1
|
Rueda-Orozco PE, Hidalgo-Balbuena AE, González-Pereyra P, Martinez-Montalvo MG, Báez-Cordero AS. The Interactions of Temporal and Sensory Representations in the Basal Ganglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:141-158. [PMID: 38918350 DOI: 10.1007/978-3-031-60183-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In rodents and primates, interval estimation has been associated with a complex network of cortical and subcortical structures where the dorsal striatum plays a paramount role. Diverse evidence ranging from individual neurons to population activity has demonstrated that this area hosts temporal-related neural representations that may be instrumental for the perception and production of time intervals. However, little is known about how temporal representations interact with other well-known striatal representations, such as kinematic parameters of movements or somatosensory representations. An attractive hypothesis suggests that somatosensory representations may serve as the scaffold for complex representations such as elapsed time. Alternatively, these representations may coexist as independent streams of information that could be integrated into downstream nuclei, such as the substantia nigra or the globus pallidus. In this review, we will revise the available information suggesting an instrumental role of sensory representations in the construction of temporal representations at population and single-neuron levels throughout the basal ganglia.
Collapse
Affiliation(s)
- Pavel E Rueda-Orozco
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico.
| | | | | | | | - Ana S Báez-Cordero
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico
| |
Collapse
|
2
|
Madison FN, Bingman VP, Smulders TV, Lattin CR. A bird's eye view of the hippocampus beyond space: Behavioral, neuroanatomical, and neuroendocrine perspectives. Horm Behav 2024; 157:105451. [PMID: 37977022 DOI: 10.1016/j.yhbeh.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Although the hippocampus is one of the most-studied brain regions in mammals, research on the avian hippocampus has been more limited in scope. It is generally agreed that the hippocampus is an ancient feature of the amniote brain, and therefore homologous between the two lineages. Because birds and mammals are evolutionarily not very closely related, any shared anatomy is likely to be crucial for shared functions of their hippocampi. These functions, in turn, are likely to be essential if they have been conserved for over 300 million years. Therefore, research on the avian hippocampus can help us understand how this brain region evolved and how it has changed over evolutionary time. Further, there is a strong research foundation in birds on hippocampal-supported behaviors such as spatial navigation, food caching, and brood parasitism that scientists can build upon to better understand how hippocampal anatomy, network circuitry, endocrinology, and physiology can help control these behaviors. In this review, we summarize our current understanding of the avian hippocampus in spatial cognition as well as in regulating anxiety, approach-avoidance behavior, and stress responses. Although there are still some questions about the exact number of subdivisions in the avian hippocampus and how that might vary in different avian families, there is intriguing evidence that the avian hippocampus might have complementary functional profiles along the rostral-caudal axis similar to the dorsal-ventral axis of the rodent hippocampus, where the rostral/dorsal hippocampus is more involved in cognitive processes like spatial learning and the caudal/ventral hippocampus regulates emotional states, anxiety, and the stress response. Future research should focus on elucidating the cellular and molecular mechanisms - including endocrinological - in the avian hippocampus that underlie behaviors such as spatial navigation, spatial memory, and anxiety-related behaviors, and in so doing, resolve outstanding questions about avian hippocampal function and organization.
Collapse
Affiliation(s)
- Farrah N Madison
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Verner P Bingman
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Tom V Smulders
- Centre for Behaviour and Evolution, School of Psychology, Newcastle University, Newcastle upon Tyne NE2 4DR, UK
| | - Christine R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70808, USA.
| |
Collapse
|
3
|
Parsons RB, Kocinaj A, Ruiz Pulido G, Prendergast SA, Parsons AE, Facey PD, Hirth F. Alpha-synucleinopathy reduces NMNAT3 protein levels and neurite formation that can be rescued by targeting the NAD+ pathway. Hum Mol Genet 2022; 31:2918-2933. [PMID: 35397003 PMCID: PMC9433734 DOI: 10.1093/hmg/ddac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease is characterized by the deposition of α-synuclein, which leads to synaptic dysfunction, the loss of neuronal connections and ultimately progressive neurodegeneration. Despite extensive research into Parkinson's disease pathogenesis, the mechanisms underlying α-synuclein-mediated synaptopathy have remained elusive. Several lines of evidence suggest that altered nicotinamide adenine dinucleotide (NAD+) metabolism might be causally related to synucleinopathies, including Parkinson's disease. NAD+ metabolism is central to the maintenance of synaptic structure and function. Its synthesis is mediated by nicotinamide mononucleotide adenylyltransferases (NMNATs), but their role in Parkinson's disease is not known. Here we report significantly decreased levels of NMNAT3 protein in the caudate nucleus of patients who have died with Parkinson's disease, which inversely correlated with the amount of monomeric α-synuclein. The detected alterations were specific and significant as the expression levels of NMNAT1, NMNAT2 and sterile alpha and TIR motif containing 1 (SARM1) were not significantly different in Parkinson's disease patients compared to controls. To test the functional significance of these findings, we ectopically expressed wild-type α-synuclein in retinoic acid-differentiated dopaminergic SH-SY5Y cells that resulted in decreased levels of NMNAT3 protein plus a neurite pathology, which could be rescued by FK866, an inhibitor of nicotinamide phosphoribosyltransferase that acts as a key enzyme in the regulation of NAD+ synthesis. Our results establish, for the first time, NMNAT3 alterations in Parkinson's disease and demonstrate in human cells that this phenotype together with neurite pathology is causally related to α-synucleinopathy. These findings identify alterations in the NAD+ biosynthetic pathway as a pathogenic mechanism underlying α-synuclein-mediated synaptopathy.
Collapse
Affiliation(s)
- Richard B Parsons
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Altin Kocinaj
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Gustavo Ruiz Pulido
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Sarah A Prendergast
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Anna E Parsons
- King’s College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Paul D Facey
- Swansea University, Singleton Park Campus, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Frank Hirth
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neurosciences Institute, Department of Basic & Clinical Neuroscience, 5 Cutcombe Road, London SE5 9RX, UK
| |
Collapse
|
4
|
Kim S, Nam Y, Kim HS, Jung H, Jeon SG, Hong SB, Moon M. Alteration of Neural Pathways and Its Implications in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10040845. [PMID: 35453595 PMCID: PMC9025507 DOI: 10.3390/biomedicines10040845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease accompanied by cognitive and behavioral symptoms. These AD-related manifestations result from the alteration of neural circuitry by aggregated forms of amyloid-β (Aβ) and hyperphosphorylated tau, which are neurotoxic. From a neuroscience perspective, identifying neural circuits that integrate various inputs and outputs to determine behaviors can provide insight into the principles of behavior. Therefore, it is crucial to understand the alterations in the neural circuits associated with AD-related behavioral and psychological symptoms. Interestingly, it is well known that the alteration of neural circuitry is prominent in the brains of patients with AD. Here, we selected specific regions in the AD brain that are associated with AD-related behavioral and psychological symptoms, and reviewed studies of healthy and altered efferent pathways to the target regions. Moreover, we propose that specific neural circuits that are altered in the AD brain can be potential targets for AD treatment. Furthermore, we provide therapeutic implications for targeting neuronal circuits through various therapeutic approaches and the appropriate timing of treatment for AD.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Haram Jung
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
- Correspondence:
| |
Collapse
|
5
|
Bokulić E, Medenica T, Knezović V, Štajduhar A, Almahariq F, Baković M, Judaš M, Sedmak G. The Stereological Analysis and Spatial Distribution of Neurons in the Human Subthalamic Nucleus. Front Neuroanat 2022; 15:749390. [PMID: 34970124 PMCID: PMC8712451 DOI: 10.3389/fnana.2021.749390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
The subthalamic nucleus (STN) is a small, ovoid structure, and an important site of deep brain stimulation (DBS) for the treatment of Parkinson’s disease. Although the STN is a clinically important structure, there are many unresolved issues with regard to it. These issues are especially related to the anatomical subdivision, neuronal phenotype, neuronal composition, and spatial distribution. In this study, we have examined the expression pattern of 8 neuronal markers [nNOS, NeuN, parvalbumin (PV), calbindin (CB), calretinin (CR), FOXP2, NKX2.1, and PAX6] in the adult human STN. All of the examined markers, except CB, were present in the STN. To determine the neuronal density, we have performed stereological analysis on Nissl-stained and immunohistochemical slides of positive markers. The stereology data were also used to develop a three-dimensional map of the spatial distribution of neurons within the STN. The nNOS population exhibited the largest neuronal density. The estimated total number of nNOS STN neurons is 281,308 ± 38,967 (± 13.85%). The STN neuronal subpopulations can be divided into two groups: one with a neuronal density of approximately 3,300 neurons/mm3 and the other with a neuronal density of approximately 2,200 neurons/mm3. The largest density of STN neurons was observed along the ventromedial border of the STN and the density gradually decreased toward the dorsolateral border. In this study, we have demonstrated the presence of 7 neuronal markers in the STN, three of which were not previously described in the human STN. The human STN is a collection of diverse, intermixed neuronal subpopulations, and our data, as far as the cytoarchitectonics is concerned, did not support the tripartite STN subdivision.
