1
|
Hofmann MH, Gebhardt IC. Evolution of the visual system in ray-finned fishes. Vis Neurosci 2023; 40:E005. [PMID: 38116689 PMCID: PMC11016354 DOI: 10.1017/s0952523823000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
The vertebrate eye allows to capture an enormous amount of detail about the surrounding world which can only be exploited with sophisticated central information processing. Furthermore, vision is an active process due to head and eye movements that enables the animal to change the gaze and actively select objects to investigate in detail. The entire system requires a coordinated coevolution of its parts to work properly. Ray-finned fishes offer a unique opportunity to study the evolution of the visual system due to the high diversity in all of its parts. Here, we are bringing together information on retinal specializations (fovea), central visual centers (brain morphology studies), and eye movements in a large number of ray-finned fishes in a cladistic framework. The nucleus glomerulosus-inferior lobe system is well developed only in Acanthopterygii. A fovea, independent eye movements, and an enlargement of the nucleus glomerulosus-inferior lobe system coevolved at least five times independently within Acanthopterygii. This suggests that the nucleus glomerulosus-inferior lobe system is involved in advanced object recognition which is especially well developed in association with a fovea and independent eye movements. None of the non-Acanthopterygii have a fovea (except for some deep sea fish) or independent eye movements and they also lack important parts of the glomerulosus-inferior lobe system. This suggests that structures for advanced visual object recognition evolved within ray-finned fishes independent of the ones in tetrapods and non-ray-finned fishes as a result of a coevolution of retinal, central, and oculomotor structures.
Collapse
Affiliation(s)
- Michael H. Hofmann
- Department of Comparative Neuroanatomy, Institute of Zoology, University of Bonn, Bonn, Germany
| | - Isabelle C. Gebhardt
- Department of Comparative Neuroanatomy, Institute of Zoology, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Hagio H, Yamamoto N. Ascending Visual Pathways to the Telencephalon in Teleosts with Special Focus on Forebrain Visual Centers, Associated Neural Circuitries, and Evolution. Zoolog Sci 2023; 40:105-118. [PMID: 37042690 DOI: 10.2108/zs220089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/10/2022] [Indexed: 03/08/2023]
Abstract
Visual pathways to the telencephalon in teleost fishes have been studied in detail only in a few species, and their evolutionary history remained unclear. On the basis of our recent studies we propose that there were two visual pathways in the common ancestor of teleosts, while one of them became lost in acanthopterygian fishes that emerged relatively recently. Our in-depth analyses on the connections of visual centers also revealed that there are connections shared with those of mammals, and retinotopic organization of the ascending connections is maintained at least to the level of the diencephalon in the yellowfin goby. The major visual telencephalic center, or the lateral part of the dorsal telencephalon (Dl), shows considerable species differences in the number of regions and cytoarchitecture. In particular, four highly specialized compartments are noted in the Dl of gobies, and we analyzed about 100 species of teleosts to investigate the evolution of the compartments in the Dl, which indicated that four compartments emerged only in Gobiiformes, while there are fewer specialized compartments in some other percomorph lineages. We also discuss the connections of forebrain visual centers with the cerebellum and other lower brain centers and infer possible functions of the circuitries.
Collapse
Affiliation(s)
- Hanako Hagio
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Demski LS, Beaver JA. The Cytoarchitecture of the Tectal-Related Pallium of Squirrelfish, Holocentrus sp. Front Neuroanat 2022; 16:819365. [PMID: 35573443 PMCID: PMC9095963 DOI: 10.3389/fnana.2022.819365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
The squirrelfish, which live in visually complex coral reefs, have very large eyes and a special dual-system “day and night vision” retina. They also have atypical expansions of brain areas involved in processing visual information. The midbrain tectum sends information via diencephalic relay to two enlarged dorsal telencephalic regions. The latter include a superficial dorsal/lateral “cortex-like area” of small to medium-sized cells [area dorsalis telencephali, pars lateralis-dorsal region (dorsal segment); Dld1] which projects to an underlying dorsocentral region of relatively large cells (the area dorsalis telencephali, pars centralis-dorsal region; Dcd) which in turn reconnects with the tectum. Additionally, the cerebellum is also involved in this pathway. The hypertrophied pallial regions, termed the tectal-related pallium (TRP), most likely exert major influences on a variety of visually-related sensorimotor systems. This research aimed at better establishing the cellular structures and possible connections within the TRP. Nissl and rapid Golgi staining, biotinylated dextran amine tracing and cell-filling, and electron microscopy were used in this study. For gross observation of the pallial areas and plotting of the study sites, a mini-atlas of transverse and horizontal sections was constructed. This research better documented the known cellular elements of the TRP and defined two novel cell types. Species differences in the TRP may be related to possible differences in behavior and ecology.
