021.685044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 11/15/2022] Open
Abstract
Oligodendrocytes (OLs) form a myelin sheath around neuronal axons to increase conduction velocity of action potential. Although both large and small diameter axons are intermingled in the central nervous system (CNS), the number of myelin wrapping is related to the axon diameter, such that the ratio of the diameter of the axon to that of the entire myelinated-axon unit is optimal for each axon, which is required for exerting higher brain functions. This indicates there are unknown axon diameter-dependent factors that control myelination. We tried to investigate physical factors to clarify the mechanisms underlying axon diameter-dependent myelination. To visualize OL-generating forces during myelination, a tension sensor based on fluorescence resonance energy transfer (FRET) was used. Polystyrene nanofibers with varying diameters similar to neuronal axons were prepared to investigate biophysical factors regulating the OL-axon interactions. We found that higher tension was generated at OL processes contacting larger diameter fibers compared with smaller diameter fibers. Additionally, OLs formed longer focal adhesions (FAs) on larger diameter axons and shorter FAs on smaller diameter axons. These results suggest that OLs respond to the fiber diameter and activate mechanotransduction initiated at FAs, which controls their cytoskeletal organization and myelin formation. This study leads to the novel and interesting idea that physical factors are involved in myelin formation in response to axon diameter.
Collapse
Affiliation(s)
- Takeshi Shimizu
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Hidetoshi Matsumoto
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Meguro, Japan
| | - Kota Ichino
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Meguro, Japan
| | - Atsunori Hattori
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinya Ueno
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimasa Ishida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
6
|
Balestri S, Del Giovane A, Sposato C, Ferrarelli M, Ragnini-Wilson A. The Current Challenges for Drug Discovery in CNS Remyelination. Int J Mol Sci 2021; 22:ijms22062891. [PMID: 33809224 PMCID: PMC8001072 DOI: 10.3390/ijms22062891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
The myelin sheath wraps around axons, allowing saltatory currents to be transmitted along neurons. Several genetic, viral, or environmental factors can damage the central nervous system (CNS) myelin sheath during life. Unless the myelin sheath is repaired, these insults will lead to neurodegeneration. Remyelination occurs spontaneously upon myelin injury in healthy individuals but can fail in several demyelination pathologies or as a consequence of aging. Thus, pharmacological intervention that promotes CNS remyelination could have a major impact on patient’s lives by delaying or even preventing neurodegeneration. Drugs promoting CNS remyelination in animal models have been identified recently, mostly as a result of repurposing phenotypical screening campaigns that used novel oligodendrocyte cellular models. Although none of these have as yet arrived in the clinic, promising candidates are on the way. Many questions remain. Among the most relevant is the question if there is a time window when remyelination drugs should be administrated and why adult remyelination fails in many neurodegenerative pathologies. Moreover, a significant challenge in the field is how to reconstitute the oligodendrocyte/axon interaction environment representative of healthy as well as disease microenvironments in drug screening campaigns, so that drugs can be screened in the most appropriate disease-relevant conditions. Here we will provide an overview of how the field of in vitro models developed over recent years and recent biological findings about how oligodendrocytes mature after reactivation of their staminal niche. These data have posed novel questions and opened new views about how the adult brain is repaired after myelin injury and we will discuss how these new findings might change future drug screening campaigns for CNS regenerative drugs.
Collapse
|
7
|
Coll G, de Schlichting E, Sakka L, Garcier JM, Peyre H, Lemaire JJ. Assessment of Maturational Changes in White Matter Anisotropy and Volume in Children: A DTI Study. AJNR Am J Neuroradiol 2020; 41:1726-1732. [PMID: 32816761 DOI: 10.3174/ajnr.a6709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/07/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Anisotropy is a good indicator of white matter fascicle macrostructure and organization but the interpretation of its changes with age remains difficult. The increase of WM fascicle fractional anisotropy with time and its relationship with WM fascicle volume have never been examined during childhood. We studied the maturation of associative WM fascicles during childhood using MR imaging-based DTI. We explored whether the fractional anisotropy increase of the main WM fascicles persists beyond the period of brain growth and is related to WM fascicle volume increase. MATERIALS AND METHODS In a series of 25 healthy children, the fractional anisotropy and volume of 15 associative WM fascicles were calculated. Several regression linear mixed models were used to study maturation parameters (fractional anisotropy, volume, and total telencephalon volume) considered as dependent variables, while age and sex were independent variables (the variable identifying the different WM fascicles was considered as a repeated measure). RESULTS In children older than 8 years of age, WM fascicle fractional anisotropy increased with age (P value = .045) but not its volume (P value = .7) or the telencephalon volume (P value = .16). The time course of WM fascicle fractional anisotropy and volume suggested that each WM fascicle might follow a specific pattern of maturation. CONCLUSIONS The fractional anisotropy increase of several WM fascicles after 8 years of age may not result from an increase in WM fascicle volume. It might be the consequence of other developmental processes such as myelination.
Collapse
Affiliation(s)
- G Coll
- Service de Neurochirurgie (G.C.), Centre Hospitalier Universitaire Clermont-Ferrand, Clermont-Ferrand, France .,Centre National de la Recherche Scientifique (G.C.), SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - E de Schlichting
- Service de Neurochirurgie (E.d.S.), Centre Hospitalier Universitaire Clermont-Ferrand, Clermont-Ferrand, France
| | - L Sakka
- Service de Neurochirurgie (L.S.), Centre Hospitalier Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Laboratoire d'anatomie et d'organogenèse, laboratoire de biophysique sensorielle (L.S.), NeuroDol, faculté de médecine, Université Clermont Auvergne, Clermont-Ferrand, France
| | - J-M Garcier
- Service de Radiologie Pédiatrique (J.M.-G.), Centre Hospitalier Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Laboratoire d'Anatomie et d'Organogenèse, Laboratoire de Biophysique Sensorielle (J.M.G.), NeuroDol, Faculté de Médecine, Université Clermont Auvergne, Clermont-Ferrand, France
| | - H Peyre
- Service de Psychiatrie de l'Enfant et de l'Adolescent, Hôpital Robert Debré (H.P.), Assistance Publique-Hôpitaux de Paris, Paris, France
| | - J-J Lemaire
- Service de Neurochirurgie (J.-J.L.), Centre Hospitalier Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Centre National de la Recherche Scientifique (J.-J.L.), SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
8
|
Bonetto G, Kamen Y, Evans KA, Káradóttir RT. Unraveling Myelin Plasticity. Front Cell Neurosci 2020; 14:156. [PMID: 32595455 PMCID: PMC7301701 DOI: 10.3389/fncel.2020.00156] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Plasticity in the central nervous system (CNS) allows for responses to changing environmental signals. While the majority of studies on brain plasticity focus on neuronal synapses, myelin plasticity has now begun to emerge as a potential modulator of neuronal networks. Oligodendrocytes (OLs) produce myelin, which provides fast signal transmission, allows for synchronization of neuronal inputs, and helps to maintain neuronal function. Thus, myelination is also thought to be involved in learning. OLs differentiate from oligodendrocyte precursor cells (OPCs), which are distributed throughout the adult brain, and myelination continues into late adulthood. This process is orchestrated by numerous cellular and molecular signals, such as axonal diameter, growth factors, extracellular signaling molecules, and neuronal activity. However, the relative importance of, and cooperation between, these signaling pathways is currently unknown. In this review, we focus on the current knowledge about myelin plasticity in the CNS. We discuss new insights into the link between this type of plasticity, learning and behavior, as well as mechanistic aspects of myelin formation that may underlie myelin plasticity, highlighting OPC diversity in the CNS.
