1
|
Stroman PW, Umraw M, Keast B, Algitami H, Hassanpour S, Merletti J. Structural and Physiological Modeling (SAPM) for the Analysis of Functional MRI Data Applied to a Study of Human Nociceptive Processing. Brain Sci 2023; 13:1568. [PMID: 38002528 PMCID: PMC10669617 DOI: 10.3390/brainsci13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
A novel method has been developed for analyzing connectivity between regions based on functional magnetic resonance imaging (fMRI) data. This method, termed structural and physiological modeling (SAPM), combines information about blood oxygenation-level dependent (BOLD) responses, anatomy, and physiology to model coordinated signaling across networks of regions, including input and output signaling from each region and whether signaling is predominantly inhibitory or excitatory. The present study builds on a prior proof-of-concept demonstration of the SAPM method by providing evidence for the choice of network model and anatomical sub-regions, demonstrating the reproducibility of the results and identifying statistical thresholds needed to infer significance. The method is further validated by applying it to investigate human nociceptive processing in the brainstem and spinal cord and comparing the results to the known neuroanatomy, including anatomical regions and inhibitory and excitatory signaling. The results of this analysis demonstrate that it is possible to obtain reliable information about input and output signaling from anatomical regions and to identify whether this signaling has predominantly inhibitory or excitatory effects. SAPM provides much more detailed information about neuroanatomy than was previously possible based on fMRI data.
Collapse
Affiliation(s)
- Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Physics, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Maya Umraw
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| | - Brieana Keast
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| | - Hannan Algitami
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| | - Shima Hassanpour
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| | - Jessica Merletti
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.U.); (B.K.); (H.A.); (S.H.); (J.M.)
| |
Collapse
|
2
|
Vertes RP, Hoover WB, Witter MP, Yanik MF, Rojas AKP, Linley SB. Projections from the five divisions of the orbital cortex to the thalamus in the rat. J Comp Neurol 2023; 531:217-237. [PMID: 36226328 PMCID: PMC9772129 DOI: 10.1002/cne.25419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
The orbital cortex (ORB) of the rat consists of five divisions: the medial (MO), ventral (VO), ventrolateral (VLO), lateral (LO), and dorsolateral (DLO) orbital cortices. No previous report has comprehensively examined and compared projections from each division of the ORB to the thalamus. Using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin, we describe the efferent projections from the five divisions of the ORB to the thalamus in the rat. We demonstrated that, with some overlap, each division of the ORB distributed in a distinct (and unique) manner to nuclei of the thalamus. Overall, ORB projected to a relatively restricted number of sites in the thalamus, and strikingly distributed entirely to structures of the medial/midline thalamus, while completely avoiding lateral regions or principal nuclei of the thalamus. The main termination sites in the thalamus were the paratenial nucleus (PT) and nucleus reuniens (RE) of the midline thalamus, the medial (MDm) and central (MDc) divisions of the mediodorsal nucleus, the intermediodorsal nucleus, the central lateral, paracentral, and central medial nuclei of the rostral intralaminar complex and the submedial nucleus (SM). With some exceptions, medial divisions of the ORB (MO, VO) mainly targeted "limbic-associated" nuclei such as PT, RE, and MDm, whereas lateral division (VLO, LO, DLO) primarily distributed to "sensorimotor-associated" nuclei including MDc, SM, and the rostral intralaminar complex. As discussed herein, the medial/midline thalamus may represent an important link (or bridge) between the orbital cortex and the hippocampus and between the ORB and medial prefrontal cortex. In summary, the present results demonstrate that each division of the orbital cortex projects in a distinct manner to nuclei of the thalamus which suggests unique functions for each division of the orbital cortex.
Collapse
Affiliation(s)
- Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, USA
- Department of Psychology, Florida Atlantic University, Boca Raton, Florida, USA
| | - Walter B Hoover
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mehmet Fatih Yanik
- Institute of Neuroinformatics, D-ITET, ETH, University of Zurich, Zurich, Switzerland
| | - Amanda K P Rojas
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Stephanie B Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, USA
- Department of Psychology, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
3
|
Cortical Modulation of Nociception. Neuroscience 2021; 458:256-270. [PMID: 33465410 DOI: 10.1016/j.neuroscience.2021.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/28/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Nociception is the neuronal process of encoding noxious stimuli and could be modulated at peripheral, spinal, brainstem, and cortical levels. At cortical levels, several areas including the anterior cingulate cortex (ACC), prefrontal cortex (PFC), ventrolateral orbital cortex (VLO), insular cortex (IC), motor cortex (MC), and somatosensory cortices are involved in nociception modulation through two main mechanisms: (i) a descending modulatory effect at spinal level by direct corticospinal projections or mostly by activation of brainstem structures (i.e. periaqueductal grey matter (PAG), locus coeruleus (LC), the nucleus of raphe (RM) and rostroventral medulla (RVM)); and by (ii) cortico-cortical or cortico-subcortical interactions. This review summarizes evidence related to the participation of the aforementioned cortical areas in nociception modulation and different neurotransmitters or neuromodulators that have been studied in each area. Besides, we point out the importance of considering intracortical neuronal populations and receptors expression, as well as, nociception-induced cortical changes, both functional and connectional, to better understand this modulatory effect. Finally, we discuss the possible mechanisms that could potentiate the use of cortical stimulation as a promising procedure in pain alleviation.
Collapse
|
4
|
Dorsal prefrontal and premotor cortex of the ferret as defined by distinctive patterns of thalamo-cortical projections. Brain Struct Funct 2020; 225:1643-1667. [PMID: 32458050 PMCID: PMC7286872 DOI: 10.1007/s00429-020-02086-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/09/2020] [Indexed: 12/19/2022]
Abstract
Recent studies of the neurobiology of the dorsal frontal cortex (FC) of the ferret have illuminated its key role in the attention network, top-down cognitive control of sensory processing, and goal directed behavior. To elucidate the neuroanatomical regions of the dorsal FC, and delineate the boundary between premotor cortex (PMC) and dorsal prefrontal cortex (dPFC), we placed retrograde tracers in adult ferret dorsal FC anterior to primary motor cortex and analyzed thalamo-cortical connectivity. Cyto- and myeloarchitectural differences across dorsal FC and the distinctive projection patterns from thalamic nuclei, especially from the subnuclei of the medial dorsal (MD) nucleus and the ventral thalamic nuclear group, make it possible to clearly differentiate three separate dorsal FC fields anterior to primary motor cortex: polar dPFC (dPFCpol), dPFC, and PMC. Based on the thalamic connectivity, there is a striking similarity of the ferret's dorsal FC fields with other species. This possible homology opens up new questions for future comparative neuroanatomical and functional studies.
Collapse
|
5
|
Weitz AJ, Lee HJ, Choy M, Lee JH. Thalamic Input to Orbitofrontal Cortex Drives Brain-wide, Frequency-Dependent Inhibition Mediated by GABA and Zona Incerta. Neuron 2019; 104:1153-1167.e4. [PMID: 31668484 PMCID: PMC8720842 DOI: 10.1016/j.neuron.2019.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/19/2019] [Accepted: 09/13/2019] [Indexed: 01/16/2023]
Abstract
Anatomical and behavioral data suggest that the ventrolateral orbitofrontal cortex (VLO), which exhibits extensive connectivity and supports diverse sensory and cognitive processes, may exert global influence over brain activity. However, this hypothesis has never been tested directly. We applied optogenetic fMRI to drive various elements of VLO circuitry while visualizing the whole-brain response. Surprisingly, driving excitatory thalamocortical projections to VLO at low frequencies (5-10 Hz) evoked widespread, bilateral decreases in brain activity spanning multiple cortical and subcortical structures. This pattern was unique to thalamocortical projections, with direct stimulations of neither VLO nor thalamus eliciting such a response. High-frequency stimulations (25-40 Hz) of thalamocortical projections evoked dramatically different-though still far-reaching-responses, in the form of widespread ipsilateral activation. Importantly, decreases in brain activity evoked by low-frequency thalamocortical input were mediated by GABA and activity in zona incerta. These findings identify specific circuit mechanisms underlying VLO control of brain-wide neural activities.
Collapse
Affiliation(s)
- Andrew J Weitz
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Hyun Joo Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - ManKin Choy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jin Hyung Lee
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, CA 94305, USA.
| |
Collapse
|
6
|
Silva C, McNaughton N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog Neurobiol 2019; 177:33-72. [DOI: 10.1016/j.pneurobio.2019.02.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/19/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
|
7
|
Babalian A, Eichenberger S, Bilella A, Girard F, Szabolcsi V, Roccaro D, Alvarez-Bolado G, Xu C, Celio MR. The orbitofrontal cortex projects to the parvafox nucleus of the ventrolateral hypothalamus and to its targets in the ventromedial periaqueductal grey matter. Brain Struct Funct 2018; 224:293-314. [PMID: 30315416 PMCID: PMC6373537 DOI: 10.1007/s00429-018-1771-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022]
Abstract
Although connections between the orbitofrontal cortex (OFC)-the seat of high cognitive functions-the lateral hypothalamus and the periaqueductal grey (PAG) have been recognized in the past, the precise targets of the descending fibres have not been identified. In the present study, viral tracer-transport experiments revealed neurons of the lateral (LO) and the ventrolateral (VLO) OFC (homologous to part of Area 13 in primates) to project to a circumscribed region in the ventrolateral hypothalamus, namely, the horizontally oriented, cylindrical parvalbumin- and Foxb1-expressing (parvafox) nucleus. The fine collaterals stem from coarse axons in the internal capsule and form excitatory synapses specifically with neurons of the parvafox nucleus, avoiding the rest of the hypothalamus. In its further caudal course, this contingent of LO/VLO-axons projects collaterals to the Su3- and the PV2 nuclei, which lie ventral to the aqueduct in the (PAG), where the terminals fields overlap those deriving from the parvafox nucleus itself. The targeting of the parvafox nucleus by the LO/VLO-projections, and the overlapping of their terminal fields within the PAG, suggest that the two cerebral sites interact closely. An involvement of this LO/VLO-driven circuit in the somatic manifestation of behavioural events is conceivable.