Collapse
|
4
|
Yamamoto N, Yoshimoto M. Obituary: Hironobu Ito, M.D., Ph.D. (1939–2020). J Comp Neurol 2021. [DOI: 10.1002/cne.25016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Naoyuki Yamamoto
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Masami Yoshimoto
- Department of Rehabilitation Sciences University of Tokyo Health Sciences Tokyo Japan
| |
Collapse
|
5
|
Ebbesson SOE. How the parcellation theory of comparative forebrain specialization emerged from the Division of Neuropsychiatry at the Walter Reed Army Institute of Research. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2021; 30:24-55. [PMID: 32511057 DOI: 10.1080/0964704x.2020.1763759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Golgi method gave birth to modern neuroscience. The Nauta method, developed in a novel Army think tank at the Walter Reed Army Medical Center, was the next major breakthrough before neuroscience emerged as a separate discipline. Dr. Walle Nauta's (1916-1994) method allowed for the first time the ability to trace interneuronal connections accurately to their termination. The think tank, created by Dr. David Rioch (1900-1985), provided a unique intellectual environment for interdisciplinary neuroscience research, the first of its kind. Rioch hired exceptional senior faculty and recruited outstanding young investigators who were drafted into the Army, typically after finishing their M.D.s or Ph.D.s, and were interested in brain research. Many of these young investigators went on to illustrious careers in neuroscience. I worked with Walle Nauta at a time when the technique was first being applied to nonmammalian vertebrate brains. Along with other Army draftees, I was encouraged to pursue my own research interests. This led me on a quest to understand interspecific variability of connections in relation to evolution and ontogeny of the brain. By 1980, I had found that the variability of all known connections could be explained by a theory to the effect that new structures such as the neocortex were not formed by one system invading another and mingling, as Clarence Luther Herrick (1858-1904) had proposed, but by selective proliferation and differentiation sometimes involving the select loss of connections to reduce cross-modality interference as in the case of the parcellation and differentiation of cortical areas. The resulting parcellation theory predicts that elements of a primordial neocortex existed from the beginning of vertebrate evolution and did not originate by an invasion of nonolfactory modalities into the olfactory lobe, as commonly believed before the introduction of the Nauta method. This theory would not have been created if it were not for the brilliant environment that was Walter Reed in the 1960s.
Collapse
Affiliation(s)
- Sven O E Ebbesson
- Professor Emeritus, University of Alaska Fairbanks , Fairbanks, Alaska, USA
| |
Collapse
|
6
|
Hagio H, Kawaguchi M, Abe H, Yamamoto N. Afferent and efferent connections of the nucleus prethalamicus in the yellowfin goby Acanthogobius flavimanus. J Comp Neurol 2020; 529:87-110. [PMID: 32337719 DOI: 10.1002/cne.24935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022]
Abstract
The nucleus prethalamicus (PTh) receives fibers from the optic tectum and then projects to the dorsal telencephalon in the yellowfin goby Acanthogobius flavimanus. However, it remained unclear whether the PTh is a visual relay nucleus, because the optic tectum receives not only visual but also other sensory modalities. Furthermore, precise telencephalic regions receiving prethalamic input remained unknown in the goby. We therefore investigated the full set of afferent and efferent connections of the PTh by direct tracer injections into the nucleus. Injections into the PTh labeled cells in the optic tectum, ventromedial thalamic nucleus, central and medial parts of the dorsal telencephalon, and caudal lobe of the cerebellum. We found that the somata of most tecto-prethalamic neurons are present in the stratum periventriculare. Their dendrites ascend to reach the major retinorecipient layers of the tectum. The PTh is composed of two subnuclei (medial and lateral) and topographic organization was appreciated only for tectal projections to the lateral subnucleus (PTh-l), which also receives sparse retinal projections. In contrast, the medial subnucleus receives fibers only from the medial tectum. We found that the PTh projects to nine subregions in the dorsal telencephalon and four in the ventral telencephalon. Furthermore, cerebellar injections revealed that cerebello-prethalamic fibers cross the midline twice to innervate the PTh-l on both sides. The present study is the first detailed report on the full set of the connections of PTh, which suggests that the PTh relays visual information from the optic tectum to the telencephalon.
Collapse
Affiliation(s)
- Hanako Hagio
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Masahumi Kawaguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hideki Abe
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
7
|
Hagio H, Sato M, Yamamoto N. An ascending visual pathway to the dorsal telencephalon through the optic tectum and nucleus prethalamicus in the yellowfin goby Acanthogobius flavimanus (Temminck & Schlegel, 1845). J Comp Neurol 2018; 526:1733-1746. [PMID: 29638003 DOI: 10.1002/cne.24444] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 11/10/2022]
Abstract
Dual visual pathways reaching the telencephalon appear to be an ancient vertebrate trait, but some teleost fish seem to possess only one pathway via the optic tectum. We undertook the present study to determine if and when this loss occurred during evolution. Tracer injection experiments to the optic nerve, the optic tectum, and the dorsal telencephalon were performed in the present study, to investigate ascending visual pathways to the dorsal telencephalon in an acanthopterygian teleost, the yellowfin goby Acanthogobius flavimanus (Temminck & Schlegel, 1845). We confirmed the presence of a nucleus prethalamicus (PTh) in the goby, which has been convincingly identified only in holocentrids, suggesting that this nucleus is present in other acanthopterygians. We found that the optic tectum projects to the PTh bilaterally. The PTh projects in turn to the dorsal telencephalon, ipsilaterally. These results suggest that the yellowfin goby possesses only an extrageniculate-like pathway, while a geniculate-like pathway could not be identified. This situation is common with that of holocentrids and may be a character common in acanthopterygians. It is possible that a geniculate-like system was lost in the common ancestor of acanthopterygians, although the scenario for the evolution of ascending visual systems in actinopterygians remains uncertain due to the lack of precise knowledge in a number of actinopterygian taxons.
