1
|
Dea M, Hamadjida A, Elgbeili G, Quessy S, Dancause N. Different Patterns of Cortical Inputs to Subregions of the Primary Motor Cortex Hand Representation in Cebus apella. Cereb Cortex 2016; 26:1747-61. [PMID: 26966266 PMCID: PMC4785954 DOI: 10.1093/cercor/bhv324] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The primary motor cortex (M1) plays an essential role in the control of hand movements in primates and is part of a complex cortical sensorimotor network involving multiple premotor and parietal areas. In a previous study in squirrel monkeys, we found that the ventral premotor cortex (PMv) projected mainly to 3 regions within the M1 forearm representation [rostro-medial (RM), rostro-lateral (RL), and caudo-lateral (CL)] with very few caudo-medial (CM) projections. These results suggest that projections from premotor areas to M1 are not uniform, but rather segregated into subregions. The goal of the present work was to study how inputs from diverse areas of the ipsilateral cortical network are organized within the M1 hand representation. In Cebus apella, different retrograde neuroanatomical tracers were injected in 4 subregions of the hand area of M1 (RM, RL, CM, and CL). We found a different pattern of input to each subregion of M1. RM receives inputs predominantly from dorsal premotor cortex, RL from PMv, CM from area 5, and CL from area 2. These results support that the M1 hand representation is composed of several subregions, each part of a unique cortical network.
Collapse
Affiliation(s)
- Melvin Dea
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Adjia Hamadjida
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Elgbeili
- Psychosocial Research Division, Douglas Institute Research Centre, Verdun, QC, Canada
| | - Stephan Quessy
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Numa Dancause
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
2
|
Tanosaki M, Ishibashi H, Zhang T, Okada Y. Effective connectivity maps in the swine somatosensory cortex estimated from electrocorticography and validated with intracortical local field potential measurements. Brain Connect 2014; 4:100-11. [PMID: 24467225 DOI: 10.1089/brain.2013.0177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Macroscopic techniques are increasingly being used to estimate functional connectivity in the brain, which provides valuable information about brain networks. In any such endeavors it is important to understand capabilities and limitations of each technique through direct validation, which is often lacking. This study evaluated a multiple dipole source analysis technique based on electrocorticography (ECOG) data in estimating effective connectivity maps and validated the technique with intracortical local field potential (LFP) recordings. The study was carried out in an animal model (swine) with a large brain to avoid complications caused by spreading of the volume current. The evaluation was carried out for the cortical projections from the trigeminal nerve and corticocortical connectivity from the first rostrum area (R1) in the primary somatosensory cortex. Stimulation of the snout and layer IV of the R1 did not activate all projection areas in each animal, although whenever an area was activated in a given animal, its location was consistent with the intracortical LFP. The two types of connectivity maps based on ECOG analysis were consistent with each other and also with those estimated from the intracortical LFP, although there were small discrepancies. The discrepancies in mean latency based on ECOG and LFP were all very small and nonsignificant: snout stimulation, -1.1-2.0 msec (contralateral hemisphere) and 3.9-8.5 msec (ipsilateral hemisphere); R1 stimulation, -1.4-2.2 msec for the ipsilateral and 0.6-1.4 msec for the contralateral hemisphere. Dipole source analysis based on ECOG appears to be quite useful for estimating effective connectivity maps in the brain.
Collapse
Affiliation(s)
- Masato Tanosaki
- 1 Department of Neurology, Hachinohe City Hospital , Hachinohe, Aomori, Japan
| | | | | | | |
Collapse
|
3
|
Transcallosal Pathway of Whisker Information Between Rat Primary Somatosensory Cortices*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2012.00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Cooke DF, Padberg J, Zahner T, Krubitzer L. The functional organization and cortical connections of motor cortex in squirrels. Cereb Cortex 2011; 22:1959-78. [PMID: 22021916 DOI: 10.1093/cercor/bhr228] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite extraordinary diversity in the rodent order, studies of motor cortex have been limited to only 2 species, rats and mice. Here, we examine the topographic organization of motor cortex in the Eastern gray squirrel (Sciurus carolinensis) and cortical connections of motor cortex in the California ground squirrel (Spermophilus beecheyi). We distinguish a primary motor area, M1, based on intracortical microstimulation (ICMS), myeloarchitecture, and patterns of connectivity. A sensorimotor area between M1 and the primary somatosensory area, S1, was also distinguished based on connections, functional organization, and myeloarchitecture. We term this field 3a based on similarities with area 3a in nonrodent mammals. Movements are evoked with ICMS in both M1 and 3a in a roughly somatotopic pattern. Connections of 3a and M1 are distinct and suggest the presence of a third far rostral field, termed "F," possibly involved in motor processing based on its connections. We hypothesize that 3a is homologous to the dysgranular zone (DZ) in S1 of rats and mice. Our results demonstrate that squirrels have both similar and unique features of M1 organization compared with those described in rats and mice, and that changes in 3a/DZ borders appear to have occurred in both lineages.
Collapse
Affiliation(s)
- Dylan F Cooke
- Center for Neuroscience, University of California, Davis, 95618, USA
| | | | | | | |
Collapse
|
5
|
Dancause N, Duric V, Barbay S, Frost SB, Stylianou A, Nudo RJ. An additional motor-related field in the lateral frontal cortex of squirrel monkeys. Cereb Cortex 2008; 18:2719-28. [PMID: 18424778 PMCID: PMC2583161 DOI: 10.1093/cercor/bhn050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Our earlier efforts to document the cortical connections of the ventral premotor cortex (PMv) revealed dense connections with a field rostral and lateral to PMv, an area we called the frontal rostral field (FR). Here, we present data collected in FR using electrophysiological and anatomical methods. Results show that FR contains an isolated motor representation of the forelimb that can be differentiated from PMv based on current thresholds and latencies to evoke electromyographic activity using intracortical microstimulation techniques. In addition, FR has a different pattern of cortical connections compared with PMv. Together, these data support that FR is an additional, previously undescribed motor-related area in squirrel monkeys.
Collapse
Affiliation(s)
- Numa Dancause
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Box 673, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Dancause N, Barbay S, Frost SB, Mahnken JD, Nudo RJ. Interhemispheric connections of the ventral premotor cortex in a new world primate. J Comp Neurol 2008; 505:701-15. [PMID: 17948893 DOI: 10.1002/cne.21531] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study describes the pattern of interhemispheric connections of the ventral premotor cortex (PMv) distal forelimb representation (DFL) in squirrel monkeys. Our objectives were to describe qualitatively and quantitatively the connections of PMv with contralateral cortical areas. Intracortical microstimulation techniques (ICMS) guided the injection of the neuronal tract tracers biotinylated dextran amine or Fast blue into PMv DFL. We classified the interhemispheric connections of PMv into three groups. Major connections were found in the contralateral PMv and supplementary motor area (SMA). Intermediate interhemispheric connections were found in the rostral portion of the primary motor cortex, the frontal area immediately rostral and ventral to PMv (FR), cingulate motor areas (CMAs), and dorsal premotor cortex (PMd). Minor connections were found inconsistently across cases in the anterior operculum (AO), posterior operculum/inferior parietal cortex (PO/IP), and posterior parietal cortex (PP), areas that consistently show connections with PMv in the ipsilateral hemisphere. Within-case comparisons revealed that the percentage of PMv connections with contralateral SMA and PMd are higher than the percentage of PMv connections with these areas in the ipsilateral hemisphere; percentages of PMv connections with contralateral M1 rostral, FR, AO, and the primary somatosensory cortex are lower than percentages of PMv connections with these areas in the ipsilateral hemisphere. These studies increase our knowledge of the pattern of interhemispheric connection of PMv. They help to provide an anatomical foundation for understanding PMv's role in motor control of the hand and interhemispheric interactions that may underlie the coordination of bimanual movements.
Collapse
Affiliation(s)
- Numa Dancause
- Department of Neurology, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | | | | | |
Collapse
|
7
|
Dancause N, Barbay S, Frost SB, Plautz EJ, Stowe AM, Friel KM, Nudo RJ. Ipsilateral connections of the ventral premotor cortex in a new world primate. J Comp Neurol 2006; 495:374-90. [PMID: 16485282 PMCID: PMC2583355 DOI: 10.1002/cne.20875] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The present study describes the pattern of connections of the ventral premotor cortex (PMv) with various cortical regions of the ipsilateral hemisphere in adult squirrel monkeys. Particularly, we 1) quantified the proportion of inputs and outputs that the PMv distal forelimb representation shares with other areas in the ipsilateral cortex and 2) defined the pattern of PMv connections with respect to the location of the distal forelimb representation in primary motor cortex (M1), primary somatosensory cortex (S1), and supplementary motor area (SMA). Intracortical microstimulation techniques (ICMS) were used in four experimentally naïve monkeys to identify M1, PMv, and SMA forelimb movement representations. Multiunit recording techniques and myelin staining were used to identify the S1 hand representation. Then, biotinylated dextran amine (BDA; 10,000 MW) was injected in the center of the PMv distal forelimb representation. After tangential sectioning, the distribution of BDA-labeled cell bodies and terminal boutons was documented. In M1, labeling followed a rostrolateral pattern, largely leaving the caudomedial M1 unlabeled. Quantification of somata and terminals showed that two areas share major connections with PMv: M1 and frontal areas immediately rostral to PMv, designated as frontal rostral area (FR). Connections with this latter region have not been described previously. Moderate connections were found with PMd, SMA, anterior operculum, and posterior operculum/inferior parietal area. Minor connections were found with diverse areas of the precentral and parietal cortex, including S1. No statistical difference between the proportions of inputs and outputs for any location was observed, supporting the reciprocity of PMv intracortical connections.