Collapse
Affiliation(s)
- Alexandre Babalian
- Anatomy and Programme in Neuroscience, Faculty of Science and Medicine, University of Fribourg, Rte. A. Gockel 1, 1700, Fribourg, Switzerland
| | - Simone Eichenberger
- Anatomy and Programme in Neuroscience, Faculty of Science and Medicine, University of Fribourg, Rte. A. Gockel 1, 1700, Fribourg, Switzerland
| | - Alessandro Bilella
- Anatomy and Programme in Neuroscience, Faculty of Science and Medicine, University of Fribourg, Rte. A. Gockel 1, 1700, Fribourg, Switzerland
| | - Franck Girard
- Anatomy and Programme in Neuroscience, Faculty of Science and Medicine, University of Fribourg, Rte. A. Gockel 1, 1700, Fribourg, Switzerland
| | - Viktoria Szabolcsi
- Anatomy and Programme in Neuroscience, Faculty of Science and Medicine, University of Fribourg, Rte. A. Gockel 1, 1700, Fribourg, Switzerland
| | - Diana Roccaro
- Anatomy and Programme in Neuroscience, Faculty of Science and Medicine, University of Fribourg, Rte. A. Gockel 1, 1700, Fribourg, Switzerland
| | - Gonzalo Alvarez-Bolado
- Institute of Anatomy and Cell Biology, University of Heidelberg, im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Chun Xu
- Friedrich Miescher Institute, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Marco R Celio
- Anatomy and Programme in Neuroscience, Faculty of Science and Medicine, University of Fribourg, Rte. A. Gockel 1, 1700, Fribourg, Switzerland.
| |
Collapse
|
8
|
Reed WR, Cranston JT, Onifer SM, Little JW, Sozio RS. Decreased spontaneous activity and altered evoked nociceptive response of rat thalamic submedius neurons to lumbar vertebra thrust. Exp Brain Res 2017; 235:2883-2892. [PMID: 28687855 DOI: 10.1007/s00221-017-5013-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022]
Abstract
The thalamus is a central structure important to modulating and processing all mechanoreceptor input destined for the cortex. A large number of diverse mechanoreceptor endings are stimulated when a high velocity low amplitude thrust is delivered to the lumbar spine during spinal manipulation. The objective of this study was to determine if a lumbar thrust alters spontaneous and/or evoked nociceptive activity in medial thalamic submedius (Sm) neurons. Extracellular recordings were obtained from 94 thalamic Sm neurons in 54 urethane-anesthetized adult Wistar rats. Spontaneous activity was recorded 5 min before and after an L5 control (no thrust) and thrust (85% rat body weight; 100 ms) procedure. In a subset of responsive nociceptive-specific neurons, mean changes in noxious-evoked response (10-s pinch with clip; 795 g) at three sites (tail, contra- and ipsilateral hindpaw) were determined following an L5 thrust. Mean changes in Sm spontaneous activity (60 s bins) and evoked noxious response were compared using a mixed model repeated measures ANOVA with Bonferroni post hoc t tests and paired t tests, respectively. Compared to control, spontaneous Sm activity decreased 180-240 s following the lumbar thrust (p < 0.005). Inhibitory evoked responses were attenuated in the contralateral hindpaw following an L5 thrust compared to control (p < 0.05). No other changes in spontaneous or noxious-evoked Sm activity were found. A delayed, but prolonged suppression of spontaneous Sm activity along with changes in noxious-evoked inhibitory responses in the contralateral hindpaw following lumbar vertebra thrust suggest that thalamic submedius neurons may play a role in central pain modulation related to manual therapy intervention.
Collapse
Affiliation(s)
- William R Reed
- Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, IA, USA.
- Department of Physical Therapy, School of Health Professions, UAB, The University of Alabama at Birmingham, Webb 318, 1720 2nd Avenue South, Birmingham, AL, 35294-1212, USA.
| | - Jamie T Cranston
- Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, IA, USA
| | - Stephen M Onifer
- Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, IA, USA
| | - Joshua W Little
- Department of Surgery, Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Randall S Sozio
- Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, IA, USA
| |
Collapse
|
9
|
Wei L, Zhu YM, Zhang YX, Liang F, Jia H, Qu CL, Wang J, Tang JS, Lu SM, Huo FQ, Yan CX. Activation of α1 adrenoceptors in ventrolateral orbital cortex attenuates allodynia induced by spared nerve injury in rats. Neurochem Int 2016; 99:85-93. [PMID: 27296114 DOI: 10.1016/j.neuint.2016.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/05/2016] [Accepted: 06/09/2016] [Indexed: 01/27/2023]
Abstract
Recent studies have demonstrated that noradrenaline acting in the ventrolateral orbital cortex (VLO) can potentially reduce allodynia induced by spared nerve injury (SNI), and this effect is mediated by α2 adrenoceptor. The present study examined the effect of the α1 adrenoceptors in the VLO on allodynia induced by SNI in the rats. The mechanical paw withdrawal threshold (PWT) was measured using von-Frey filaments. Microinjection of selective α1 adrenoceptor agonist methoxamine (20, 50, 100 μg in 0.5 μl) into the VLO, contralateral to the site of nerve injury, increased PWT in a dose-dependent manner. This effect was antagonized by pre-microinjection of the selective α1 adrenoceptor antagonist benoxathian into the same VLO site, and blocked by electrolytic lesion of the ventrolateral periaqueductal gray (PAG). Furthermore, pre-administration of non-selective glutamate receptor antagonist kynurenic acid, phospholipase C (PLC) inhibitor U73122, and protein kinase C (PKC) inhibitor chelerythrine to the VLO also blocked methoxamine-induced inhibition of allodynia. These results suggest that activation of α1 adrenoceptors in the VLO can potentially reduce allodynia induced by SNI. This effect may be direct excitation of the VLO neurons, via PLC-PKC signaling pathway, projecting to the PAG or facilitating glutamate release and then indirectly exciting the VLO output neurons projecting to the PAG, leading to activation of the PAG-brainstem descending inhibitory system which depresses the nociceptive transmission at the spinal cord level.
Collapse
Affiliation(s)
- Lai Wei
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Division of Forensic Medicine, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yuan-Mei Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yu-Xiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Feng Liang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Hong Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Chao-Ling Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Jing Wang
- Key Laboratory of Orthopedics of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, China
| | - Jing-Shi Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - She-Min Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China
| | - Fu-Quan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China.
| | - Chun-Xia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China.
| |
Collapse
|
10
|
Organization of Prefrontal-Striatal Connections. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-12-802206-1.00021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Zakiewicz IM, Bjaalie JG, Leergaard TB. Brain-wide map of efferent projections from rat barrel cortex. Front Neuroinform 2014; 8:5. [PMID: 24550819 PMCID: PMC3914153 DOI: 10.3389/fninf.2014.00005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/14/2014] [Indexed: 12/05/2022] Open
Abstract
The somatotopically organized whisker barrel field of the rat primary somatosensory (S1) cortex is a commonly used model system for anatomical and physiological investigations of sensory processing. The neural connections of the barrel cortex have been extensively mapped. But most investigations have focused on connections to limited regions of the brain, and overviews in the literature of the connections across the brain thus build on a range of material from different laboratories, presented in numerous publications. Furthermore, given the limitations of the conventional journal article format, analyses and interpretations are hampered by lack of access to the underlying experimental data. New opportunities for analyses have emerged with the recent release of an online resource of experimental data consisting of collections of high-resolution images from 6 experiments in which anterograde tracers were injected in S1 whisker or forelimb representations. Building on this material, we have conducted a detailed analysis of the brain wide distribution of the efferent projections of the rat barrel cortex. We compare our findings with the available literature and reports accumulated in the Brain Architecture Management System (BAMS2) database. We report well-known and less known intracortical and subcortical projections of the barrel cortex, as well as distinct differences between S1 whisker and forelimb related projections. Our results correspond well with recently published overviews, but provide additional information about relative differences among S1 projection targets. Our approach demonstrates how collections of shared experimental image data are suitable for brain-wide analysis and interpretation of connectivity mapping data.
Collapse
Affiliation(s)
- Izabela M Zakiewicz
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Jan G Bjaalie
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Trygve B Leergaard
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| |
Collapse
|
12
|
Hoover WB, Vertes RP. Projections of the medial orbital and ventral orbital cortex in the rat. J Comp Neurol 2011; 519:3766-801. [DOI: 10.1002/cne.22733] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
|
14
|
Groenewegen HJ, Uylings HB. Organization of Prefrontal-Striatal Connections. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-12-374767-9.00020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
15
|
Tang JS, Qu CL, Huo FQ. The thalamic nucleus submedius and ventrolateral orbital cortex are involved in nociceptive modulation: A novel pain modulation pathway. Prog Neurobiol 2009; 89:383-9. [DOI: 10.1016/j.pneurobio.2009.10.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 09/27/2009] [Accepted: 10/01/2009] [Indexed: 12/01/2022]
|
16
|
Abstract
Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional components mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SI) and secondary somatosensory (SII) cortices, the ventrolateral orbital cortex and the motor cortex. These cortical structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaqueductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be involved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.