Collapse
Affiliation(s)
- Giulia Bonetto
- Wellcome - Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yasmine Kamen
- Wellcome - Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kimberley Anne Evans
- Wellcome - Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ragnhildur Thóra Káradóttir
- Wellcome - Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.,Department of Physiology, Biomedical Centre, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
9
|
Chapman TW, Hill RA. Myelin plasticity in adulthood and aging. Neurosci Lett 2019; 715:134645. [PMID: 31765728 DOI: 10.1016/j.neulet.2019.134645] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/06/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022]
Abstract
The central nervous system maintains the potential for molecular and cellular plasticity throughout life. This flexibility underlies fundamental features of neural circuitry including the brain's ability to sense, store, and properly adapt to everchanging external stimuli on time scales from seconds to years. Evidence for most forms of plasticity are centered around changes in neuronal structure and synaptic strength, however recent data suggests that myelinating oligodendrocytes exhibit certain forms of plasticity in the adult. This plasticity ranges from the generation of entirely new myelinating cells to more subtle changes in myelin sheath length, thickness, and distribution along axons. The extent to which these changes dynamically modify axonal function and neural circuitry and whether they are directly related to mechanisms of learning and memory remains an open question. Here we describe different forms of myelin plasticity, highlight some recent evidence for changes in myelination throughout life, and discuss how defects in these forms of plasticity could be associated with cognitive decline in aging.
Collapse
Affiliation(s)
- Timothy W Chapman
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
10
|
Oligodendrocytes in Development, Myelin Generation and Beyond. Cells 2019; 8:cells8111424. [PMID: 31726662 PMCID: PMC6912544 DOI: 10.3390/cells8111424] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS) that are generated from oligodendrocyte progenitor cells (OPC). OPC are distributed throughout the CNS and represent a pool of migratory and proliferative adult progenitor cells that can differentiate into oligodendrocytes. The central function of oligodendrocytes is to generate myelin, which is an extended membrane from the cell that wraps tightly around axons. Due to this energy consuming process and the associated high metabolic turnover oligodendrocytes are vulnerable to cytotoxic and excitotoxic factors. Oligodendrocyte pathology is therefore evident in a range of disorders including multiple sclerosis, schizophrenia and Alzheimer’s disease. Deceased oligodendrocytes can be replenished from the adult OPC pool and lost myelin can be regenerated during remyelination, which can prevent axonal degeneration and can restore function. Cell population studies have recently identified novel immunomodulatory functions of oligodendrocytes, the implications of which, e.g., for diseases with primary oligodendrocyte pathology, are not yet clear. Here, we review the journey of oligodendrocytes from the embryonic stage to their role in homeostasis and their fate in disease. We will also discuss the most common models used to study oligodendrocytes and describe newly discovered functions of oligodendrocytes.
Collapse
|
11
|
Hill RA, Grutzendler J. Uncovering the biology of myelin with optical imaging of the live brain. Glia 2019; 67:2008-2019. [PMID: 31033062 DOI: 10.1002/glia.23635] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/26/2019] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
Myelin has traditionally been considered a static structure that is produced and assembled during early developmental stages. While this characterization is accurate in some contexts, recent studies have revealed that oligodendrocyte generation and patterns of myelination are dynamic and potentially modifiable throughout life. Unique structural and biochemical properties of the myelin sheath provide opportunities for the development and implementation of multimodal label-free and fluorescence optical imaging approaches. When combined with genetically encoded fluorescent tags targeted to distinct cells and subcellular structures, these techniques offer a powerful methodological toolbox for uncovering mechanisms of myelin generation and plasticity in the live brain. Here, we discuss recent advances in these approaches that have allowed the discovery of several forms of myelin plasticity in developing and adult nervous systems. Using these techniques, long-standing questions related to myelin generation, remodeling, and degeneration can now be addressed.
Collapse
Affiliation(s)
- Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | - Jaime Grutzendler
- Departments of Neurology and Neuroscience, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
12
|
Transcriptomic characterization of MRI contrast with focus on the T1-w/T2-w ratio in the cerebral cortex. Neuroimage 2018; 174:504-517. [PMID: 29567503 PMCID: PMC6450807 DOI: 10.1016/j.neuroimage.2018.03.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 01/24/2023] Open
Abstract
Magnetic resonance (MR) images of the brain are of immense clinical and research utility. At the atomic and subatomic levels, the sources of MR signals are well understood. However, we lack a comprehensive understanding of the macromolecular correlates of MR signal contrast. To address this gap, we used genome-wide measurements to correlate gene expression with MR signal intensity across the cerebral cortex in the Allen Human Brain Atlas (AHBA). We focused on the ratio of T1-weighted and T2-weighted intensities (T1-w/T2-w ratio image), which is considered to be a useful proxy for myelin content. As expected, we found enrichment of positive correlations between myelin-associated genes and the ratio image, supporting its use as a myelin marker. Genome-wide, there was an association with protein mass, with genes coding for heavier proteins expressed in regions with high T1-w/T2-w values. Oligodendrocyte gene markers were strongly correlated with the T1-w/T2-w ratio, but this was not driven by myelin-associated genes. Mitochondrial genes exhibit the strongest relationship, showing higher expression in regions with low T1-w/T2-w ratio. This may be due to the pH gradient in mitochondria as genes up-regulated by pH in the brain were also highly correlated with the ratio. While we corroborate associations with myelin and synaptic plasticity, differences in the T1-w/T2-w ratio across the cortex are more strongly linked to molecule size, oligodendrocyte markers, mitochondria, and pH. We evaluate correlations between AHBA transcriptomic measurements and a group averaged T1-w/T2-w ratio image, showing agreement with in-sample results. Expanding our analysis to the whole brain results in strong positive T1-w/T2-w correlations for immune system, inflammatory disease, and microglia marker genes. Genes with negative correlations were enriched for neuron markers and synaptic plasticity genes. Lastly, our findings are similar when performed on T1-w or inverted T2-w intensities alone. These results provide a molecular characterization of MR contrast that will aid interpretation of future MR studies of the brain.
Collapse
|
13
|
Friede RL. The Significance of Internode Length for Saltatory Conduction: Looking Back at the Age of 90. J Neuropathol Exp Neurol 2017; 76:258-259. [PMID: 28340177 DOI: 10.1093/jnen/nlx014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of peripheral nerve fibers involves interdependence between the timing of Schwann cell recruitment during myelination and elongation of the nerve. This adjusts the number and the length of internodes to the length of the fiber. Saltatory conduction in longer nerves involves longer saltations; this makes internode length the factor that determines conduction velocity, thereby adjusting impulse transmission in circuits of different lengths. Myelination increases conduction velocity by means of saltatory conduction but what determines the saltatory conduction is not so much the indispensable insulating adjunct of myelin as the length of the internodes that separate the excitable membrane segments. We have previously studied the development of the length and proportion of internodes in some detail. If the anatomical data are combined, the data fall in place for a revised understanding of conduction velocity and the system that adapts the conduction properties of peripheral nerves to fiber lengths and to body size.