Collapse
Affiliation(s)
- Ema Bokulić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Tila Medenica
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Vinka Knezović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Andrija Štajduhar
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,School of Public Health "Andrija Štampar," University of Zagreb School of Medicine, Zagreb, Croatia
| | - Fadi Almahariq
- Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia.,Department of Neurosurgery, Clinical Hospital "Dubrava," Zagreb, Croatia
| | - Marija Baković
- Department of Forensic Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Miloš Judaš
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
6
|
Kwon DH, Paek SH, Kim YB, Lee H, Cho ZH. In vivo 3D Reconstruction of the Human Pallidothalamic and Nigrothalamic Pathways With Super-Resolution 7T MR Track Density Imaging and Fiber Tractography. Front Neuroanat 2021; 15:739576. [PMID: 34776880 PMCID: PMC8579044 DOI: 10.3389/fnana.2021.739576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
The output network of the basal ganglia plays an important role in motor, associative, and limbic processing and is generally characterized by the pallidothalamic and nigrothalamic pathways. However, these connections in the human brain remain difficult to elucidate because of the resolution limit of current neuroimaging techniques. The present study aimed to investigate the mesoscopic nature of these connections between the thalamus, substantia nigra pars reticulata, and globus pallidus internal segment using 7 Tesla (7T) magnetic resonance imaging (MRI). In this study, track-density imaging (TDI) of the whole human brain was employed to overcome the limitations of observing the pallidothalamic and nigrothalamic tracts. Owing to the super-resolution of the TD images, the substructures of the SN, as well as the associated tracts, were identified. This study demonstrates that 7T MRI and MR tractography can be used to visualize anatomical details, as well as 3D reconstruction, of the output projections of the basal ganglia.
Collapse
Affiliation(s)
- Dae-Hyuk Kwon
- Neuroscience Convergence Center, Green Manufacturing Research Center (GMRC), Korea University, Seoul, South Korea
| | - Sun Ha Paek
- Neurosurgery, Movement Disorder Center, Seoul National University College of Medicine, Advanced Institute of Convergence Technology (AICT), Seoul National University, Seoul, South Korea
| | - Young-Bo Kim
- Department of Neurosurgery, College of Medicine, Gachon University, Incheon, South Korea
| | - Haigun Lee
- Department of Materials Science and Engineering, Korea University, Seoul, South Korea
| | - Zang-Hee Cho
- Neuroscience Convergence Center, Green Manufacturing Research Center (GMRC), Korea University, Seoul, South Korea
| |
Collapse
|
7
|
Emmi A, Antonini A, Macchi V, Porzionato A, De Caro R. Anatomy and Connectivity of the Subthalamic Nucleus in Humans and Non-human Primates. Front Neuroanat 2020; 14:13. [PMID: 32390807 PMCID: PMC7189217 DOI: 10.3389/fnana.2020.00013] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/13/2020] [Indexed: 02/02/2023] Open
Abstract
The Subthalamic Nucleus (STh) is an oval-shaped diencephalic structure located ventrally to the thalamus, playing a fundamental role in the circuitry of the basal ganglia. In addition to being involved in the pathophysiology of several neurodegenerative disorders, such as Huntington’s and Parkinson’s disease, the STh is one of the target nuclei for deep brain stimulation. However, most of the anatomical evidence available derives from non-human primate studies. In this review, we will present the topographical and morphological organization of the nucleus and its connections to structurally and functionally related regions of the basal ganglia circuitry. We will also highlight the importance of additional research in humans focused on validating STh connectivity, cytoarchitectural organization, and its functional subdivision.
Collapse
Affiliation(s)
- Aron Emmi
- Institute of Human Anatomy, Department of Neuroscience, University of Padua, Padua, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Neurology Clinic, Department of Neuroscience, University of Padua, Padua, Italy
| | - Veronica Macchi
- Institute of Human Anatomy, Department of Neuroscience, University of Padua, Padua, Italy
| | - Andrea Porzionato
- Institute of Human Anatomy, Department of Neuroscience, University of Padua, Padua, Italy
| | - Raffaele De Caro
- Institute of Human Anatomy, Department of Neuroscience, University of Padua, Padua, Italy
| |
Collapse
|
8
|
Faynveitz A, Lavian H, Jacob A, Korngreen A. Proliferation of Inhibitory Input to the Substantia Nigra in Experimental Parkinsonism. Front Cell Neurosci 2019; 13:417. [PMID: 31572130 PMCID: PMC6753199 DOI: 10.3389/fncel.2019.00417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022] Open
Abstract
The substantia nigra pars reticulata (SNr) is one of the output nuclei of the basal ganglia (BG) and plays a vital role in movement execution. Death of dopaminergic neurons in the neighboring nucleus, the substantia nigra pars compacta (SNc), leads to Parkinson's disease. The ensuing dopamine depletion affects all BG nuclei. However, the long-term effects of dopamine depletion on BG output are less characterized. In this in vitro study, we applied electrophysiological and immunohistochemical techniques to investigate the long-term effects of dopamine depletion on GABAergic transmission to the SNr. The findings showed a reduction in firing rate and regularity in SNr neurons after unilateral dopamine depletion with 6-OHDA, which we associate with homeostatic mechanisms. The strength of the GABAergic synapses between the globus pallidus (GP) and the SNr increased but not their short-term dynamics. Consistent with this observation, there was an increase in the frequency and amplitude of spontaneous inhibitory synaptic events to SNr neurons. Immunohistochemistry revealed an increase in the density of vGAT-labeled puncta in dopamine depleted animals. Overall, these results may suggest that synaptic proliferation can explain how dopamine depletion augments GABAergic transmission in the SNr.
Collapse
Affiliation(s)
- Anna Faynveitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Hagar Lavian
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Avi Jacob
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Alon Korngreen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.,The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
9
|
Yasuda M, Hikosaka O. Medial thalamus in the territory of oculomotor basal ganglia represents stable object value. Eur J Neurosci 2018; 49:672-686. [PMID: 30307646 PMCID: PMC6426671 DOI: 10.1111/ejn.14202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 09/11/2018] [Accepted: 10/04/2018] [Indexed: 12/15/2022]
Abstract
Many visual objects are attached with values which were created by our long rewarding history. Such stable object values attract gaze. We previously found that the output pathway of basal ganglia from caudal‐dorsal‐lateral portion of substantia nigra pars reticulata (cdlSNr) to superior colliculus (SC) carries robust stable value signal to execute the automatic choice of valuable objects. An important question here is whether stable value signal in basal ganglia can influence on other inner processing such as perception, attention, emotion, or arousal than motor execution. The key brain circuit is another output path of basal ganglia: the pathway from SNr to temporal and frontal lobes through thalamus. To examine the existence of stable value signal in this pathway, we explored thalamus in a wide range. We found that many neurons in the medial thalamus represented stable value. Histological examination showed that the recorded sites of those neurons included ventral anterior nucleus, pars magnocellularis (VAmc) which is the main target of nigrothalamic projection. Consistent with the SNr GABArgic projection, the latency of value signal in the medial thalamus was later than cdlSNr, and the sign of value coding in the medial thalamus was opposite to cdlSNr. As is the case with cdlSNr neurons, the medial thalamus neurons showed no sensitivity to frequently updated value (flexible value). These results suggest that the pathway from cdlSNr to the medial thalamus influences on various aspects of cognitive processing by propagating stable value signal to the wide cortical area.
