1
|
Fujita T, Aoki N, Mori C, Homma KJ, Yamaguchi S. Molecular biology of serotonergic systems in avian brains. Front Mol Neurosci 2023; 16:1226645. [PMID: 37538316 PMCID: PMC10394247 DOI: 10.3389/fnmol.2023.1226645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved neurotransmitter and modulator. Neurons utilizing serotonin have been identified in the central nervous systems of all vertebrates. In the central serotonergic system of vertebrate species examined so far, serotonergic neurons have been confirmed to exist in clusters in the brainstem. Although many serotonin-regulated cognitive, behavioral, and emotional functions have been elucidated in mammals, equivalents remain poorly understood in non-mammalian vertebrates. The purpose of this review is to summarize current knowledge of the anatomical organization and molecular features of the avian central serotonergic system. In addition, selected key functions of serotonin are briefly reviewed. Gene association studies between serotonergic system related genes and behaviors in birds have elucidated that the serotonergic system is involved in the regulation of behavior in birds similar to that observed in mammals. The widespread distribution of serotonergic modulation in the central nervous system and the evolutionary conservation of the serotonergic system provide a strong foundation for understanding and comparing the evolutionary continuity of neural circuits controlling corresponding brain functions within vertebrates. The main focus of this review is the chicken brain, with this type of poultry used as a model bird. The chicken is widely used not only as a model for answering questions in developmental biology and as a model for agriculturally useful breeding, but also in research relating to cognitive, behavioral, and emotional processes. In addition to a wealth of prior research on the projection relationships of avian brain regions, detailed subdivision similarities between avian and mammalian brains have recently been identified. Therefore, identifying the neural circuits modulated by the serotonergic system in avian brains may provide an interesting opportunity for detailed comparative studies of the function of serotonergic systems in mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
2
|
Fujita T, Aoki N, Mori C, Fujita E, Matsushima T, Homma KJ, Yamaguchi S. Serotonergic Neurons in the Chick Brainstem Express Various Serotonin Receptor Subfamily Genes. Front Physiol 2022; 12:815997. [PMID: 35111079 PMCID: PMC8801614 DOI: 10.3389/fphys.2021.815997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved modulatory neurotransmitter. In mammals, 5-HT plays an important role in the regulation of many mental states and the processing of emotions in the central nervous system. Serotonergic neurons in the central nervous system, including the dorsal raphe (DR) and median raphe (MR) nuclei, are spatially clustered in the brainstem and provide ascending innervation to the entire forebrain and midbrain. Both between and within the DR and MR, these serotonergic neurons have different cellular characteristics, developmental origin, connectivity, physiology, and related behavioral functions. Recently, an understanding of the heterogeneity of the DR and MR serotonergic neurons has been developed at the molecular level. In birds, emotion-related behavior is suggested to be modulated by the 5-HT system. However, correspondence between the raphe nuclei of birds and mammals, as well as the cellular heterogeneity in the serotonergic neurons of birds are poorly understood. To further understand the heterogeneity of serotonergic neurons in birds, we performed a molecular dissection of the chick brainstem using in situ hybridization. In this study, we prepared RNA probes for chick orthologs of the following serotonin receptor genes: 5-HTR1A, 5-HTR1B, 5-HTR1D, 5-HTR1E, 5-HTR1F, 5-HTR2A, 5-HTR2B, 5-HTR2C, 5-HTR3A, 5-HTR4, 5-HTR5A, and 5-HTR7. We showed that the expression pattern of 5-HT receptors in the serotonin neurons of chick DR and MR may vary, suggesting heterogeneity among and within the serotonin neurons of the DR and MR in the chick brainstem. Our findings regarding the molecular properties of serotonergic neurons in the bird raphe system will facilitate a good understanding of the correspondence between bird and mammalian raphes.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Eiko Fujita
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Hokkaido, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
- *Correspondence: Shinji Yamaguchi,
| |
Collapse
|
3
|
Huang X, Kuang S, Applegate TJ, Lin TL, Cheng HW. The development of the serotonergic and dopaminergic systems during chicken mid-late embryogenesis. Mol Cell Endocrinol 2019; 493:110472. [PMID: 31167113 DOI: 10.1016/j.mce.2019.110472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 02/02/2023]
Abstract
Serotonin (5-HT) acts as a morphogen influencing embryonic brain development, and as a neurotransmitter regulating multiple biological functions with lifelong effects on animal physical, physiological and mental health, especially during the rapid growth phase prior to birth when embryos face many challenges to reach structural and functional completion. In this study, the development of the serotoninergic (5-HTergic) system and its modulatory effect on the dopaminergic (DAergic) system and related neural circuits were investigated during the mid-late embryogenesis, embryonic day (E)12-E20, in the chicken's brain. During 5-HTergic neuronal maturation, a growth-related anatomical and functional remodeling was highlighted: the 5-HT neurons continuously grew during E12-E20 except for a remarkable regression during E14-E16. Correspondingly, there was a time-dependent change in the 5-HT synthetic capacity. Specifically, 5-HT concentrations in the raphe nuclei increased from E12 to E14, reaching a first plateau during E14-E16, then continuously increased up to E19, and reaching a second plateau between E19-E20. The second plateau of the 5-HT concentration was in correspondence with the establishment of the 5-HTergic autoregulatory loop during E19-E20 and the development of the DAergic system. The DA concentrations remained unchanged from E12 to E16, then started to increase at E16, reaching a maximum at E19, and diminished before hatching. The unique developing time sequence between the 5-HTergic and DAergic systems suggests that the 5-HTergic system may play a critical role in forming the 5-HT - DA neural circuit during chicken embryogenesis. These results provide new insights for understanding the functional organization of the 5-HTergic system during embryonic development and raise the possibility that prenatally modulating the 5-HTergic system may lead to long-lasting brain structural and functional alterations.