Collapse
Affiliation(s)
- Reinhard L Friede
- Case Western Reserve University, Cleveland, Ohio, University of Zürich, Zürich, Switzerland.,University of Gottingen, Gottingen, Germany
| |
Collapse
|
14
|
Berman S, West KL, Does MD, Yeatman JD, Mezer AA. Evaluating g-ratio weighted changes in the corpus callosum as a function of age and sex. Neuroimage 2017; 182:304-313. [PMID: 28673882 DOI: 10.1016/j.neuroimage.2017.06.076] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022] Open
Abstract
Recent years have seen a growing interest in relating MRI measurements to the structural-biophysical properties of white matter fibers. The fiber g-ratio, defined as the ratio between the inner and outer radii of the axon myelin sheath, is an important structural property of white matter, affecting signal conduction. Recently proposed modeling methods that use a combination of quantitative-MRI signals, enable a measurement of the fiber g-ratio in vivo. Here we use an MRI-based g-ratio estimation to observe the variance of the g-ratio within the corpus callosum, and evaluate sex and age related differences. To estimate the g-ratio we used a model (Stikov et al., 2011; Duval et al., 2017) based on two different WM microstructure parameters: the relative amounts of myelin (myelin volume fraction, MVF) and fibers (fiber volume fraction, FVF) in a voxel. We derived the FVF from the fractional anisotropy (FA), and estimated the MVF by using the lipid and macromolecular tissue volume (MTV), calculated from the proton density (Mezer et al., 2013). In comparison to other methods of estimating the MVF, MTV represents a stable parameter with a straightforward route of acquisition. To establish our model, we first compared histological MVF measurements (West et al., 2016) with the MRI derived MTV. We then implemented our model on a large database of 92 subjects (44 males), aged 7 to 81, in order to evaluate age and sex related changes within the corpus callosum. Our results show that the MTV provides a good estimation of MVF for calculating g-ratio, and produced values from the corpus callosum that correspond to those found in animals ex vivo and are close to the theoretical optimum, as well as to published in vivo data. Our results demonstrate that the MTV derived g-ratio provides a simple and reliable in vivo g-ratio-weighted (GR*) measurement in humans. In agreement with theoretical predictions, and unlike other tissue parameters measured with MRI, the g-ratio estimations were found to be relatively stable with age, and we found no support for a significant sexual dimorphism with age.
Collapse
Affiliation(s)
- Shai Berman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kathryn L West
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Jason D Yeatman
- Institute for Learning & Brain Sciences and Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Aviv A Mezer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
15
|
Linneberg C, Harboe M, Laursen LS. Axo-Glia Interaction Preceding CNS Myelination Is Regulated by Bidirectional Eph-Ephrin Signaling. ASN Neuro 2015; 7:7/5/1759091415602859. [PMID: 26354550 PMCID: PMC4568937 DOI: 10.1177/1759091415602859] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In the central nervous system, myelination of axons is required to ensure fast saltatory conduction and for survival of neurons. However, not all axons are myelinated, and the molecular mechanisms involved in guiding the oligodendrocyte processes toward the axons to be myelinated are not well understood. Only a few negative or positive guidance clues that are involved in regulating axo-glia interaction prior to myelination have been identified. One example is laminin, known to be required for early axo-glia interaction, which functions through α6β1 integrin. Here, we identify the Eph-ephrin family of guidance receptors as novel regulators of the initial axo-glia interaction, preceding myelination. We demonstrate that so-called forward and reverse signaling, mediated by members of both Eph and ephrin subfamilies, has distinct and opposing effects on processes extension and myelin sheet formation. EphA forward signaling inhibits oligodendrocyte process extension and myelin sheet formation, and blocking of bidirectional signaling through this receptor enhances myelination. Similarly, EphB forward signaling also reduces myelin membrane formation, but in contrast to EphA forward signaling, this occurs in an integrin-dependent manner, which can be reversed by overexpression of a constitutive active β1-integrin. Furthermore, ephrin-B reverse signaling induced by EphA4 or EphB1 enhances myelin sheet formation. Combined, this suggests that the Eph-ephrin receptors are important mediators of bidirectional signaling between axons and oligodendrocytes. It further implies that balancing Eph-ephrin forward and reverse signaling is important in the selection process of axons to be myelinated.
Collapse
Affiliation(s)
- Cecilie Linneberg
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| | - Mette Harboe
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| | - Lisbeth S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej, Aarhus, Denmark
| |
Collapse
|
16
|
Monk KR, Feltri ML, Taveggia C. New insights on Schwann cell development. Glia 2015; 63:1376-93. [PMID: 25921593 PMCID: PMC4470834 DOI: 10.1002/glia.22852] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - M Laura Feltri
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
17
|
Abstract
Myelinated nerve fibers are essential for the rapid propagation of action potentials by saltatory conduction. They form as the result of reciprocal interactions between axons and Schwann cells. Extrinsic signals from the axon, and the extracellular matrix, drive Schwann cells to adopt a myelinating fate, whereas myelination reorganizes the axon for its role in conduction and is essential for its integrity. Here, we review our current understanding of the development, molecular organization, and function of myelinating Schwann cells. Recent findings into the extrinsic signals that drive Schwann cell myelination, their cognate receptors, and the downstream intracellular signaling pathways they activate will be described. Together, these studies provide important new insights into how these pathways converge to activate the transcriptional cascade of myelination and remodel the actin cytoskeleton that is critical for morphogenesis of the myelin sheath.
Collapse
Affiliation(s)
- James L Salzer
- Department of Neuroscience and Physiology, New York University Neuroscience Institute, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
18
|
Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Hüppi PS, Hertz-Pannier L. The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience 2014; 276:48-71. [PMID: 24378955 DOI: 10.1016/j.neuroscience.2013.12.044] [Citation(s) in RCA: 517] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 12/13/2022]
Affiliation(s)
- J Dubois
- INSERM, U992, Cognitive Neuroimaging Unit, Gif-sur-Yvette, France; CEA, NeuroSpin Center, UNICOG, Gif-sur-Yvette, France; University Paris Sud, Orsay, France.
| | - G Dehaene-Lambertz
- INSERM, U992, Cognitive Neuroimaging Unit, Gif-sur-Yvette, France; CEA, NeuroSpin Center, UNICOG, Gif-sur-Yvette, France; University Paris Sud, Orsay, France
| | - S Kulikova
- CEA, NeuroSpin Center, UNIACT, Gif-sur-Yvette, France; INSERM, U663, Child epilepsies and brain plasticity, Paris, France; University Paris Descartes, Paris, France
| | - C Poupon
- CEA, NeuroSpin Center, UNIRS, Gif-sur-Yvette, France
| | - P S Hüppi
- Geneva University Hospitals, Department of Pediatrics, Division of Development and Growth, Geneva, Switzerland; Harvard Medical School, Children's Hospital, Department of Neurology, Boston, MA, USA
| | - L Hertz-Pannier
- CEA, NeuroSpin Center, UNIACT, Gif-sur-Yvette, France; INSERM, U663, Child epilepsies and brain plasticity, Paris, France; University Paris Descartes, Paris, France
| |
Collapse
|
19
|
Mei F, Fancy SPJ, Shen YAA, Niu J, Zhao C, Presley B, Miao E, Lee S, Mayoral SR, Redmond SA, Etxeberria A, Xiao L, Franklin RJM, Green A, Hauser SL, Chan JR. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat Med 2014; 20:954-960. [PMID: 24997607 PMCID: PMC4830134 DOI: 10.1038/nm.3618] [Citation(s) in RCA: 424] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/26/2013] [Indexed: 02/06/2023]
Abstract
Functional screening for compounds that promote remyelination represents a major hurdle in the development of rational therapeutics for multiple sclerosis. Screening for remyelination is problematic, as myelination requires the presence of axons. Standard methods do not resolve cell-autonomous effects and are not suited for high-throughput formats. Here we describe a binary indicant for myelination using micropillar arrays (BIMA). Engineered with conical dimensions, micropillars permit resolution of the extent and length of membrane wrapping from a single two-dimensional image. Confocal imaging acquired from the base to the tip of the pillars allows for detection of concentric wrapping observed as 'rings' of myelin. The platform is formatted in 96-well plates, amenable to semiautomated random acquisition and automated detection and quantification. Upon screening 1,000 bioactive molecules, we identified a cluster of antimuscarinic compounds that enhance oligodendrocyte differentiation and remyelination. Our findings demonstrate a new high-throughput screening platform for potential regenerative therapeutics in multiple sclerosis.