Collapse
Affiliation(s)
- Masaharu Yasuda
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Physiology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata City, Osaka, 573-0101, Japan
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Thalamic interactions of cerebellum and basal ganglia. Brain Struct Funct 2017; 223:569-587. [PMID: 29224175 DOI: 10.1007/s00429-017-1584-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/29/2017] [Indexed: 01/04/2023]
Abstract
Cerebellum and basal ganglia are reciprocally interconnected with the neocortex via oligosynaptic loops. The signal pathways of these loops predominantly converge in motor areas of the frontal cortex and are mainly segregated on subcortical level. Recent evidence, however, indicates subcortical interaction of these systems. We have reviewed literature that addresses the question whether, and to what extent, projections of main output nuclei of basal ganglia (reticular part of the substantia nigra, internal segment of the globus pallidus) and cerebellum (deep cerebellar nuclei) interact with each other in the thalamus. To this end, we compiled data from electrophysiological and anatomical studies in rats, cats, dogs, and non-human primates. Evidence suggests the existence of convergence of thalamic projections originating in basal ganglia and cerebellum, albeit sparse and restricted to certain regions. Four regions come into question to contain converging inputs: (1) lateral parts of medial dorsal nucleus (MD); (2) parts of anterior intralaminar nuclei and centromedian and parafascicular nuclei (CM/Pf); (3) ventromedial nucleus (VM); and (4) border regions of cerebellar and ganglia terminal territories in ventral anterior and ventral lateral nuclei (VA-VL). The amount of convergences was found to exhibit marked interspecies differences. To explain the rather sparse convergences of projection territories and to estimate their physiological relevance, we present two conceivable principles of anatomical organization: (1) a "core-and-shell" organization, in which a central core is exclusive to one projection system, while peripheral shell regions intermingle and occasionally converge with other projection systems and (2) convergences that are characteristic to distinct functional networks. The physiological relevance of these convergences is not yet clear. An oculomotor network proposed in this work is an interesting candidate to examine potential ganglia and cerebellar subcortical interactions.
Collapse
|
11
|
Ramayya AG, Pedisich I, Levy D, Lyalenko A, Wanda P, Rizzuto D, Baltuch GH, Kahana MJ. Proximity of Substantia Nigra Microstimulation to Putative GABAergic Neurons Predicts Modulation of Human Reinforcement Learning. Front Hum Neurosci 2017; 11:200. [PMID: 28536513 PMCID: PMC5422436 DOI: 10.3389/fnhum.2017.00200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 04/06/2017] [Indexed: 11/13/2022] Open
Abstract
Neuronal firing in the substantia nigra (SN) immediately following reward is thought to play a crucial role in human reinforcement learning. As in Ramayya et al. (2014a) we applied microstimulation in the SN of patients undergoing deep brain stimulation (DBS) for the treatment of Parkinson's disease as they engaged in a two-alternative reinforcement learning task. We obtained microelectrode recordings to assess the proximity of the electrode tip to putative dopaminergic and GABAergic SN neurons and applied stimulation to assess the functional importance of these neuronal populations for learning. We found that the proximity of SN microstimulation to putative GABAergic neurons predicted the degree of stimulation-related changes in learning. These results extend previous work by supporting a specific role for SN GABA firing in reinforcement learning. Stimulation near these neurons appears to dampen the reinforcing effect of rewarding stimuli.
Collapse
Affiliation(s)
- Ashwin G Ramayya
- Department of Neurosurgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Isaac Pedisich
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Deborah Levy
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Anastasia Lyalenko
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Paul Wanda
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Daniel Rizzuto
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Gordon H Baltuch
- Department of Neurosurgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Michael J Kahana
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
12
|
Fettes P, Schulze L, Downar J. Cortico-Striatal-Thalamic Loop Circuits of the Orbitofrontal Cortex: Promising Therapeutic Targets in Psychiatric Illness. Front Syst Neurosci 2017; 11:25. [PMID: 28496402 PMCID: PMC5406748 DOI: 10.3389/fnsys.2017.00025] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/07/2017] [Indexed: 12/18/2022] Open
Abstract
Corticostriatal circuits through the orbitofrontal cortex (OFC) play key roles in complex human behaviors such as evaluation, affect regulation and reward-based decision-making. Importantly, the medial and lateral OFC (mOFC and lOFC) circuits have functionally and anatomically distinct connectivity profiles which differentially contribute to the various aspects of goal-directed behavior. OFC corticostriatal circuits have been consistently implicated across a wide range of psychiatric disorders, including major depressive disorder (MDD), obsessive compulsive disorder (OCD), and substance use disorders (SUDs). Furthermore, psychiatric disorders related to OFC corticostriatal dysfunction can be addressed via conventional and novel neurostimulatory techniques, including deep brain stimulation (DBS), electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS). Such techniques elicit changes in OFC corticostriatal activity, resulting in changes in clinical symptomatology. Here we review the available literature regarding how disturbances in mOFC and lOFC corticostriatal functioning may lead to psychiatric symptomatology in the aforementioned disorders, and how psychiatric treatments may exert their therapeutic effect by rectifying abnormal OFC corticostriatal activity. First, we review the role of OFC corticostriatal circuits in reward-guided learning, decision-making, affect regulation and reappraisal. Second, we discuss the role of OFC corticostriatal circuit dysfunction across a wide range of psychiatric disorders. Third, we review available evidence that the therapeutic mechanisms of various neuromodulation techniques may directly involve rectifying abnormal activity in mOFC and lOFC corticostriatal circuits. Finally, we examine the potential of future applications of therapeutic brain stimulation targeted at OFC circuitry; specifically, the role of OFC brain stimulation in the growing field of individually-tailored therapies and personalized medicine in psychiatry.
Collapse
Affiliation(s)
- Peter Fettes
- Institute of Medical Science, University of TorontoToronto, ON, Canada
| | - Laura Schulze
- Institute of Medical Science, University of TorontoToronto, ON, Canada
| | - Jonathan Downar
- Institute of Medical Science, University of TorontoToronto, ON, Canada.,Krembil Research Institute, University Health NetworkToronto, ON, Canada.,Department of Psychiatry, University of TorontoToronto, ON, Canada.,MRI-Guided rTMS Clinic, University Health NetworkToronto, ON, Canada
| |
Collapse
|
13
|
Tyebji S, Hannan AJ. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Prog Neurobiol 2017; 153:18-45. [PMID: 28377290 DOI: 10.1016/j.pneurobio.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
Dementia encapsulates a set of symptoms that include loss of mental abilities such as memory, problem solving or language, and reduces a person's ability to perform daily activities. Alzheimer's disease is the most common form of dementia, however dementia can also occur in other neurological disorders such as Huntington's disease (HD). Many studies have demonstrated that loss of neuronal cell function manifests pre-symptomatically and thus is a relevant therapeutic target to alleviate symptoms. Synaptopathy, the physiological dysfunction of synapses, is now being approached as the target for many neurological and psychiatric disorders, including HD. HD is an autosomal dominant and progressive degenerative disorder, with clinical manifestations that encompass movement, cognition, mood and behaviour. HD is one of the most common tandem repeat disorders and is caused by a trinucleotide (CAG) repeat expansion, encoding an extended polyglutamine tract in the huntingtin protein. Animal models as well as human studies have provided detailed, although not exhaustive, evidence of synaptic dysfunction in HD. In this review, we discuss the neuropathology of HD and how the changes in synaptic signalling in the diseased brain lead to its symptoms, which include dementia. Here, we review and discuss the mechanisms by which the 'molecular orchestras' and their 'synaptic symphonies' are disrupted in neurodegeneration and dementia, focusing on HD as a model disease. We also explore the therapeutic strategies currently in pre-clinical and clinical testing that are targeted towards improving synaptic function in HD.
Collapse
Affiliation(s)
- Shiraz Tyebji
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
14
|
Peterson AC, Zhang S, Hu S, Chao HH, Li CSR. The Effects of Age, from Young to Middle Adulthood, and Gender on Resting State Functional Connectivity of the Dopaminergic Midbrain. Front Hum Neurosci 2017; 11:52. [PMID: 28223929 PMCID: PMC5293810 DOI: 10.3389/fnhum.2017.00052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/24/2017] [Indexed: 01/31/2023] Open
Abstract
Dysfunction of the dopaminergic ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) is implicated in psychiatric disorders including attention-deficit/ hyperactivity disorder (ADHD), addiction, schizophrenia and movement disorders such as Parkinson's disease (PD). Although the prevalence of these disorders varies by age and sex, the underlying neural mechanism is not well understood. The objective of this study was to delineate the distinct resting state functional connectivity (rsFC) of the VTA and SNc and examine the effects of age, from young to middle-adulthood, and sex on the rsFC of these two dopaminergic structures in a data set of 250 healthy adults (18-49 years of age, 104 men). Using blood oxygenation level dependent (BOLD) signals, we correlated the time course of the VTA and SNc to the time courses of all other brain voxels. At a corrected threshold, paired t-test showed stronger VTA connectivity to bilateral angular gyrus and superior/middle and orbital frontal regions and stronger SNc connectivity to the insula, thalamus, parahippocampal gyrus (PHG) and amygdala. Compared to women, men showed a stronger VTA/SNc connectivity to the left posterior orbital gyrus. In linear regressions, men but not women showed age-related changes in VTA/SNc connectivity to a number of cortical and cerebellar regions. Supporting shared but also distinct cerebral rsFC of the VTA and SNc and gender differences in age-related changes from young and middle adulthood in VTA/SNc connectivity, these new findings help advance our understanding of the neural bases of many neuropsychiatric illnesses that implicate the dopaminergic systems.