Collapse
|
17
|
Huo FQ, Chen T, Lv BC, Wang J, Zhang T, Qu CL, Li YQ, Tang JS. Synaptic connections between GABAergic elements and serotonergic terminals or projecting neurons in the ventrolateral orbital cortex. Cereb Cortex 2008; 19:1263-72. [PMID: 18980950 DOI: 10.1093/cercor/bhn169] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ventrolateral orbital cortex (VLO) is part of an endogenous analgesic system, consisting of the spinal cord-thalamic nucleus submedius-VLO periaqueductal gray (PAG)-spinal cord loop. The present study examined morphological connections of GABAergic (gamma-aminobutyric acidergic) neurons and serotonergic projection terminals from the dorsal raphe nucleus (DR), as well as the relationship between GABAergic terminals and VLO neurons projecting to the PAG, by using anterograde and retrograde tracing combined with immunofluorescence, immunohistochemistry, and electron microscopy methods. Results indicate that the majority (93%) of GABAergic neurons in the VLO also express the 5-HT(1A) (5-hydroxytryptamine 1A) receptor, and serotonergic terminals originating from the DR nucleus made symmetrical synapses with GABAergic neuronal cell bodies and dendrites within the VLO. GABAergic terminals also made symmetrical synapses with neurons expressing GABA(A) receptors and projecting to the PAG. These results suggest that a local neuronal circuit, consisting of 5-HTergic terminals, GABAergic interneurons, and projection neurons, exists in the VLO, and provides morphological evidence for the hypothesis that GABAergic modulation is involved in 5-HT(1A) receptor activation-evoked antinociception.
Collapse
Affiliation(s)
- Fu-Quan Huo
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an 710061, PR China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Huo FQ, Qu CL, Li YQ, Tang JS, Jia H. GABAergic modulation is involved in the ventrolateral orbital cortex 5-HT 1A receptor activation-induced antinociception in the rat. Pain 2008; 139:398-405. [PMID: 18579305 DOI: 10.1016/j.pain.2008.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 05/04/2008] [Accepted: 05/20/2008] [Indexed: 11/27/2022]
Abstract
The ventrolateral orbital cortex (VLO) is a component of an endogenous analgesic system consisting of an ascending pathway from the spinal cord to VLO via the thalamic nucleus submedius (Sm) and a descending pathway relaying in the periaqueductal gray matter (PAG). This study examines whether the activation of 5-HT 1A receptors in VLO produces antinociception and whether GABAergic modulation is involved in the VLO 5-HT 1A receptor activation-evoked antinociception. The radiant heat-evoked tail flick (TF) reflex was used as an index of nociceptive response in lightly anesthetized rats. Microinjection of the 5-HT 1A receptor agonist 8-OH-DPAT (1.0, 2.0, 5.0 microg) into VLO produced dose-dependent antinociception, which was reversed by the 5-HT 1A receptor antagonist (NAN-190, 20 mug). We also found that VLO application of the GABA A receptor antagonist bicuculline or picrotoxin (100 ng) enhanced the 8-OH-DPAT-induced inhibition of the TF reflex, whereas the GABA A receptor agonist muscimol (250 ng) or THIP (1.0 microg) significantly attenuated the 8-OH-DPAT-induced inhibition. These results suggest that 5-HT 1A receptors are involved in VLO-induced antinociception and that GABAergic disinhibitory mechanisms participate in the 5-HT 1A receptor-mediated effect. These findings provide support for the hypothesis that 5-HT 1A receptor activation may inhibit the inhibitory action of the GABAergic interneurons on the output neurons projecting to PAG leading to activation of the brainstem descending inhibitory system and depression of nociceptive inputs at the spinal cord level.
Collapse
Affiliation(s)
- Fu-Quan Huo
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an Yanta Street, W. 76#, Xi'an, Shaanxi 710061, China Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | | | | | | | | |
Collapse
|
19
|
Qu CL, Huo FQ, Huang FS, Li YQ, Tang JS, Jia H. The role of 5-HT receptor subtypes in the ventrolateral orbital cortex of 5-HT-induced antinociception in the rat. Neuroscience 2007; 152:487-94. [PMID: 18295406 DOI: 10.1016/j.neuroscience.2007.09.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 09/17/2007] [Accepted: 09/18/2007] [Indexed: 11/30/2022]
Abstract
The present study examined the involvement of 5-HT in the ventrolateral orbital cortex (VLO) on descending antinociception and determined which subtypes of 5-HT receptors mediated this effect. This study focused on the effects of 5-HT microinjection in the VLO of lightly anesthetized male rats on the radiant heat-evoked tail flick (TF) reflex, as well as the influence of 5-HT(1A), 5-HT(2), 5-HT(3), and 5-HT(4) receptor subtype antagonists on the effect of 5-HT. Results showed that 5-HT microinjection (2, 5, 10 microg, in 0.5 microl) into the VLO depressed the TF reflex in a dose-dependent manner. Pretreatment with 5-HT receptor antagonists (1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl] piperazine hydrobromide (NAN-190), cyproheptadine hydrochloride (CPT) and 1-methyl-N-(8-methyl-8-azabicyclo[3.2.3]-oct-3-yl)-1H-indazole-3-carboxamide maleate salt (LY-278,584)), specific for 5-HT(1A), 5-HT(2) and 5-HT(3) receptors, respectively, partially reversed the 5-HT-evoked inhibition. In contrast, the 5-HT(4) receptor antagonist, 1-[2-[(methylsulfonyl)-amino]ethyl]-4-piperidinyl]methyl1-methyl-1H-indole-3-carboxylate (GR 113808), had no effect on the inhibition of 5-HT. Microinjections of NAN-190, CPT and LY-278,584 alone into the VLO had no effect on the TF reflex. These results suggest that 5-HT(1A), 5-HT(2) and 5-HT(3), but not 5-HT(4) receptors, are involved in mediating 5-HT-induced antinociception in the VLO. According to different properties and distribution patterns of the 5-HT receptor subtypes on neurons, the possible mechanism of 5-HT activation of the VLO-periaqueductal gray (PAG) descending antinociceptive pathway is discussed.
Collapse
Affiliation(s)
- C L Qu
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | | | | | | | | | | |
Collapse
|
20
|
Zhao M, Wang JY, Jia H, Tang JS. Roles of different subtypes of opioid receptors in mediating the ventrolateral orbital cortex opioid-induced inhibition of mirror-neuropathic pain in the rat. Neuroscience 2007; 144:1486-94. [PMID: 17184926 DOI: 10.1016/j.neuroscience.2006.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 11/07/2006] [Accepted: 11/08/2006] [Indexed: 11/26/2022]
Abstract
Previous studies have demonstrated that opioid receptors in the prefrontal ventrolateral orbital cortex (VLO) are involved in anti-nociception. The aim of this current study was to examine whether opioid receptors in the VLO have effects on the hypersensitivity induced by contralateral L5 and L6 spinal nerve ligation (SNL), termed as mirror neuropathic pain (MNP) in the male rat. Morphine (1.0, 2.5, 5.0 microg) microinjected into the VLO contralateral to the SNL depressed the mechanical paw withdrawal assessed by von Frey filaments and the cold plate (4 degrees C)-induced paw lifting in a dose-dependent manner on the side without SNL. These effects were antagonized by microinjection of the non-selective opioid receptor antagonist naloxone (1.0 mug) into the same VLO site. Microinjection of endomorphin-1 (5.0 microg), a highly selective mu-opioid receptor agonist, and [d-Ala(2), d-Leu(5)]-enkephalin (DADLE, 10 microg), a delta-/mu-receptor agonist, also depressed the MNP. The effects of both drugs were blocked by selective mu-receptor antagonist beta-funaltrexamine (beta-FNA, 3.75 microg), but the effect of the DADLE was not influenced by the selective delta-receptor antagonist naltrindole (5.0 microg). Microinjection of the kappa-opioid receptor agonist spiradoline mesylate salt (U-62066) (100 microg) had no effect on the MNP. These results suggest that the VLO is involved in opioid-induced inhibition of the MNP and the effect is mediated by mu- (but not delta- and kappa-) opioid receptors.