Collapse
Affiliation(s)
- Feng Mei
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Stephen P J Fancy
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Yun-An A Shen
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | - Chao Zhao
- Wellcome Trust Medical Research Council, Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Edna Miao
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Seonok Lee
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Sonia R Mayoral
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Stephanie A Redmond
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Ainhoa Etxeberria
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | - Robin J M Franklin
- Wellcome Trust Medical Research Council, Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ari Green
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Stephen L Hauser
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Jonah R Chan
- Department of Neurology and Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
20
|
Myelin recovery in multiple sclerosis: the challenge of remyelination. Brain Sci 2013; 3:1282-324. [PMID: 24961530 PMCID: PMC4061877 DOI: 10.3390/brainsci3031282] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis (MS) is the most common demyelinating and an autoimmune disease of the central nervous system characterized by immune-mediated myelin and axonal damage, and chronic axonal loss attributable to the absence of myelin sheaths. T cell subsets (Th1, Th2, Th17, CD8+, NKT, CD4+CD25+ T regulatory cells) and B cells are involved in this disorder, thus new MS therapies seek damage prevention by resetting multiple components of the immune system. The currently approved therapies are immunoregulatory and reduce the number and rate of lesion formation but are only partially effective. This review summarizes current understanding of the processes at issue: myelination, demyelination and remyelination—with emphasis upon myelin composition/architecture and oligodendrocyte maturation and differentiation. The translational options target oligodendrocyte protection and myelin repair in animal models and assess their relevance in human. Remyelination may be enhanced by signals that promote myelin formation and repair. The crucial question of why remyelination fails is approached is several ways by examining the role in remyelination of available MS medications and avenues being actively pursued to promote remyelination including: (i) cytokine-based immune-intervention (targeting calpain inhibition), (ii) antigen-based immunomodulation (targeting glycolipid-reactive iNKT cells and sphingoid mediated inflammation) and (iii) recombinant monoclonal antibodies-induced remyelination.
Collapse
|
21
|
Ahrendsen JT, Macklin W. Signaling mechanisms regulating myelination in the central nervous system. Neurosci Bull 2013; 29:199-215. [PMID: 23558589 DOI: 10.1007/s12264-013-1322-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/22/2013] [Indexed: 12/19/2022] Open
Abstract
The precise and coordinated production of myelin is essential for proper development and function of the nervous system. Diseases that disrupt myelin, including multiple sclerosis, cause significant functional disability. Current treatment aims to reduce the inflammatory component of the disease, thereby preventing damage resulting from demyelination. However, therapies are not yet available to improve natural repair processes after damage has already occurred. A thorough understanding of the signaling mechanisms that regulate myelin generation will improve our ability to enhance repair. in this review, we summarize the positive and negative regulators of myelination, focusing primarily on central nervous system myelination. Axon-derived signals, extracellular signals from both diffusible factors and the extracellular matrix, and intracellular signaling pathways within myelinating oligodendrocytes are discussed. Much is known about the positive regulators that drive myelination, while less is known about the negative regulators that shift active myelination to myelin maintenance at the appropriate time. Therefore, we also provide new data on potential negative regulators of CNS myelination.
Collapse
Affiliation(s)
- Jared T Ahrendsen
- Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | |
Collapse
|
22
|
A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat Methods 2012; 9:917-22. [PMID: 22796663 PMCID: PMC3433633 DOI: 10.1038/nmeth.2105] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/22/2012] [Indexed: 01/28/2023]
Abstract
Current methods for studying central nervous system myelination necessitate permissive axonal substrates conducive to myelin wrapping by oligodendrocytes. We have developed a neuron-free culture system in which electron-spun nanofibers of varying sizes substitute for axons as a substrate for oligodendrocyte myelination, thereby allowing manipulation of the biophysical elements of axonal-oligodendroglial interactions. To investigate axonal regulation of myelination, this system effectively uncouples the role of molecular (inductive) cues from that of biophysical properties of the axon. We use this method to uncover the causation and sufficiency of fiber diameter in the initiation of concentric wrapping by rat oligodendrocytes. We also show that oligodendrocyte precursor cells display sensitivity to the biophysical properties of fiber diameter and initiate membrane ensheathment before differentiation. The use of nanofiber scaffolds will enable screening for potential therapeutic agents that promote oligodendrocyte differentiation and myelination and will also provide valuable insight into the processes involved in remyelination.
Collapse
|
23
|
Sobottka B, Ziegler U, Kaech A, Becher B, Goebels N. CNS live imaging reveals a new mechanism of myelination: The liquid croissant model. Glia 2011; 59:1841-9. [DOI: 10.1002/glia.21228] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 07/18/2011] [Indexed: 11/06/2022]
|
24
|
Piaton G, Gould RM, Lubetzki C. Axon-oligodendrocyte interactions during developmental myelination, demyelination and repair. J Neurochem 2010; 114:1243-60. [PMID: 20524961 DOI: 10.1111/j.1471-4159.2010.06831.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In multiple sclerosis, CNS demyelination is often followed by spontaneous repair, mostly achieved by adult oligodendrocyte precursor cells. Extent of this myelin repair differs, ranging from very low, limited to the plaque border, to extensive, with remyelination throughout the 'shadow plaques.' In addition to restoring neuronal connectivity, new myelin is neuroprotective. It reduces axonal loss and thus disability progression. Reciprocal communication between neurons and oligodendrocytes is essential for both myelin biogenesis and myelin repair. Hence, deciphering neuron-oligodendrocyte communication is not only important for understanding myelination per se, but also the pathophysiology that underlies demyelinating diseases and the development of innovative therapeutic strategies.
Collapse
|
25
|
Câmara J, Wang Z, Nunes-Fonseca C, Friedman HC, Grove M, Sherman DL, Komiyama NH, Grant SG, Brophy PJ, Peterson A, ffrench-Constant C. Integrin-mediated axoglial interactions initiate myelination in the central nervous system. ACTA ACUST UNITED AC 2009; 185:699-712. [PMID: 19451276 PMCID: PMC2711572 DOI: 10.1083/jcb.200807010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All but the smallest-diameter axons in the central nervous system are myelinated, but the signals that initiate myelination are unknown. Our prior work has shown that integrin signaling forms part of the cell–cell interactions that ensure only those oligodendrocytes contacting axons survive. Here, therefore, we have asked whether integrins regulate the interactions that lead to myelination. Using homologous recombination to insert a single-copy transgene into the hypoxanthine phosphoribosyl transferase (hprt) locus, we find that mice expressing a dominant-negative β1 integrin in myelinating oligodendrocytes require a larger axon diameter to initiate timely myelination. Mice with a conditional deletion of focal adhesion kinase (a signaling molecule activated by integrins) exhibit a similar phenotype. Conversely, transgenic mice expressing dominant-negative β3 integrin in oligodendrocytes display no myelination abnormalities. We conclude that β1 integrin plays a key role in the axoglial interactions that sense axon size and initiate myelination, such that loss of integrin signaling leads to a delay in myelination of small-diameter axons.
Collapse
Affiliation(s)
- Joana Câmara
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, England, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
XII. References. Acta Neurol Scand 2009. [DOI: 10.1111/j.1600-0404.1990.tb02639.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Abstract
Oligodendrocytes and Schwann cells are highly specialized glial cells that wrap axons with a multilayered myelin membrane for rapid impulse conduction. Investigators have recently identified axonal signals that recruit myelin-forming Schwann cells from an alternate fate of simple axonal engulfment. This is the evolutionary oldest form of axon-glia interaction, and its function is unknown. Recent observations suggest that oligodendrocytes and Schwann cells not only myelinate axons but also maintain their long-term functional integrity. Mutations in the mouse reveal that axonal support by oligodendrocytes is independent of myelin assembly. The underlying mechanisms are still poorly understood; we do know that to maintain axonal integrity, mammalian myelin-forming cells require the expression of some glia-specific proteins, including CNP, PLP, and MAG, as well as intact peroxisomes, none of which is necessary for myelin assembly. Loss of glial support causes progressive axon degeneration and possibly local inflammation, both of which are likely to contribute to a variety of neuronal diseases in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany.
| | | |
Collapse
|
28
|
Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials 2007; 28:3012-25. [PMID: 17408736 DOI: 10.1016/j.biomaterials.2007.03.009] [Citation(s) in RCA: 474] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 03/14/2007] [Indexed: 11/24/2022]
Abstract
Our long-term goal is to develop an artificial implant as a conduit for axonal regeneration after peripheral nerve injury. In this study, biodegradable, aligned poly-epsilon-caprolactone (PCL) and collagen/PCL (C/PCL) nanofibers designed as guidance structures were produced by electrospinning and tested in cell culture assays. We compared fibers of 100% PCL with fibers consisting of a 25:75% C/PCL blend. To test their biocompatibility, assays of cell adhesion, survival, migration, effects on cell morphology, axonal growth and axonal guidance were performed. Both types of eletrospun fibers supported oriented neurite outgrowth and glial migration from dorsal root ganglia (DRG) explants. Schwann cell migration, neurite orientation, and process formation of Schwann cells, fibroblasts and olfactory ensheathing cells were improved on C/PCL fibers, when compared to pure PCL fibers. While the velocity of neurite elongation from DRG explants was higher on PCL fibers, analysis of isolated sensory neurons showed significantly better axonal guidance by the C/PCL material. The data demonstrate that electrospun fibers composed of a collagen and PCL blend represent a suitable substrate for supporting cell proliferation, process outgrowth and migration and as such would be a good material for artificial nerve implants.