Collapse
Affiliation(s)
- Numa Dancause
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, Stowe AM, Nudo RJ. Extensive cortical rewiring after brain injury. J Neurosci 2006; 25:10167-79. [PMID: 16267224 PMCID: PMC6725801 DOI: 10.1523/jneurosci.3256-05.2005] [Citation(s) in RCA: 485] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previously, we showed that the ventral premotor cortex (PMv) underwent neurophysiological remodeling after injury to the primary motor cortex (M1). In the present study, we examined cortical connections of PMv after such lesions. The neuroanatomical tract tracer biotinylated dextran amine was injected into the PMv hand area at least 5 months after ischemic injury to the M1 hand area. Comparison of labeling patterns between experimental and control animals demonstrated extensive proliferation of novel PMv terminal fields and the appearance of retrogradely labeled cell bodies within area 1/2 of the primary somatosensory cortex after M1 injury. Furthermore, evidence was found for alterations in the trajectory of PMv intracortical axons near the site of the lesion. The results suggest that M1 injury results in axonal sprouting near the ischemic injury and the establishment of novel connections within a distant target. These results support the hypothesis that, after a cortical injury, such as occurs after stroke, cortical areas distant from the injury undergo major neuroanatomical reorganization. Our results reveal an extraordinary anatomical rewiring capacity in the adult CNS after injury that may potentially play a role in recovery.
Collapse
Affiliation(s)
- Numa Dancause
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Henry EC, Catania KC. Cortical, callosal, and thalamic connections from primary somatosensory cortex in the naked mole-rat (Heterocephalus glaber), with special emphasis on the connectivity of the incisor representation. ACTA ACUST UNITED AC 2006; 288:626-45. [PMID: 16652365 DOI: 10.1002/ar.a.20328] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated the distribution of cortical, callosal, and thalamic connections from the primary somatosensory area (S1) in naked mole-rats, concentrating on lower incisor and forelimb representations. A neuronal tracer (WGA-HRP) was injected into the center of each respective representation under guidance from microelectrode recordings of neuronal activity. The locations of cells and terminals were determined by aligning plots of labeled cells with flattened cortical sections reacted for cytochrome oxidase. The S1 lower incisor area was found to have locally confined intrahemispheric connections and longer connections to a small cluster of cells in the presumptive secondary somatosensory (S2) and parietal ventral (PV) incisor fields. The S1 incisor area also had sparse connections with anterior cortex, in presumptive primary motor cortex. Homotopic callosal projections were identified between the S1 lower incisor areas in each hemisphere. Thalamocortical connections related to the incisor were confined to ventromedial portions of the ventral posterior medial subnucleus (VPM) and posterior medial nucleus (Po). Injections into the S1 forelimb area revealed reciprocal intrahemispheric connections to S2 and PV, to two areas in frontal cortex, and to two areas posterior to S1 that appear homologous to posterior lateral area and posterior medial area in rats. The S1 forelimb representation also had callosal projections to the contralateral S1 limb area and to contralateral S2 and PV. Thalamic distribution of label from forelimb injections included ventral portions of the ventral posterior lateral subnucleus (VPL), dorsolateral Po, the ventral lateral nucleus, and the ventral medial nucleus and neighboring intralaminar nuclei.
Collapse
Affiliation(s)
- Erin C Henry
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
10
|
Dancause N, Barbay S, Frost SB, Plautz EJ, Popescu M, Dixon PM, Stowe AM, Friel KM, Nudo RJ. Topographically divergent and convergent connectivity between premotor and primary motor cortex. ACTA ACUST UNITED AC 2005; 16:1057-68. [PMID: 16221929 DOI: 10.1093/cercor/bhj049] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This study was undertaken to determine the topographic organization of connections between the forelimb representations of the ventral premotor cortex (PMv) and the primary motor cortex (M1). Intracortical microstimulation techniques were used in three experimentally naive squirrel monkeys to delineate the M1 and PMv forelimb representations in the hemisphere contralateral to the dominant hand. Small amounts of biotinylated dextran amine (BDA) were then injected in the PMv distal forelimb representation. Following tangential sectioning, the location of the injection core in PMv and BDA-labeled cell bodies and synaptic boutons in M1 were documented in relation to functional topography. Whereas the injection core was mainly located within the distal forelimb representation in PMv, BDA-labeled cell bodies and terminals were distributed over comparable proportions of proximal and distal forelimb representations in M1. These results suggest that neuronal populations within PMv send topographically divergent outputs to M1 and receive topographically convergent inputs from M1. Finally, we found that PMv projections to M1 were not evenly distributed but rather were directed consistently to three domains within the rostro-lateral portion of M1. To our knowledge, this is the first description of such a consistent clustering of PMv terminals within M1.
Collapse
Affiliation(s)
- Numa Dancause
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li L, Rema V, Ebner FF. Chronic suppression of activity in barrel field cortex downregulates sensory responses in contralateral barrel field cortex. J Neurophysiol 2005; 94:3342-56. [PMID: 16014795 DOI: 10.1152/jn.00357.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Numerous lines of evidence indicate that neural information is exchanged between the cerebral hemispheres via the corpus callosum. Unilateral ablation lesions of barrel field cortex (BFC) in adult rats induce strong suppression of background and evoked activity in the contralateral barrel cortex and significantly delay the onset of experience-dependent plasticity. The present experiments were designed to clarify the basis for these interhemispheric effects. One possibility is that degenerative events, triggered by the lesion, degrade contralateral cortical function. Another hypothesis, alone or in combination with degeneration, is that the absence of interhemispheric activity after the lesion suppresses contralateral responsiveness. The latter hypothesis was tested by placing an Alzet minipump subcutaneously and connecting it via a delivery tube to a cannula implanted over BFC. The minipump released muscimol, a GABA(A) receptor agonist at a rate of 1 mul/h, onto one barrel field cortex for 7 days. Then with the pump still in place, single cells were recorded in the contralateral BFC under urethan anesthesia. The data show a approximately 50% reduction in principal whisker responses (D2) compared with controls, with similar reductions in responses to the D1 and D3 surround whiskers. Despite these reductions, spontaneous firing is unaffected. Fast spiking units are more sensitive to muscimol application than regular spiking units in both the response magnitude and the center/surround ratio. Effects of muscimol are also layer specific. Layer II/III and layer IV neurons decrease their responses significantly, unlike layer V neurons that fail to show significant deficits. The results indicate that reduced activity in one hemisphere alters cortical excitability in the other hemisphere in a complex manner. Surprisingly, a prominent response decrement occurs in the short-latency (3-10 ms) component of principal whisker responses, suggesting that suppression may spread to neurons dominated by thalamocortical inputs after interhemispheric connections are inactivated. Bilateral neurological impairments have been described after unilateral stroke lesions in the clinical literature.
Collapse
Affiliation(s)
- Lu Li
- Dept of Psychology, Vanderbilt University, Nashville, TN 37203, USA
| | | | | |
Collapse
|
12
|
Boecker H, Khorram-Sefat D, Kleinschmidt A, Merboldt KD, Hänicke W, Requardt M, Frahm J. High-resolution functional magnetic resonance imaging of cortical activation during tactile exploration. Hum Brain Mapp 2004. [DOI: 10.1002/hbm.460030307] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
13
|
Iwamura Y, Taoka M, Iriki A. Bilateral activity and callosal connections in the somatosensory cortex. Neuroscientist 2001; 7:419-29. [PMID: 11597101 DOI: 10.1177/107385840100700511] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Earlier studies recording single neuronal activity in the postcentral somatosensory cortex of monkeys converged in suggesting that the bilateral receptive fields were related exclusively to the body midline including the trunk, perioral face, and oral cavity. These neurons were recorded mostly in the rostral part of the gyrus, areas 3b and 1. However, the authors recently found a substantial number of neurons with bilateral receptive fields on extremities, hand/digits, shoulders/arms, or legs/feet in the caudalmost part (areas 2 and 5) of the postcentral gyrus. The authors review these results and discuss functional implications of the bilateral representation in the postcentral somatosensory cortex.