Collapse
Affiliation(s)
- Xiaohong Huang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Todd J Applegate
- Department of Poultry Science, University of Georgia, Athens, 30602, Georgia
| | - Tsang-Long Lin
- Animal Disease Diagnostic Lab, Purdue University, West Lafayette, IN, 47907, USA
| | - Heng-Wei Cheng
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Li S, Yip A, Bird J, Seok BS, Chan A, Godden KE, Tam LD, Ghelardoni S, Balaban E, Martinez-Gonzalez D, Pompeiano M. Melanin-concentrating hormone (MCH) neurons in the developing chick brain. Brain Res 2018; 1700:19-30. [PMID: 30420052 DOI: 10.1016/j.brainres.2018.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 01/09/2023]
Abstract
The present study was undertaken because no previous developmental studies exist on MCH neurons in any avian species. After validating a commercially-available antibody for use in chickens, immunohistochemical examinations first detected MCH neurons around embryonic day (E) 8 in the posterior hypothalamus. This population increased thereafter, reaching a numerical maximum by E20. MCH-positive cell bodies were found only in the posterior hypothalamus at all ages examined, restricted to a region showing very little overlap with the locations of hypocretin/orexin (H/O) neurons. Chickens had fewer MCH than H/O neurons, and MCH neurons also first appeared later in development than H/O neurons (the opposite of what has been found in rodents). MCH neurons appeared to originate from territories within the hypothalamic periventricular organ that partially overlap with the source of diencephalic serotonergic neurons. Chicken MCH fibers developed exuberantly during the second half of embryonic development, and they became abundant in the same brain areas as in rodents, including the hypothalamus (by E12), locus coeruleus (by E12), dorsal raphe nucleus (by E20) and septum (by E20). These observations suggest that MCH cells may play different roles during development in chickens and rodents; but once they have developed, MCH neurons exhibit similar phenotypes in birds and rodents.
Collapse
Affiliation(s)
- SiHan Li
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Alissa Yip
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Jaimie Bird
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Bong Soo Seok
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Aimee Chan
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Kyle E Godden
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Laurel D Tam
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | | | - Evan Balaban
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | | | - Maria Pompeiano
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
5
|
Valero-Gracia A, Marino R, Crocetta F, Nittoli V, Tiozzo S, Sordino P. Comparative localization of serotonin-like immunoreactive cells in Thaliacea informs tunicate phylogeny. Front Zool 2016; 13:45. [PMID: 27708681 PMCID: PMC5041399 DOI: 10.1186/s12983-016-0177-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Thaliaceans is one of the understudied classes of the phylum Tunicata. In particular, their phylogenetic relationships remain an issue of debate. The overall pattern of serotonin (5-HT) distribution is an excellent biochemical trait to interpret internal relationships at order level. In the experiments reported here we compared serotonin-like immunoreactivity at different life cycle stages of two salpid, one doliolid, and one pyrosomatid species. This multi-species comparison provides new neuroanatomical data for better resolving the phylogeny of the class Thaliacea. RESULTS Adults of all four examined thaliacean species exhibited serotonin-like immunoreactivity in neuronal and non-neuronal cell types, whose anatomical position with respect to the nervous system is consistently identifiable due to α-tubulin immunoreactivity. The results indicate an extensive pattern that is consistent with the presence of serotonin in cell bodies of variable morphology and position, with some variation within and among orders. Serotonin-like immunoreactivity was not found in immature forms such as blastozooids (Salpida), tadpole larvae (Doliolida) and young zooids (Pyrosomatida). CONCLUSIONS Comparative anatomy of serotonin-like immunoreactivity in all three thaliacean clades has not been reported previously. These results are discussed with regard to studies of serotonin-like immunoreactivity in adult ascidians. Lack of serotonin-like immunoreactivity in the endostyle of Salpida and Doliolida compared to Pyrosomella verticillata might be the result of secondary loss of serotonin control over ciliary beating and mucus secretion. These data, when combined with other plesiomorphic characters, support the hypothesis that Pyrosomatida is basal to these clades within Phlebobranchiata and that Salpida and Doliolida constitute sister-groups.