Collapse
Affiliation(s)
- Eva Schnell
- Institut für Biologie II, RWTH Aachen, Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Câmara J, ffrench-Constant C. Lessons from oligodendrocyte biology on promoting repair in multiple sclerosis. J Neurol 2007. [DOI: 10.1007/s00415-007-1004-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Nave KA, Salzer JL. Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol 2006; 16:492-500. [PMID: 16962312 DOI: 10.1016/j.conb.2006.08.008] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 08/25/2006] [Indexed: 01/05/2023]
Abstract
Neuregulins comprise a family of epidermal growth factor-like ligands that interact with ErbB receptor tyrosine kinases to control many aspects of neural development. One of the most dramatic effects of neuregulin-1 is on glial cell differentiation. The membrane-bound neuregulin-1 type III isoform is an axonal ligand for glial ErbB receptors that regulates the early Schwann cell lineage, including the generation of precursors. Recent studies have shown that the amount of neuregulin-1 type III expressed on axons also dictates the glial phenotype, with a threshold level triggering Schwann cell myelination. Remarkably, neuregulin-1 type III also regulates Schwann cell membrane growth to adjust myelin sheath thickness to match axon caliber precisely. Whether this signaling system operates in central nervous system myelination remains an open question of major importance for human demyelinating diseases.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Max Planck Institute of Experimental Medicine, D-37075 Goettingen, Germany.
| | | |
Collapse
|
31
|
Grothe C, Haastert K, Jungnickel J. Physiological function and putative therapeutic impact of the FGF-2 system in peripheral nerve regeneration—Lessons from in vivo studies in mice and rats. ACTA ACUST UNITED AC 2006; 51:293-9. [PMID: 16430964 DOI: 10.1016/j.brainresrev.2005.12.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 12/07/2005] [Indexed: 11/23/2022]
Abstract
Diffusible and substratum-bound molecules regulate development and regeneration of the peripheral nervous system. The understanding of physiological function of these factors could have an impact on the development of new therapeutic strategies to stimulate nerve regeneration across long gaps. Within the group of trophic factors, basic fibroblast growth factor (FGF-2) and its high-affinity receptors are expressed in the intact peripheral nervous system and regulated following nerve injury. After exogenous application, FGF-2 promotes neuronal survival and neurite outgrowth in vitro and in vivo. In this review, animal studies on the physiological role of the endogenous FGF-2 system and the regenerative capacity after exogenous FGF-2 administration are summarized. The concept of FGF-2 function is discussed in context with other growth factors that are also physiologically relevant in the peripheral nervous system. Studies of sciatic nerve axotomy in FGF-2- and FGF receptor (R) 3-deleted mice, respectively, strongly suggested that FGF-2 binding to FGFR3 is involved in injury-induced neuronal apoptosis. At the lesion site, inhibition of myelination and stimulation of Schwann cell proliferation by FGF-2 via FGFR1/2 is suggested from rat and mouse studies, whereas neurite formation is very likely enhanced via FGFR3 activation. Additionally to these demonstrated physiological functions of endogenous FGF-2, administration of FGF-2 isoforms in the rat model of nerve regeneration across long gaps revealed a role of the high molecular weight isoforms of FGF-2 on sensory recovery. Within the group of physiologically relevant trophic factors, the FGF-2 system seems to be crucially involved in the scenario of peripheral nerve development and regeneration.
Collapse
Affiliation(s)
- Claudia Grothe
- Hannover Medical School, Department of Neuroanatomy, Hannover, Germany.
| | | | | |
Collapse
|
32
|
ROSENBAUM THORSTEN, KIM HAESUNA, BOISSY YINGL, LING BO, RATNER NANCY. Neurofibromin, the Neurofibromatosis Type 1 Ras-GAP, Is Required for Appropriate P0Expression and Myelination. Ann N Y Acad Sci 2006; 883:203-214. [DOI: 10.1111/j.1749-6632.1999.tb08583.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S, Xu X, Esper RM, Loeb JA, Shrager P, Chao MV, Falls DL, Role L, Salzer JL. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 2005; 47:681-94. [PMID: 16129398 PMCID: PMC2387056 DOI: 10.1016/j.neuron.2005.08.017] [Citation(s) in RCA: 548] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 06/15/2005] [Accepted: 08/15/2005] [Indexed: 10/25/2022]
Abstract
The signals that determine whether axons are ensheathed or myelinated by Schwann cells have long been elusive. We now report that threshold levels of neuregulin-1 (NRG1) type III on axons determine their ensheathment fate. Ensheathed axons express low levels whereas myelinated fibers express high levels of NRG1 type III. Sensory neurons from NRG1 type III deficient mice are poorly ensheathed and fail to myelinate; lentiviral-mediated expression of NRG1 type III rescues these defects. Expression also converts the normally unmyelinated axons of sympathetic neurons to myelination. Nerve fibers of mice haploinsufficient for NRG1 type III are disproportionately unmyelinated, aberrantly ensheathed, and hypomyelinated, with reduced conduction velocities. Type III is the sole NRG1 isoform retained at the axon surface and activates PI 3-kinase, which is required for Schwann cell myelination. These results indicate that levels of NRG1 type III, independent of axon diameter, provide a key instructive signal that determines the ensheathment fate of axons.
Collapse
Affiliation(s)
- Carla Taveggia
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rünker AE, Kobsar I, Fink T, Loers G, Tilling T, Putthoff P, Wessig C, Martini R, Schachner M. Pathology of a mouse mutation in peripheral myelin protein P0 is characteristic of a severe and early onset form of human Charcot-Marie-Tooth type 1B disorder. ACTA ACUST UNITED AC 2004; 165:565-73. [PMID: 15148307 PMCID: PMC2172360 DOI: 10.1083/jcb.200402087] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in the gene of the peripheral myelin protein zero (P0) give rise to the peripheral neuropathies Charcot-Marie-Tooth type 1B disease (CMT1B), Déjérine-Sottas syndrome, and congenital hypomyelinating neuropathy. To investigate the pathomechanisms of a specific point mutation in the P0 gene, we generated two independent transgenic mouse lines expressing the pathogenic CMT1B missense mutation Ile106Leu (P0sub) under the control of the P0 promoter on a wild-type background. Both P0sub-transgenic mouse lines showed shivering and ultrastructural abnormalities including retarded myelination, onion bulb formation, and dysmyelination seen as aberrantly folded myelin sheaths and tomacula in all nerve fibers. Functionally, the mutation leads to dispersed compound muscle action potentials and severely reduced conduction velocities. Our observations support the view that the Ile106Leu mutation acts by a dominant-negative gain of function and that the P0sub-transgenic mouse represents an animal model for a severe, tomaculous form of CMT1B.