Collapse
Affiliation(s)
- Andrew C Peterson
- Frank H. Netter MD School of Medicine at Quinnipiac University North Haven, CT, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| | - Herta H Chao
- Department of Internal Medicine, Yale University School of MedicineNew Haven, CT, USA; Veterans Administration Medical CenterWest Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA; Department of Neuroscience, Yale University School of MedicineNew Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
15
|
High-Frequency Stimulation of the Rat Entopeduncular Nucleus Does Not Provide Functional or Morphological Neuroprotection from 6-Hydroxydopamine. PLoS One 2015. [PMID: 26222442 PMCID: PMC4519335 DOI: 10.1371/journal.pone.0133957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Deep brain stimulation (DBS) is the most common neurosurgical treatment for Parkinson’s disease (PD). Whereas the globus pallidus interna (GPi) has been less commonly targeted than the subthalamic nucleus (STN), a recent clinical trial suggests that GPi DBS may provide better outcomes for patients with psychiatric comorbidities. Several laboratories have demonstrated that DBS of the STN provides neuroprotection of substantia nigra pars compacta (SNpc) dopamine neurons in preclinical neurotoxin models of PD and increases brain-derived neurotrophic factor (BDNF). However, whether DBS of the entopeduncular nucleus (EP), the homologous structure to the GPi in the rat, has similar neuroprotective potential in preclinical models has not been investigated. We investigated the impact of EP DBS on forelimb use asymmetry and SNpc degeneration induced by 6-hydroxydopamine (6-OHDA) and on BDNF levels. EP DBS in male rats received unilateral, intrastriatal 6-OHDA and ACTIVE or INACTIVE stimulation continuously for two weeks. Outcome measures included quantification of contralateral forelimb use, stereological assessment of SNpc neurons and BDNF levels. EP DBS 1) did not ameliorate forelimb impairments induced by 6-OHDA, 2) did not provide neuroprotection for SNpc neurons and 3) did not significantly increase BDNF levels in any of the structures examined. These results are in sharp contrast to the functional improvement, neuroprotection and BDNF-enhancing effects of STN DBS under identical experimental parameters in the rat. The lack of functional response to EP DBS suggests that stimulation of the rat EP may not represent an accurate model of clinical GPi stimulation.
Collapse
|
16
|
Waldvogel HJ, Kim EH, Tippett LJ, Vonsattel JPG, Faull RLM. The Neuropathology of Huntington's Disease. Curr Top Behav Neurosci 2015; 22:33-80. [PMID: 25300927 DOI: 10.1007/7854_2014_354] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The basal ganglia are a highly interconnected set of subcortical nuclei and major atrophy in one or more regions may have major effects on other regions of the brain. Therefore, the striatum which is preferentially degenerated and receives projections from the entire cortex also affects the regions to which it targets, especially the globus pallidus and substantia nigra pars reticulata. Additionally, the cerebral cortex is itself severely affected as are many other regions of the brain, especially in more advanced cases. The cell loss in the basal ganglia and the cerebral cortex is extensive. The most important new findings in Huntington's disease pathology is the highly variable nature of the degeneration in the brain. Most interestingly, this variable pattern of pathology appears to reflect the highly variable symptomatology of cases with Huntington's disease even among cases possessing the same number of CAG repeats.
Collapse
Affiliation(s)
- Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand,
| | | | | | | | | |
Collapse
|
17
|
Ramayya AG, Zaghloul KA, Weidemann CT, Baltuch GH, Kahana MJ. Electrophysiological evidence for functionally distinct neuronal populations in the human substantia nigra. Front Hum Neurosci 2014; 8:655. [PMID: 25249957 PMCID: PMC4158808 DOI: 10.3389/fnhum.2014.00655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/05/2014] [Indexed: 11/28/2022] Open
Abstract
The human substantia nigra (SN) is thought to consist of two functionally distinct neuronal populations—dopaminergic (DA) neurons in the pars compacta subregion and GABA-ergic neurons in the pars reticulata subregion. However, a functional dissociation between these neuronal populations has not previously been demonstrated in the awake human. Here we obtained microelectrode recordings from the SN of patients undergoing deep brain stimulation (DBS) surgery for Parkinson's disease as they performed a two-alternative reinforcement learning task. Following positive feedback presentation, we found that putative DA and GABA neurons demonstrated distinct temporal dynamics. DA neurons demonstrated phasic increases in activity (250–500 ms post-feedback) whereas putative GABA neurons demonstrated more delayed and sustained increases in activity (500–1000 ms post-feedback). These results provide the first electrophysiological evidence for a functional dissociation between DA and GABA neurons in the human SN. We discuss possible functions for these neuronal responses based on previous findings in human and animal studies.
Collapse
Affiliation(s)
- Ashwin G Ramayya
- Department of Neuroscience, Neuroscience Graduate Group, University of Pennsylvania Philadelphia, PA, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| | | | - Gordon H Baltuch
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
18
|
The representation of egocentric space in the posterior parietal cortex. Behav Brain Sci 2013; 15 Spec No 4:691-700. [PMID: 23842408 DOI: 10.1017/s0140525x00072605] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The posterior parietal cortex (PPC) is the most likely site where egocentric spatial relationships are represented in the brain. PPC cells receive visual, auditory, somaesthetic, and vestibular sensory inputs; oculomotor, head, limb, and body motor signals; and strong motivational projections from the limbic system. Their discharge increases not only when an animal moves towards a sensory target, but also when it directs its attention to it. PPC lesions have the opposite effect: sensory inattention and neglect. The PPC does not seem to contain a "map" of the location of objects in space but a distributed neural network for transforming one set of sensory vectors into other sensory reference frames or into various motor coordinate systems. Which set of transformation rules is used probably depends on attention, which selectively enhances the synapses needed for making a particular sensory comparison or aiming a particular movement.
Collapse
|
19
|
Bay HH, Çavdar S. Regional connections of the mediodorsal thalamic nucleus in the rat. J Integr Neurosci 2013; 12:201-19. [DOI: 10.1142/s021963521350012x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Sutton AC, Yu W, Calos ME, Smith AB, Ramirez-Zamora A, Molho ES, Pilitsis JG, Brotchie JM, Shin DS. Deep brain stimulation of the substantia nigra pars reticulata improves forelimb akinesia in the hemiparkinsonian rat. J Neurophysiol 2012; 109:363-74. [PMID: 23076106 DOI: 10.1152/jn.00311.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) employing high-frequency stimulation (HFS) is commonly used in the globus pallidus interna (GPi) and the subthalamic nucleus (STN) for treating motor symptoms of patients with Parkinson's disease (PD). Although DBS improves motor function in most PD patients, disease progression and stimulation-induced nonmotor complications limit DBS in these areas. In this study, we assessed whether stimulation of the substantia nigra pars reticulata (SNr) improved motor function. Hemiparkinsonian rats predominantly touched with their unimpaired forepaw >90% of the time in the stepping and limb-use asymmetry tests. After SNr-HFS (150 Hz), rats touched equally with both forepaws, similar to naive and sham-lesioned rats. In vivo, SNr-HFS decreased beta oscillations (12-30 Hz) in the SNr of freely moving hemiparkinsonian rats and decreased SNr neuronal spiking activity from 28 ± 1.9 Hz before stimulation to 0.8 ± 1.9 Hz during DBS in anesthetized animals; also, neuronal spiking activity increased from 7 ± 1.6 to 18 ± 1.6 Hz in the ventromedial portion of the thalamus (VM), the primary SNr efferent. In addition, HFS of the SNr in brain slices from normal and reserpine-treated rat pups resulted in a depolarization block of SNr neuronal activity. We demonstrate improvement of forelimb akinesia with SNr-HFS and suggest that this motor effect may have resulted from the attenuation of SNr neuronal activity, decreased SNr beta oscillations, and increased activity of VM thalamic neurons, suggesting that the SNr may be a plausible DBS target for treating motor symptoms of DBS.
Collapse
Affiliation(s)
- Alexander C Sutton
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Simonyan K, Horwitz B, Jarvis ED. Dopamine regulation of human speech and bird song: a critical review. BRAIN AND LANGUAGE 2012; 122:142-50. [PMID: 22284300 PMCID: PMC3362661 DOI: 10.1016/j.bandl.2011.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 05/23/2023]
Abstract
To understand the neural basis of human speech control, extensive research has been done using a variety of methodologies in a range of experimental models. Nevertheless, several critical questions about learned vocal motor control still remain open. One of them is the mechanism(s) by which neurotransmitters, such as dopamine, modulate speech and song production. In this review, we bring together the two fields of investigations of dopamine action on voice control in humans and songbirds, who share similar behavioral and neural mechanisms for speech and song production. While human studies investigating the role of dopamine in speech control are limited to reports in neurological patients, research on dopaminergic modulation of bird song control has recently expanded our views on how this system might be organized. We discuss the parallels between bird song and human speech from the perspective of dopaminergic control as well as outline important differences between these species.