Collapse
MESH Headings
- Afferent Pathways/drug effects
- Afferent Pathways/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Functional Laterality
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Hyperalgesia/physiopathology
- Ligation
- Male
- Morphine/pharmacology
- Narcotic Antagonists/pharmacology
- Nociceptors/drug effects
- Nociceptors/metabolism
- Pain Measurement
- Pain Threshold/drug effects
- Pain Threshold/physiology
- Peripheral Nervous System Diseases/drug therapy
- Peripheral Nervous System Diseases/metabolism
- Peripheral Nervous System Diseases/physiopathology
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Spinal Nerves/injuries
- Spinal Nerves/physiopathology
Collapse
Affiliation(s)
- M Zhao
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Yanta Road West 76, Xi'an, Shaanxi 710061, PR China
| | | | | | | |
Collapse
|
21
|
Fisiologia del dolore. Neurologia 2007. [DOI: 10.1016/s1634-7072(07)70549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Zhao M, Wang JY, Jia H, Tang JS. μ- but not δ- and κ-opioid receptors in the ventrolateral orbital cortex mediate opioid-induced antiallodynia in a rat neuropathic pain model. Brain Res 2006; 1076:68-77. [PMID: 16476416 DOI: 10.1016/j.brainres.2006.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 01/05/2006] [Accepted: 01/09/2006] [Indexed: 10/25/2022]
Abstract
Previous studies have indicated that the ventrolateral orbital cortex (VLO) is involved in opioid-mediated antinociception in the tail flick test and formalin test. The aim of the current study was to examine the effect of opioids microinjected into the VLO on allodynia in the rat L5/L6 spinal nerve ligation (SNL) model of neuropathic pain and determine the roles of different subtypes of opioid receptors in this effect. The allodynia was assessed by both mechanical (von Frey filaments) and cold plate (4 degrees C) stimuli. Morphine (1.0, 2.5, and 5.0 microg) microinjected into the VLO contralateral to the nerve ligation dose-dependently depressed the mechanical and cold allodynia and these effects were reversed by nonselective opioid receptor antagonist naloxone (1.0 microg) administrated into the same site. Microinjection of endomorphin-1 (5.0 microg), a highly selective mu-opioid receptor agonist, and [D-Ala2, D-Leu5]-enkephalin (DADLE, 10 microg), a delta-/mu-opioid receptor agonist, also depressed the allodynia, and the effects of both drugs were blocked by selective mu-receptor antagonist beta-funaltrexamine (beta-FNA, 3.75 microg), but the effects of DADLE were not influenced by the selective delta-receptor antagonist naltrindole (5.0 microg). Microinjection of U-62066 (100 microg), a kappa-opioid receptor agonist, into the VLO had no effect on the allodynia. These results suggest that the VLO is involved in opioid-induced antiallodynia and mu- but not delta- and kappa-opioid receptor mediates these effects in the rat with neuropathic pain.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analysis of Variance
- Animals
- Behavior, Animal
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Interactions
- Male
- Morphine/administration & dosage
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Pain/drug therapy
- Pain/etiology
- Pain/psychology
- Pain Measurement/methods
- Physical Stimulation
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
- Spinal Cord Injuries/complications
- Time Factors
Collapse
Affiliation(s)
- Mei Zhao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, People's Republic of China
| | | | | | | |
Collapse
|
23
|
Qu CL, Tang JS, Jia H. Involvement of GABAergic modulation of antinociception induced by morphine microinjected into the ventrolateral orbital cortex. Brain Res 2006; 1073-1074:281-9. [PMID: 16448630 DOI: 10.1016/j.brainres.2005.12.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 12/14/2005] [Accepted: 12/15/2005] [Indexed: 12/29/2022]
Abstract
Previous studies have shown that microinjection of morphine into the prefrontal ventrolateral orbital cortex (VLO) produces antinociception. The current study examined whether gamma-aminobutyric acid (GABA) containing neurons in the VLO were involved in this antinociception. Under light anesthesia, the GABA(A) receptor antagonist bicuculline and picrotoxin or agonist muscimol and THIP was microinjected into the VLO in non-morphine-treated (control) and morphine-treated (microinjection into the VLO) rats. Noxious heat-evoked tail flick (TF) latencies (TFLs) were measured in all of these groups of rats every 5 min. Bicuculline or picrotoxin (100, 200, 500 ng in 0.5 microl) depressed the TF reflex in a dose-related fashion. A smaller dose (100 ng) of bicuculline or picrotoxin microinjected into VLO significantly enhanced the VLO morphine-evoked inhibition of the TF reflex. In contrast, administration of muscimol (250 ng) or THIP (1.0 microg) significantly attenuated the morphine-induced antinociception in the VLO morphine-treated rats. These results suggest that the GABA(A) receptor is involved in the modulation of VLO morphine-induced antinociception, and provide a behavioral support for the hypothesis that morphine may directly inhibit the GABAergic inhibitory interneurons leading to indirect activation of the descending antinociceptive pathway through a disinhibitory effect on the VLO output neurons and depression of the nociceptive inputs at the spinal cord level.
Collapse
Affiliation(s)
- Chao-Ling Qu
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, The People's Republic of China
| | | | | |
Collapse
|
24
|
Wang JY, Zhao M, Yuan YK, Fan GX, Jia H, Tang JS. The roles of different subtypes of opioid receptors in mediating the nucleus submedius opioid-evoked antiallodynia in a neuropathic pain model of rats. Neuroscience 2006; 138:1319-27. [PMID: 16472929 DOI: 10.1016/j.neuroscience.2005.11.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/16/2005] [Accepted: 11/19/2005] [Indexed: 11/16/2022]
Abstract
Previous studies have indicated that thalamic nucleus submedius is involved in opioid-mediated antinociception in tail flick test and formalin test. The current study examined the effects of opioids microinjected into the thalamic nucleus submedius on the allodynia developed in neuropathic pain model rats, and determined the roles of different subtypes of opioid receptors in the thalamic nucleus submedius opioid-evoked antiallodynia. The allodynic behaviors induced by L5/L6 spinal nerve ligation were assessed by mechanical (von Frey filaments) and cold (4 degrees C plate) stimuli. Morphine (1.0, 2.5, and 5.0 microg) microinjected into the thalamic nucleus submedius contralateral to the nerve injury paw produced a dose-dependent inhibition of the mechanical and cold allodynia, and these effects were reversed by microinjection of the non-selective opioid receptor antagonist naloxone (1.0 microg) into the same site. Microinjection of endomorphin-1 (5.0 microg), a highly selective mu-opioid receptor agonist, and [D-Ala2, D-Leu5]-enkephalin (10 microg), a delta-/mu-opioid receptor agonist, also inhibited the allodynic behaviors, and these effects were blocked by selective mu-opioid receptor antagonist beta-funaltrexamine hydrochloride (3.75 microg). However, the [D-Ala2, D-Leu5]-enkephalin-evoked antiallodynic effects were not influenced by the selective delta-opioid receptor antagonist naltrindole (5.0 microg). Microinjection of the selective kappa-receptor agonist spiradoline mesylate salt (100 microg) into the thalamic nucleus submedius failed to alter the allodynia induced by spinal nerve ligation. These results suggest that the thalamic nucleus submedius is involved in opioid-evoked antiallodynia which is mediated by mu- but not delta- and kappa-opioid receptor in the neuropathic pain model rats.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Interactions/physiology
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Hyperalgesia/physiopathology
- Male
- Morphine/pharmacology
- Narcotic Antagonists/pharmacology
- Neural Pathways/physiology
- Neuralgia/drug therapy
- Neuralgia/metabolism
- Neuralgia/physiopathology
- Pain Measurement
- Pain Threshold/drug effects
- Pain Threshold/physiology
- Peripheral Nervous System Diseases/drug therapy
- Peripheral Nervous System Diseases/metabolism
- Peripheral Nervous System Diseases/physiopathology
- Physical Stimulation
- Prefrontal Cortex/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/agonists
- Receptors, Opioid/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Receptors, sigma/agonists
- Receptors, sigma/metabolism
- Thalamus/anatomy & histology
- Thalamus/drug effects
- Thalamus/metabolism
Collapse
Affiliation(s)
- J Y Wang
- Department of Immunology and Pathogenic Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Xiao DQ, Zhu JX, Tang JS, Jia H. GABAergic modulation mediates antinociception produced by serotonin applied into thalamic nucleus submedius of the rat. Brain Res 2005; 1057:161-7. [PMID: 16125153 DOI: 10.1016/j.brainres.2005.07.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2005] [Revised: 07/27/2005] [Accepted: 07/27/2005] [Indexed: 11/21/2022]
Abstract
Our previous studies have indicated that the thalamic nucleus submedius (Sm) is involved in modulation of nociception as part of an ascending component of an endogenous analgesic system consisting of spinal cord-Sm-ventrolateral orbital cortex (VLO)-periaqueductal gray (PAG)-spinal cord loop and that microinjection of 5-hydroxytryptamine (5-HT) into Sm produces antinociception. The aim of the present study was to examine whether the gamma-aminobutyric acid (GABA)ergic modulation is involved in the Sm 5-HT-evoked antinociception. Experiments were carried out on lightly anesthetized rats with an implanted cannula targeting the Sm nucleus. The microinjection of GABA(A) receptor antagonist bicuculline dose-dependently depressed the tail flick (TF) reflex. A smaller dose (100 ng) of bicuculline enhanced the inhibition of TF reflex produced by 5-HT application into Sm, whereas application of GABA (2.5 microg) did not influence the TF reflex but significantly attenuated the 5-HT-evoked inhibition. These results indicate that GABA(A) receptor may be involved in mediating the 5-HT-induced antinociception in Sm possibly through a disinhibition mechanism.
Collapse
Affiliation(s)
- Dan-Qin Xiao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, People's Republic of China
| | | | | | | |
Collapse
|
26
|
Senapati AK, Lagraize SC, Huntington PJ, Wilson HD, Fuchs PN, Peng YB. Electrical stimulation of the anterior cingulate cortex reduces responses of rat dorsal horn neurons to mechanical stimuli. J Neurophysiol 2005; 94:845-51. [PMID: 15716373 DOI: 10.1152/jn.00040.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anterior cingulate cortex (ACC) is involved in the affective and motivational aspect of pain perception. Behavioral studies show a decreased avoidance behavior to noxious stimuli without change in mechanical threshold after stimulation of the ACC. However, as part of the neural circuitry of behavioral reflexes, there is no evidence showing that ACC stimulation alters dorsal horn neuronal responses. We hypothesize that ACC stimulation has two phases: a short-term phase in which stimulation elicits antinociception and a long-term phase that follows stimulation to change the affective response to noxious input. To begin testing this hypothesis, the purpose of this study was to examine the response of spinal cord dorsal horn neurons during stimulation of the ACC. Fifty-eight wide dynamic range spinal cord dorsal horn neurons from adult Sprague-Dawley rats were recorded in response to graded mechanical stimuli (brush, pressure, and pinch) at their respective receptive fields, while simultaneous stepwise electrical stimulations (300 Hz, 0.1 ms, at 10, 20, and 30 V) were applied in the ACC. The responses to brush at control, 10, 20, and 30 V, and recovery were 14.2 +/- 1.4, 12.3 +/- 1.2, 10.9 +/- 1.2, 10.3 +/- 1.1, and 14.1 +/- 1.4 spikes/s, respectively. The responses to pressure at control, 10, 20, and 30 V, and recovery were 39.8 +/- 4.7, 25.6 +/- 3.0, 25.0 +/- 3.0, 21.6 +/- 2.4, and 34.2 +/- 3.7 spikes/s, respectively. The responses to pinch at control, 10, 20, and 30 V, and recovery were 40.7 +/- 3.8, 30.6 +/- 3.1, 27.8 +/- 2.8, 27.2 +/- 3.2, and 37.4 +/- 3.9 spikes/s, respectively. We conclude that electrical stimulation of the ACC induces significant inhibition of the responses of spinal cord dorsal horn neurons to noxious mechanical stimuli. The stimulation-induced inhibition begins to recover as soon as the stimulation is terminated. These results suggest differential short-term and long-term modulatory effects of the ACC stimulation on nociceptive circuits.