Collapse
Affiliation(s)
- Hanako Hagio
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Moe Sato
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| |
Collapse
|
8
|
Takahashi A, Islam MS, Abe H, Okubo K, Akazome Y, Kaneko T, Hioki H, Oka Y. Morphological analysis of the early development of telencephalic and diencephalic gonadotropin-releasing hormone neuronal systems in enhanced green fluorescent protein-expressing transgenic medaka lines. J Comp Neurol 2015; 524:896-913. [DOI: 10.1002/cne.23883] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Akiko Takahashi
- Department of Biological Science; Graduate School of Science, The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - M. Sadiqul Islam
- Department of Biological Science; Graduate School of Science, The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Hideki Abe
- Department of Biological Science; Graduate School of Science, The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Yasuhisa Akazome
- Department of Biological Science; Graduate School of Science, The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science; Graduate School of Medicine, Kyoto University; Kyoto Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science; Graduate School of Medicine, Kyoto University; Kyoto Japan
| | - Yoshitaka Oka
- Department of Biological Science; Graduate School of Science, The University of Tokyo; Bunkyo-ku Tokyo Japan
| |
Collapse
|
9
|
Parcellation: An explanation of the arrangement of apples and oranges on a severely pruned phylogenetic tree? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00018392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
|
11
|
|
12
|
|
13
|
|
14
|
|
15
|
|
16
|
A milestone in comparative neurology: A specific hypothesis claims rules for conservative connectivity. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00018409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
|
18
|
Behavioral selectivity based on thalamotectal interactions: Ontogenetic and phylogenetic aspects in amphibians. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x0001846x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
|
20
|
|
21
|
|
22
|
Axon development and plasticity: Clues from species differences and suggestions for mechanisms of evolutionary change. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00018574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
|
24
|
|
25
|
|
26
|
|
27
|
Abstract
AbstractRecent studies on neural pathways in a broad spectrum of vertebrates suggest that, in addition to migration and an increase in the number of certain select neurons, a significant aspect of neural evolution is a “parcellation” (segregation-isolation) process that involves the loss of selected connections by the new aggregates. A similar process occurs during ontogenetic development. These findings suggest that in many neuronal systems axons do not invade unknown territories during evolutionary or ontogenetic development but follow in their ancestors' paths to their ancestral targets; if the connection is later lost, it reflects the specialization of the circuitry.The pattern of interspecific variability suggests (1) that overlap of circuits is a more common feature in primitive (generalized) than in specialized brain organizations and (2) that most projections, such as the retinal, thalamotelencephalic, corticotectal, and tectal efferent ones, were bilateral in the primitive condition. Specialization of these systems in some vertebrate groups has involved the selective loss of connections, resulting in greater isolation of functions. The parcellation process may also play an important role in cell diversification.The parcellation process as described here is thought to be one of several underlying mechanisms of evolutionary and ontogenetic differentiation.
Collapse
|
28
|
|
29
|
|
30
|
|
31
|
Yasuda T, Oda S, Ishikawa Y, Watanabe-Asaka T, Hidaka M, Yasuda H, Anzai K, Mitani H. Live imaging of radiation-induced apoptosis by yolk injection of Acridine Orange in the developing optic tectum of medaka. JOURNAL OF RADIATION RESEARCH 2009; 50:487-494. [PMID: 19680012 DOI: 10.1269/jrr.09043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
To observe the sequential radiation-induced apoptosis in a living embryo, we injected Acridine Orange (AO) solution into the yolk of embryo and visualized radiation-induced apoptosis in developing optic tectum (OT). Medaka embryos at stage 28, when neural cells proliferate rapidly in the OT, were irradiated with 5 Gy X-rays which is a non-lethal dose for irradiated embryos at hatching. The irradiated embryos hatched normally without morphological abnormalities in their brains, even though a large number of apoptotic cells were induced transiently in OT. By yolk injection, apoptotic cells in OT were distinguished as AO-positive small nuclei at 3 h after irradiation. At 8-10 h after irradiation, AO-positive rosette-shaped clusters were obviously distinguished in marginal tectal regions of OT where cells are proliferating intensely. The AO-positive clusters became bigger and more obvious, but the number did not increase up to 24 h after irradiation and completely disappeared up to 49 h after irradiation. This characteristic appearance of the AO-positive nuclei/clusters is in good agreement with our previous results, based on the examination of fixed specimens stained with AO by injection into the peri-vitelline space, suggesting that the AO-yolk injection method is highly reliable for detecting apoptotic cells in living embryos. The live imaging of apoptotic cells in developing Medaka embryos by AO-yolk injection method is expected to reveal more of the details of the dynamics of apoptotic responses in the irradiated brain and other tissues.