Collapse
Affiliation(s)
- Kristina Simonyan
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States.
| | | | | |
Collapse
|
22
|
Zhou FM, Lee CR. Intrinsic and integrative properties of substantia nigra pars reticulata neurons. Neuroscience 2011; 198:69-94. [PMID: 21839148 PMCID: PMC3221915 DOI: 10.1016/j.neuroscience.2011.07.061] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/07/2011] [Accepted: 07/14/2011] [Indexed: 11/27/2022]
Abstract
The GABA projection neurons of the substantia nigra pars reticulata (SNr) are output neurons for the basal ganglia and thus critical for movement control. Their most striking neurophysiological feature is sustained, spontaneous high frequency spike firing. A fundamental question is: what are the key ion channels supporting the remarkable firing capability in these neurons? Recent studies indicate that these neurons express tonically active type 3 transient receptor potential (TRPC3) channels that conduct a Na-dependent inward current even at hyperpolarized membrane potentials. When the membrane potential reaches -60 mV, a voltage-gated persistent sodium current (I(NaP)) starts to activate, further depolarizing the membrane potential. At or slightly below -50 mV, the large transient voltage-activated sodium current (I(NaT)) starts to activate and eventually triggers the rapid rising phase of action potentials. SNr GABA neurons have a higher density of I(NaT), contributing to the faster rise and larger amplitude of action potentials, compared with the slow-spiking dopamine neurons. I(NaT) also recovers from inactivation more quickly in SNr GABA neurons than in nigral dopamine neurons. In SNr GABA neurons, the rising phase of the action potential triggers the activation of high-threshold, inactivation-resistant Kv3-like channels that can rapidly repolarize the membrane. These intrinsic ion channels provide SNr GABA neurons with the ability to fire spontaneous and sustained high frequency spikes. Additionally, robust GABA inputs from direct pathway medium spiny neurons in the striatum and GABA neurons in the globus pallidus may inhibit and silence SNr GABA neurons, whereas glutamate synaptic input from the subthalamic nucleus may induce burst firing in SNr GABA neurons. Thus, afferent GABA and glutamate synaptic inputs sculpt the tonic high frequency firing of SNr GABA neurons and the consequent inhibition of their targets into an integrated motor control signal that is further fine-tuned by neuromodulators including dopamine, serotonin, endocannabinoids, and H₂O₂.
Collapse
Affiliation(s)
- F-M Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163, USA.
| | | |
Collapse
|
23
|
Bronfeld M, Bar-Gad I. Loss of specificity in Basal Ganglia related movement disorders. Front Syst Neurosci 2011; 5:38. [PMID: 21687797 PMCID: PMC3108383 DOI: 10.3389/fnsys.2011.00038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/20/2011] [Indexed: 01/08/2023] Open
Abstract
The basal ganglia (BG) are a group of interconnected nuclei which play a pivotal part in limbic, associative, and motor functions. This role is mirrored by the wide range of motor and behavioral abnormalities directly resulting from dysfunction of the BG. Studies of normal behavior have found that BG neurons tend to phasically modulate their activity in relation to different behavioral events. In the normal BG, this modulation is highly specific, with each neuron related only to a small subset of behavioral events depending on specific combinations of movement parameters and context. In many pathological conditions involving BG dysfunction and motor abnormalities, this neuronal specificity is lost. Loss of specificity (LOS) manifests in neuronal activity related to a larger spectrum of events and consequently a large overlap of movement-related activation patterns between different neurons. We review the existing evidence for LOS in BG-related movement disorders, the possible neural mechanisms underlying LOS, its effects on frequently used measures of neuronal activity and its relation to theoretical models of the BG. The prevalence of LOS in a many BG-related disorders suggests that neuronal specificity may represent a key feature of normal information processing in the BG system. Thus, the concept of neuronal specificity may underlie a unifying conceptual framework for the BG role in normal and abnormal motor control.
Collapse
Affiliation(s)
- Maya Bronfeld
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan UniversityRamat-Gan, Israel
| | - Izhar Bar-Gad
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan UniversityRamat-Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-Gan, Israel
| |
Collapse
|
24
|
|
25
|
Abstract
Abstract
This target article draws together two groups of experimental studies on the control of human movement through peripheral feedback and centrally generated signals of motor commands. First, during natural movement, feedback from muscle, joint, and cutaneous afferents changes; in human subjects these changes have reflex and kinesthetic consequences. Recent psychophysical and microneurographic evidence suggests that joint and even cutaneous afferents may have a proprioceptive role. Second, the role of centrally generated motor commands in the control of normal movements and movements following acute and chronic deafferentation is reviewed. There is increasing evidence that subjects can perceive their motor commands under various conditions, but that this is inadequate for normal movement; deficits in motor performance arise when the reliance on proprioceptive feedback is abolished either experimentally or because of pathology. During natural movement, the CNS appears to have access to functionally useful input from a range of peripheral receptors as well as from internally generated command signals. The unanswered questions that remain suggest a number of avenues for further research.
Collapse
|
26
|
Equilibrium-point hypothesis, minimum effort control strategy and the triphasic muscle activation pattern. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00073209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
|
28
|
Successive approximation in targeted movement: An alternative hypothesis. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00072848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Abstract
AbstractEngineers use neural networks to control systems too complex for conventional engineering solutions. To examine the behavior of individual hidden units would defeat the purpose of this approach because it would be largely uninterpretable. Yet neurophysiologists spend their careers doing just that! Hidden units contain bits and scraps of signals that yield only arcane hints about network function and no information about how its individual units process signals. Most literature on single-unit recordings attests to this grim fact. On the other hand, knowing a system's function and describing it with elegant mathematics tell one very little about what to expect of interneuronal behavior. Examples of simple networks based on neurophysiology are taken from the oculomotor literature to suggest how single-unit interpretability might decrease with increasing task complexity. It is argued that trying to explain how any real neural network works on a cell-by-cell, reductionist basis is futile and we may have to be content with trying to understand the brain at higher levels of organization.
Collapse
|
30
|
Does the nervous system use equilibrium-point control to guide single and multiple joint movements? Behav Brain Sci 2011; 15:603-13. [PMID: 23302290 DOI: 10.1017/s0140525x00072538] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
|
32
|
Jones EG. Organization of the Thalamocortical Complex and its Relation to Sensory Processes. Compr Physiol 2011. [DOI: 10.1002/cphy.cp010305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
|
34
|
|
35
|
Contini M, Baccarini M, Borra E, Gerbella M, Rozzi S, Luppino G. Thalamic projections to the macaque caudal ventrolateral prefrontal areas 45A and 45B. Eur J Neurosci 2010; 32:1337-53. [DOI: 10.1111/j.1460-9568.2010.07390.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Barroso-Chinea P, Bezard E. Basal Ganglia circuits underlying the pathophysiology of levodopa-induced dyskinesia. Front Neuroanat 2010; 4. [PMID: 20890450 PMCID: PMC2947938 DOI: 10.3389/fnana.2010.00131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/24/2010] [Indexed: 11/13/2022] Open
Abstract
Involuntary movements or dyskinesia, represent a debilitating complication of levodopa therapy for Parkinson's disease. Dyskinesia is, ultimately, experienced by the vast majority of the patients. Despite the importance of this problem, little was known about the cause of dyskinesia, a situation that has dramatically evolved in the last few years with a focus upon the molecular and signaling changes induced by chronic levodopa treatment. Departing from this, we here review the progress made in functional anatomy and neuroimaging that have had a tremendous impact on our understanding of the anatomo-functional organization of the basal ganglia in Parkinsonism and dyskinetic states, notably the demonstration that dyskinesia are linked to a pathological processing of limbic and cognitive information.