Collapse
Affiliation(s)
- Arun K Senapati
- Departmnt of Psychology, PO Box 19528, University of Texas at Arlington, 501 S. Nedderman Dr., Arlington, Texas 76019-0528, USA
| | | | | | | | | | | |
Collapse
|
27
|
Wang J, Huo FQ, Li YQ, Chen T, Han F, Tang JS. Thalamic nucleus submedius receives GABAergic projection from thalamic reticular nucleus in the rat. Neuroscience 2005; 134:515-23. [PMID: 15964693 DOI: 10.1016/j.neuroscience.2005.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/31/2005] [Accepted: 04/16/2005] [Indexed: 10/25/2022]
Abstract
GABAergic projection from thalamic reticular nucleus to thalamic nucleus submedius in the medial thalamus of the rat was studied by using immunohistochemistry for GABA, retrograde labeling with Fluoro-Gold combined with immunohistochemistry for GABA, and anterograde labeling with biotinylated dextranamine. Immunohistochemistry displayed that only GABA immunoreactive terminals were observed in the thalamic nucleus submedius, while GABA immunoreactive neuronal cell bodies were located in the thalamic reticular nucleus and lateral geniculate nucleus. Injection of Fluoro-Gold into the thalamic nucleus submedius resulted in massive retrogradely labeled neuronal cell bodies in the rostroventral portion of the ipsilateral thalamic reticular nucleus and a few in the contralateral thalamic reticular nucleus, and most of these cell bodies showed GABA immunopositive staining. Many biotinylated dextranamine anterogradely labeled fibers and terminals in the thalamic nucleus submedius were observed after injection of biotinylated dextranamine into the thalamic reticular nucleus. The present results provide a morphological evidence for a hypothesis that a disinhibitory effect on output neurons elicited by opioid or 5-hydroxytryptamine inhibiting a GABAergic terminal in the thalamic nucleus submedius may lead to activation of the descending inhibitory system and depression of the nociceptive inputs at the spinal cord level.
Collapse
Affiliation(s)
- J Wang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Department of Physiology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, The People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Xie YF, Wang J, Huo FQ, Jia H, Tang JS. Mu but not delta and kappa opioid receptor involvement in ventrolateral orbital cortex opioid-evoked antinociception in formalin test rats. Neuroscience 2004; 126:717-26. [PMID: 15183520 DOI: 10.1016/j.neuroscience.2004.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2004] [Indexed: 10/26/2022]
Abstract
The present study was designed to investigate the roles of different subtypes of opioid receptors in ventrolateral orbital cortex (VLO) opioid-evoked antinociception in formalin test by using an automatic detection system for recording the nociceptive behavior (agitation) and a manual method for detecting the duration of licking the injected paw in the conscious rat. Formalin (5%, 50 microl) s.c. injected into the hindpaw produced a biphasic agitation response or lengthening duration of licking. Morphine (5 microg) microinjected unilaterally into VLO significantly inhibited the agitation response and the licking time, and these effects were blocked by pre-administration of the non-selective opioid receptor antagonist naloxone (1.0 microg) into the same site. Microinjection of endomorphin-1 (5 microg), a selective micro-receptor agonist, and [D-Ala2, D-Leu5]-enkephalin (DADLE, 10 microg), a delta-/micro-receptor agonist also inhibited the nociceptive behaviors, and both the effects were blocked by selective mu-receptor antagonist beta-funaltrexamine hydrochloride (beta-FNA; 3.75 microg), but the DADLE-evoked inhibition was not influenced by the selective delta-receptor antagonist naltrindole (5 microg). Microinjection of selective kappa-receptor agonist (+/-)-trans-U-50488 methanesulfonate salt (1.5 microg) failed to alter the nociceptive behaviors induced by formalin injection. The beta-FNA and naloxone applied into VLO and morphine into the adjacent regions ventral and dorsal to VLO had no effect on the formalin-evoked nociceptive behaviors. These results suggest that mu- but not delta- or kappa-opioid receptor is involved in the VLO opioid-evoked antinociception in formalin test rat.
Collapse
Affiliation(s)
- Y F Xie
- Department of Physiology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | |
Collapse
|
29
|
Jasmin L, Burkey AR, Granato A, Ohara PT. Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol 2004; 468:425-40. [PMID: 14681935 DOI: 10.1002/cne.10978] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The rostral agranular insular cortex (RAIC) has recently been identified as a site where local changes in GABA and dopamine levels, or application of opioids, can alter nociceptive thresholds in awake animals. The connections of the cortex dorsal to the rhinal fissure that includes the RAIC have been examined previously, with emphasis on visceral and gustatory functions but not nociception. Here we examined the afferent and efferent connections of the RAIC with sites implicated in nociceptive processing. Sensory information from the thalamus reaches the RAIC via the submedius and central lateral nuclei and the parvicellular part of the ventral posterior nucleus. The RAIC has extensive reciprocal cortico-cortical connections with the orbital, infralimbic, and anterior cingulate cortices and with the contralateral RAIC. The amygdala, particularly the basal complex, and the nucleus accumbens are important targets of RAIC efferent fibers. Other connections include projections to lateral hypothalamus, dorsal raphe, periaqueductal gray matter, pericerulear region, rostroventral medulla, and parabrachial nuclei. The connectivity of the RAIC suggests it is involved in multiple aspects of pain behavior. Projections to the RAIC from medial thalamic nuclei are associated with motivational/affective components of pain. RAIC projections to mesolimbic/mesocortical ventral forebrain circuits are likely to participate in the sensorimotor integration of nociceptive processing, while its brainstem projections are most likely to contribute to descending pain inhibitory control.
Collapse
Affiliation(s)
- Luc Jasmin
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
30
|
Jia H, Xie YF, Xiao DQ, Tang JS. Involvement of GABAergic modulation of the nucleus submedius (Sm) morphine-induced antinociception. Pain 2004; 108:28-35. [PMID: 15109504 DOI: 10.1016/j.pain.2003.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Revised: 09/28/2003] [Accepted: 11/18/2003] [Indexed: 11/21/2022]
Abstract
Previous studies have shown that microinjection of morphine into the nucleus submedius (Sm) of the thalamus produces antinociception. The aim of the current study was to examine whether gamma-aminobutyric acid (GABA)ergic terminals in the Sm were involved in this antinociception. Under light anesthesia, the GABA(A) receptor antagonist bicuculline or agonist muscimol was microinjected into the Sm of the thalamus in Sm non-morphine-treated (control) or Sm morphine-treated (microinjection into the Sm in the thalamus) rats. Tail flick latencies (TFL) were measured in each of these groups of rats every 5 min. Bicuculline (100, 200, 500 ng in 0.5 microL) depressed the TF reflex in a dose-dependent fashion, and this effect was blocked by microinjection of the opioid receptor antagonist naloxone (0.5 microg) into the same Sm site. A small dose (100 ng) of bicuculline microinjected into Sm significantly enhanced the morphine-evoked inhibition of TF reflex. In contrast, administration of muscimol (250 ng) did not significantly influence the TF reflex in Sm non-morphine-treated rats, but it significantly attenuated the morphine-induced antinociception in the Sm morphine-treated rats. These results suggest that locally released GABA acting at GABA(A) receptors is involved in the modulation of Sm morphine-induced antinociception, and support the hypothesis that a disinhibitory effect elicited by morphine on GABAergic terminals in Sm may lead to activation of the Sm-ventrolateral orbital cortex (VLO)-perioqueductal gray (PAG) brainstem descending inhibitory system and depression of the nociceptive inputs at the spinal cord level.
Collapse
Affiliation(s)
- Hong Jia
- Department of Physiology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | | | | | | |
Collapse
|
31
|
Persson S, Broman J. Glutamate, but not aspartate, is enriched in trigeminothalamic tract terminals and associated with their synaptic vesicles in the rat nucleus submedius. Exp Brain Res 2004; 157:152-61. [PMID: 14968283 DOI: 10.1007/s00221-004-1837-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Accepted: 12/27/2003] [Indexed: 12/19/2022]
Abstract
To examine the possible roles of glutamate and aspartate as neurotransmitters in the nucleus submedius (Sm) of rats, the distributions of these amino acids were examined by electron microscopic immunogold labeling. High levels of glutamate were detected in trigeminothalamic tract terminals anterogradely labeled with horseradish peroxidase conjugates. These terminals also displayed a positive correlation between the densities of synaptic vesicles and gold particles signaling glutamate. In contrast, aspartate levels in such terminals were low and displayed no correlation with the density of synaptic vesicles. Terminals of presumed cortical origin contained the highest estimated levels of glutamate, but the positive correlation between glutamate signal and synaptic vesicle density did not reach statistical significance, presumably due to technical factors. The latter terminals also contained relatively high levels of aspartate, though without any correlation to synaptic vesicle density. The present findings provide strong support for glutamate, but not aspartate, as a trigeminothalamic tract neurotransmitter responsible for the fast synaptic transmission of nociceptive signals to neurons in the rat nucleus submedius. Aspartate presumably serves metabolic roles in these terminals. With respect to terminals of presumed cortical origin, our data are not at odds with the notion that also these terminals use glutamate as their neurotransmitter. Our findings do not support a neurotransmitter role for aspartate in the latter terminals, although such a role cannot be entirely refuted.