Collapse
Affiliation(s)
- Y Iwamura
- Department of Physiology, Toho University School of Medicine, Otaku, Tokyo, Japan.
| | | | | |
Collapse
|
14
|
Wegner K, Forss N, Salenius S. Characteristics of the human contra- versus ipsilateral SII cortex. Clin Neurophysiol 2000; 111:894-900. [PMID: 10802461 DOI: 10.1016/s1388-2457(99)00319-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES In order to study the interaction between left- and right-sided stimuli on the activation of cortical somatosensory areas, we recorded somatosensory evoked magnetic fields (SEFs) from 8 healthy subjects with a 122 channel whole-scalp SQUID gradiometer. METHODS Right and left median nerves were stimulated either alternately within the same run, with interstimulus intervals (ISIs) of 1.5 and 3 s, or separately in different runs with a 3 s ISI. In all conditions 4 cortical source areas were activated: the contralateral primary somatosensory cortex (SI), the contra- and ipsilateral secondary somatosensory cortices (SII) and the contralateral posterior parietal cortex (PPC). RESULTS The earliest activity starting at 20 ms was generated solely in the SI cortex, whereas longer-latency activity was detected from all 4 source areas. The mean peak latencies for SII responses were 86-96 ms for contralateral and 94-97 ms for ipsilateral stimuli. However, the activation of right and left SII areas started at 61+/-3 and 62+/-3 ms to contralateral stimuli and at 66+/-2 and 63+/-2 ms to ipsilateral stimuli, suggesting a simultaneous commencing of activation of the SII areas. PPC sources were activated between 70 and 110 ms in different subjects. The 1.5 s ISI alternating stimuli elicited smaller SII responses than the 3 s ISI non-alternating stimuli, suggesting that a considerable part of the neural population in SII responds both to contra- and ipsilateral stimuli. The earliest SI responses did not differ between the two conditions. There were no significant differences in source locations of SII responses to ipsi- and contralateral stimuli in either hemisphere. Subaverages of the responses in sets of 30 responses revealed that amplitudes of the SII responses gradually attenuated during repetitive stimulation, whereas the amplitudes of the SI responses were not changed. CONCLUSIONS The present results implicate that ipsi- and contralateral SII receive simultaneous input, and that a large part of SII neurons responds both to contra- and ipsilateral stimulation. The present data also highlight the different behavior of SI and SII cortices to repetitive stimuli.
Collapse
Affiliation(s)
- K Wegner
- Brain Research Unit, Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 2200, FIN-02015 HUT, Espoo, Finland.
| | | | | |
Collapse
|
15
|
Harel N, Mori N, Sawada S, Mount RJ, Harrison RV. Three distinct auditory areas of cortex (AI, AII, and AAF) defined by optical imaging of intrinsic signals. Neuroimage 2000; 11:302-12. [PMID: 10725186 DOI: 10.1006/nimg.1999.0537] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using pure-tone sound stimulation, three separate auditory areas are revealed by optical imaging of intrinsic signals in the temporal cortex of the chinchilla (Chinchilla laniger). These areas correlate with primary auditory cortex (AI) and two secondary areas, AII and the anterior auditory field (AAF). We have distinguished AI on the basis of concurrent single-unit electrophysiological recording; neurons within the AI intrinsic signal region have short (<15 ms) onset-response latencies compared with neurons recorded in AII and the AAF. Within AI, AII, and AAF we have been able to define cochleotopic or tonotopic organization from the differences in intrinsic signal areas evoked by pure tones at octave-spaced frequencies from 500 Hz to 16 kHz. The maps in AI and AII are arranged orthogonal to each other.
Collapse
Affiliation(s)
- N Harel
- Auditory Science Laboratory, Brain and Behaviour/Otolaryngology, Toronto, Ontario, M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
16
|
Iwamura Y. Bilateral receptive field neurons and callosal connections in the somatosensory cortex. Philos Trans R Soc Lond B Biol Sci 2000; 355:267-73. [PMID: 10724460 PMCID: PMC1692728 DOI: 10.1098/rstb.2000.0563] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Earlier studies recording single neuronal activity with bilateral receptive fields in the primary somatosensory cortex of monkeys and cats agreed that the bilateral receptive fields were related exclusively to the body midline and that the ipsilateral information reaches the cortex via callosal connections since they are dense in the cortical region representing the midline structures of the body while practically absent in the regions representing the distal extremities. We recently found a substantial number of neurons with bilateral receptive fields on hand digits, shoulders-arms or legs-feet in the caudalmost part (areas 2 and 5) of the postcentral gyrus in awake Japanese monkeys (Macaca fuscata). I review these results, discuss the functional implications of this bilateral representation in the postcentral somatosensory cortex from a behavioural standpoint and give a new interpretation to the midline fusion theory.
Collapse
Affiliation(s)
- Y Iwamura
- Department of Physiology, Toho University School of Medicine, Otaku, Tokyo, Japan.
| |
Collapse
|
17
|
Slutsky DA, Manger PR, Krubitzer L. Multiple somatosensory areas in the anterior parietal cortex of the California ground squirrel (Spermophilus beecheyii). J Comp Neurol 2000; 416:521-39. [PMID: 10660882 DOI: 10.1002/(sici)1096-9861(20000124)416:4<521::aid-cne8>3.0.co;2-#] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Multiunit electrophysiological recording techniques were used to explore the somatosensory cortex of the California ground squirrel (Spermophilus beecheyii). Cortex rostral and caudal to the primary somatosensory area (SI) contained neurons that responded to stimulation of deep receptors and to muscle and joint manipulation. The region of cortex rostral to SI was termed the rostral field (R) because of possible homologies with a similar field described in other mammals. Cortex caudal to SI had neurons that responded to stimulation of deep receptors and has been termed the parietal medial area (PM), as in previous investigations in squirrels. Like SI, both R and PM contained a complete or almost complete representation of the body surface, although the receptive field size for clusters of neurons in these regions was somewhat larger than those for clusters of neurons in SI. Electrophysiological recording results were correlated with histologically processed tissue that had been sectioned tangentially. Although SI was clearly identified as a myelin-dense region, both R and PM stained much less densely for myelin. Our results indicate that as in a number of other mammals including monotremes, marsupials, carnivores, and primates, the anterior parietal cortex of the California ground squirrel contains multiple representations of the sensory epithelium. This work, as well as a growing body of studies of somatosensory cortex organization in a variety of mammals, indicates that anterior parietal fields other than SI existed early in mammalian evolution, and were present in the common ancestor of all mammals.
Collapse
Affiliation(s)
- D A Slutsky
- Center for Neuroscience, University of California, Davis 95616, USA
| | | | | |
Collapse
|
18
|
|
19
|
Hayama T, Ogawa H. Regional differences of callosal connections in the granular zones of the primary somatosensory cortex in rats. Brain Res Bull 1997; 43:341-7. [PMID: 9227846 DOI: 10.1016/s0361-9230(97)00018-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The primary somatosensory cortex (SI) in rats is cytoarchitectonically divided into three zones: the granular, peri-, and dysgranular zones. To examine callosal connections in the granular zone that bears representation of the body somatosensory map, the distribution of lectin-conjugated horse-radish peroxidase labeis was explored in the right SI after single or multiple injections into the granular zone of the left SI. After injections in the upper and lower law regions, many labeled cell bodies and dense terminal labeling were found in the regions homotopical to the injection sites. Both kinds of labels were densely seen in layers II-III and V, less densely in layer VI. Densely labeled terminals were also observed in layer I. In layer IV, many terminals and a few cell bodies were labeled in the septa, while labeling inside the barrels was sparse or absent. After injections in other regions, i.e., those representing the facial whiskers, fore- and hindlimbs, or trunk in the granular zone, labeled callosal cell bodies and terminals were sparse or absent, except in the septa of the posteromedial barrel subfield representing the facial whiskers. The results clearly show that the density of callosal connection in the granular zone differs in different subfields, and that at least the jaw regions in the granular zones of both hemispheres are directly interconnected, in contrast to the previous assumption that only the dysgranular zone mediates information transmission between the granular zones of both sides.
Collapse
Affiliation(s)
- T Hayama
- Department of Physiology, Kumamoto University School of Medicine, Japan
| | | |
Collapse
|
20
|
|
21
|
Kaas JH. The Organization of Callosal Connections in Primates. EPILEPSY AND THE CORPUS CALLOSUM 2 1995. [DOI: 10.1007/978-1-4899-1427-9_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Lent R, Schmidt SL. The ontogenesis of the forebrain commissures and the determination of brain asymmetries. Prog Neurobiol 1993; 40:249-76. [PMID: 8430213 DOI: 10.1016/0301-0082(93)90024-m] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have reviewed the organization and development of the interhemispheric projections through the forebrain commissures, especially those of the CC, in connection with the development of brain asymmetries. Analyzing the available data, we conclude that the developing CC plays an important role in the ontogenesis of brain asymmetries. We have extended a previous hypothesis that the rodent CC may exert a stabilizing effect over the unstable populational asymmetries of cortical size and shape, and that it participates in the developmental stabilization of lateralized motor behaviors.