Collapse
Affiliation(s)
- Takako Yasuda
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kenigfest NB, Belekhova MG. Evolutionary evaluation of reciprocity of connections in the turtle tectofugal visual system. J EVOL BIOCHEM PHYS+ 2009. [DOI: 10.1134/s0022093009030107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Abstract
A large skull is disadvantageous to animals that move quickly in three-dimensional space, such as fishes and birds in water or air. A cerebral neocortex with a six-layered sheet has not evolved, most likely due to the limited cranial space. Instead of the laminar cortex, telencephalic nuclear masses seem to have evolved as the pallium in teleost fishes. We consider that the nuclear masses contain rather simple neural circuits sharing a skeleton of simple circuits in the mammalian cortex, which have been elaborated by additional circuits in mammals. Such basic similarities at the connectional level shared by nuclear and cortical pallium might underlie similar or equivalent functions.
Collapse
Affiliation(s)
- Hironobu Ito
- Department of Anatomy and Neurobiology, Nippon Medical School, Tokyo 113-8602, Japan.
| | | |
Collapse
|
34
|
Yamamoto N, Ito H. Visual, lateral line, and auditory ascending pathways to the dorsal telencephalic area through the rostrolateral region of the lateral preglomerular nucleus in cyprinids. J Comp Neurol 2008; 508:615-47. [DOI: 10.1002/cne.21717] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Xue HG, Yang CY, Yamamoto N. Afferent sources to the inferior olive and distribution of the olivocerebellar climbing fibers in cyprinids. J Comp Neurol 2008; 507:1409-27. [DOI: 10.1002/cne.21622] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Kinoshita M, Ito E. Roles of periventricular neurons in retinotectal transmission in the optic tectum. Prog Neurobiol 2006; 79:112-21. [PMID: 16901616 DOI: 10.1016/j.pneurobio.2006.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Revised: 06/16/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
The midbrain roof is a retinorecipient region referred to as the optic tectum in lower vertebrates, and the superior colliculus in mammals. The retinal fibers projecting to the tectum transmit visual information to tectal retinorecipient neurons. Periventricular neurons are a subtype of these neurons that have their somata in the deepest layer of the teleostean tectum and apical dendrites ramifying at more superficial layers consisting of retinal fibers. The retinotectal synapses between the retinal fibers and periventricular neurons are glutamatergic, and ionotropic glutamate receptors mediate the transmission in these synapses. This transmission involves long-term potentiation, and is modulated by hormone action. Visual information processed in the periventricular neurons is transmitted to adjacent tectal cells and target nuclei of periventricular neuron axonal branches, some of which relay the visual information to other brain areas controlling behavior. We demonstrated that periventricular neurons play a principal role in visual information processing in the teleostean optic tectum; the effects of tectal output on behavior is discussed also in the present review.
Collapse
Affiliation(s)
- Masae Kinoshita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | |
Collapse
|
37
|
Deguchi T, Suwa H, Yoshimoto M, Kondoh H, Yamamoto N. Central Connection of the Optic, Oculomotor, Trochlear and Abducens Nerves in Medaka, Oryzias latipes. Zoolog Sci 2005; 22:321-32. [PMID: 15795495 DOI: 10.2108/zsj.22.321] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Medaka (Oryzias latipes) is one of the few vertebrate experimental animals in which inbred lines have been established. It is also a species that has advanced in genetic studies in a manner comparable to zebrafish. This fish is therefore a good model for studying functional organization of the nervous system, but anatomical analysis of its nervous system has been limited to embryonic stages. In the present study, we investigated anatomy of cranial nerves in adult fish focusing on the visual function, using an inbred strain of medaka. Cranial nerves of medaka were labeled using biocytin, revealing a central distribution of retinofugal terminals, retinopetal neurons, and oculomotor, trochlear and abducens motor neurons. The optic nerve of the adult medaka was of a complete decussation type. Retinofugal terminals were located in 8 brain nuclei, the suprachiasmatic nucleus, nucleus pretectalis superficialis, nucleus dorsolateralis thalami, area pretectalis pars dorsalis (APd), area pretectalis pars ventralis (APv), nucleus of the posterior commissure (NPC), accessory optic nucleus, and the tectum opticum. Retinopetal neurons were identified in 6 brain nuclei, the ganglion of the terminal nerve, preoptic retinopetal nucleus, nucleus dorsolateralis thalami, APd, APv, and NPC. The oculomotor neurons were mostly labeled ipsilaterally and were located dorsomedially, abutting the fasciculus longitudinalis medialis in the mesencephalon. The trochlear nucleus was located contralaterally and dorsolaterally adjacent to the fasciculus longitudinalis medialis in the mesencephalon. The abducens nucleus was located ipsilaterally in a ventrolateral part of the rhombencephalic reticular formation. These results, generally similar to those in other teleosts, provide the basis for future behavioral and genetic studies in medaka.