Collapse
Affiliation(s)
- Alberto Valero-Gracia
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Rita Marino
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Fabio Crocetta
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, GR-19013 Anavyssos, Greece
| | - Valeria Nittoli
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Stefano Tiozzo
- Observatoire Océanographique, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire de Biologie du Développement de Villefranche-sur-mer, 06230 Villefranche-sur-Mer, France
| | - Paolo Sordino
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
6
|
Kaul-Strehlow S, Urata M, Minokawa T, Stach T, Wanninger A. Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords. ORG DIVERS EVOL 2015. [PMID: 26225120 PMCID: PMC4514687 DOI: 10.1007/s13127-015-0201-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Concerning the evolution of deuterostomes, enteropneusts (acorn worms) occupy a pivotal role as they share some characteristics with chordates (e.g., tunicates and vertebrates) but are also closely related to echinoderms (e.g., sea urchin). The nervous system in particular can be a highly informative organ system for evolutionary inferences, and advances in fluorescent microscopy have revealed overwhelming data sets on neurogenesis in various clades. However, immunocytochemical descriptions of neurogenesis of juvenile enteropneusts are particularly scarce, impeding the reconstruction of nervous system evolution in this group. We followed morphogenesis of the nervous system in two enteropneust species, one with direct (Saccoglossus kowalevskii) and the other with indirect development (Balanoglossus misakiensis), using an antibody against serotonin and electron microscopy. We found that all serotonin-like immunoreactive (LIR) neurons in both species are bipolar ciliary neurons that are intercalated between other epidermal cells. Unlike the tornaria larva of B. misakiensis, the embryonic nervous system of S. kowalevskii lacks serotonin-LIR neurons in the apical region as well as an opisthotroch neurite ring. Comparative analysis of both species shows that the projections of the serotonin-LIR somata initially form a basiepidermal plexus throughout the body that disappears within the trunk region soon after settlement before the concentrated dorsal and ventral neurite bundles emerge. Our data reveal a highly conserved mode of neurogenesis in enteropneusts that is independent of the developing mode and is inferred to be a common feature for Enteropneusta. Moreover, all detected serotonin-LIR neurons are presumably receptor cells, and the absence of serotonin-LIR interneurons from the enteropneust nervous system, which are otherwise common in various bilaterian central nervous systems, is interpreted as a loss that might have occurred already in the last common ancestor of Ambulacraria.
Collapse
Affiliation(s)
- Sabrina Kaul-Strehlow
- Department of Integrative Zoology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Makoto Urata
- Takehara Marine Science Station, Setouchi Field Science Center, Graduate School of Biosphere Science, Hiroshima University, 5-8-1 Minato-machi, Takehara, Hiroshima 725-0024 Japan
| | - Takuya Minokawa
- Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, Aomori 039-3501 Japan
| | - Thomas Stach
- Institute for Biology, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Andreas Wanninger
- Department of Integrative Zoology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
7
|
Alekseyenko OV, Lee C, Kravitz EA. Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS One 2010; 5:e10806. [PMID: 20520823 PMCID: PMC2875409 DOI: 10.1371/journal.pone.0010806] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/02/2010] [Indexed: 11/23/2022] Open
Abstract
Dopamine (DA) and serotonin (5HT) are reported to serve important roles in aggression in a wide variety of animals. Previous investigations of 5HT function in adult Drosophila behavior have relied on pharmacological manipulations, or on combinations of genetic tools that simultaneously target both DA and 5HT neurons. Here, we generated a transgenic line that allows selective, direct manipulation of serotonergic neurons and asked whether DA and 5HT have separable effects on aggression. Quantitative morphological examination demonstrated that our newly generated tryptophan hydroxylase (TRH)-Gal4 driver line was highly selective for 5HT-containing neurons. This line was used in conjunction with already available Gal4 driver lines that target DA or both DA and 5HT neurons to acutely alter the function of aminergic systems. First, we showed that acute impairment of DA and 5HT neurotransmission using expression of a temperature sensitive form of dynamin completely abolished mid- and high-level aggression. These flies did not escalate fights beyond brief low-intensity interactions and therefore did not yield dominance relationships. We showed next that manipulation of either 5HT or DA neurotransmission failed to duplicate this phenotype. Selective disruption of 5HT neurotransmission yielded flies that fought, but with reduced ability to escalate fights, leading to fewer dominance relationships. Acute activation of 5HT neurons using temperature sensitive dTrpA1 channel expression, in contrast, resulted in flies that escalated fights faster and that fought at higher intensities. Finally, acute disruption of DA neurotransmission produced hyperactive flies that moved faster than controls, and rarely engaged in any social interactions. By separately manipulating 5HT- and DA- neuron systems, we collected evidence demonstrating a direct role for 5HT in the escalation of aggression in Drosophila.