Collapse
Affiliation(s)
- R Lent
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | |
Collapse
|
23
|
Rice FL, Gomez CM, Leclerc SS, Dykes RW, Moon JS, Pourmoghadam K. Cytoarchitecture of the ferret suprasylvian gyrus correlated with areas containing multiunit responses elicited by stimulation of the face. Somatosens Mot Res 1993; 10:161-88. [PMID: 8392241 DOI: 10.3109/08990229309028830] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The cytoarchitecture was studied in a segment of the ferret suprasylvian gyrus containing at least two and possibly four somesthetic representations of the face that were observed in the primary somatosensory cortex. These representations were restricted to the crown of the gyrus and were surrounded by somesthetically unresponsive cortex that extended down both sides to the base of adjacent sulci. Numerous cytoarchitectonic subdivisions were found on a qualitative basis, and were confirmed quantitatively by cluster analyses and relevant statistical tests of 10 prominent features from layers III, IV, and V. Four distinct cytoarchitectonic subdivisions, each with a well-developed and homogeneous granular layer IV, were found distributed from anterior to posterior along the crown of the gyrus at sites corresponding to the locations of the four facial representations. The surrounding unresponsive cortex had a fragmented cytoarchitecture, especially along the medial bank and base of the coronal sulcus. This unresponsive cortex separated the facial representations from the body representations, which were located on the adjacent posterior cruciate gyrus. Most of the unresponsive subdivisions had a heterogeneous or agranular layer IV and fairly well-developed sublamination in layer III, which may be indicative of extensive corticocortical connections. One set of unresponsive subdivisions had comparable cytoarchitectures that directly bordered the facial representations. Another set of unresponsive subdivisions with comparable architectures occupied most of the lateral bank of the gyrus. The implications of multiple representations and cytoarchitectonic fragmentation of the ferret primary somatosensory cortex are discussed in relation to the organization of the primary somatosensory cortex in other species.
Collapse
Affiliation(s)
- F L Rice
- Department of Anatomy, Cell Biology, and Neurobiology, Albany Medical College, New York 12208
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Gould HJ, Whitworth RH, LeDoux MS. Thalamic and extrathalamic connections of the dysgranular unresponsive zone in the grey squirrel (Sciurus carolinensis). J Comp Neurol 1989; 287:38-63. [PMID: 2477399 DOI: 10.1002/cne.902870105] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The connections of the cortical dysgranular "unresponsive zone" (UZ) (Sur et al.: J. Comp. Neurol. 179:425-450, '78) in the grey squirrel were studied with horseradish peroxidase and autoradiographic techniques. The results of these experiments show that the major subcortical connections of the unresponsive zone are in large part reciprocal. Connections are distributed within the thalamus in a poorly defined region including restricted portions of several nuclei that lie along the rostral, dorsal, and caudal borders of the ventral posterior nucleus. Additional thalamic connections of the UZ terminate in the reticular nucleus and are reciprocally related to the paralaminar and central median nuclei. Extrathalamic terminations were observed in the zona incerta, the intermediate and deep layers of the superior colliculus, the red nucleus, and several subdivisions of the pontine nuclei. The similarity between the pattern of subcortical connections of the UZ in the grey squirrel and patterns reported for the parietal septal region in rats (Chapin and Lin: J. Comp. Neurol. 229:199-213, '84) and for area 3a in primates (Friedman and Jones: J. Neurophysiol. 45:59-85, '81), suggests that the UZ in the grey squirrel may represent a counterpart of at least part of area 3a as described in primates. The results are further discussed with respect to a possible role of the thalamus in control or modulation of interhemispheric circuits and of the UZ in the modulation of nociceptive and kinesthetic pathways through the thalamus. Finally, the term parietal dysgranular cortex (PDC) is proposed as an alternative to denote the region currently called the unresponsive zone.
Collapse
Affiliation(s)
- H J Gould
- Department of Anatomy, Louisiana State University Medical Center, New Orleans 70112
| | | | | |
Collapse
|
26
|
Luethke LE, Krubitzer LA, Kaas JH. Connections of primary auditory cortex in the New World monkey, Saguinus. J Comp Neurol 1989; 285:487-513. [PMID: 2474584 DOI: 10.1002/cne.902850406] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Connections of primary auditory cortex (A-I) were investigated in the tamarin (Saguinus fuscicollis), a New World monkey. In each case, A-I was defined by multiunit recordings, and best frequencies were determined for neurons at different recording sites. Microlesions were placed to mark recording sites for correlation with cortical architecture. Following mapping, separate injections of up to three different tracers (HRP-WGA and fluorescent dyes) were placed into the representations of different frequencies within A-I. The results support several conclusions: (1) high to low frequencies are represented in a dorsocaudal to ventrorostral sequence in A-I, (2) intrinsic connections in A-I are more pronounced along isofrequency contours, (3) the pattern of connections between A-I and adjoining cortex suggests that this surrounding auditory cortex contains at least two tonotopically organized fields and possibly one or more additional auditory fields, (4) callosal connections of A-I are largely between parts of A-I matched for frequency representation, (5) thalamic connections of A-I include topographic connections with the ventral division of the medial geniculate complex (MGv) and more diffuse connections with the medial (MGm) and dorsal (MGd) divisions of the medial geniculate complex and the suprageniculate nucleus (Sg), and (6) A-I projects bilaterally to the dorsal cortex of the inferior colliculus.
Collapse
Affiliation(s)
- L E Luethke
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee 37240
| | | | | |
Collapse
|
27
|
Manzoni T, Barbaresi P, Conti F, Fabri M. The callosal connections of the primary somatosensory cortex and the neural bases of midline fusion. Exp Brain Res 1989; 76:251-66. [PMID: 2670598 DOI: 10.1007/bf00247886] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- T Manzoni
- Institute of Human Physiology, University of Ancona, Italy
| | | | | | | |
Collapse
|
28
|
Barbaresi P, Bernardi S, Manzoni T. Callosal connections of the somatic sensory areas II and IV in the cat. J Comp Neurol 1989; 283:355-73. [PMID: 2745745 DOI: 10.1002/cne.902830305] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The homotopic and heterotopic callosal connections in the forelimb representations of the second (SII) and fourth (SIV) somatic sensory areas of cats were investigated by means of the axonal transport of horseradish peroxidase (HRP) in conjunction with microelectrode recording. The tracer was injected in the electrophysiologically identified hand and/or digit zone of SII (six cats) or SIV (four cats). The homotopic area in the contralateral hemisphere was explored with microelectrodes in five animals (three injected in SII and two in SIV) to map neuronal receptive fields. The aim was to correlate in the same experimental case the topography of labelled callosal neurons with the physiological map of the forelimb. Labelled cells and recording sites were plotted on planar maps reconstructed with the aid of a computer from serial coronal sections from the anterior ectosylvian gyrus. After SII injections, labelled callosal neurons were observed throughout the forelimb representation in the contralateral area, but in the tangential plane their distribution was uneven. Each somatotopic zone composing the forelimb map, that is, the arm, hand, and digit zones, contained several subzones in which callosal neurons were either dense or rare. Microelectrode explorations showed that receptive fields mapped from callosal and relatively acallosal subzones representing the same body part were similar in extent and location. After SIV injections, labelled callosal neurons were observed throughout the forelimb and proximal body representation of the contralateral area. Although slight regional variations in the density of labelled cells were apparent, no subzones bare of callosal labelling were observed in SIV. In both SII and SIV, callosal neurons were concentrated mainly in layer III, but a significant number was also evident in the infragranular layers. After HRP injections in the digit zone of SII or SIV, labelled cell bodies were also observed in heterotopic areas of the contralateral hemisphere. Most of these neurons were clustered in the medial bank of the coronal sulcus and in two other heterotopic cortical regions lying, respectively, in the anterior suprasylvian sulcus and in the lateral branch of the ansate sulcus. Some callosal cells interconnecting SII and SIV were also labelled. The results show that the distal forelimb zones in SII and SIV are callosally connected with the respective homotopic zones and with several somatosensory fields located heterotopically in the contralateral hemisphere.