Collapse
Affiliation(s)
- Pedro Barroso-Chinea
- Centre National de la Recherche Scientifique UMR 5227, Bordeaux Institute of Neuroscience, Université Victor-Segalen Bordeaux 2 Bordeaux, France
| | | |
Collapse
|
37
|
Tanibuchi I, Kitano H, Jinnai K. Substantia Nigra Output to Prefrontal Cortex Via Thalamus in Monkeys. I. Electrophysiological Identification of Thalamic Relay Neurons. J Neurophysiol 2009; 102:2933-45. [DOI: 10.1152/jn.91287.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A few studies have been performed in primate basal ganglia–thalamo–prefrontal pathways. Nevertheless, their electrophysiological properties and anatomical arrangements remain obscure. This study examined them in nigro-thalamo-cortical pathways from the substantia nigra pars reticulata (SNr) to the frontal cortex (FRC) via the mediodorsal (MD) and ventral anterior (VA) thalamus in monkeys. First, single thalamocortical neurons with SNr input were identified by antidromic responses to FRC stimulation and by inhibitory orthodromic responses with short latencies (<5 ms) to SNr stimulation. Second, single nigrothalamic neurons were found by antidromic responses to stimulation of the portions of the MD and VA where the thalamocortical neurons were recorded. The inhibitory orthodromic responses in the thalamocortical neurons were considered to be monosynaptically induced by nigral stimulation because the latency distribution of the orthodromic responses in the thalamocortical neurons was similar to that of the antidromic responses in the nigrothalamic neurons. Almost all relay neurons in the rostrolateral MD received inhibitory afferents from the caudolateral SNr and projected to the prefrontal area ventral to the principal sulcus, which constituted the densest nigro-thalamo-cortical projections. Meanwhile, neurons in the VA received inhibitory signals from the whole rostrocaudal extent of the SNr and projected to wide regions of the FRC; neurons in its pars magnocellularis mostly projected to different prefrontal areas, while those in its pars parvocellularis projected to motor areas. This report substantiated the topography of thalamocortical neurons monosynaptically receiving inhibitory SNr input and projecting to the FRC in the primate MD and VA at the single-neuron level.
Collapse
Affiliation(s)
| | - Hiroyuki Kitano
- Departments of Physiology and
- Neurosurgery, Shiga University of Medical Science, Ohtsu, Japan
| | | |
Collapse
|
38
|
Sharp FR. Regional (14C) 2-deoxyglucose uptake during forelimb movements evoked by rat motor cortex stimulation: cortex, diencephalon, midbrain. J Comp Neurol 2009; 224:259-85. [PMID: 19180815 DOI: 10.1002/cne.902240207] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The caudal forelimb region of right "motor" cortex was repetitively stimulated in normal, conscious rats. Left forelimb movements were produced and (14C) 2-deoxyglucose (2DG) was injected. After sacrifice, regions of increased brain (14C) 2DG uptake were mapped autoradiographically. Uptake of 2DG increased about the stimulating electrode in motor (MI) cortex. Columnar activation of primary (SI) and second (SII) somatosensory neocortex occurred. The rostral or second forelimb (MII) region of motor cortex was activated. Many ipsilateral subcortical structures were also activated during forelimb MI stimulation (FLMIS). Rostral dorsolateral caudate-putamen (CP), central globus pallidus (GP), posterior entopeduncular nucleus (EPN), subthalamic nucleus (STN), zona incerta (ZI), and caudal, ventrolateral substantia nigra pars reticulata (SNr) were activated. Thalamic nuclei that increased (14C) 2DG uptake included anterior dorsolateral reticular (R), ventral and central ventrolateral (VL), lateral ventromedial (VM), ventral ventrobasal (VB), dorsolateral posteromedial (POm), and the parafascicular-centre median (Pf-CM) complex. Activated midbrain regions included ventromedial magnocellular red nucleus (RNm), posterior deep layers of the superior colliculus (SCsgp), lateral deep mesencephalic nucleus (DMN), nucleus tegmenti pedunculopontinus (NTPP), and anterior pretectal nucleus (NCU). Monosynaptic connections from MI or SI to SII, MII, CP, STN, ZI, R, VL, VM, VB, POm, Pf-CM, RNm, SCsgp, SNr, and DMN can account for ipsilateral activation of these structures. GP and EPN must be activated polysynaptically, either from MI stimulation or sensory feedback, since there are no known monosynaptic connections from MI and SI to these structures. Most rat brain motor-sensory structures are somatotopically organized. However, the same regions of R, EPN, CM-Pf, DMN, and ZI are activated during FLMIS compared to VMIS (vibrissae MI stimulation). Since these structures are not somatopically organized, this suggests they are involved in motor-sensory processing independent of which body part is moving. VB, SII, and MII are activated during FLMIS but not during VMIS.
Collapse
Affiliation(s)
- F R Sharp
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, California 92093, USA
| |
Collapse
|
39
|
Huerta MF, Kaas JH. Supplementary eye field as defined by intracortical microstimulation: connections in macaques. J Comp Neurol 2009; 293:299-330. [PMID: 19189718 DOI: 10.1002/cne.902930211] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In macaques, the frontal eye field and the recently defined supplementary eye field play a role in the production of eye movements. Whereas the structure and function of the frontal eye field are well understood, little is known about the supplementary eye field. The goal of this study was to determine the connections of the physiologically defined supplementary eye field. In each case, the location of the supplementary eye field was determined by using intracortical microstimulation, the borders were marked with small electrolytic lesions, and horseradish peroxidase conjugated to wheat germ agglutinin was injected into the supplementary eye field. After the tissue was incubated with tetramethyl benzidine, it was determined that in three cases the injection site was confined to the physiologically defined supplementary eye field. The present results indicate that the supplementary eye field is reciprocally connected with the claustrum, ventral anterior nucleus, including pars magnocellularis, nucleus X, posterior subdivision of the ventral lateral nucleus, multiform, parvocellular, magnocellular, and densocellular subdivisions of the medial dorsal nucleus, central lateral nucleus, parafascicular nucleus, and suprageniculate-limitans complex. The supplementary eye field projects to the putamen, caudate, reticular nucleus of the thalamus, central densocellular nucleus, zona incerta, subthalamic nucleus, rostral interstitial nucleus of the medial longitudinal fasciculus, parvocellular part of the red nucleus, intermediate and deep layers of the superior colliculus, central gray, cuneiform nucleus, mesencephalic reticular formation, pontine gray, nucleus reticularis tegmenti pontis, and nucleus reticularis pontis oralis. The supplementary eye field is reciprocally and bilaterally connected with periprincipal and inferior prefrontal cortex, with periarcuate cortex, including the frontal eye field, the frontal ventral region, and with postarcuate premotor cortex, and cortex surrounding the supplementary eye field, including the supplementary motor area. The supplementary eye field is also reciprocally connected ipsilaterally with cortex in and around the cingulate sulcus and the intraparietal sulcus, whereas cortex within the superior temporal sulcus projects to the supplementary eye field. The connections of the physiologically defined supplementary eye field are compared to previously demonstrated connections of the supplementary motor region and of the physiologically defined frontal eye field. Comparisons between the connections of the frontal and supplementary eye fields reveal that both regions are connected with structures related to visuomotor functions, but the frontal eye field has more extensive connections with vision-related structures, and the supplementary eye field has more extensive connections with structures related to prefrontal and skeletomotor functions. Such connectional differences suggest functional differences between these two sensorimotor regions of the frontal lobe.
Collapse
Affiliation(s)
- M F Huerta
- Department of BioStructure and Function, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | |
Collapse
|
40
|
Nauta WJ, Domesick VB. Afferent and efferent relationships of the basal ganglia. CIBA FOUNDATION SYMPOSIUM 2008; 107:3-29. [PMID: 6437774 DOI: 10.1002/9780470720882.ch2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A survey of the known circuitry of the basal ganglia leads to the following conclusions. (1) No complete account can yet be given of the neural pathways by which the basal ganglia affect the bulbospinal motor apparatus. Channels of exit from the basal ganglia originate from the internal pallidal segment, the pars reticulata of the substantia nigra, and the subthalamic nucleus, and each of these is directed in part rostrally to the cerebral cortex by way of the thalamus, in part caudally to the midbrain. The postsynaptic extension of the mesencephalic channels to bulbar and spinal motor neurons is largely unknown. Since the ascending channels are collectively of greatest volume, the notion remains plausible that the basal ganglia act in considerable part by modulating motor mechanisms of the cortex. (2) Recent findings in the rat suggest that the striatum is subdivided into a ventromedial, limbic system-afferented region and a dorsolateral, 'non-limbic' region largely corresponding to the main distribution of corticostriatal fibres from the motor cortex. These two subdivisions appear to give rise to different striatofugal lines, the outflow from the limbic-afferented sector partly re-entering the circuitry of the limbic system. (3) The limbic-afferented striatal sector suggests itself as an interface between the motivational and the more strictly motor aspects of movement. This suggestion is strengthened by evidence that the 'limbic striatum' seems enabled by its striatonigral efferents to modulate not only the source of its own dopamine innervation but also that of a large additional striatal region.