Collapse
Affiliation(s)
- Tomonori Deguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | | | | | | | | |
Collapse
|
38
|
Kinoshita M, Fukaya M, Tojima T, Kojima S, Ando H, Watanabe M, Urano A, Ito E. Retinotectal transmission in the optic tectum of rainbow trout. J Comp Neurol 2005; 484:249-59. [PMID: 15736228 DOI: 10.1002/cne.20473] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retinotectal transmission has not yet been well characterized at the cellular level in the optic tectum. To address this issue, we used a teleost, the rainbow trout, and characterized periventricular neurons as postsynaptic cells expected to receive the retinotectal inputs to the optic tectum. The somata of periventricular neurons are localized in the upper zone of the stratum periventriculare (SPV), whereas the lower zone of the SPV comprises the cell body layer of radial glial cells. Ca2+ imaging identified functional ionotropic glutamate receptors in periventricular neurons. We also cloned cDNAs encoding the NR1 subunit of N-methyl-D-aspartic acid (NMDA) receptors and the GluR2 subunit of (+/-)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptors, and detected their mRNAs in periventricular neurons by in situ hybridization. The presence of the receptor subunit proteins was also confirmed in the dendrites of periventricular neurons by immunoblotting and immunohistochemistry. On the other hand, radial glial cells in the lower zone of the SPV did not respond to glutamate applications, and mRNA and immunoreactivities of ionotropic glutamate receptors were not detected in glial cells. The present findings suggest that glutamatergic transmission at synapses between retinotectal afferents and periventricular neurons is mediated by the functional NMDA and AMPA receptors.
Collapse
Affiliation(s)
- Masae Kinoshita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Northcutt RG. Connections of the lateral and medial divisions of the goldfish telencephalic pallium. J Comp Neurol 2005; 494:903-43. [PMID: 16385483 DOI: 10.1002/cne.20853] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biotinylated dextran amine and fluorescent carbocyanine dye (DiI) were used to examine connections of the lateral (Dl) and medial (Dm) divisions of the goldfish pallium. Besides numerous intrinsic telencephalic connections to Dl and Dm, major ascending projections to these pallial divisions arise in the preglomerular complex of the posterior tuberculum, rather than in the dorsal thalamus. The rostral subnucleus of the lateral preglomerular nucleus receives auditory input via the medial pretoral nucleus, lateral line input via the ventrolateral toral nucleus, and visual input via the optic tectum, and it projects to both Dl and Dm. The anterior preglomerular nucleus and caudal subnucleus of the lateral preglomerular nucleus receive auditory input via the central toral nucleus and project to Dm. This pallial division also receives chemosensory information via the medial preglomerular nucleus. The central posterior (CP) nucleus, which receives both auditory and visual inputs, also projects to Dm and is the only dorsal thalamic nucleus projecting to the pallium. Thus, both Dl and Dm clearly receive multisensory inputs. Major projections of CP and projections of all other dorsal thalamic nuclei are to the subpallium, however. Descending projections of Dl are primarily to the preoptic area and the caudal hypothalamus, whereas descending projections of Dm are more extensive and particularly heavy to the anterior tuber and nucleus diffusus of the hypothalamus. The topography and connections of Dl are remarkably similar to those of the hippocampus of tetrapods, whereas the topography and connections of Dm are similar to those of the amygdala.
Collapse
Affiliation(s)
- R Glenn Northcutt
- Neurobiology Unit, Scripps Institution of Oceanography, and Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92093-0201, USA.
| |
Collapse
|
40
|
Yang CY, Yoshimoto M, Xue HG, Yamamoto N, Imura K, Sawai N, Ishikawa Y, Ito H. Fiber connections of the lateral valvular nucleus in a percomorph teleost, tilapia (Oreochromis niloticus). J Comp Neurol 2004; 474:209-26. [PMID: 15164423 DOI: 10.1002/cne.20150] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fiber connections of the lateral valvular nucleus were investigated in a percomorph teleost, the tilapia (Oreochromis niloticus), by tract-tracing methods. Following tracer injections into the lateral valvular nucleus, neurons were labeled in the ipsilateral dorsal part of dorsal telencephalic area, corpus glomerulosum pars anterior, dorsomedial thalamic nucleus, central nucleus of the inferior lobe, mammillary body, semicircular torus, valvular and cerebellar corpus, in the bilateral rostral regions of the central part of dorsal telencephalic area, dorsal region of the medial part of dorsal telencephalic area, habenula, anterior tuberal nucleus, posterior tuberal nucleus, and spinal cord, and in the contralateral lateral funicular nucleus. Labeled fibers and terminals were found in the ipsilateral cerebellar corpus and bilateral valvula of the cerebellum. Tracers were injected into portions of the telencephalon, pretectum, inferior lobe, and cerebellum to confirm reciprocally connections with the lateral valvular nucleus and to determine afferent terminal morphology in the lateral valvular nucleus. Telencephalic fibers terminated mainly in a dorsolateral portion of the lateral valvular nucleus. Terminals from the corpus glomerulosum pars anterior, central nucleus of the inferior lobe, and mammillary body showed more diffuse distributions and were not confined to particular portions of the lateral valvular nucleus. Labeled terminals in the lateral valvular nucleus were cup-shaped or of beaded morphology. These results indicate that the lateral valvular nucleus receives projections from various sources including the telencephalon, pretectum, and inferior lobe to relay information to the valvular and cerebellar corpus. In addition, the corpus glomerulosum pars anterior in tilapia is considered to be homologous to the magnocellular part of superficial pretectal nucleus in cyprinids.