Collapse
Affiliation(s)
- P Barbaresi
- Institute of Human Physiology, University of Ancona, Italy
| | | | | |
Collapse
|
29
|
Cusick CG, Wall JT, Felleman DJ, Kaas JH. Somatotopic organization of the lateral sulcus of owl monkeys: area 3b, S-II, and a ventral somatosensory area. J Comp Neurol 1989; 282:169-90. [PMID: 2496153 DOI: 10.1002/cne.902820203] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multiunit microelectrode recordings and injections of horseradish peroxidase (HRP) were used to reveal neuron response properties, somatotopic organization, and interconnections of somatosensory cortex in the lateral sulcus (sylvian fissure) of New World owl monkeys. There were a number of main findings. 1) Representations of the face and head in areas 3b, 1, and S-II are found on the upper bank of the lateral sulcus. Most of the mouth and lip representations of area 3b were found in a rostral extension along the lip of the lateral sulcus. Adjacent cortex deeper in the lateral sulcus represented the nose, eye, ear, and scalp. 2) S-II was located on the upper bank of the lateral sulcus and extended past the fundus onto the deepest part of the lower bank. The face was represented most superficially in the sulcus, with the hand, foot, and trunk located in a rostrocaudal sequence deeper in the sulcus. The orientation of S-II is "erect," with the limbs pointing away from area 3b. 3) Neurons in S-II were activated by light tactile stimulation of the contralateral body surface. Receptive fields were several times larger than for area 3b neurons. 4) A 1-2-mm strip of cortex separating the face and hand representations in S-II was consistently responsive to the stimulation of deep receptors but was unresponsive to light cutaneous stimulation. 5) Injections of horseradish peroxidase in the electrophysiologically identified hand or foot representations of area 3b revealed somatotopically matched interconnections with mapped hand and foot representations in S-II. 6) A systematic representation of the body, termed the "ventral somatic" area, VS, was found extending laterally from S-II on the lower bank of the lateral sulcus. Within VS, the hand and foot were represented deep in the sulcus along the hand and foot regions of S-II, and the face was lateral near the ventral lip of the sulcus. 7) Neurons at most recording sites in the VS region were activated by contralateral cutaneous stimuli. However, a few sites had neurons with bilateral receptive fields. Receptive field sizes were comparable to those in S-II. In addition, neurons in islands of cortex in the VS region had properties that suggested that they were activated by pacinian receptors, while other regions were difficult to activate by light tactile stimuli but responded to stimuli that would activate deep receptors. 8) A few recording sites caudal to S-II on the upper bank of the lateral sulcus were responsive to somatic stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C G Cusick
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240
| | | | | | | |
Collapse
|
30
|
Luethke LE, Krubitzer LA, Kaas JH. Cortical connections of electrophysiologically and architectonically defined subdivisions of auditory cortex in squirrels. J Comp Neurol 1988; 268:181-203. [PMID: 3360984 DOI: 10.1002/cne.902680205] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Multiunit recordings with microelectrodes were used to identify and delimit subdivision of auditory cortex in squirrels. In the same animals, cortical connections of subdivisions of auditory cortex were determined by placing injections of the tracer wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) into electrophysiologically defined locations. The electrophysiological results and patterns of connections were later related to myeloarchitectonic distinctions in brain sections cut parallel to the surface of the artificially flattened cortex. As previously described (Merzenich et al.: J. Comp. Neurol. 166:387-402, '76), a primary auditory field, A-I, was characterized by (1) neurons narrowly tuned to tone frequency; (2) a tonotopic map with high frequencies, which represented caudal to low frequencies; and (3) dense myelination. A-I was reciprocally connected with a rostral field, R, a parietal ventral somatosensory representation, PV, cortex ventral to A-I, and other nearby regions of cortex of the same hemisphere. Callosal connections of A-I were with A-I, R, and two or more other regions of temporal cortex. The less densely myelinated rostral field, R, also had neurons that were frequency tuned, but the neurons were often less securely driven. R appeared to have a tonotopic organization that roughly mirrored that of A-I. Ipsilateral connections of R included A-I, PV, and cortex ventral and caudal to R. Callosal connections were with R, A-I, PV, and cortex ventral and caudal to R. Callosal connections were with R, A-I, PV, and other locations in temporal cortex. Cortex in caudal PV, ventral to A-I, and ventral to R was responsive to auditory stimuli, but responses to pure tones were weak and inconsistent, and habituation to a repeated stimulus was rapid. The cortex responsive to auditory stimuli included some but not all of the cortex connected with A-I and R. The results lead to the conclusion that auditory cortex of squirrels contains at least two tonotopically organized fields, possibly as many as five or more auditory fields, and at least two auditory-somatosensory fields.
Collapse
Affiliation(s)
- L E Luethke
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee 37240
| | | | | |
Collapse
|
31
|
Carvell GE, Simons DJ. Thalamic and corticocortical connections of the second somatic sensory area of the mouse. J Comp Neurol 1987; 265:409-27. [PMID: 3693613 DOI: 10.1002/cne.902650309] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thalamic and corticocortical connections of the second somatic sensory area (SII) in the mouse cerebral cortex were investigated by means of the retrograde transport of horseradish peroxidase. Focal injections of the enzyme were made in physiologically determined locations within the parietal cortex. Results show that SII receives substantial inputs from topographically appropriate regions within the ipsilateral ventrobasal nucleus and from the ipsilateral posterior group. The limb representation, which was previously found to be responsive to auditory stimulation, received inputs also from the medial division of the medial geniculate body. The SII face representation, which is largely unresponsive to auditory stimuli, received little or no input from the medial geniculate body. SII injections yielded retrograde labeling in the topographically appropriate region in the first somatic sensory area (SI), and SI injections retrogradely labeled cells in SII in a pattern consistent with previous electrophysiological maps. Homotypical regions within SI and SII therefore appear to be reciprocally interconnected. SII also receives inputs from the ipsilateral motor cortex and from contralateral SI and SII. Finally, injections into the SI paw but not face regions yielded retrograde labeling in the thalamic ventrolateral nucleus. Thus, the distal limb representations in SI and SII each receive inputs from a third major relay nucleus (i.e., medial geniculate to SII, ventrolateral nucleus to SI) whereas the face representations do not. These results indicate a close functional interrelationship between homotypical areas in SI and SII, though the two areas differ in several important respects. It is proposed that SII in mice may complement the function of SI by helping to define the overall sensory context in which detailed tactile discriminations are made.
Collapse
Affiliation(s)
- G E Carvell
- Program in Physical Therapy, School of Health Related Professions, University of Pittsburgh, Pennsylvania 15261
| | | |
Collapse
|
32
|
Chapin JK, Sadeq M, Guise JL. Corticocortical connections within the primary somatosensory cortex of the rat. J Comp Neurol 1987; 263:326-46. [PMID: 2822774 DOI: 10.1002/cne.902630303] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Corticocortical connections within the primary somatosensory (SI) cortex of rat were investigated by using discrete injections of retro- and orthogradely transported neuroanatomical tracers (including HRP, WGA, PHA-L, and 3H-leucine). Tangential and vertical connections were defined with respect to the cytoarchitectonic divisions within the rat SI, specifically: (1) the "granular zones" (GZs), characterized by their dense layer IV granular aggregates, which receive the majority of direct ventroposterior (VP) thalamocortical terminations, (2) the "perigranular zones" (PGZs), the less-granular cortical matrix just surrounding the GZs, and (3) the "dysgranular zones" (DZs), the larger dysgranular regions lying centrally within and just lateral to the SI. Receptive fields recorded in the granular zones are small and discrete, whereas in the perigranular zones and especially in dysgranular zones they exhibit complex sensory convergence. A major aim of this study was to determine whether the pattern of intracortical connectivity within the SI is compatible with these observed physiological differences. In general, the perigranular and dysgranular zones contained more profuse systems of corticocortical connections than did the granular zones. For example, discrete tracer injections in the perigranular zones produced "walls" of labelling throughout the adjacent perigranular zones, while adjacent granular zones were relatively empty. Nevertheless, the granular zones were filled with dendritic branches of neurons in adjacent perigranular zones. Since these dendrites could presumably receive direct VP thalamocortical contacts, they represent one path through which this thalamic sensory information might be transmitted to the perigranular zones. Further transmission to the dysgranular zones might be subserved by a topographically organized system of reciprocal interconnections that was found between the perigranular zones and dysgranular zones. In coronal sections, labelling produced by relatively distant injections of either retro or orthograde tracers generally appeared in a columnar distribution, and was localized in perigranular zones and dysgranular zones. Within these zones, orthograde labelling consisted of vertically oriented axons emitting collateral sprays of terminals in all layers. Retrograde neuronal labelling (composed almost exclusively of pyramidal cells) was greatest in supragranular layers. Proximal to the injection site, labelling tended to spread out from these columns into supra- and infragranular layers in adjacent granular zones.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J K Chapin
- Department of Physiology and Biophysics, Hahnemann University, Philadelphia, Pennsylvania 19102
| | | | | |
Collapse
|
33
|
Ledoux MS, Whitworth RH, Gould HJ. Interhemispheric connections of the somatosensory cortex in the rabbit. J Comp Neurol 1987; 258:145-57. [PMID: 3571535 DOI: 10.1002/cne.902580112] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Corpus callosal connections of somatosensory cortex were studied in rabbits by combining anatomical tracing and electrophysiological mapping in the same animals. The results show that callosal connections are unevenly distributed in SI and SII. In SI, the representations of all body surfaces caudal to the neck and midline structures of the head have dense callosal connections. Conversely, connections are sparse to absent within representations of laterally positioned surfaces of the head, such as the sinus hairs, vibrissae, and nonmidline portions of the lips. Almost all of SII has dense callosal connections; only the representations of the vibrissae and sinus hairs have moderate callosal connections. The laminar distribution of callosal connections in rabbit SI and SII is similar to that observed in other mammals. Callosal terminations extend from the inner portion of layer I to the outer portion of layer VI, are moderately denser in the supragranular layers, and are sparse in layer IV. Callosally projecting cells are found predominantly in layers II, III, and V and are sparse in layers IV and VI. These data further emphasize the direct correspondence between the pattern of callosal connections in SI and the functional importance of particular body surfaces. Hence, representations of body surfaces important in the exploration of the environment are relatively free of callosal connections, whereas representations of midline and more lateral surfaces, less significant in tactile exploration, receive dense callosal connections. Callosal connections in rabbits are distributed extensively throughout responsive koniocortical regions rather than being relegated to distinct, specialized regions of "unresponsive" dysgranular cortex as in rodents.