Collapse
Affiliation(s)
- Olga V Alekseyenko
- Neurobiology Department, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
8
|
Carrera I, Molist P, Anadón R, Rodríguez-Moldes I. Development of the serotoninergic system in the central nervous system of a shark, the lesser spotted dogfishScyliorhinus canicula. J Comp Neurol 2008; 511:804-31. [DOI: 10.1002/cne.21857] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Localization of CB1 cannabinoid receptor mRNA in the brain of the chick (Gallus domesticus). Brain Res 2008; 1245:61-73. [PMID: 18835551 DOI: 10.1016/j.brainres.2008.09.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 09/10/2008] [Accepted: 09/12/2008] [Indexed: 11/23/2022]
Abstract
The cannabinoid receptor one (CB1) is prevalent in the brains of many species. Receptor binding, in situ hybridization and immunohistochemical surveys have described the distribution of this receptor in a limited number of species. The current study used in situ hybridization to examine the expression of CB1 mRNA in the chick brain, a non-mammalian vertebrate. The results were compared to the observed patterns of expression for CB1 mRNA, protein, and agonist binding that have been reported for other avian species and mammals. Importantly, since CB1 receptors are typically located on neuronal terminals, comparison of the somatic mRNA expression with previously reported descriptions of the location of functional receptors, allows speculation about the circuits that make use of these receptors. The expression pattern for CB1 mRNA appears to be highly conserved across species in key areas such as the cerebellum and portions of the forebrain. For example, high levels of expression were observed in the avian amygdala and hippocampus, areas which express high levels of CB1 in mammals. The avian substantia nigra and ventral tegmental area, however, showed specific labeling. This finding is in stark contrast to the high levels of receptor binding or CB1 protein, but not CB1 mRNA in these areas of the mammalian brain. Moderate labeling was also seen throughout the hyperpallium and mesopallium. Throughout the brain, a number of regions that are known to be involved in visual processing displayed high levels of expression. For example, the tectum also had strong mRNA expression within layers 9-11 of the stratum griseum et fibrosum superficale and stratum album centrale.
Collapse
|
10
|
Transcriptional repression coordinates the temporal switch from motor to serotonergic neurogenesis. Nat Neurosci 2007; 10:1433-9. [DOI: 10.1038/nn1985] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 08/24/2007] [Indexed: 11/08/2022]
|
11
|
Abalo XM, Villar-Cheda B, Meléndez-Ferro M, Pérez-Costas E, Anadón R, Rodicio MC. Development of the serotonergic system in the central nervous system of the sea lamprey. J Chem Neuroanat 2007; 34:29-46. [PMID: 17485194 DOI: 10.1016/j.jchemneu.2007.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/27/2007] [Accepted: 03/31/2007] [Indexed: 11/17/2022]
Abstract
Lampreys belong to the most primitive extant group of vertebrates, the Agnathans, which is considered the sister group of jawed vertebrates. Accordingly, characterization of neuronal groups and their development appears useful for understanding early evolution of the nervous system in vertebrates. Here, the development of the serotonergic system in the central nervous system of the sea lamprey, Petromyzon marinus, was investigated by immunohistochemical analysis of specimens ranging from embryos to adults. The different serotonin-immunoreactive (5-HT-ir) neuronal populations that are found in adults were observed between the embryonic and metamorphic stages. The earliest serotonergic neurons were observed in the basal plate of the isthmus region of late embryos. In prolarvae, progressive appearance of new serotonergic cell groups was observed: firstly in the spinal cord, then in the pineal organ, tuberal region, zona limitans intrathalamica, rostral isthmus, and the caudal part of the rhombencephalon. In early larvae a new group of serotonergic cells was observed in the mammillary region, whereas in the pretectal region and the parapineal organ the first serotonergic cells were seen in the middle and late larval stages, respectively. The first serotonergic fibres appeared in early prolarvae, with fibres that ascend and descend from the isthmic cell group, and the number of immunoreactive fibres increased progressively until the adult stage. The results reveal strong resemblances between lampreys and other vertebrates in the spatio-temporal pattern of development of brainstem populations. This study also reveals a shared pattern of early ascending and descending serotonergic pathways in lampreys and jawed vertebrates.
Collapse
Affiliation(s)
- Xesús M Abalo
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Côté F, Fligny C, Bayard E, Launay JM, Gershon MD, Mallet J, Vodjdani G. Maternal serotonin is crucial for murine embryonic development. Proc Natl Acad Sci U S A 2006; 104:329-34. [PMID: 17182745 PMCID: PMC1713169 DOI: 10.1073/pnas.0606722104] [Citation(s) in RCA: 264] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The early appearance of serotonin and its receptors during prenatal development, together with the many effects serotonin exerts during CNS morphogenesis, strongly suggest that serotonin influences the development and maturation of the mammalian brain before it becomes a neuromodulator/neurotransmitter. Sites of early serotonin biosynthesis, however, have not been detected in mouse embryos or extraembryonic structures, suggesting that the main source of serotonin could be of maternal origin. This hypothesis was tested by using knockout mice lacking the tph1 gene, which is responsible for the synthesis of peripheral serotonin. Genetic crosses were performed to compare the phenotype of pups born from homozygous and heterozygous mothers. Observations provide the first clear evidence that (i) maternal serotonin is involved in the control of morphogenesis during developmental stages that precede the appearance of serotonergic neurons and (ii) serotonin is critical for normal murine development. Most strikingly, the phenotype of tph1-/- embryos depends more on the maternal genotype than on that of the concepti. Consideration of the maternal genotype may thus help to clarify the influence of other genes in complex diseases, such as mental illness.