Collapse
Affiliation(s)
- Stefan Persson
- Department of Physiological Sciences, Section for Neurophysiology, Lund University, BMC F10, 221 84 Lund, Sweden
| | | |
Collapse
|
32
|
Lenz FA, Weiss N, Ohara S, Lawson C, Greenspan JD. The role of the thalamus in pain. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2004; 57:50-61. [PMID: 16106605 DOI: 10.1016/s1567-424x(09)70342-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Frederick A Lenz
- Department of Neurosurgery, Meyer 8-181, Johns Hopkins University Hospital, Baltimore, MD 21287-7713, USA.
| | | | | | | | | |
Collapse
|
33
|
Baliki M, Al-Amin HA, Atweh SF, Jaber M, Hawwa N, Jabbur SJ, Apkarian AV, Saadé NE. Attenuation of neuropathic manifestations by local block of the activities of the ventrolateral orbito-frontal area in the rat. Neuroscience 2003; 120:1093-104. [PMID: 12927214 DOI: 10.1016/s0306-4522(03)00408-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clinical and recent imaging reports demonstrate the involvement of various cerebral prefrontal areas in the processing of pain. This has received further confirmation from animal experimentation showing an alteration of the threshold of acute nociceptive reflexes by various manipulations in the orbito-frontal cortical areas. The present study investigates the possible involvement of this area in the modulation of neuropathic manifestations in awake rats. Several groups of rats were subjected to mononeuropathy following the spared nerve injury model, known to produce evident tactile and cold allodynia and heat hyperalgesia. The activity of the ventrolateral orbital areas was selectively blocked by using either chronic or acute injection of lidocaine, electrolytic lesion, or chemical lesion with kainic acid or 6-hydroxydopamine (6-OHDA). The effects of these manipulations were compared with those following lesion of the somatic sensorimotor cortical areas. Local injection of lidocaine resulted in a reversible depression of all neuropathic manifestations while electrolytic or chemical lesions elicited transient attenuation affecting mainly the heat hyperalgesia and to a lesser extent the cold allodynia. The magnitude of the observed effects with the different procedures used can be ranked as follows: 6-OHDA<lesion<electrolytic lesion<kainic acid lesion<lidocaine injection. The observed effects were transient despite the permanence of the lesions while lesion of the somatosensorimotor cortices produced sustained reduction of the neuropathic manifestations. Our results correlate well with the established connections of the ventrolateral orbital area with the thalamic nucleus subnucleus involved in the procession of thermal nociception. The transient effects reported following permanent lesions in the orbital areas may reflect its flexible role in pain modulation. This observation provides further evidence on the plasticity of the neural networks involved in the regulation of nociceptive behavior.
Collapse
Affiliation(s)
- M Baliki
- Department of Human Morphology and Physiology, American University of Beirut, P.O. Box 110236/41, Riad El Solh, 1107-2020, Beirut, Lebanon
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Xie YF, Tang JS, Jia H. The roles of different types of glutamate receptors involved in the mediation of nucleus submedius (Sm) glutamate-evoked antinociception in the rat. Brain Res 2003; 988:146-53. [PMID: 14519536 DOI: 10.1016/s0006-8993(03)03359-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Based on our previous findings that glutamate microinjected into the thalamic nucleus submedius (Sm) inhibits dose-dependently the rat tail-flick (TF) reflex, this study investigated which glutamate receptor subtype is involved in mediating this effect. The effects of an NMDA (N-methyl-D-aspartate), non-NMDA or metabotropic glutamate receptor (mGluR) antagonist microinjected into Sm on the TF reflex were examined in untreated or in Sm glutamate treated (microinjection into the Sm) rats. The TF latencies were measured in each of these groups of rats every 5 min. Injection of DNQX [6,7-dinitroquinoxaline-2,3(1H,4H)-dione], a non-NMDA receptor antagonist, or (+/-)-MCPG [(+/-)-alpha-methyl-4-carboxyphenylglycine], a mGluR antagonist, into the Sm blocked the inhibitory effects induced by a subsequent microinjection of glutamate into the same Sm site. The TF latency increased only by 6.6+/-1.6 or 9.0+/-1.1%, respectively, of the baseline value, which was markedly less than that (51.3+/-8.4 or 50.7+/-5.3%) obtained from injection of glutamate only (P<0.001, n=8). However, pre-microinjection of MK-801 [(+)-5-methyl-10,11-dibenzo[a,d]cyclohepten-5,10-imine], an NMDA receptor antagonist, into the Sm had no effect on the Sm glutamate-evoked inhibition of the TF reflex. The TF latency change (40.0+/-11.1%) was not significantly different (P>0.05, n=8) compared with that obtained from glutamate injection alone. These observations suggest that non-NMDA and metabotropic glutamate receptors, but not NMDA receptors, are involved in mediating Sm glutamate-evoked antinociception.
Collapse
Affiliation(s)
- Yu-Feng Xie
- Department of Physiology, School of Medicine, Xi'an Jiaotong University, Xi'an Yanta Street W 76, Xi'an, Shaanxi 710061, China
| | | | | |
Collapse
|
35
|
Kuroda R, Kawabata A. [Pain information pathways from the periphery to the cerebral cortex]. YAKUGAKU ZASSHI 2003; 123:533-46. [PMID: 12875236 DOI: 10.1248/yakushi.123.533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A recent PET study revealed that the first and second somatosensory cortices (SI, SII), and the anterior cingulate cortex are activated by painful peripheral stimulation in humans. It has become clear that painful signals (nociceptive information) evoked at the periphery are transmitted via various circuits to the multiple cerebral cortices where pain signals are processed and perceived. Human or clinical pain is not merely a modality of somatic sensation, but associated with the affect that accompanies sensation. Consequently, pain has a somatosensory-discriminative aspect and an affective-cognitive aspect that are processed in different but correlated brain structures in the ascending circuits. Considering the physiologic characteristics and fiber connections, the SI and SII cortices appear to be involved in somatosensory-discriminative pain, and the anterior cingulate cortex (area 24) in the affective-cognitive aspect of pain. This paper deals with the ascending pain pathways from the periphery to these cortices and their interconnections. Our recent findings on the protease-activated receptors 1 and 2 (PAR-1, and -2), which are confirmed to exist in the dorsal root ganglion cells, are also described. Activation of PAR-2 during inflammation or tissue injury at the periphery is pronociceptive, while PAR-1 appears to be antinociceptive. Based on the these findings, PAR-1 and PAR-2 are attracting interest as target molecules for new drug development.
Collapse
Affiliation(s)
- Ryotaro Kuroda
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan.
| | | |
Collapse
|
36
|
Yang SW, Follett KA. Electrical stimulation of thalamic Nucleus Submedius inhibits responses of spinal dorsal horn neurons to colorectal distension in the rat. Brain Res Bull 2003; 59:413-20. [PMID: 12576136 DOI: 10.1016/s0361-9230(02)00945-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 78 halothane-anesthetized rats, we characterized the responses of single neurons in the dorsal horn of L(6)-S(1) spinal segments to a noxious visceral stimulus (colorectal balloon distension, CRD), and studied the effects of focal electrical stimulation of Nucleus Submedius (Sm) on these responses using standard extracellular microelectrode recording techniques. A total of 102 neurons were isolated on the basis of spontaneous activity. Eighty (78%) responded to CRD, of which 70% had excitatory and 30% had inhibitory responses. Neurons showed graded responses to graded CRD pressures (20-100 mmHg), with maximum excitation or inhibition occurring at 100 mmHg. Responses to noxious (pinch, heat) and innocuous (brush, tap) cutaneous stimuli were studied in 73 of the spinal dorsal horn neurons isolated. Fifty-seven (78%) of these neurons (46 CRD-responsive and 11 CRD-nonresponsive) had cutaneous receptive fields, of which 35 (61%) were small and ipsilateral, 14 (25%) were large and ipsilateral, 7 (12%) were large or small and bilateral, and 1 (2%) was small and contralateral. Sixty-one percent of these neurons responded to both noxious and innocuous cutaneous stimulation, 35% responded only to noxious stimulation, and 4% responded only to innocuous stimulation. Electrical stimulation (50-300 microA) of the contralateral Sm produced intensity-dependent attenuation of the CRD-evoked activities of most neurons (18/28 of CRD-excited and 7/12 of CRD-inhibited) tested. Sm stimulation produced facilitation of CRD responses of only one neuron (CRD-inhibited). Sm stimulation had no effects on spontaneous activity. These data indicate that Sm may be involved in the descending inhibitory modulation of visceral nociception at the spinal level.
Collapse
Affiliation(s)
- Shou wei Yang
- Department of Neurosurgery, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | | |
Collapse
|
37
|
Sewards TV, Sewards MA. The medial pain system: neural representations of the motivational aspect of pain. Brain Res Bull 2002; 59:163-80. [PMID: 12431746 DOI: 10.1016/s0361-9230(02)00864-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this article, we propose that the pathways mediating the motivational aspect of pain originate in laminae VII and VIII of the spinal cord, and in the deep layers of the spinal trigeminal complex, and projections from these areas reach three central structures where pain motivation is represented, the ventrolateral quadrant of the periaqueductal gray, posterior hypothalamic nucleus, and intralaminar thalamic nuclei. A final representation of the motivational aspect of pain is located within the anterior cingulate cortex, and this representation receives inputs from the intralaminar nuclei. Outputs from these representations reach premotor structures located in the medulla, striatum, and cingulate premotor cortex. We discuss pathways and structures that provide inputs to these representations, including those involved in producing involuntary (innate) and instrumental responses which occur in response to the recognition of stimuli associated with footshock and other nociceptive stimuli.