Collapse
|
34
|
Herron P, Johnson JI. Organization of intracortical and commissural connections in somatosensory cortical areas I and II in the raccoon. J Comp Neurol 1987; 257:359-71. [PMID: 3558894 DOI: 10.1002/cne.902570305] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The organization of intracortical and callosal projecting cell bodies was examined in somatosensory representation areas I (SI) and II (SII) of the raccoon by use of horseradish peroxidase (HRP) or horseradish peroxidase-wheat germ agglutin (HRP-WHA). HRP and HRP-WHA were injected into commissurally and noncommissurally connected subdivisions of SI and SII. Injection sites in SII were identified electrophysiologically. Results were obtained from transverse sections in which the HRP was visualized with the aid of the substrates dihydrochlorobenzidine or tetramethyl benzidine in the presence of hydrogen peroxidase. The principal findings were the following: (1) there are reciprocal connections between SI and SII; (2) in SI the intracortically projecting cell bodies and terminals are located primarily in sulcal cortex; (3) intracortically projecting neurons in SI are located primarily in layers III whereas in SII they are located principally in layers III and V; (4) there are connections between disparate areas within SI; and (5) there are intracortical connections between callosum-connected and acallosal regions in SII. These results are discussed with regard to the results of mapping studies of the SI, the significance of intracortical connections to the formation of sulci in SI, and the possible roles of nonhomotopic connections in the intermanual transfer of learning.
Collapse
|
35
|
Dawson DR, Killackey HP. The organization and mutability of the forepaw and hindpaw representations in the somatosensory cortex of the neonatal rat. J Comp Neurol 1987; 256:246-56. [PMID: 3558880 DOI: 10.1002/cne.902560205] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The present study demonstrates that the primary somatosensory cortex of the rat contains a map of the entire body surface that is discernible with a routine anatomical staining technique, the succinic dehydrogenase reaction. The overall proportions of this map are relatively constant from rat to rat and very similar to those reported in previous physiological investigations (Welker: Brain Res. 26:259-275, '71, J. Comp. Neurol. 166:173-190, '76). We found 67% of the map to be related to the head of the rat, 15% to the forelimb, 14% to the trunk, and 4% to the hindlimb. Within the forelimb and hindlimb representations, there is a consistent internal organization that can be related to specific peripheral structures (digits or palm pads). Further, damage to either the periphery or the nerves innervating these regions on the day of birth produces disruptions in the normal pattern, but damage on day 6 or later does not. We interpret these results as indicating that the role of the periphery in organizing central neuronal structures during development previously demonstrated for the trigeminal system extends to the entire rat somatosensory system. Comparison of the present results with physiological studies of adult cortical maps after peripheral damage suggests to us that different substrates underlie the changes reported in the adult.
Collapse
|
36
|
Weller RE, Sur M, Kaas JH. Callosal and ipsilateral cortical connections of the body surface representations in SI and SII of tree shrews. SOMATOSENSORY RESEARCH 1987; 5:107-33. [PMID: 3423531 DOI: 10.3109/07367228709144622] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Injections of horseradish peroxidase (HRP) were used to study the connections of the first and second somatosensory areas (SI and SII) in tree shrews. The locations of callosally projecting neurons in SI were determined by placing large injections of HRP in the SI region of one cerebral hemisphere and determining the organization of SI of the other cerebral hemisphere with microelectrode mapping. Many callosally projecting neurons were revealed in lateral SI representing the face, especially the glabrous nose. A sparse scattering of callosally projecting neurons were located more centrally in SI in portions representing the forepaw; these neurons tended to be in cortex devoted to the dorsal hand and pads of the palm rather than the digits. Part of medial SI, representing the forelimb and trunk, had a moderately dense distribution of callosally projecting neurons. More restricted injections in SI indicated that callosally projecting neurons were largely within comparable portions of contralateral SI, although a few neurons projecting callosally to SI were located in SII and cortex caudal and rostral to SI. Large injections of HRP in SII labeled neurons throughout contralateral SII, including representations of the forepaw and hindpaw. More restricted injections in SII labeled neurons in somatotopically comparable parts of the contralateral SII. A few labeled neurons were also seen in somatotopically matched parts of contralateral SI. The results also demonstrated strong somatotopically organized connections between SI and SII of the same hemisphere, and connections of SI and SII with adjoining subdivisions of parietal and frontal cortex. The major thalamic projections to both SI and SII originated in the ventroposterior nucleus.
Collapse
Affiliation(s)
- R E Weller
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240
| | | | | |
Collapse
|
37
|
Manzoni T, Conti F, Fabri M. Callosal projections from area SII to SI in monkeys: anatomical organization and comparison with association projections. J Comp Neurol 1986; 252:245-63. [PMID: 3782508 DOI: 10.1002/cne.902520208] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present research was aimed at ascertaining in the macaque monkey the reciprocity of the heterotopical callosal connections between SI and SII, with particular regard to the connectivity of the hand representation, and at comparing the topographical and laminar pattern of these callosal connections with those of association connections entertained by these areas. Horseradish peroxidase (HRP) was unilaterally injected into area SI in five monkeys. The sites of HRP delivery included the trunk and the hand zones preliminarily identified by recording multi-unit responses to peripheral stimulation by means of microelectrodes. Anterograde and retrograde labelling was studied in SII of both sides. The results showed the complete reciprocity of the heterotopical callosal connections between SI and SII. In the latter area both callosal axon terminals and neurones were found, which were labelled from either the trunk or the hand zone of contralateral SI. Labelling of callosal axon terminals occurred mainly in layer IV and in the lowermost part of layer III. Labelled callosal neurones were mainly in the lower half of layer III, whereas few occurred in infragranular layers. Topographically, the distribution of callosal terminals and cell bodies duplicated the distribution of association terminals and cell bodies labelled in SII on the side ipsilateral to HRP injection. The laminar pattern of termination of association fibres from SI was similar to that of callosal fibres. However, the distribution of association-projecting neurones in SII showed a striking difference from that of callosal-projecting neurones. Unlike the latter neurones, which were mainly located in supragranular layers, association cell bodies overwhelmingly dwelt in layers V and VI and were less numerous in layers II and III. This laminar pattern of association SII-SI cells corresponds to the "feed-backward" model and fits the laminar pattern of their axon terminations (Friedman: Brain Res. 273: 147-151, '83). The association and callosal inputs and outputs of area SII are discussed in relation to the function of the forward and backward type of reciprocal connections entertained with SI in the ipsilateral hemisphere and to the function of SII in the interhemispheric exchange of somatosensory information.