Collapse
Affiliation(s)
- Francine Côté
- *Université Pierre et Marie Curie, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7091, Hôpital de la Pitié Salpêtrière, Bâtiment CERVI, 83, Boulevard de l'Hôpital, 75013 Paris, France
- To whom correspondence may be addressed. E-mail:
or
| | - Cécile Fligny
- *Université Pierre et Marie Curie, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7091, Hôpital de la Pitié Salpêtrière, Bâtiment CERVI, 83, Boulevard de l'Hôpital, 75013 Paris, France
| | - Elisa Bayard
- *Université Pierre et Marie Curie, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7091, Hôpital de la Pitié Salpêtrière, Bâtiment CERVI, 83, Boulevard de l'Hôpital, 75013 Paris, France
| | - Jean-Marie Launay
- Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75010 Paris, France; and
| | - Michael D. Gershon
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Jacques Mallet
- *Université Pierre et Marie Curie, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7091, Hôpital de la Pitié Salpêtrière, Bâtiment CERVI, 83, Boulevard de l'Hôpital, 75013 Paris, France
- To whom correspondence may be addressed. E-mail:
or
| | - Guilan Vodjdani
- *Université Pierre et Marie Curie, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7091, Hôpital de la Pitié Salpêtrière, Bâtiment CERVI, 83, Boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
13
|
Ten Eyck GR, Ronan PJ, Renner KJ, Summers CH. Serotonin metabolism in directly developing frog embryos during paternal care. Neurosci Lett 2005; 388:100-5. [PMID: 16039059 DOI: 10.1016/j.neulet.2005.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 06/20/2005] [Accepted: 06/22/2005] [Indexed: 10/25/2022]
Abstract
Central serotonin (5-HT) metabolism during embryogenesis and a 3-day post-hatching period was analyzed using high performance liquid chromatography in the directly developing frog, Eleutherodactylus coqui. This anuran bypasses the free-swimming larval stage and embryos hatch as miniature frogs in the adult phenotype. During embryogenesis and for a short time immediately after hatching, male E. coqui provide paternal care by brooding and guarding eggs/embryos to prevent desiccation and predation. Serotonin and its catabolite, 5-HIAA, were measured from whole brain during embryogenesis and at 3 days post-hatch to identify critical periods in 5-HT development and to determine the relationship between 5-HT and life history events such as hatching and frog dispersal from the nest site. Serotonergic activity was highest during the early-mid embryonic stages as indicated by the ratio of 5-HIAA/5-HT, a general indicator of turnover and metabolism. There were significant increases in tissue concentrations of 5-HT during the latest or terminal embryonic stage, just prior to hatching, and also at 3 days post-hatch, shortly before neonates disperse into the rainforest. These two increases probably represent different functional requirements during development. The first may occur as a result of the surge of development in the 5-HT system during late embryogenesis that occurs in E. coqui and the second may be from the increase demand in sensory and motor neural development required before dispersal from the nest site.
Collapse
Affiliation(s)
- Gary R Ten Eyck
- Department of Psychology, Biopsychology Area, The University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
14
|
Ten Eyck GR, Jermakowicz WJ, Chinn AF, Summers CH. Ontogeny of central serotonergic neurons in the directly developing frog, Eleutherodactylus coqui. ACTA ACUST UNITED AC 2005; 210:221-33. [PMID: 16151854 DOI: 10.1007/s00429-005-0022-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
Embryonic development of the central serotonergic neurons in the directly developing frog, Eleutherodactylus coqui, was determined by using immunocytochemistry. The majority of anuran amphibians (frogs) possess a larval stage (tadpole) that undergoes metamorphosis, a dramatic post-embryonic event, whereby the tadpole transforms into the adult phenotype. Directly developing frogs have evolved a derived life-history mode where the tadpole stage has been deleted and embryos develop directly into the adult bauplan. Embryonic development in E. coqui is classified into 15 stages (TS 1-15; 1 = oviposition/15 = hatching). Serotonergic immunoreactivity was initially detected at TS 6 in the raphe nuclei in the developing rhombencephalon. At TS 7, immunopositive perikarya were observed in the paraventricular organ in the hypothalamus and reticular nuclei in the hindbrain. Development of the serotonergic system was steady and gradual during mid-embryogenesis. However, starting at TS 13 there was a substantial increase in the number of serotonergic neurons in the paraventricular, raphe, and reticular nuclei, a large increase in the number of varicose fibers, and a differentiation of the reticular nuclei in the hindbrain. Consequentially, E. coqui displayed a well-developed central serotonergic system prior to hatching (TS 15). In comparison, the serotonergic system in metamorphic frogs typically starts to develop earlier but the surge of development that transpires in this system occurs post-embryonically, during metamorphosis, and not in the latter stages of embryogenesis, as it does in E. coqui. Overall, the serotonergic development in E. coqui is similar to the other vertebrates.