Collapse
Affiliation(s)
- Annette E Rünker
- Center for Molecular Neurobiology, University of Hamburg, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ogawa T, Suzuki M, Matoh K, Sasaki K. Three-dimensional electron microscopic studies of the transitional oligodendrocyte associated with the initial stage of myelination in developing rat hippocampal fimbria. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 148:207-12. [PMID: 14766198 DOI: 10.1016/j.devbrainres.2003.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/14/2003] [Indexed: 11/19/2022]
Abstract
We identified the transitional oligodendrocyte and their processes of rat hippocampal fimbria associated with the initial stage of myelination in both the morphological and functional classifications by means of three-dimensional ultrastructural analysis. Transitional oligodendrocytes appeared around P7, and their cell bodies were morphologically an intermediate form between the light and medium oligodendrocytes described by Mori and Leblond [J. Comp. Neurol. 139 (1970) 1]. Three phenotypes of the transitional oligodendrocytic processes were recognized. Spiral wrapping processes were ensheathing processes, club-like processes were nonensheathing processes, and sheet-like processes were possibly the transmuting form between the nonensheathing and ensheathing processes. Club-like processes were the major part of the nonensheathing processes, and most likely function as sensors to perceive axon maturation and find target axons. Multivesicular bodies that appeared to be associated with the initial ensheathment were observed in the transitional oligodendrocytic processes, suggesting that their roles are crucial in myelinogenesis.
Collapse
Affiliation(s)
- Tokiko Ogawa
- Department of Anatomy, Graduate School of Medicine, Osaka City University, 1-4-54, Asahi-machi, Abeno, Osaka 545-8585 Japan
| | | | | | | |
Collapse
|
36
|
Amir R, Devor M. Electrical excitability of the soma of sensory neurons is required for spike invasion of the soma, but not for through-conduction. Biophys J 2003; 84:2181-91. [PMID: 12668427 PMCID: PMC1302785 DOI: 10.1016/s0006-3495(03)75024-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Accepted: 11/05/2002] [Indexed: 10/21/2022] Open
Abstract
The cell soma of primary sensory neurons is electrically excitable, and is invaded by action potentials as they pass from the peripheral nerve, past the dorsal root ganglion (DRG) and toward the spinal cord. However, there are virtually no synapses in the DRG, and no signal processing is known to occur there. Why, then, are DRG cell somata excitable? We have constructed and validated an explicit model of the primary sensory neuron and used it to explore the role of electrical excitability of the cell soma in afferent signaling. Reduction and even elimination of soma excitability proved to have no detectable effect on the reliability of spike conduction past the DRG and into the spinal cord. Through-conduction is affected, however, by major changes in neuronal geometry in the region of the t-junction. In contrast to through-conduction, excitability of the soma and initial segment is essential for the invasion of afferent spikes into the cell soma. This implies that soma invasion has a previously unrecognized role in the physiology of afferent neurons, perhaps in the realm of metabolic coupling of the biosynthesis of signaling molecules required at the axon ends to functional demand, or in cell-cell interaction within sensory ganglia. Spike invasion of the soma in central nervous system neurons may play similar roles.
Collapse
Affiliation(s)
- Ron Amir
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
37
|
Glial cell line-derived neurotrophic factor alters axon schwann cell units and promotes myelination in unmyelinated nerve fibers. J Neurosci 2003. [PMID: 12533616 DOI: 10.1523/jneurosci.23-02-00561.2003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) plays an important role in the development and maintenance of a subset of dorsal root ganglion sensory neurons. We administered high-dose exogenous recombinant human GDNF (rhGDNF) daily to adult rats to examine its effect on unmyelinated axon-Schwann cell units in intact peripheral nerves. In rhGDNF-treated animals, there was a dramatic proliferation in the Schwann cells of unmyelinated fibers, which resulted in the segregation of many unmyelinated axons into a 1:1 relationship with Schwann cells and myelination of normally unmyelinated small axons. This study demonstrates that the administration of high doses of a growth factor to adult rats can change the phenotype of nerve fibers from unmyelinated to myelinated.
Collapse
|
38
|
Cai Z, Cash K, Thompson PD, Blumbergs PC. Accuracy of sampling methods in morphometric studies of human sural nerves. J Clin Neurosci 2002; 9:181-6. [PMID: 11922710 DOI: 10.1054/jocn.2001.1040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to ascertain the minimum sample required to accurately measure the total number of myelinated fibres, mean myelinated fibre density (MFD), myelinated fibre diameter (Ds) and axonal diameter (Da) in morphometric studies of sural nerve biopsies. Measurements were obtained by sampling a single fascicle or systematic sampling of up to 50% of the total transverse fascicular area of two control and eighteen pathological sural nerves showing varying degrees of demyelination and axonal degeneration. MFD and fibre size were heterogeneous between fascicles in both control and pathological sural nerves, and morphometric results from one fascicle and systematic sampling of up to 50% of the total transverse fascicular area did not accurately represent the whole myelinated fibre population in the sural nerve. For accurate morphometric data it is necessary to quantitate all the myelinated fibres in the sural nerve.
Collapse
Affiliation(s)
- Z Cai
- Department of Neurology and University Department of Neurology, Royal Adelaide Hospital, Adelaide, South Australia
| | | | | | | |
Collapse
|
39
|
Samsam M, Frei R, Marziniak M, Martini R, Sommer C. Impaired sensory function in heterozygous P0 knockout mice is associated with nodal changes in sensory nerves. J Neurosci Res 2002; 67:167-73. [PMID: 11782960 DOI: 10.1002/jnr.10115] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mice heterozygously deficient in the major myelin component P0 are an established model of an inherited neuropathy and show signs of myelin degeneration in motor nerves. Unlike the case in patients, the sensory nerves are only mildly affected in the mouse mutants and do not show features indicative of myelin degeneration. Unexpectedly, by applying established behavioral tests, we found sensory deficits, as reflected by raised withdrawal thresholds to mechanical and thermal stimuli, whereas behavioral signs of a painful neuropathy were not detectable. By electron microscopy of longitudinal sections of sensory nerves, we found abnormalities in nodes of Ranvier comprising enlarged nodal gaps and poorly developed nodal Schwann cell microvilli. These alterations might be causally linked to the sensory deficits in the absence of profound myelin degeneration in the sensory nerves of the mutants.
Collapse
Affiliation(s)
- M Samsam
- Neurologische Klinik der Universität Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
40
|
Mattsson P, Janson AM, Aldskogius H, Svensson M. Nimodipine promotes regeneration and functional recovery after intracranial facial nerve crush. J Comp Neurol 2001; 437:106-17. [PMID: 11477600 DOI: 10.1002/cne.1273] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The calcium flow inhibitor, nimodipine, has been shown to promote motor neuron survival in the facial nucleus after intracranial facial nerve transection. However, it has not been known whether the neuroprotective effects primarily involve survival of nerve cell bodies or outgrowth and/or myelination of nerve fibers. Here, we studied the effects of nimodipine in a different injury model in which the facial nerve was unilaterally crushed intracranially. This lesion caused complete anterograde degeneration and partial retrograde degeneration that were studied with a combination of several stereological methods. Nimodipine did not attenuate the modest lesion-induced neuronal loss (13%) but accelerated the time course of functional recovery and axonal regrowth, inducing increased numbers and sizes of myelinated axons in the facial nerve. It is interesting to note that nimodipine also enlarged the axons and the myelin sheaths in the nonlesioned facial nerve, which points to the possibility of using this substance for new clinical applications to promote axonal growth and remyelination.