Collapse
Affiliation(s)
- Chun-Ying Yang
- Department of Anatomy and Laboratory for Comparative Neuromorphology, Nippon Medical School, Tokyo 113-8602, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Xue HG, Yang CY, Ito H. Topographical projections to the nucleus prethalamicus from the cerebellum, optic tectum, and telencephalon in holocentrid teleosts. Brain Res 2003; 992:146-50. [PMID: 14604784 DOI: 10.1016/j.brainres.2003.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fiber connections of the nucleus prethalamicus (PTh) were investigated by biocytin injections into the corpus cerebelli, optic tectum, and telencephalon in holocentrids. The present study revealed the corpus cerebelli projections to the plexiform layer of the contralateral PTh, optic tectum to the marginal and large cell layers of the ipsilateral PTh, and telencephalon to the small cell layer of the ipsilateral PTh. Large cells of the PTh project fibers back to the telencephalon. These observations suggest that projections of the corpus cerebelli, optic tectum, and telencephalon to the PTh are topographically organized.
Collapse
Affiliation(s)
- Hao Gang Xue
- Department of Anatomy, Nippon Medical School, Sendagi 1-1-5, , Bunkyo Tokyo 113-8602, Japan.
| | | | | |
Collapse
|
42
|
Ito H, Yoshimoto M, Albert JS, Yamane Y, Yamamoto N, Sawai N, Kaur A. Terminal morphology of two branches arising from a single stem-axon of pretectal (PSm) neurons in the common carp. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970217)378:3<379::aid-cne6>3.0.co;2-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Butler AB, Saidel WM. Tectal projection to an unusual nucleus in the diencephalon of a teleost fish, Pantodon buchholzi. Neurosci Lett 1992; 145:193-6. [PMID: 1465216 DOI: 10.1016/0304-3940(92)90020-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nucleus rostrolateralis, a newly identified nucleus, has been found to date in only three species of ray-finned fishes, two of which are osteoglossomorphs. It is relatively large and well developed in only one of the osteoglossomorphs, Pantodon buchholzi, in which it receives a relatively sparse, primarily contralateral, input from the retina. The present report describes a relatively intense, bilateral projection from the optic tectum to nucleus rostrolateralis.
Collapse
|
44
|
Rooney DJ, Szabo T. Reciprocal connections between the 'nucleus rotundus' and the dorsal lateral telencephalon in the weakly electric fish Gnathonemus petersii. Brain Res 1991; 543:153-6. [PMID: 1711403 DOI: 10.1016/0006-8993(91)91058-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Injections of horseradish peroxidase into the dorsal lateral telencephalon of the weakly electric mormyrid fish Gnathonemus petersii resulted in retrogradely filled cells and anterogradely labelled terminals in the 'nucleus rotundus' of the ipsilateral rostral diencephalon. This connection courses via the lateral part of the lateral forebrain bundle. The present results suggest a particularly close relationship between the Dla cell group of the lateral telencephalon and the 'nucleus rotundus'.