Collapse
|
41
|
Gallay MN, Jeanmonod D, Liu J, Morel A. Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain Struct Funct 2008; 212:443-63. [PMID: 18193279 PMCID: PMC2494572 DOI: 10.1007/s00429-007-0170-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 12/20/2007] [Indexed: 11/26/2022]
Abstract
Anatomical knowledge of the structures to be targeted and of the circuitry involved is crucial in stereotactic functional neurosurgery. The present study was undertaken in the context of surgical treatment of motor disorders such as essential tremor (ET) and Parkinson's disease (PD) to precisely determine the course and three-dimensional stereotactic localisation of the cerebellothalamic and pallidothalamic tracts in the human brain. The course of the fibre tracts to the thalamus was traced in the subthalamic region using multiple staining procedures and their entrance into the thalamus determined according to our atlas of the human thalamus and basal ganglia [Morel (2007) Stereotactic atlas of the human thalamus and basal ganglia. Informa Healthcare Inc., New York]. Stereotactic three-dimensional coordinates were determined by sectioning thalamic and basal ganglia blocks parallel to stereotactic planes and, in two cases, by correlation with magnetic resonance images (MRI) from the same brains prior to sectioning. The major contributions of this study are to provide: (1) evidence that the bulks of the cerebellothalamic and pallidothalamic tracts are clearly separated up to their thalamic entrance, (2) stereotactic maps of the two tracts in the subthalamic region, (3) the possibility to discriminate between different subthalamic fibre tracts on the basis of immunohistochemical stainings, (4) correlations of histologically identified fibre tracts with high-resolution MRI, and (5) evaluation of the interindividual variability of the fibre systems in the subthalamic region. This study should provide an important basis for accurate stereotactic neurosurgical targeting of the subthalamic region in motor disorders such as PD and ET.
Collapse
Affiliation(s)
- Marc N. Gallay
- Laboratory for Functional Neurosurgery, Neurosurgery Clinic, University Hospital Zürich, Sternwartstrasse 6, 8091 Zurich, Switzerland
| | - Daniel Jeanmonod
- Laboratory for Functional Neurosurgery, Neurosurgery Clinic, University Hospital Zürich, Sternwartstrasse 6, 8091 Zurich, Switzerland
| | - Jian Liu
- Laboratory for Functional Neurosurgery, Neurosurgery Clinic, University Hospital Zürich, Sternwartstrasse 6, 8091 Zurich, Switzerland
- Present Address: Department of Physiology and Pathophysiology, School of Medicine, Xi’an Jiaotong University, 710061 Xian
, People’s Republic of China
| | - Anne Morel
- Laboratory for Functional Neurosurgery, Neurosurgery Clinic, University Hospital Zürich, Sternwartstrasse 6, 8091 Zurich, Switzerland
| |
Collapse
|
42
|
Jones EG. Ascending inputs to, and internal organization of, cortical motor areas. CIBA FOUNDATION SYMPOSIUM 2007; 132:21-39. [PMID: 2827969 DOI: 10.1002/9780470513545.ch3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Modern anatomical studies show that, contrary to the long-held dogma, there appears to be essentially no convergence of lemniscal, cerebellar, pallidal, or substantial nigral afferents in the thalamus. Each afferent stream defines its own thalamic territory and, through the projection of these thalamic territories to separate cortical territories, the independence of the projections of subcortical motor nuclei upon the cortex is preserved. Only the spinothalamic system appears to gain access to both sensory and motor cortex. A further principle of organization in the sensorimotor thalamus is the presence of individual anatomically and physiologically defined channels, composed of separate afferent inputs and groups of neurons relaying to the cortex. In the somatic sensory relay nuclei the dissociation of cutaneous, deep slowly and rapidly adapting channels is clear-cut in the thalamus and at the input level of the cortex. In the motor system, inputs from each of the deep cerebellar nuclei appear to be dissociated from one another in the thalamus and these in turn from the vestibular and spinothalamic systems. Just as pallidal, nigral and cerebellar pathways are in position to control separate premotor and motor areas of the cortex, so separate channels leading through VLp appear to be in a position to control separate functional units in area 4. Within the cortex itself the absence of corticocortical connections passing from areas 3a and 3b to area 4 appears to indicate that information flow out of these areas is back to areas 1 and 2 for further processing before transmission to area 4 with all the consequences that entails for sensory convergence. Presumably, this route is sufficiently rapid for sensory inputs to reach area 4 at short latency. Although many data are beginning to accrue on the intrinsic structure and connectivity of the sensorimotor cortex, we are still distant from a complete wiring diagram. Circuitry involving thalamic afferents is becoming known slowly and the nature of the cells that are present and their transmitter characteristics are becoming evident from morphological and immunocytochemical studies, along with information on the patterns of axonal ramification of specific cell types, especially of GABAergic cells and of excitatory corticocortical cells.
Collapse
Affiliation(s)
- E G Jones
- Department of Anatomy and Neurobiology, University of California, Irvine 92717
| |
Collapse
|
43
|
Stepniewska I, Preuss TM, Kaas JH. Thalamic connections of the dorsal and ventral premotor areas in New World owl monkeys. Neuroscience 2007; 147:727-45. [PMID: 17570597 DOI: 10.1016/j.neuroscience.2007.03.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/23/2007] [Accepted: 03/24/2007] [Indexed: 10/23/2022]
Abstract
Thalamic connections of two premotor cortex areas, dorsal (PMD) and ventral (PMV), were revealed in New World owl monkeys by injections of fluorescent dyes or wheat-germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). The injections were placed in the forelimb and eye-movement representations of PMD and in the forelimb representation of PMV as determined by microstimulation mapping. For comparison, injections were also placed in the forelimb representation of primary motor cortex (M1) of two owl monkeys. The results indicate that both PMD and PMV receive dense projections from the ventral lateral (VL) and ventral anterior (VA) thalamus, and sparser projections from the ventromedial (VM), mediodorsal (MD) and intralaminar (IL) nuclei. Labeled neurons in VL were concentrated in the anterior (VLa) and the medial (VLx) nuclei, with only a few labeled cells in the dorsal (VLd) and posterior (VLp) nuclei. In VA, labeled neurons were concentrated in the parvocellular division (VApc) dorsomedial to VLa. Labeled neurons in MD were concentrated in the most lateral and posterior parts of the nucleus. VApc projected more densely to PMD than PMV, especially to rostral PMD, whereas caudal PMD received stronger projections from neurons in VLx and VLa. VLd projected exclusively to PMD, and not to PMV. In addition, neurons labeled by PMD injections tended to be more dorsal in VL, IL, and MD than those labeled by PMV injections. The results indicate that both premotor areas receive indirect inputs from the cerebellum (via VLx, VLd and IL) and globus pallidus (via VLa, VApc, and MD). Comparisons of thalamic projections to premotor and M1 indicate that both regions receive strong projections from VLx and VLa, with the populations of cells projecting to M1 located more laterally in these nuclei. VApc, VLd, and MD project mainly to premotor areas, while VLp projects mainly to M1. Overall, the thalamic connectivity patterns of premotor cortex in New World owl monkeys are similar to those reported for Old World monkeys.
Collapse
Affiliation(s)
- I Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA.
| | | | | |
Collapse
|
44
|
Melchitzky DS, Erickson SL, Lewis DA. Dopamine innervation of the monkey mediodorsal thalamus: Location of projection neurons and ultrastructural characteristics of axon terminals. Neuroscience 2006; 143:1021-30. [PMID: 17029800 DOI: 10.1016/j.neuroscience.2006.08.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 08/17/2006] [Accepted: 08/18/2006] [Indexed: 11/24/2022]
Abstract
Dopamine (DA) axons and receptors have recently been identified in the primate thalamus, including the mediodorsal thalamic nucleus (MD). In order to determine whether the DA innervation of the primate MD shares the anatomical features of the mesocortical or nigrostriatal DA projections, we performed tract-tracing and immunocytochemistry studies in macaque monkeys (Macaca fascicularis) to identify the location of the DA neurons that project to MD and immuno-electron microscopy to determine the distribution of the dopamine transporter (DAT) in axons within the MD. Similar to the mesocortical projection, retrogradely-labeled, tyrosine hydroxylase-containing neurons were present in dorsal tier ventral mesencephalic nuclei, such as the ventral tegmental area and the dorsal portion of the substantia nigra pars compacta. In contrast, no dual-labeled neurons were present in the ventral tier nuclei, the primary origin of the nigrostriatal DA pathway. In addition, like the DA projection to the prefrontal cortex, DAT immunoreactivity was predominantly localized to the pre-terminal portion of axons in the MD, and was infrequently found in association with synaptic vesicles, in contrast to nigrostriatal DA axons. These findings indicate that the DA projection to the MD shares anatomical features with the mesocortical DA system, suggesting that the functional properties of DA neurotransmission in the MD might be more similar to those in the cortex than in the striatum.