Collapse
Affiliation(s)
- P Mattsson
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Hospital, SE-171 76 Stockholm, Sweden.
| | | | | | | |
Collapse
|
41
|
Mäurer M, Schmid CD, Bootz F, Zielasek J, Toyka KV, Oehen S, Martini R. Bone marrow transfer from wild-type mice reverts the beneficial effect of genetically mediated immune deficiency in myelin mutants. Mol Cell Neurosci 2001; 17:1094-101. [PMID: 11414797 DOI: 10.1006/mcne.2001.0990] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inherited demyelinating neuropathies are chronically disabling human disorders caused by various genetic defects, including deletions, single site mutations, and duplications in the respective myelin genes. We have shown in a mouse model of one distinct hereditary demyelinating neuropathy (heterozygous P0-deficiency, P0+-) that an additional null mutation in the recombination activating gene-1 (RAG-1--) leads to a substantially milder disorder, indicating a disease modifying role of T-lymphocytes. In the present study, we addressed the role of lymphocytes in the mouse model by reconstituting bone marrow of P0+-/RAG-1-- mice with bone marrow from immunocompetent wild-type mice. We compared the pathology and nerve conduction in double mutant mice (P0+-/RAG-1-- on a C57BL/6 background) with that in double mutants after receiving a bone marrow transplant. We found that the milder demyelination seen in the lymphocyte-deficient P0+-/RAG-1-- mutants was reverted to the more severe pathology by reestablishing a competent immune system by bone marrow transfer. These data corroborate the concept that the immune system contributes substantially to the pathologic process in this mouse model and may open new avenues to ameliorate human hereditary neuropathies by exploiting immunosuppressive treatments.
Collapse
Affiliation(s)
- M Mäurer
- Department of Neurology, University of Würzburg, Würzburg, D-97080, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Sadahiro S, Yoshikawa H, Yagi N, Yamamoto Y, Yanagihara T, Kimura M, Sakoda S. Morphometric analysis of the myelin-associated oligodendrocytic basic protein-deficient mouse reveals a possible role for myelin-associated oligodendrocytic basic protein in regulating axonal diameter. Neuroscience 2000; 98:361-7. [PMID: 10854769 DOI: 10.1016/s0306-4522(00)00111-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myelin-associated oligodendrocytic basic protein is a member of the proteins constituting the central nervous system myelin. By morphometric analysis, we demonstrated that axons of myelin-associated oligodendrocytic basic protein-deficient mice had larger diameters and more myelin lamellae as compared to those of wild-type mice at the same age. It is known that the number of myelin lamellae increases linearly with axonal diameter, and that the rate of radial axonal growth is the factor controlling the rate of myelin formation. In line with these observations, we found that the regression line for axonal diameter and the number of myelin lamellae in myelin-associated oligodendrocytic basic protein-deficient mice appeared to be identical to that in wild-type mice, indicating that the increase in the number of myelin lamellae was the result of the increase in axonal diameter. Furthermore, we generated myelin basic protein/myelin-associated oligodendrocytic basic protein-double-deficient mice through mating myelin-associated oligodendrocytic basic protein-deficient mice with shiverer mice, an autosomal recessive mutant characterized by a lack of all isoforms of myelin basic protein. With these knock-out mice, we showed that axons of the double-deficient mice had larger diameters and smaller form factor, an index of the deformation of the fiber contour, in ensheathed fibers than those of shiverer mice, although there was no difference in axonal diameter of unmyelinated fibers between them. Taken together, myelin-associated oligodendrocytic basic protein seemed to play a role in controlling axonal diameter and in keeping axons round.
Collapse
Affiliation(s)
- S Sadahiro
- Department of Neurology (D-4), Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Dolapchieva S, Eggers R, Kühnel W. Automatic image analysis of the postnatal growth of axons and myelin sheaths in the tibial and peroneal nerves of the rabbit. Ann Anat 2000; 182:133-42. [PMID: 10755180 DOI: 10.1016/s0940-9602(00)80072-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The numerous morphometric studies on the myelinated fibers in the peripheral nerves have presented varying results. Only a few studies deal with the peripheral nerves from rabbits. In this work, a morphometric study was carried out on the tibial and peroneal nerves of new-born, 10-, 15-, 20-, 30-, 60-, 90- and 240-day-old rabbits. The bilateral proximal segments of both nerves were investigated. Negatives of semi-thin cross sections were used for myelinated fiber morphometric analysis, carried out by an OLYMPUS Video image analyser. Two morphometric parameters, the average axon diameter (AD) (the average length of Feret's diameters) and the specific width of the myelin sheaths (SWMS) (specifying the total width of the myelin sheath), were evaluated for every age group. In the tibial and peroneal nerves a bimodal distribution of the average AD appeared on the 20th day, and of the SWMS on the 10th day postnatum. A tight correlation was obtained when comparing mean AD (mAD) and mean SWMS (mSWMS) in new-born and 240-day-old rabbits. From birth to adulthood the mAD increased in both nerves by about 270% and the mSWMS by about 280%. The mAD/mSWMS ratio in both new-born and 8-month-old rabbits was found to be 4 in the tibial and 5 in the peroneal nerves. According to the available data, an approach to the measurement of AD as an average length of Feret's diameters and the measurement of the myelin thickness as a SWMS has not yet been employed. An extension of this methodological approach could help to understand the growth and myelinization of peripheral nerve fibers.
Collapse
Affiliation(s)
- S Dolapchieva
- Department of Anatomy and Histology, Medical University Sofia, Bulgaria
| | | | | |
Collapse
|
44
|
Immune deficiency in mouse models for inherited peripheral neuropathies leads to improved myelin maintenance. J Neurosci 2000. [PMID: 10632602 DOI: 10.1523/jneurosci.20-02-00729.2000] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The adhesive cell surface molecule P(0) is the most abundant glycoprotein in peripheral nerve myelin and fulfills pivotal functions during myelin formation and maintenance. Mutations in the corresponding gene cause hereditary demyelinating neuropathies. In mice heterozygously deficient in P(0) (P(0)(+/-) mice), an established animal model for a subtype of hereditary neuropathies, T-lymphocytes are present in the demyelinating nerves. To monitor the possible involvement of the immune system in myelin pathology, we cross-bred P(0)(+/-) mice with null mutants for the recombination activating gene 1 (RAG-1) or with mice deficient in the T-cell receptor alpha-subunit. We found that in P(0)(+/-) mice myelin degeneration and impairment of nerve conduction properties is less severe when the immune system is deficient. Moreover, isolated T-lymphocytes from P(0)(+/-) mice show enhanced reactivity to myelin components of the peripheral nerve, such as P(0), P(2), and myelin basic protein. We hypothesize that autoreactive immune cells can significantly foster the demyelinating phenotype of mice with a primarily genetically based peripheral neuropathy.
Collapse
|
45
|
Jafari SS, Nielson M, Graham DI, Maxwell WL. Axonal cytoskeletal changes after nondisruptive axonal injury. II. Intermediate sized axons. J Neurotrauma 1998; 15:955-66. [PMID: 9840768 DOI: 10.1089/neu.1998.15.955] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Earlier studies of axonal cytoskeletal responses to stretch injury in the guinea pig optic nerve, a model of nondisruptive axonal injury such as occurs in human diffuse axonal injury, have demonstrated different cytoskeletal responses between the smallest and largest axons. But these form only approximately 3% of the total number of axons in the optic nerve. It was then posited that the pathology described in the latter axons may not be representative of the pathology in the majority of axons after stretch injury. In order to test this hypothesis, we carried out a quantitative, morphological analysis of structural changes in the cytoskeleton of intermediate (axonal diameter of 0.5-2.0 mM) sized axons at 4 h after stretch injury. Neurofilaments in axons up to 1.00 microm in diameter increased in number and in axons up to 1.50 microm diameter were compacted. This did not occur in larger axons (diameter of 1.51-2.00 microm) in the present study. However, there was focal compaction of neurofilaments in some of the larger fibers at sites where the integrity of the axolemma was lost. The response by microtubules to stretch injury differed from that of neurofilaments in that there was an increased spacing between microtubules and a loss of their number in axons of >1.51 microm diameter. We provide quantitative, morphological evidence (a) that the neurofilamentous cytoskeleton of different sized axons responds in different ways to stretch and (b) that the response by microtubules differs from that of neurofilaments.