Collapse
|
38
|
Krubitzer LA, Sesma MA, Kaas JH. Microelectrode maps, myeloarchitecture, and cortical connections of three somatotopically organized representations of the body surface in the parietal cortex of squirrels. J Comp Neurol 1986; 250:403-30. [PMID: 3760247 DOI: 10.1002/cne.902500402] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microelectrode mapping methods and anatomical procedures were combined in the same animals to reveal the cortical connections of three architectonically distinct representations of the body surface in the somatosensory cortex of grey squirrels. In individual experiments, microelectrode multiunit recordings were used to determine the somatotopic organization of regions of the cortex and to identify sites for injections of the anatomical tracer, wheat germ agglutinin conjugated to horseradish peroxidase. After the brains were perfused, the cortex was separated from the brainstem, flattened, and cut parallel to the flattened surface to facilitate comparisons of areal connection patterns, physiological data, and architectonic subdivisions. Recordings in the primary (S-I) and secondary (S-II) somatosensory fields confirmed earlier descriptions of the somatotopic organization of these fields (Sur et al.: J. Comp. Neurol. 179:425-450, '78; Nelson et al.: J. Comp. Neurol. 184:473-490, '79). In addition, recordings in the cortex caudal to S-I and ventral to S-II revealed a third representation of the body surface in parietal cortex, the parietal ventral area (PV). Neurons in PV were responsive to light tactile stimulation of skin and hairs. Multiple unit receptive fields of neurons in PV were larger than those for neurons in S-I but similar in size to those for neurons in S-II. PV represented the contralateral body surface in a somatotopic manner that can be roughly characterized as an inverted "homunculus" with the limbs directed medially, the trunk located ventrally, and the face congruent with the representations of the upper lip and nose in S-I. Neurons in some electrode penetrations in PV were also responsive to auditory clicks. Microlesions placed at physiologically determined borders allowed all three somatic representations to be related to myeloarchitectonically defined fields. S-I was architectonically distinct as a densely myelinated region. Within S-I, a lightly myelinated oval of the cortex between the representation of the hand and face, the "unresponsive zone" (Sur et al.: J. Comp. Neurol. 179:425-450, '78), was an easily recognized landmark. S-II and PV corresponded to less densely myelinated fields. Other subdivisions such as motor cortex, primary auditory cortex, and visual areas 17 and 18 were distinguished. Connections were revealed by placing injections within S-I, S-II, or PV.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
39
|
Killackey HP, Chalupa LM. Ontogenetic change in the distribution of callosal projection neurons in the postcentral gyrus of the fetal rhesus monkey. J Comp Neurol 1986; 244:331-48. [PMID: 3958231 DOI: 10.1002/cne.902440306] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the postcentral gyrus of the mature rhesus monkey the distribution of callosal projection neurons is discontinuous. The density of callosal projection neurons, which are mainly located in the supragranular layers, varies both within and across cytoarchitectonic areas (Killackey et al., '83). In the present study, we investigated the ontogeny of corpus callosum projections of the postcentral gyrus in five fetal rhesus monkeys, ranging in age from embryonic day (E) 108 to E 133. Multiple large injections of horseradish peroxidase that involved the underlying white matter were made into the postcentral gyrus of one hemisphere and the distribution of labeled neurons in the ipsilateral thalamus and the other hemisphere was determined. The pattern of thalamic label indicated that the tracer was effectively transported from all portions of the postcentral gyrus. We found that the areal distribution pattern of labeled callosal projection neurons varied at the different fetal ages. At early fetal ages (E 108, E 111, and E 119) callosal projection neurons were continuously distributed throughout the postcentral gyrus. As in the adult animal, the vast majority of labeled callosal projection neurons were found in the supragranular layers, although a few labeled cells were located in the infragranular layers. From the earliest age, there was regional variation in the width of the band of labeled supragranular callosal projection neurons. The difference between the precentral and postcentral gyrus was most obvious, but there was also a difference between anterior and posterior portions of the postcentral gyrus. The first indication of some discontinuity in the distribution of callosal projection neurons was noted at E 126. By E 133, approximately 1 month before birth, the distribution of callosal projection neurons appeared remarkably mature. On E 119 aggregations of anterograde label could be detected in restricted portions of the posterior postcentral gyrus beneath the cortical layers. By E 133 anterograde label was found within the cortical layers (most densely in layer IV) in these regions of the postcentral gyrus. Thus, the emergence of the discrete pattern of callosal projection neurons appears to be temporally correlated with the ingrowth of callosal afferents. On the basis of these observations, as well as those of others (discussed in the text), we propose that the ontogenetic changes in the distribution of callosal projection neurons reflect the unique strategy employed by cortical projection neurons in establishing their patterns of connectivity. It is hypothesized that this strategy may involve multiple processes.
Collapse
|
40
|
Abstract
The organization of somatosensory maps was examined in rabbits with the aid of microelectrode multi-unit recording techniques. Two complete maps of the contralateral body surface are identified in the parietal cortex. The first map, S I, is found entirely on the lateral convexity of the hemisphere and closely resembles S I described in the rat (Welker, '71, '76). It is organized in a complex, though systematic, fashion with the representations of the hindlimb and tail located caudomedially. These representations are followed laterally in sequence by those of the trunk and forelimb and then the representation of the head. Within the head representation the lips are found rostrally, the vibrissae caudomedially, and the displaced representation of the pinna of the ear is located caudolaterally. Unlike the disposition in most other mammals, the dorsal midline of the trunk is represented along the caudal border of S I. Within S I, the representations of the circumoral surfaces, including the lips, philtrum, nose, and vibrissae, are emphasized, occupying approximately 86.4% of the map. It is suggested that S I is contained within a single major koniocortical region, here called the medial parietal area, or Pm. The several previously described parietal regions (Rose, '31; Fleischhauer et al., '80) are interpreted as subregions that are related to particular representations of portions of the body surface. The second map, S II, is located lateral to S I in a region here called the lateral parietal area or Pl. S II shares a common border with S I along the representations of the philtrum, bridge of the nose, and top of the head. The body is oriented in an erect conformation with the head located rostrally and medially and the hindlimb and tail located caudally and laterally.
Collapse
|
41
|
|
42
|
|
43
|
Abstract
The laminar distribution and reciprocity of commissural axon terminals and cells of origin in cat primary auditory cortex (AI) were studied after injections of tritiated proline combined with horseradish peroxidase in the middle ectosylvian gyrus. Terminal fields were found in every cortical layer in the contralateral AI, and they were characterized quantitatively. The largest concentration of silver grains was in layer III (about 25% of the total number of silver grains) and, to a lesser extent, in layers V, VI, and I (some 18% of the total in each layer). The labeling in layer I was concentrated in its deeper half, while the labeling in the other layers was more homogeneous. Layer IV had the least labeling, followed by layer II, each receiving about 10% of the total. The labeling was always heaviest over the neuropil and lightest over neuronal perikarya. Commissural terminal fields formed radial patches oriented perpendicularly to the pia, and averaging 543 micron in width. There was consistently three times more silver grains in a patch than in an inter-patch area. However, the number of silver grains in an inter-patch area was always significantly above background, indicating a possible commissural projection to these zones as well. The patches of commissural terminal fields formed bands oriented across AI and running in a caudoventral to rostrodorsal direction. Strict reciprocity between the commissural cells of origin and terminal fields was not found at the light microscopic level when adjacent sections, corrected for differential shrinkage, were compared. Often, patches of terminal fields were free of retrogradely labeled cells and, conversely, there were patches of labeled cells without an overlying commissural terminal field. The terminal fields connected homotopic regions of the contralateral AI, and every region of AI received commissural innervation, unlike the primary somatic sensory and visual cortex, where large zones receive only a few commissural afferents. The more complete pattern of interhemispheric connectivity in auditory cortex is in contrast to the less continuous commissural representation in other sensory neocortical fields. Perhaps this pattern contributes to the anatomical representation of binaurality in auditory cortex.
Collapse
|
44
|
Code RA, Winer JA. Commissural neurons in layer III of cat primary auditory cortex (AI): pyramidal and non-pyramidal cell input. J Comp Neurol 1985; 242:485-510. [PMID: 2418078 DOI: 10.1002/cne.902420404] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The types of layer III neurons in cat primary auditory cortex (AI) projecting to the contralateral AI were studied with horseradish peroxidase or horseradish peroxidase conjugated to wheat germ agglutinin. Injections between the anterior and posterior ectosylvian sulci retrogradely labeled both pyramidal and non-pyramidal somata in contralateral cortical layers III, V, and VI in AI, and in the ventral nucleus of the ipsilateral medial geniculate body. Three-quarters (72%) of the retrogradely labeled cells were found in layer III and one-quarter (28%) lay in layers V and VI. Every part of AI was innervated by commissural neurons. The topographical distribution of the labeled cells varied systematically. Injections in the caudal part of AI labeled cells in the caudal part of the opposite AI, while more rostral injections labeled cells in the contralateral, rostral AI. Injections covering the rostro-caudal extent of AI labeled cells throughout the opposite AI. Each part of AI thus projects most strongly to a contralateral, homotypic area, and less strongly to other, adjacent sectors of AI. The types of labeled cells were distinguished from one another on the basis of size, somatic and dendritic morphology, laminar distribution, and nuclear membrane morphology. Their somatodendritic profiles were compared to, and correlated with, those in Golgi-impregnated material from adult animals. Among the pyramidal cells of origin were small, medium-sized, and large neurons, and star pyramidal cells. The non-pyramidal cells of origin included bipolar and multipolar cells. Thus, at least six of the 12 kinds of neurons, as defined by morphological methods, participate in the interhemispheric pathway. Pyramidal cells comprised 65% of the cells of origin, 14% of the labeled cells in layer III were non-pyramidal, and 21% of the neurons could not be classified. It is unknown if these different types of commissural neurons have the same laminar or cytological targets in AI, or if they represent more than one functional or parallel pathway within AI. In any case, cytologically diverse layer III neurons contribute to the commissural system.