Collapse
Affiliation(s)
- D S Melchitzky
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
45
|
Morel A, Liu J, Wannier T, Jeanmonod D, Rouiller EM. Divergence and convergence of thalamocortical projections to premotor and supplementary motor cortex: a multiple tracing study in the macaque monkey. Eur J Neurosci 2005; 21:1007-29. [PMID: 15787707 DOI: 10.1111/j.1460-9568.2005.03921.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The premotor cortex of macaque monkeys is currently subdivided into at least six different subareas on the basis of structural, hodological and physiological criteria. To determine the degree of divergence/convergence of thalamocortical projections to mesial [supplementary motor area (SMA)-proper and pre-SMA] and lateral (PMd-c, PMd-r, PMv-c and PMv-r) premotor (PM) subareas, quantitative analyses were performed on the distribution of retrograde labelling after multiple tracer injections in the same animal. The results demonstrate that all PM and SMA subareas receive common inputs from several thalamic nuclei, but the relative contribution of these nuclei to thalamocortical projections differs. The largest difference occurs between subareas of SMA, with much greater contribution from the mediodorsal (MD) and area X, and a smaller contribution from the ventral lateral anterior (VLa) and ventral part of the ventral lateral posterior (VLpv) to pre-SMA than to SMA-proper. In PM, differences between subareas are less pronounced; in particular, all receive a significant contribution from MD, the ventral anterior (VApc) and area X. However, there are clear gradients, such as increasing projections from MD to rostral, from VLa and VLpv to caudal, and from dorsal VLp (VLpd) to dorsal premotor subareas. Intralaminar nuclei provide widespread projections to all premotor subareas. The degree of overlap between thalamocortical projections varies among different PM and SMA subareas and different sectors of the thalamus. These variations, which correspond to different origin and topography of thalamocortical projections, are discussed in relation to functional organizations at thalamic and cortical levels.
Collapse
Affiliation(s)
- Anne Morel
- Laboratory for Functional Neurosurgery, Neurosurgery Clinic, University Hospital Zürich, Sternwartstrasse 6, CH-8091 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
46
|
Cebrián C, Parent A, Prensa L. Patterns of axonal branching of neurons of the substantia nigra pars reticulata and pars lateralis in the rat. J Comp Neurol 2005; 492:349-69. [PMID: 16217789 DOI: 10.1002/cne.20741] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Axons from neurons of the rat substantia nigra pars reticulata (SNr) and pars lateralis (SNl) were traced after injecting their cell body with biotinylated dextran amine. Thirty-two single axons were reconstructed from serial sagittal sections with a camera lucida, whereas four other SNr axons were reconstructed in the coronal plane to determine whether they innervate the contralateral hemisphere. Four distinct types of SNr projection neurons were identified based on their main axonal targets: type I neurons that project to the thalamus; type II neurons that target the thalamus, the superior colliculus (SC), and the pedunculopontine tegmental nucleus (PPTg); type III neurons that project to the periaqueductal gray matter and the thalamus; and type IV neurons that target the deep mesencephalic nucleus (DpMe) and the SC. The axons of the SNl showed the same branching patterns as SNr axons of types I, II, and IV. The coronal reconstructions demonstrated that SNr neurons innervate the thalamus, the SC, and the DpMe bilaterally. At the thalamic level, SNr and SNl axons targeted preferentially the ventral medial, ventral lateral, paracentral, parafascicular, and mediodorsal nuclei. Axons reaching the SC arborized selectively within the deep layers of this structure. Our results reveal that the SNr and SNl harbor several subtypes of projection neurons endowed with a highly patterned set of axon collaterals. This organization allows single neurons of these output structures of the basal ganglia to exert a multifaceted influence on a wide variety of diencephalic and midbrain structures.
Collapse
Affiliation(s)
- Carolina Cebrián
- División de Neurociencias, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31080 Pamplona, Spain
| | | | | |
Collapse
|
47
|
Chapter IX Human forebrain dopamine systems: Characterization of the normal brain and in relation to psychiatric disorders. HANDBOOK OF CHEMICAL NEUROANATOMY 2005. [DOI: 10.1016/s0924-8196(05)80013-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
48
|
Fawcett AP, Dostrovsky JO, Lozano AM, Hutchison WD. Eye movement-related responses of neurons in human subthalamic nucleus. Exp Brain Res 2004; 162:357-65. [PMID: 15599721 DOI: 10.1007/s00221-004-2184-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 10/28/2004] [Indexed: 10/26/2022]
Abstract
Intraoperative microelectrode single unit recordings are routinely made in the subthalamic nucleus (STN) of awake and alert Parkinson's disease (PD) patients during surgery for implantation of deep brain stimulation (DBS) electrodes. These recordings not only assist in determining the optimal target for electrode implantation, but also offer the unique opportunity to study movement-evoked responses from the basal ganglia. We report on the responses of human STN neurons to eye movements from eight PD patients (five men and three women). Twenty percent (18/89) of tested STN neurons showed responses to eye movements. Patients made pro-saccades, voluntary saccades or smooth pursuit eye movements in four directions: up, down, left, right. The majority of STN neurons (72% or 13/18), that responded to eye movements were found in the ventral half of the nucleus, while 58% (22/38) of STN neurons that had somatic responses were found in the dorsal half of the nucleus. The firing rate for STN oculomotor neurons was 33+/-15 Hz (n = 18), which was not different from that reported previously for STN neurons. Most neurons only responded to eye movements in a single direction, but 17% (3/18) showed responses to more than one direction. The majority of responses (17/18) to eye movements were increases in firing rate although one neuron did show a pause in firing with eye movement onset. The phasic changes in firing rate in response to eye movement usually occurred up to 250 ms following eye movement onset. Neurons were found that showed task-specific responses to cued versus self-paced saccades, responded to both passive limb movement and voluntary eye movement, and appeared to show either visual or attentional responses. These human physiological data, in conjunction with previous anatomical studies, suggest that the STN might have an oculomotor role. Although there is no evidence that STN is responsible for driving eye movements, it may have a role in either sensory feedback, corollary discharge, or in focusing the substantia nigra pars reticulata to allow a saccade to occur through disinhibition of the superior colliculus.
Collapse
Affiliation(s)
- Adrian P Fawcett
- Dept. of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | | | | | |
Collapse
|
49
|
Tisch S, Silberstein P, Limousin-Dowsey P, Jahanshahi M. The basal ganglia: anatomy, physiology, and pharmacology. Psychiatr Clin North Am 2004; 27:757-99. [PMID: 15550292 DOI: 10.1016/j.psc.2004.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The basal ganglia are perceived as important nodes in cortico-subcortical networks involved in the transfer, convergence, and processing of information in motor, cognitive, and limbic domains. How this integration might occur remains a matter of some debate, particularly given the consistent finding in anatomic and physiologic studies of functional segregation in cortico-subcortical loops. More recent theories, however, have raised the notion that modality-specific information might be integrated not spatially, but rather temporally, by coincident processing in discrete neuronal populations. Basal ganglia neurotransmitters, given their diverse roles in motor performance, learning, working memory, and reward-related activity are also likely to play an important role in the integration of cerebral activity. Further work will elucidate this to a greater extent, but for now, it is clear that the basal ganglia form an important nexus in the binding of cognitive, limbic, and motor information into thought and action.
Collapse
Affiliation(s)
- Stephen Tisch
- Sobell Department of Motor Neuroscience & Movement Disorders Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | | | | | | |
Collapse
|
50
|
Cui DM, Yan YJ, Lynch JC. Pursuit subregion of the frontal eye field projects to the caudate nucleus in monkeys. J Neurophysiol 2003; 89:2678-84. [PMID: 12612013 DOI: 10.1152/jn.00501.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been well established by recording, inactivation, and neuroanatomical studies that the caudate nucleus is important for the control of saccadic eye movements. However, until now, there has been little evidence that the caudate nucleus plays a role in smooth pursuit eye movements. In the present study, we physiologically identified the smooth pursuit subregion of the frontal eye field (FEFsem) and the saccadic subregion of the frontal eye field (FEFsac) in four Cebus monkeys. Anterogradely transported tracers (biotinylated dextran amines and wheat germ aglutinin conjugated to horseradish peroxidase) were then used to determine the efferent connections of the FEFsem to the caudate nucleus and to compare those connections with projections arising in the FEFsac. We observed dense projections from the FEFsem to the head and body of the caudate. The FEFsem and FEFsac terminal fields were of approximately equal density and total area. The region of FEFsem-labeled axon terminals overlapped only slightly with the region of FEFsac-labeled terminals. These results suggest that the caudate nucleus may play an important role in the control of smooth pursuit eye movements via feedback loops involving the basal ganglia and thalamus. Our results further suggest that the basal ganglia circuitry concerned with controlling visual pursuit is physically segregated from that concerned with controlling saccadic eye movements.
Collapse
Affiliation(s)
- Dong-Mei Cui
- Department of Anatomy, University of Mississippi Medical Center, Jackson 39216-4505, USA
| | | | | |
Collapse
|