Collapse
Affiliation(s)
- S S Jafari
- Laboratory of Human Anatomy, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland
| | | | | | | |
Collapse
|
46
|
Fraher J, Dockery P. A strong myelin thickness-axon size correlation emerges in developing nerves despite independent growth of both parameters. J Anat 1998; 193 ( Pt 2):195-201. [PMID: 9827635 PMCID: PMC1467839 DOI: 10.1046/j.1469-7580.1998.19320195.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The axon determines whether or not it is myelinated by the Schwann cell. At maturity there is a positive correlation between sheath thickness and axon calibre. This correlation is initially very low or absent, but gradually strengthens during development. This increase could come about because the axon continuously controls Schwann cell myelinating activity, so that a given axon calibre is associated with a particular myelin sheath thickness, an interaction which would entail the Schwann cell continuously monitoring and responding to axon size. This seems unnecessarily complex. This theoretical study shows that the strong correlation between the 2 parameters within a given myelinated fibre population may come about in a much simpler way than outlined above. This is demonstrated by modelling the growth and myelination of a hypothetical population, utilising data from earlier studies on cervical ventral motoneuron axon development. The hypothesis tested shows that the only instructive interactions by the axon on the Schwann cell necessary for the strong correlation between the 2 parameters to emerge are for the initiation of myelination, its continuation and its termination. These could result from a single stimulus being switched on, persisting for a time and being switched off. Under this influence, the Schwann cell is assumed to proceed to form the myelin sheath at a constant rate which it itself inherently determines, in the absence of any quantitative influence exerted by the axon. This continues until the stimulus for myelination ceases to emanate from the axon. The validity of the hypothesis is demonstrated, because the resulting myelin-axon relationships correspond closely to those observed during development.
Collapse
Affiliation(s)
- J Fraher
- Department of Anatomy, University College, Cork, Ireland.
| | | |
Collapse
|
47
|
Abstract
Myelination is a multistep ordered process whereby Schwann cells in the peripheral nervous system (PNS) and oligodendrocytes in the central nervous system (CNS), produce and extend membranous processes that envelop axons. Mechanisms that regulate this complex process are not well understood. Advances in deciphering the regulatory components of myelination have been carried out primarily in the PNS and although the mechanisms for triggering and directing myelination are not known, it is well established that myelination does not occur in the absence of axons or axon/neuron-derived factors. This appears to be true both in PNS and CNS. Progress in understanding CNS myelinogenesis has been relatively slow because of the unavailability of a suitable culture system, which, in turn, is partly due to complexity in the cellular organization of the CNS. Though the myelin composition differs between PNS and CNS, the regulation of myelination seems to parallel rather than differ between these two systems. This article reviews the regulatory role of axonal components during myelination. The first half consists of an overview of in vitro and in vivo studies carried out in the nervous system. The second half discusses the use of a cerebellar slice culture system and generation of anti-axolemma monoclonal antibodies to investigate the role of axonal membrane components that participate in myelination. It also describes the characterization of an axonal protein involved in myelination.
Collapse
Affiliation(s)
- S Raval-Fernandes
- Department of Biological Chemistry and Mental Retardation Research Center, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
48
|
Jurevics H, Bouldin TW, Toews AD, Morell P. Regenerating sciatic nerve does not utilize circulating cholesterol. Neurochem Res 1998; 23:401-6. [PMID: 9482253 DOI: 10.1023/a:1022469803426] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rapid accumulation of myelin in the peripheral nervous system during the early postnatal period requires large amounts of cholesterol, a major myelin lipid. All of the cholesterol accumulating in the developing rat sciatic nerve is synthesized locally within the nerve, rather than being derived from the supply in lipoproteins in the systemic circulation (Jurevics and Morell, J. Lipid Res. 5:112-120; 1994). Since this lack of utilization of circulating cholesterol may relate to exclusion by the blood-nerve barrier, we examined the sources of cholesterol needed for regeneration following nerve injury, when the blood-nerve barrier is breached. One sciatic nerve was crushed or transected, and at various times later, the rate of cholesterol accumulation was compared with the rate of local in vivo synthesis of cholesterol within the nerve, utilizing intraperitoneally injected 3H2O as precursor. The accumulation of additional cholesterol in nerve during regeneration and remyelination could all be accounted for by that locally synthesized within the nerve. There was also an increase in cholesterol esters in injured nerve segments; in crushed nerves, these levels decreased during regeneration and remyelination, consistent with reutilization of cholesterol originally salvaged by phagocytic macrophages and Schwann cells. Thus, regeneration and remyelination following injury in sciatic nerve utilizes both salvaged cholesterol and cholesterol synthesized locally within the nerve, but not cholesterol from the circulation.
Collapse
Affiliation(s)
- H Jurevics
- Neuroscience Center, University of North Carolina, Chapel Hill 27599-7250, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Myelin-associated glycoprotein (MAG) was postulated to play an important role in myelination. However, we showed previously that MAG null mutants exhibited no gross abnormality in myelination. Ultrastructural studies revealed subtle alterations in periaxonal organisation, indicating a restricted structural role for MAG in the formation and maintenance of periaxonal structures (Li et al., 1994). Here we show that myelination in MAG deficient mice is not as finely controlled as it is in wild type mice. The abnormalities manifest themselves as a decrease in the proportion of myelinated axons and a reciprocal increase in the proportion of unmyelinated axons in mutants' optic nerves. In addition, dysregulated myelination is occasionally observed in the form of multiply myelinated fibres, grouping of myelinated axons and myelin debris by a large myelin sheath, redundant myelin loops and, very rarely, massive myelin surrounding relatively small axons. Thus, in the absence of MAG, some glial cells seem unable to determine when, where and how much myelin should be laid down. These data support the notion of MAG being a glial recognition/adhesion molecule. A model is proposed regarding the roles MAG could play in the formation and maintenance of myelin structure.
Collapse
Affiliation(s)
- C Li
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada.
| | | | | | | | | |
Collapse
|
50
|
Ochs S, Pourmand R, Jersild RA, Friedman RN. The origin and nature of beading: a reversible transformation of the shape of nerve fibers. Prog Neurobiol 1997; 52:391-426. [PMID: 9304699 DOI: 10.1016/s0301-0082(97)00022-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nerve fibers which appear beaded (varicose, spindle-shaped, etc.) are often considered the result of pathology, or a preparation artifact. However, beading can be promptly elicited in fresh normal nerve by a mild stretch and revealed by fast-freezing and freeze-substitution, or by aldehyde fixating at a temperature near 0 degree C (cold-fixation). The key change in beading are the constrictions, wherein the axon is much reduced in diameter. Axoplasmic fluid and soluble components are shifted from the constrictions into the expansions leaving behind compacted microtubules and neurofilaments. Labeled cytoskeletal proteins carried down by slow axonal transport are seen to move with the soluble components and not to have been incorporated into and remain with, the cytoskeletal organelles on beading the fibers. Lipids and other components of the myelin sheath are also shifted from the constrictions into the expansions, with preservation of its fine structure and thickness. Additionally, myelin intrusions into the axons are produced and a localized bulging into the axon termed "leafing". The beading constrictions do not arise from the myelin sheath: beading occurs in the axons of unmyelinated fibers. It does not depend on the axonal cytoskeleton: exposure of nerves in vitro to beta, beta'-iminodipropionitrile (IDPN) disaggregates the cytoskeletal organelles and even augments beading. The hypothesis advanced was that the beading constrictions are due to the membrane skeleton; the subaxolemmal network comprised of spectrin/fodrin, actin, ankyrin, integrins and other transmembrane proteins. The mechanism can be activated directly by neurotoxins, metabolic changes, and by an interruption of axoplasmic transport producing Wallerian degeneration.
Collapse
Affiliation(s)
- S Ochs
- Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | |
Collapse
|