Collapse
Affiliation(s)
- Gary R Ten Eyck
- Department of Psychology, Biopsychology Area, The University of Michigan, Ann Arbor, MI 48109-1109, USA.
| | | | | | | |
Collapse
|
15
|
Larson EB, Schrott LM, Bordone L, Sparber SB. Embryonic cocaine exposure and corticosterone: serotonin(2) receptor mediation. Pharmacol Biochem Behav 2001; 69:71-5. [PMID: 11420070 DOI: 10.1016/s0091-3057(01)00502-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cocaine activates the mature hypothalamic-pituitary-adrenal (HPA) axis, increasing corticosterone concentrations in animals and humans and serotonin(2) receptors (5-HT(2)) are involved in this effect. Although prenatal cocaine exposure is associated with altered responsiveness of the HPA axis to "stress" and serotonergic compounds postnatally, it is unknown whether cocaine directly activates the embryonic HPA axis or if 5-HT(2) receptors are involved. Domestic chicken eggs with viable embryos were exposed to either the 5-HT(2) receptor agonist dimethoxyiodophenylaminopropane (DOI: 0.4, 0.8, or 1.2 mg/kg egg) or saline on embryonic day 18 (E18). In a second study, the 5-HT(2) antagonist ritanserin (0.3 mg/kg egg, a dose found effective against other effects of DOI or cocaine) or vehicle was administered on E17, prior to treatment on E18 with either saline or cocaine (5 injections of 12 mg/kg egg, equivalent to a total dose of 3.5 mg/egg). Radioimmunoassay was used to measure serum corticosterone from blood samples taken approximately 1-2 h after drug injections. DOI significantly raised corticosterone in a dose-related fashion. Cocaine-induced corticosterone elevations were blocked by pretreatment with ritanserin, whereas ritanserin by itself did not affect corticosterone concentrations. These data indicate that 5-HT(2) receptors are involved in cocaine's effect on the HPA axis during late chicken embryogenesis.
Collapse
Affiliation(s)
- E B Larson
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
16
|
Puelles E, Rubenstein JL, Puelles L. Chicken Nkx6.1 expression at advanced stages of development identifies distinct brain nuclei derived from the basal plate. Mech Dev 2001; 102:279-82. [PMID: 11287211 DOI: 10.1016/s0925-4773(01)00313-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study of the embryonic chicken central nervous system defines previously unknown domains of neuroepithelial Nkx6.1 expression in neuroepithelial progenitors and identifies nuclei that express Nkx6.1 at progressively more advanced stages of central nervous system development.
Collapse
Affiliation(s)
- E Puelles
- Department of Morphological Sciences, Faculty of Medicine, University of Murcia, E30100, Murcia, Spain
| | | | | |
Collapse
|
17
|
Abstract
The pattern of development of the serotonergic nervous system is described from the larvae of ctenophores, platyhelminths, nemerteans, entoprocts, ectoprocts (bryozoans), molluscs, polychaetes, brachiopods, phoronids, echinoderms, enteropneusts and lampreys. The larval brain (apical ganglion) of spiralian protostomes (except nermerteans) generally has three serotonergic neurons and the lateral pair always innervates the ciliary band of the prototroch. In contrast, brachiopods, phoronids, echinoderms and enteropneusts have numerous serotonergic neurons in the apical ganglion from which the ciliary band is innervated. This pattern of development is much like the pattern seen in lamprey embryos and larvae, which leads the author to conclude that the serotonergic raphe system found in vertebrates originated in the larval brain of deuterostome invertebrates. Further, the neural tube of chordates appears to be derived, at least in part, from the ciliary band of deuterostome invertebrate larvae. The evidence shows no sign of a shift in the dorsal ventral orientation within the line leading to the chordates.
Collapse
Affiliation(s)
- A Hay-Schmidt
- Department of Medical Anatomy B, The Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
18
|
Vanhatalo S, Soinila S. Intrahypothalamic Serotonergic Neurons. Nutr Neurosci 1999; 2:403-12. [PMID: 27416052 DOI: 10.1080/1028415x.1999.11747294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Serotonin's role as a neuronal transmitter was established already forty years ago, and the anatomy and many of the functions of the major serotonergic systems have been carefully mapped. The intimate association of serotonergic mechanisms with central control of food intake has also been extensively studied. While the present concepts of serotonergic functions rely on the ascending, raphe nuclei-originating serotonergic pathways, there is an accumulating evidence to support that hypothalamic neurons may also exhibit many features normally attributed to serotonergic neurons only. Neurons in the hypothalamic arcuate and periventricular nuclei express tryptophan hydroxylase, the serotonin synthesizing enzyme, while they do not transport or synthesize serotonin. On the other hand, dorsomedial nucleus contains a select population of neurons that do actively accumulate serotonin, while they do not express tryptophan hydroxylase. These and some other serotonin-associated features of the hypothalamic neuronal groups are discussed. Finally the present data is projected against the prevailing concept of hypothalamic regulation of food intake.