Collapse
Affiliation(s)
- D J Rooney
- Département de Neurophysiologie Sensorielle, C.N.R.S., Gif-sur-Yvette, France
| | | |
Collapse
|
45
|
Batten TF, Cambre ML, Moons L, Vandesande F. Comparative distribution of neuropeptide-immunoreactive systems in the brain of the green molly, Poecilia latipinna. J Comp Neurol 1990; 302:893-919. [PMID: 2081820 DOI: 10.1002/cne.903020416] [Citation(s) in RCA: 226] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The comparative distribution of peptidergic neural systems in the brain of the euryhaline, viviparous teleost Poecilia latipinna (green molly) was examined by immunohistochemistry. Topographically distinct, but often overlapping, systems of neurons and fibres displaying immunoreactivity (ir) related to a range of neuropeptides were found in most brain areas. Neurosecretory and hypophysiotrophic hormones were localized to specific groups of neurons mostly within the preoptic and tuberal hypothalamus, giving fibre projections to the neurohypophysis, ventral telencephalon, thalamus, and brain stem. Separate vasotocin (AVT)-ir and isotocin (IST)-ir cells were located in the nucleus preopticus (nPO), but many AVT-ir nPO neurons also displayed growth hormone-releasing factor (GRF)-like-ir, and in some animals corticotrophin-releasing factor (CRF)-like-ir. The main group of CRF-ir neurons was located in the nucleus recessus anterioris, where coexistence with galanin (GAL) was observed in some cells. Enkephalin (ENK)-like-ir was occasionally present in a few IST-ir cells of the nPO and was also found in small neurons in the posterior tuberal hypothalamus and in a cluster of large cells in the dorsal midbrain tegmentum. Thyrotrophin-releasing hormone (TRH)-ir cells were found near the rostromedial tip of the nucleus recessus lateralis. Gonadotrophin-releasing hormone (GnRH)-ir cells were present in the nucleus olfactoretinalis, ventral telencephalon, preoptic area, and dorsal midbrain tegmentum. Molluscan cardioexcitatory peptide (FMRF-amide)-ir was colocalized with GnRH-ir in the ganglion cells and central projections of the nervus terminalis. Melanin-concentrating hormone (MCH)-ir neurons were restricted to the tuberal hypothalamus, mostly within the nucleus lateralis tuberis pars lateralis, and somatostatin (SRIF)-ir neurons were numerous throughout the periventricular areas of the diencephalon. A further group of SRIF-ir neurons extending from the ventral telencephalon into the dorsal telencephalon pars centralis also contained neuropeptide Y (NPY)-, peptide YY (PYY)-, and NPY flanking peptide (PSW)-like-ir. These immunoreactivities were, however, also observed in non-SRIF-ir cells and fibres, particularly in the mesencephalon. Calcitonin gene-related peptide (CGRP)-like-ir had a characteristic distribution in cells grouped in the isthmal region and fibre tracts running forward into the hypothalamus, most strikingly into the inferior lobes. Antisera to cholecystokinin (CCK) and neurokinin A (NK) or substance P (SP) stained very extensive, separate systems throughout the brain, with cells most consistently seen in the ventral telencephalon and periventricular hypothalamus. Broadly similar, but much more restricted, distributions of cells and fibres were seen with antisera to neurotensin (NT) and vasoactive intestinal peptide (VIP).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T F Batten
- Department of Cardiovascular Studies, University Leeds, England
| | | | | | | |
Collapse
|
46
|
|
47
|
Kanwal JS, Finger TE, Caprio J. Forebrain connections of the gustatory system in ictalurid catfishes. J Comp Neurol 1988; 278:353-76. [PMID: 3216048 DOI: 10.1002/cne.902780306] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Horseradish peroxidase tracing and extracellular electrophysiological recording techniques were employed to delineate prosencephalic connections of the gustatory system in ictalurid catfishes. The isthmic secondary gustatory nucleus projects rostrally to several areas of the ventral diencephalon including the nucleus lobobulbaris and the nucleus lateralis thalami. Injections of HRP in the vicinity of the nucleus lobobulbaris reveal an ascending projection to the telencephalon terminating in the area dorsalis pars medialis (Dm) and the medial region of area dorsalis pars centralis (Dc). Conversely, injections of HRP into the gustatory region of area dorsalis pars medialis label small neurons in the nucleus lobobulbaris. Gustatory neurons in the telencephalon send descending projections via the medial and lateral forebrain bundles to several nuclei in the anterior and ventroposterior diencephalon. The nucleus lateralis thalami, a diencephalic nucleus, receives ascending gustatory projections from the secondary gustatory nucleus but does not project to the telencephalon. Neurons in both the nucleus lateralis thalami and the telencephalic gustatory target exhibit multiple extraoral and oral receptive fields and complex responses to chemical (taste) and tactile stimulation.
Collapse
Affiliation(s)
- J S Kanwal
- Department of Zoology and Physiology, Louisiana State University, Baton Rouge 70803
| | | | | |
Collapse
|
48
|
Ito H, Murakami T, Fukuoka T, Kishida R. Thalamic fiber connections in a teleost (Sebastiscus marmoratus): visual somatosensory, octavolateral, and cerebellar relay region to the telencephalon. J Comp Neurol 1986; 250:215-27. [PMID: 3745513 DOI: 10.1002/cne.902500208] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fiber connections of the nucleus ventromedialis thalami (VM) of Schnitzlein (J. Comp. Neurol. 118:225-267, '62) in a teleost (Sebastiscus marmoratus) were examined by means of the horseradish peroxidase (HRP) tracing method. This nucleus receives fibers from the ipsilateral telencephalon (area dorsalis pars centralis), contralateral retina, contralateral VM, ipsilateral optic tectum, ipsilateral torus semicircularis, contralateral corpus cerebelli, contralateral sensory nucleus of the trigeminal nerve, bilateral bulbospinal reticular formation, contralateral obex region, and contralateral dorsal portion of upper spinal segments. In turn, axons arising from VM terminate in the dorsal telencephalic areas (pars centralis, pars dorsalis, and pars medialis) ipsilaterally, ventral telencephalic area (pars supracommissuralis) bilaterally, nucleus prethalamicus of Meader (J. Comp. Neurol. 60:361-407, '34) bilaterally, nucleus dorsomedialis thalami bilaterally, VM contralaterally, optic tectum bilaterally, torus semicircularis bilaterally, and nucleus lateralis valvulae ipsilaterally. Based on the cytoarchitecture and fiber connections, VM is subdivided into rostral and caudal components. The caudal part of VM in Sebastiscus is considered to be a multimodal thalamic complex that contains some cells that constitute the dorsal thalamus in other vertebrate groups.