Collapse
|
38
|
Fu JJ, Tang JS, Yuan B, Jia H. Response of neurons in the thalamic nucleus submedius (Sm) to noxious stimulation and electrophysiological identification of on- and off-cells in rats. Pain 2002; 99:243-51. [PMID: 12237202 DOI: 10.1016/s0304-3959(02)00108-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have indicated that thalamic nucleus submedius (Sm) is involved in nociceptive modulation and plays an important role in an endogenous analgesic system (a feedback loop) consisting of spinal cord (Sc)-Sm-ventrolateral orbital cortex-periaqueductal gray-Sc. However, the function of different types of Sm neurons in nociceptive modulation is unclear. For this reason, on the basis of further studies of properties of the Sm neurons responding to noxious stimuli, the different effects of systemic morphine on the Sm neurons were examined and two classes of nociceptive modulatory neurons, named as off- and on-cells, in this region were identified in lightly anesthetized rats. The results showed that (1) most (84%, 132/157) of the Sm neurons responded to peripheral noxious stimuli. Of these neurons, 66% (n = 87) were inhibited, 34% (n = 45) excited. All neurons had very large and bilateral, even all body receptive fields. No neuron was found to be responsive to innocuous stimulation; (2) systemic morphine increased the firing rate of neurons inhibited by noxious stimulation, but decreased that of neurons excited by the same stimulation. Furthermore, the effects of morphine could be reversed by systemic naloxone; (3) 45 of Sm neurons examined could be divided into three different classes: off-cells that decreased the firing rate from tail heating just prior to occurrence of the tail-flick (TF) reflex (3140 +/- 167 ms, n = 27), on-cells that increased the firing rate just before the TF reflex (1720 +/- 240 ms, n = 8), and neutral-cells that did not respond to any stimuli and neuronal activities were not related to the TF reflex (n = 10). Findings of this study provided electrophysiological evidence for involvement of Sm neurons, as those in the rostral ventromedial medulla, in the opioid-receptor-mediated descending nociceptive modulation.
Collapse
Affiliation(s)
- Jian-Jun Fu
- Department of Physiology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | | | | | | |
Collapse
|
39
|
Huang X, Tang JS, Yuan B, Jia H. Morphine applied to the ventrolateral orbital cortex produces a naloxone-reversible antinociception in the rat. Neurosci Lett 2001; 299:189-92. [PMID: 11165767 DOI: 10.1016/s0304-3940(01)01497-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our previous findings have indicated that the ventrolateral orbital cortex (VLO) may be involved in modulation of nociception and plays an important role as a higher center of an endogenous analgesic system (a feedback loop) consisting of spinal cord-nucleus submedius (Sm)-VLO-periaqueductal gray (PAG)-spinal cord. To further investigate the neurotransmitter mechanism involved in this nociceptive modulatory pathway, we tested the effects of microinjection of morphine (5 microg, 0.5 microl) into VLO on the tail flick (TF) reflex. The results show that a unilateral microinjection of morphine into VLO dose-dependently suppresses the TF reflex. Furthermore, 6 min after termination of morphine injection, microinjection of opioid receptor antagonist naloxone (1.5 microg, 0.5 microl) into the same VLO site reverses this morphine-evoked inhibition of TF reflex. These results suggest that morphine application to the VLO may directly or indirectly activate VLO neurons projecting to the PAG through the opioid receptor mediation leading to activation of the brainstem descending inhibitory system and depression of the nociceptive inputs at the spinal cord level.
Collapse
Affiliation(s)
- X Huang
- Department of Physiology, Faculty of Medicine, Xi'an Jiaotong University, Xi'an, 710061, The People's Republic of, Shaanxi, China
| | | | | | | |
Collapse
|
40
|
Inhibitory effects of glutamate-induced activation of thalamic nucleus submedius are mediated by ventrolateral orbital cortex and periaqueductal gray in rats. Eur J Pain 2000; 2:153-163. [PMID: 10700311 DOI: 10.1016/s1090-3801(98)90008-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study found that in lightly-anesthetized rats a unilateral micro-injection of glutamate (200 mm, 0.5 µl) into the thalamic nucleus submedius (Sm) markedly depressed the radiant heat-evoked tail flick (TF) reflex. After injection, the mean TFL increased 25.6+/-6.5% (n=24) of the baseline at 5 min, up to a peak value (48.4+/-7.2%) at 20 min, and recovered to the baseline level at 60 min. This inhibitory effect was dose-related and repeatable over a time interval of 1.0-1.5 h in the same animal. Furthermore, micro-injections of gamma-aminobutyric acid (GABA) (100 mm) into the ipsilateral ventrolateral orbital cortex (VLO) (0.7 µl), or bilaterally into the lateral or ventrolateral parts of the periaqueductal gray (PAG) (0.5 µl on each side), eliminated the Sm-evoked inhibition. After GABA was injected into VLO or PAG, the Sm applications of glutamate failed to produce any significant changes in TFL, with the TFL changes being similar to the saline control (p>0.05). These results confirmed our previous findings that electrical stimulation of Sm depressed the rat TF reflex and that this inhibitory effect was blocked by electrolytic lesion of the VLO or PAG. Therefore, the present study provides further support for the hypothesis that Sm plays an important role in modulation of nociception, and that its effects are mediated by the VLO-PAG pathway, leading to activation of the brainstem descending inhibitory system and depression of the nociceptive inputs at the spinal cord level. Copyright 1998 European Federation of Chapters of the International Association for the Study of Pain.
Collapse
|
41
|
Zhang S, Tang JS, Yuan B, Jia H. Electrically-evoked inhibitory effects of the nucleus submedius on the jaw-opening reflex are mediated by ventrolateral orbital cortex and periaqueductal gray matter in the rat. Neuroscience 1999; 92:867-75. [PMID: 10426528 DOI: 10.1016/s0306-4522(99)00062-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In previous studies we have shown that electrical stimulation of the nucleus submedius inhibits the rat radiant heat-induced tail flick reflex, and that this antinociceptive effect is mediated by the ventrolateral orbital cortex and periaqueductal gray. The aim of the present study was to examine whether electrical stimulation of the nucleus submedius could inhibit the rat jaw-opening reflex, and to determine whether electrolytic lesions of the ventrolateral orbital cortex or the periaqueductal gray could attenuate the nucleus submedius-evoked inhibition. Experiments were performed on pentobarbital-anesthetized rats. The jaw-opening reflex elicited by electrical stimulation of the tooth pulp or the facial skin was monitored by recording the evoked digastric electromyogram. Conditioning stimulation was delivered unilaterally to the nucleus submedius 90 ms prior to each test stimulus to the tooth pulp. After that, electrolytic lesions were made in ventrolateral orbital cortex or periaqueductal gray, and the effect of nucleus submedius stimulation on the jaw-opening reflex was re-examined. Unilateral electrical stimulation of nucleus submedius was found to significantly depress the jaw-opening reflex (mean threshold of 28.0+/-1.4 microA, n = 48), and the magnitude of inhibition increased linearly when the stimulus intensity was increased from 20 to 70 microA, resulting in depression of the digastric electromyogram amplitude from 18.4+/-5.4% to 74.0+/-4.9% of the control (P < 0.01, n = 37). The onset of inhibition occured 60 ms after the beginning of nucleus submedius stimulation and lasted about 100 ms, as determined by varying the conditioning-test time interval. Furthermore, ipsilateral lesions of the ventrolateral orbital cortex or bilateral lesions of the lateral or ventrolateral parts of periaqueductal gray eliminated the nucleus submedius-evoked inhibition of the jaw-opening reflex. These data suggest that the nucleus submedius plays an important role in modulation of orofacial nociception, and provide further support for a hypothesis that the antinociceptive effect of nucleus submedius stimulation is mediated by ventrolateral orbital cortex and activation of a descending inhibitory system in the periaqueductal gray.
Collapse
Affiliation(s)
- S Zhang
- Department of Physiology, Xi'an Medical University, People's Republic of China
| | | | | | | |
Collapse
|
42
|
Okada K, Murase K, Kawakita K. Effects of electrical stimulation of thalamic nucleus submedius and periaqueductal gray on the visceral nociceptive responses of spinal dorsal horn neurons in the rat. Brain Res 1999; 834:112-21. [PMID: 10407099 DOI: 10.1016/s0006-8993(99)01593-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Electrical stimulation of the nucleus submedius (Sm) has been shown to suppress the viscerosomatic reflex (VSR), which is evoked by colorectal distension (CRD). We have examined the effects of focal electrical stimulation (0.3 ms, 50 Hz, 100 microA, 10 s) of the Sm and the periaqueductal gray (PAG) on the excitatory responses evoked by CRD in spinal dorsal horn neurons within the L6-S1 region in the urethane-anesthetized Wistar rats. Extracellular recordings were made from 32 spinal excitatory CRD responses. All of these neurons were convergent neurons with cutaneous receptive fields. The majority of the neurons (27/32) were wide dynamic range (WDR) neurons (responding to noxious and non-noxious cutaneous stimuli) while the remaining five neurons were nociceptive specific (NS) neurons (responding only to noxious cutaneous stimuli). The effects of electrical stimulation applied to 28 sites within the Sm were assessed for spinal neurons. Electrical stimulation in seven sites within the Sm (25%) inhibited the CRD excitatory response of dorsal horn neurons, while in two sites (7%) the same stimulation yielded facilitation. Electrical stimulation in the majority of the sites in the Sm (19/28, 68%) did not affect spinal excitatory CRD responses. On the other hand, electrical stimulation of the PAG clearly inhibited 20 of 22 (90%) CRD excitatory responses. These results suggest that the majority of Sm neurons may suppress VSR activity at a supraspinal reflex center rather than via a descending inhibition of spinal visceral nociceptive transmission, as is the case for the PAG.