Collapse
Affiliation(s)
- S Vanhatalo
- a Department of Anatomy , Institute of Biomedicine, University of Helsinki , P.O. Box 9, 00014 University of Helsinki , Finland.,b Unit of Child Neurology , Hospital for the Children and Adolescent , P.O. Box 21, 00029, Huch , Finland
| | - S Soinila
- a Department of Anatomy , Institute of Biomedicine, University of Helsinki , P.O. Box 9, 00014 University of Helsinki , Finland.,c Department of Neurology , University of Helsinki , Helsinki , Finland
| |
Collapse
|
19
|
Vanhatalo S, Soinila S. Serotonin is not synthesized, but specifically transported in the neurons of the hypothalamic dorsomedial nucleus. Eur J Neurosci 1998; 10:1930-5. [PMID: 9751163 DOI: 10.1046/j.1460-9568.1998.00217.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A small group of neurons in the hypothalamic dorsomedial nucleus (DMN) have been reported to contain serotonin after pharmacological treatments enhancing brain serotonin levels. This study aimed at elucidating whether these neurons are able to synthesize serotonin de novo, and whether they possess a specific serotonin transport mechanism. Serotonin content in these neurons was raised by administration of L-tryptophan and pargyline. Double immunostaining for serotonin and tryptophan hydroxylase (TpOH), the serotonin synthesizing enzyme, revealed that none of the serotonin-containing neuronal somata expressed TpOH. Intracerebroventricular colchicine treatment did not result in TpOH-IR in these neurons. Fluoxetine, a specific serotonin transport inhibitor, prevented the accumulation of serotonin in these neurons. The present results thus indicate that the serotonin-containing DMN neurons are not able to synthesize serotonin. Instead, they take up exogenous serotonin via a specific serotonin transport mechanism. As serotonin and DMN are associated with various physiological functions, such as regulation of food intake and modulation of fear and anxiety, the mechanisms revealed in the present study may participate in these clinically important brain functions.
Collapse
Affiliation(s)
- S Vanhatalo
- Department of Anatomy, Institute of Biomedicine, University of Helsinki, Finland.
| | | |
Collapse
|
20
|
Abstract
Cerebrospinal fluid (CSF)-contacting neurons form a part of the circumventricular organs of the central nervous system. Represented by different cytologic types and located in different regions, they constitute a CSF-contacting neuronal system, the most central periventricular ring of neurons in the brain organized concentrically according to our concept. Because the central nervous system of deuterostomian echinoderm starfishes and the prochordate lancelet is composed mainly of CSF-contacting-like neurons, we hypothesize that this cell type represents ancient cells, or protoneurons, in the vertebrate brain. Neurons may contact the ventricular CSF via their dendrites, axons, or perikarya. Most of the CSF-contacting nerve cells send their dendritic processes into the ventricular cavity, where they form ciliated terminals. These ciliated endings resemble those of known sensory cells. By means of axons, the CSF-contacting neurons also may contact the external CSF space, where the axons form terminals of neurohormonal type similar to those known in the neurohemal areas. The most simple CSF-contacting neurons of vertebrates are present in the terminal filum, spinal cord, and oblongate medulla. The dendritic pole of these medullospinal CSF-contacting neurons terminates with an enlargement bearing many stereocilia in the central canal. These cells are also supplied with a 9 x 2 + 2 kinocilium that may contact Reissner's fiber, the condensed secretory material of the subcommissural organ. The Reissner's fiber floating freely in the CSF leaves the central canal at the caudal open end of the terminal filum in lower vertebrates, and open communication is thus established between internal CSF and the surrounding tissue spaces. Resembling mechanoreceptors cytologically, the spinal CSF-contacting neurons send their axons to the outer surface of the spinal cord to form neurosecretory-type terminals. They also send collaterals to local neurons and to higher spinal segments. In the hypothalamic part of the diencephalon, neurons of two circumventricular organs, the paraventricular organ and the vascular sac, of the magnocellular neurosecretory nuclei and several parvocellular nuclei, form CSF-contacting dendritic terminals. A CSF-contacting neuronal area also was found in the telencephalon. The CSF-contacting dendrites of all these areas bear solitary 9 x 2 + 0 cilia and resemble chemoreceptors and developing photoreceptors cytologically. In electrophysiological experiments, the neurons of the paraventricular organ are highly sensitive to the composition of the ventricular CSF. The axons of the CSF-contacting neurons of the paraventricular organ and hypothalamic nuclei terminate in hypothalamic synaptic zones, and those of magno- and parvocellular neurosecretory nuclei also form neurohormonal terminals in the median eminence and neurohypophysis. The axons of the CSF-contacting neurons of the vascular sac run in the nervus and tractus sacci vasculosi to the nucleus (ganglion) sacci vasculosi. Some hypothalamic CSF-contacting neurons contain immunoreactive opsin and are candidates to represent the "deep encephalic photoreceptors." In the newt, cells derived from the subependymal layer develop photoreceptor outer segments protruding to the lumen of the infundibular lobe under experimental conditions. Retinal and pineal photoreceptors and some of their secondary neurons possess common cytologic features with CSF-contacting neurons. They contact the retinal photoreceptor space and pineal recess, respectively, both cavities being derived from the third ventricle. In addition to ciliated dendritic terminals, there are intraventricular axons and neuronal perikarya contacting the CSF. Part of the CSF-contacting axons are serotoninergic; their perikarya are situated in the raphe nuclei. Intraventricular axons innervate the CSF-contacting dendrites, intraventricular nerve cells, and/or the ventricular surface of the ependyma. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- B Vigh
- Department of Human Morphology and Developmental Biology, Semmelweis University Medical School, Budapest, Hungary
| | | |
Collapse
|
21
|
Marracci S, Cini D, Nardi I. Cloning and developmental expression of 5-HT1A receptor gene in Xenopus laevis. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 47:67-77. [PMID: 9221903 DOI: 10.1016/s0169-328x(97)00052-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of our work is to investigate the potential involvement of serotonin and its G-protein-coupled receptors in neural differentiation or other developmental processes in Xenopus laevis. By using a RT-PCR strategy, we isolated a cDNA fragment from X. laevis brain showing high amino-acid similarity with the mammalian 5-HT1A receptor. We used this fragment to isolate a cDNA clone containing a single ORF of 408 amino-acids with an overall amino-acid identity of 73% with the human and rat 5-HT1A receptor. This structural similarity suggests that this clone encodes the Xenopus homolog of the mammalian 5-HT1A receptor (X5-HT1A). In order to establish a possible role for this receptor in development, we analyzed the pattern of its gene expression during embryogenesis, larval stages and in adult brain by in situ hybridization. The first signal of mRNA expression appears in the rostral part of brain stem at stage 22, when the first neurons start differentiation [38,21]. In later stages of development, the cells expressing X5-HT1A transcripts appear to correspond to serotonergic neurons. By stage 41, X5-HT1A mRNA is also detected in the inner nuclear layer (INL) of the developing retina. This pattern of expression is maintained until stage 46, i.e. at the beginning of metamorphosis. In adult, additional brain areas express X5-HT1A mRNA, particularly in telencephalon, diencephalon and mesencephalon. On the whole, our data show that the X5-HT1A receptor mRNA is developmentally regulated, with expression first appearing in differentiating serotonergic neurons, where this receptor may mediate, through an autocrine regulatory pathway, the trophic action of serotonin on developing serotonergic system.