Collapse
|
49
|
Watanabe M, Ito H, Ikushima M. Cytoarchitecture and ultrastructure of the avian ectostriatum: afferent terminals from the dorsal telencephalon and some nuclei in the thalamus. J Comp Neurol 1985; 236:241-57. [PMID: 2414332 DOI: 10.1002/cne.902360208] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cytoarchitecture, ultrastructure, and afferent terminals in the ectostriatal complex of the Japanese quail were examined. The complex consists of the central core (Ec) and peripheral belt (Ep). Terminals in the complex were categorized into three main groups according to the shape of synaptic vesicles: S (spherical), P (pleomorphic), and F (flat). S terminals are further classified into three types: Ss, small terminals which have densely packed vesicles and a long active zone and are presynaptic to large spines; Sm, medium-sized to large terminals which have a relatively short active zone and contact dendritic spines, trunks, and somata; Sl, large terminals which have many mitochondria and cored vesicles and form synapses only with somata. Some of the Sm terminals are derived from myelinated axons. The Sl terminals are frequently combined with gap junctions as so-called mixed synapses. The P terminal occasionally surrounds an axon hillock, making symmetric synaptic contacts. The F terminals often cover a wide area of the soma. A few gap junctions are also recognized between adjacent somata. Afferent sources of the ectostriatal complex were examined by means of horseradish peroxidase (HRP) retrograde transport. Many large HRP-labeled cells were recognized in the nucleus rotundus (Rt). HRP-labeled cells were seen in the nucleus triangularis (Tr), nucleus dorsolateralis posterior thalami (DLP), and a few labeled cells were scattered in the hyperstriatum ventrale (HV). Substantial numbers of Sm terminals in Ec degenerated after destruction of Rt; they made synaptic contacts with dendritic trunks (71.8%) and small spines (28.2%). Degenerating and intact Sm terminals were found to form synapses with the same dendritic trunk by the reconstruction of serial thin sections. Among the 167 Sm terminals, 20 terminals (12.0%) degenerated after lesions in Rt. The Sm terminals in Ec degenerated after destruction of Tr and the terminals formed synapses with somata as well as dendritic trunks and spines. After lesions of the dorsal telencephalon including HV, degenerating fibers sparsely entered the ectostriatal complex associated with the Ss terminal degeneration. DLP seemed to project mainly on the medial area of posterior Ep. The terminals from DLP made asymmetric synaptic contacts with dendritic spines, trunks, and somata. Some of the terminals from DLP were identified as the Sl type, but other S types could not be identified.
Collapse
|
50
|
Ito H, Murakami T. Retinal ganglion cells in two teleost species, Sebastiscus marmoratus and Navodon modestus. J Comp Neurol 1984; 229:80-96. [PMID: 6490977 DOI: 10.1002/cne.902290107] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Distribution patterns of ganglion cells in the retina were examined in Nissl-stained retinal whole mounts of Sebastiscus and Navodon. The existence of area centralis in the temporal retina in both species suggests binocular vision. In Navodon, another high density area was found in the nasal retina, and a dense band of ganglion cells was observed along the horizontal axis between the two high-density areas. There is an obvious trend for the ganglion cell size to increase as the density decreases. The total number of ganglion cells was estimated to be about 45 X 10(4) in Sebastiscus and 87 X 10(4) in Navodon, whereas the total number of optic nerve fibers was about 35 X 10(4) and 70 X 10(4), respectively. The retinal ganglion cells labeled with HRP were classified into six types according to such morphological characteristics as size, shape, and location of the soma as well as dendritic arborization pattern. Type I cells have a small round or oval soma in the ganglion cell layer and a small dendritic field in the inner plexiform layer. Type II cells are similar to type I cells, but the dendrites arborize more closely to the ganglion cell layer in the innermost region of the inner plexiform layer. Type III cells have a medium-sized round soma in the ganglion cell layer, and the dendrites extend in an extremely wide area in the inner plexiform layer with few branches. Type IV cells have a large soma which is located in the ganglion cell layer. Dendrites emanate from the soma in all directions, branching out several times within a rather small region in the innermost part of the inner plexiform layer. Type V cells have large somata of various shapes, usually dislocated to the inner plexiform or granular layer. The dendrites extend in every direction and occupy an extremely large area in the inner plexiform layer. Type VI cells have the largest somata, which are also dislocated to the inner plexiform or granular layer. Type VI cells have a characteristic triangular or fan-shaped dendritic field. Soma size and the axon diameter are intimately linked, that is, small somata of type I and II cells give off thin axons, and large somata of type V and VI give off thick axons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|