Collapse
Affiliation(s)
- K Okada
- Department of Physiology, Meiji University of Oriental Medicine, Funai, Kyoto 629-0392, Japan
| | | | | |
Collapse
|
43
|
Siegel AM, Williamson PD, Roberts DW, Thadani VM, Darcey TM. Localized pain associated with seizures originating in the parietal lobe. Epilepsia 1999; 40:845-55. [PMID: 10403207 DOI: 10.1111/j.1528-1157.1999.tb00790.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Ictal pain is a rare symptom of seizures. Epileptic pain may be experienced unilaterally (lateral/ peripheral), cephalically, or in the abdomen. Painful seizures have been associated with seizure origin in both the parietal and the temporal lobes. We report on the different types of epileptic pain and discuss its etiology and possible localizing value. METHODS We reviewed the records of patients referred to our epilepsy program over the last 6 years. Eight (1.4%) of 573 patients had pain as an early prominent symptom of their seizures. RESULTS Pain was predominantly unilateral in three patients, cephalic in two, and abdominal in three patients. Seizure onset was in or involving the parietal lobe in all patients, and when the painful symptoms were lateralized, they were contralateral to the side of seizure origin. Parietal lobe seizure origin was determined by both intracranial EEG recording and neuroimaging [magnetic resonance imaging (MRI), ictal single photon emission computed tomography (SPECT)] in five patients, and by both scalp EEG and neuroimaging in three patients. CONCLUSIONS We conclude that ictal pain is a rare symptom of parietal lobe seizure origin with lateralizing potential.
Collapse
Affiliation(s)
- A M Siegel
- Dartmouth-Hitchcock Medical Center, Section of Neurology, Lebanon, New Hampshire 03756, USA
| | | | | | | | | |
Collapse
|
44
|
Weyand T, Updyke B, Gafka A. Widespread Distribution of Visual Responsiveness in Frontal, Prefrontal, and Prelimbic Cortical Areas of the Cat: An Electrophysiologic Investigation. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990301)405:1<99::aid-cne8>3.0.co;2-u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Xiao DQ, Tang JS, Yuan B, Jia H. Inhibitory effects of 5-hydroxytryptamine microinjection into thalamic nucleus submedius on rat tail flick reflex are mediated by 5-HT2 receptors. Neurosci Lett 1999; 260:85-8. [PMID: 10025705 DOI: 10.1016/s0304-3940(98)00955-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our previous findings indicated that electrical or chemical activation of the thalamic nucleus submedius (Sm) produced significant antinociceptive effects and that these effect were blocked by lesion or depression of the ventrolateral orbital cortex (VLO) or the periaqueductal gray (PAG) suggesting a role of the Sm in modulation of nociception. To further investigate the neurotransmitter mechanism involved in this nociceptive modulatory pathway, we tested the effects of microinjection of 5-hydroxytryptamine (5-HT, 50 mM, 0.5 microl) into Sm on the tail flick (TF) reflex. The results show that a unilateral microinjection of 5-HT into Sm significantly depresses the TF reflex; and that this effect is repeatable and dose-dependent. Furthermore, microinjection of 5-HT2 receptor antagonist cyproheptadine (CPT, 0.3 mM, 0.5 microl) into the same Sm site reverses this 5-HT-evoked inhibition of TF reflex. These results suggest that 5-HT application to the Sm may activate Sm neurons through the 5-HT2 receptors leading to activation of the brainstem descending inhibitory system via the VLO and depression of the nociceptive information at the spinal level.
Collapse
Affiliation(s)
- D Q Xiao
- Department of Physiology, Xi'an Medical University, Shaanxi, People's Republic of China
| | | | | | | |
Collapse
|
46
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|
47
|
Zhang S, Tang JS, Yuan B, Jia H. Inhibitory effects of electrical stimulation of ventrolateral orbital cortex on the rat jaw-opening reflex. Brain Res 1998; 813:359-66. [PMID: 9838193 DOI: 10.1016/s0006-8993(98)01050-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In previous studies, we have shown that electrically or chemically evoked activation of the ventrolateral orbital cortex (VLO) depresses the rat tail-flick (TF) reflex, and this antinociceptive effect is mediated by the periaqueductal gray (PAG). The aim of the present study was to examine whether electrical stimulation of the VLO could inhibit the rat jaw-opening reflex (JOR), and to determine whether electrolytic lesions of the PAG could attenuate this VLO-evoked inhibition. Unilateral electrical stimulation of the VLO significantly depressed the JOR elicited by tooth pulp or facial skin stimuli, with a mean threshold of 30.5+/-2.3 microA (n=22). Increasing stimulation intensities from 30 to 80 microA resulted in greater reduction of the dEMG amplitude from 22.9+/-5.0% to 69.7+/-3.7% of the baseline value (P<0.01, n=22). The inhibitory effect appeared 50 ms after the beginning of VLO stimulation and lasted about 150 ms, as determined by varying the conditioning-test (C-T) time interval. Unilateral lateral or ventrolateral lesions of the PAG produced only a small attenuation of the VLO-evoked inhibition of the JOR, but bilateral lesions eliminated this inhibition. These findings suggest that the VLO plays an important role in modulation of orofacial nociceptive inputs, and provide further support for the hypothesis that the antinociceptive effect of VLO is mediated by PAG leading to activation of a brainstem descending inhibitory system and depression of nociceptive inputs at the trigeminal level. The role played by VLO in pain modulation is discussed in association with the proposed endogenous analgesic system consisting of medullary cord-Sm-VLO-PAG-medullary cord.
Collapse
Affiliation(s)
- S Zhang
- Department of Physiology, Xi'an Medical University, Xi'an, Shaanxi 710061, China
| | | | | | | |
Collapse
|
48
|
Yang S, Follett KA. The effect of morphine on responses of ventrolateral orbital cortex (VLO) neurons to colorectal distension in the rat. Brain Res 1998; 808:101-5. [PMID: 9795166 DOI: 10.1016/s0006-8993(98)00804-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In 49 halothane-anesthetized rats, we characterized the responses of single neurons in the ventrolateral orbital cortex (VLO) to a noxious visceral stimulus (colorectal balloon distension, CRD), and studied the effects of intravenous morphine on these responses using standard extracellular microelectrode recording techniques. One hundred and four neurons were isolated on the basis of spontaneous activity. Fifty-seven (55%) responded to CRD, of which 32% had excitatory and 68% had inhibitory responses. Neurons showed tendencies toward graded responses to graded CRD pressures (20-100 mmHg), with maximum excitation or inhibition occurring at 80 or 100 mmHg, respectively. Responses to noxious (pinch, heat) and innocuous (brush, tap) cutaneous stimuli were studied in 80 of the VLO neurons isolated. Thirty-three (41%) of these neurons (21 CRD-responsive and 12 CRD-nonresponsive) had cutaneous receptive fields, of which 79% were large and bilateral, 18% were small and bilateral, 3% were small and ipsilateral. Ninety-four percent of these neurons responded only to noxious cutaneous stimulation, 6% responded to both noxious and innocuous stimulation. No neurons responded solely to innocuous stimulation. Cumulative doses of morphine (0.0625, 0.125 and 0.25 mg/kg i.v.) produced statistically significant dose-dependent attenuation of neuronal responses to CRD. Naloxone (0.4 mg/kg i.v.) reversed the effects of morphine. Morphine and naloxone had no significant effects on spontaneous activity. These data support the involvement of VLO neurons in visceral nociception.
Collapse
Affiliation(s)
- S Yang
- Division of Neurosurgery, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | | |
Collapse
|
49
|
|
50
|
Clascá F, Llamas A, Reinoso-Suárez F. Insular cortex and neighboring fields in the cat: a redefinition based on cortical microarchitecture and connections with the thalamus. J Comp Neurol 1997; 384:456-82. [PMID: 9254039 DOI: 10.1002/(sici)1096-9861(19970804)384:3<456::aid-cne10>3.0.co;2-h] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The insular areas of the cerebral cortex in carnivores remain vaguely defined and fragmentarily characterized. We have examined the cortical microarchitecture and thalamic connections of the insular region in cats, as a part of a broader study aimed to clarify their subdivisions, functional affiliations, and eventual similarities with other mammals. We report that cortical areas, which resemble the insular fields of other mammals, are located in the cat's orbital gyrus and anterior rhinal sulcus. Our data suggest four such areas: (a) a "ventral agranular insular area" in the lower bank of the anterior rhinal sulcus, architectonically transitional between iso- and allocortex and sparsely connected to the thalamus, mainly with midline nuclei; (b) a "dorsal agranular insular area" in the upper bank of the anterior rhinal sulcus, linked to the mediodorsal, ventromedial, parafascicular and midline nuclei; (c) a "dysgranular insular area" in the anteroventral half of the orbital gyrus, characterized by its connections with gustatory and viscerosensory portions of the ventroposterior complex and with the ventrolateral nucleus; and (d) a "granular insular area", dorsocaudal in the orbital gyrus, which is chiefly bound to spinothalamic-recipient thalamic nuclei such as the posterior medial and the ventroposterior inferior. Three further fields are situated caudally to the insular areas. The anterior sylvian gyrus and dorsal lip of the pseudosylvian sulcus, which we designate "anterior sylvian area", is connected to the ventromedial, suprageniculate, and lateralis medialis nuclei. The fundus and ventral bank of the pseudosylvian sulcus, or "parainsular area", is associated with caudal portions of the medial geniculate complex. The rostral part of the ventral bank of the anterior ectosylvian sulcus, referred to as "ventral anterior ectosylvian area", is heavily interconnected with the lateral posterior-pulvinar complex and the ventromedial nucleus. Present results reveal that these areas interact with a wide array of sensory, motor, and limbic thalamic nuclei. In addition, these data provide a consistent basis for comparisons with cortical fields in other mammals.
Collapse
Affiliation(s)
- F Clascá
- Department of Morphology, Autonoma University School of Medicine, Madrid, Spain.
| | | | | |
Collapse
|