Collapse
|
45
|
Cusick CG, MacAvoy MG, Kaas JH. Interhemispheric connections of cortical sensory areas in tree shrews. J Comp Neurol 1985; 235:111-28. [PMID: 3989001 DOI: 10.1002/cne.902350109] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interhemispheric connections were studied in tree shrews (Tupaia belangeri) after multiple injections of horseradish peroxidase or horseradish peroxidase conjugated to wheat germ agglutinin into the cortex of one cerebral hemisphere. After an appropriate survival period, the areal pattern of connections was revealed by flattening the other hemisphere, cutting sections parallel to the cortical surface, and staining with tetramethylbenzidine. Architectonic boundaries were identified by using sections stained for myelinated fibers. Labeled cells and axon terminations formed largely overlapping distributions that covaried in density, although labeled cells appeared to be more evenly distributed than labeled terminations. Connections were concentrated along the border of area 17 (V-I) with area 18 (V-II). However, connections also extended as far as 2 mm into area 17 to include cortex representing parts of the visual field 10 degrees or more from the zero vertical meridian. Clusters of dense connections spanned the width of area 18, where they alternated with regions of fewer connections. These clusters roughly corresponded in location to regions with heavier myelination. In the visually responsive temporal cortex, connections were also unevenly distributed. The organization of most of this cortex is not understood, but one subdivision, the temporal dorsal area (TD), has been identified on the basis of reciprocal connections with area 17. The central part of the TD had few interhemispheric connections, while most of the outer border had dense connections. The auditory cortex had dense and patchy connections throughout. The pattern in the primary somatosensory cortex (S-I) varied according to the representation of body parts, so that the cortex related to the forepaw had sparse connections, while connections were dense but uneven over much of the representation of the face, nose, and mouth. A focus of connections was found at the border of the forepaw and face representations, where the myelination of S-I cortex is interrupted. Dense, uneven connections also characterized the second somatosensory area, S-II. The motor cortex was densely connected, with only slightly fewer terminations rostral to the forepaw region of S-I. Other parts of frontal cortex had dense connections. The distribution of cortical connections varied with depth for at least some areas, so that clusters of cells and terminations were found in supragranular layers in S-I, S-II, and TD, while infragranular labeled cells were more evenly distributed.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
46
|
Abstract
In order to better understand the organization of extrastriate cortex in tree shrews, injections in area 17 of wheat germ agglutinin or tritiated proline were used to reveal an intrinsic pattern of connections, ipsilateral connections with area 18 and two other subdivisions of cortex, and callosal connections with areas 17 and 18 of the opposite cerebral hemisphere. Areal patterns of connections were best seen in sections cut parallel to the surface of flattened cortex. Within area 17, periodic foci of labeled terminations and cells extended from and surrounded injection sites as described by Rockland et al. ('82). Single injections produced multiple foci of labeled terminations and cells in area 18. The foci tended to fuse into short bands that sometimes crossed the width of area 18. Double injections produced more foci, and multiple injections tended to produce more continuous regions of label. An overall retinotopic pattern was evident with rostral area 17 connected to rostral area 18 and caudal area 17 connected to caudal area 18. Terminations extended through layers II-VI, with some increase in density in layer IV. Cells in area 18 projecting back to area 17 were in layers III and V. The injections also allowed identification of previously undefined subdivisions of visual cortex in temporal cortex immediately adjoining area 18. Dense reciprocal connections were observed in a 13 mm2 oval of cortex on the lateral border of the middle section of area 18 that we define as the temporal dorsal area, TD. Connections indicate a crude topographic organization with lower field represented rostrally and upper field caudally. Inputs were most dense in the middle cortical layers, and labeled cells were supragranular, and less frequently, infragranular. A 10-mm2 oval of cortex near the posterior edge of the hemisphere, the temporal posterior area (TP), contained labeled cells after area 17 injections, but terminal labeling was only obvious in the dorsal part. Single injections sometimes produced quite separate dorsal and ventral zones of label in TP, suggesting a small separate dorsal division. A crude retinotopic order appears to exist within ventral TP, with the lower field most ventral. Labeled cells were largely supragranular. A fourth zone of ipsilateral connections was in posterior limbic cortex bordering area 17 on the ventromedial surface of the cerebral hemisphere. The callosal connections were reciprocal and included regions 1 mm wide on either side of the area 17 and area 18 border. Callosal connections were rougly homotopic. Callosal terminations included superficial layers, and projecting cells were both supragranular and infragranular.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
47
|
Chapin JK, Lin CS. Mapping the body representation in the SI cortex of anesthetized and awake rats. J Comp Neurol 1984; 229:199-213. [PMID: 6438190 DOI: 10.1002/cne.902290206] [Citation(s) in RCA: 447] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have used single unit recording techniques to map the representation of cutaneous and joint somatosensory modalities in the primary somatosensory (SI) cortex of both anesthetized and awake rats. The cytoarchitectonic zones within the rat SI were divided into the following main categories: (1) granular zones (GZs)--areas exhibiting koniocortical cytoarchitecture (i.e., containing dense aggregates of layer IV granule cells), (2) perigranular zones (PGZs)--narrow strips of less granular cortex surrounding the GZs, and (3) dysgranular zones (DZs)--large areas of dysgranular cortex enclosed within the SI. The narrow strip between the SI and the rostrally adjacent frontal agranular cortex was termed the "transitional zone" (TZ). Initial computer-based studies of the properties of cutaneous receptive fields (RFs) in SI showed that, although there were differences in response threshold, adaptability, frequency response, and overall RF size and shape of adjacent neurons, the size and location of the "centers" of the RFs were quite constant and were similar to those seen in multiple unit recordings. The same was true of RFs of single neurons recorded through different anesthetic states. The body representation in SI was first mapped by determining single unit and unit cluster RFs within a total of 2,170 microelectrode penetrations in barbiturate-anesthetized rats. Cutaneous RFs in the GZs were quite discrete. Thus, a single, finely detailed, continuous map of the cutaneous periphery was definable within the GZs themselves. Only the forepaw had a double representation. RFs in the PGZs were larger and more diffuse, but since they covered roughly the same skin areas as the RFs in the most closely adjacent GZs, they fit into the same body map. Neurons in the DZs were unresponsive to any sensory stimuli in the anesthetized animal. In chronically implanted, freely moving, awake animals cutaneous RFs were larger and more volatile than in the anesthetized, but the accuracy of the map was clearly preserved by the fact that the locations of the RF centers (which often must be defined quantitatively) were unchanged. The PGZs and DZs in the awake animals exhibited a multimodal convergence of cutaneous and joint movement RFs within single vertical penetrations, or even on single neurons. Directionally specific and bilateral cutaneous RFs were also observed in the DZs. It was concluded the DZs are more associational or integrative areas within the SI, but they could not be shown to comprise a distinct and separate body representation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
48
|
Gould HJ. Interhemispheric connections of the visual cortex in the grey squirrel (Sciurus carolinensis). J Comp Neurol 1984; 223:259-301. [PMID: 6200520 DOI: 10.1002/cne.902230209] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The total pattern of visual callosal connections was studied in the grey squirrel by using the Fink-Heimer technique for axonal and terminal degeneration and the autoradiographic and horseradish peroxidase techniques for axonal transport. The pattern of terminations was correlated with architectonic landmarks. The results show that callosal terminations are distributed in a complex fashion within the visual cortical areas. The major terminations form a band in area 17 along its border with area 18. This band is contiguous rostrally with the callosal terminations in area L that extend caudomedially onto the medial wall of the hemisphere. Caudally the band in area 17 wraps around the ventral aspect of the occipital pole and ends medially at the level of the hippocampus. This band exhibits a distinct periodicity in the density of terminations. The callosal terminations in area 18 are usually found along the lateral and medial borders and are concentrated in discrete patches. The pattern in area 19 exhibits two or three primary patches and only loosely corresponds to the borders of the area. Few callosal terminations are found in area 19p and the posterior temporal area, Tp, while the intermediate temporal area, Ti, receives an extensive input. The laminar distribution of callosal terminations is different in each area studied. Characteristically, area 18 has dense terminations in layers III, II, and the inner one-half of layer I, with less dense terminations in layers V and VI, and sparse terminations in layer IV. Area 17 has a similar pattern in the supragranular and infragranular layers but also has dense terminations in layer IV. The patterns in area 19 are intermediate between these extremes but are more similar to those in area 17. The cells that give rise to the callosal projections were found primarily in layers III and V and occasionally in layers II, IV, and VI. The distribution of the callosal efferent neurons is more extensive than the areas of terminations. The distribution of callosal terminations suggests that the organization of visual cortical areas in the grey squirrel is more complex than had been previously recognized. This finding is discussed with reference to the general organization of the mammalian visual cortical areas, and a need for more extensive analyses of visual cortical areas in the grey squirrel, particularly with respect to extrastriate visual areas, is indicated.
Collapse
|
49
|
Olavarria J, Van Sluyters RC, Killackey HP. Evidence for the complementary organization of callosal and thalamic connections within rat somatosensory cortex. Brain Res 1984; 291:364-8. [PMID: 6697197 DOI: 10.1016/0006-8993(84)91270-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We provide evidence that callosal projections within the primary somatosensory cortex of the rat are distributed in a detailed pattern which is complementary to the pattern of specific thalamocortical projections to this cortical region.
Collapse
|
50
|
Bentin S, Sahar A, Moscovitch M. Intermanual information transfer in patients with lesions in the trunk of the corpus callosum. Neuropsychologia 1984; 22:601-11. [PMID: 6504300 DOI: 10.1016/0028-3932(84)90024-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Interhemispheric transfer of haptic information was examined in six partially callosotomized patients and three control subjects. Three different portions of the trunk were severed in different subjects. The most anterior 10 mm of the trunk, anterior to the foramen of Monro, was sectioned in one patient. Three other patients had lesions restricted to the anterior part of the trunk posterior to the foramen of Monro. The posterior third of the trunk was damaged in two patients. The splenium, genu and rostrum of the corpus callosum were intact in all six patients, as were the anterior and hippocampal commissures. Poor transfer of haptic information was found only in the three patients with the lesion located in the anterior part of the trunk posterior to the foramen of Monro. The functional anatomy of this region is discussed. It is assumed to house fibers responsible for interhemispheric transfer of complex tactile information.
Collapse
|