Collapse
Affiliation(s)
- S Marracci
- Laboratori di Biologia Cellulare e dello Sviluppo, Dipartimento di Fisiologia e Biochimica, Pisa, Italy
| | | | | |
Collapse
|
22
|
Challet E, Miceli D, Pierre J, Repérant J, Masicotte G, Herbin M, Vesselkin NP. Distribution of serotonin-immunoreactivity in the brain of the pigeon (Columba livia). ANATOMY AND EMBRYOLOGY 1996; 193:209-27. [PMID: 8881471 DOI: 10.1007/bf00198325] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
The distribution of serotonin (5-HT)-containing perikarya, fibers and terminals in the brain of the pigeon (Columba livia) was investigated, using immunohistochemical and immunofluorescence methods combined with retrograde axonal transport. Twenty-one different groups of 5-HT immunoreactive (IR) cells were identified, 2 of which were localized at the hypothalamic level (periventricular organ, infundibular recess) and 19 at the tegmental-mesencephalic and rhombencephalic levels. Ten of the cell groups were situated within the region of the midline from the isthmic to the posterior rhombencephalic level and constituted the raphe system (nucleus annularis, decussatio brachium conjunctivum, area ventralis, external border of the nucleus interpeduncularis, zona peri-nervus oculomotorius, zona perifasciculus longitudinalis medialis, zona inter-flm, nucleus linearis caudalis, nucleus raphe superior pars ventralis, nucleus raphe inferior). The 9 other cell populations belonged to the lateral group and extended from the posterior mesencephalic tegmentum to the caudal rhombencephalon [formatio reticularis mesencephali, nucleus ventrolateralis tegmenti, ectopic area (Ec) of the nucleus isthmo-opticus (NIO), nucleus subceruleus, nucleus ceruleus, nucleus reticularis pontis caudalis, nucleus vestibularis medialis, nucleus reticularis parvocellularis and nucleus reticularis magnocellularis]. Combining the retrograde axonal transport of rhodamine beta-isothiocyanate (RITC) after intraocular injection and immunohistofluorescence (fluoresceine isothiocyanate: FITC/5-HT) showed the centrifugal neurons (NIO, Ec) to be immunonegative. Serotonin-IR fibers and terminals were found to be very broadly distributed within the brain and were particularly prominent in several structures of the telencephalon (archistriatum pars dorsalis, nucleus taeniae, area parahippocampalis, septum), diencephalon (nuclei preopticus medianus, magnocellularis, nucleus geniculatus lateralis pars ventralis, nucleus triangularis, nucleus pretectalis), mesencephalon-rhombencephalon (superficial layers of the optic tectum, nucleus ectomamillaris, nucleus isthmo-opticus and in most of the cranial nerve nuclei). Comparing the present results with those of previous studies in birds suggests some major serotonin-containing pathways in the avian brain and clarifies the possible origin of the serotonin innervation of some parts of the brain. Moreover, comparing our results in birds with those obtained in other vertebrate species shows that the organization of the serotoninergic system in many regions of the avian brain is much like that found in reptiles and mammals.
Collapse
Affiliation(s)
- E Challet
- Laboratoire de Neuromorphologie, INSERM U 106, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Toledo CA, Hamassaki-Britto DE, Britto LR. Serotonergic afferents of the pigeon accessory optic nucleus. Brain Res 1995; 705:341-4. [PMID: 8821767 DOI: 10.1016/0006-8993(95)01243-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Injections of a retrograde tracer into the accessory optic nucleus of the basal optic root (nBOR) of the pigeon, combined with 5-HT immunochemistry, revealed that serotonergic projections to the nBOR appeared to originate mainly from the median (MR) and paramedian (PMR) raphe nuclei. These projections were confirmed by the significant decrease in 5-HT immunoreactivity observed in nBOR after lesions in MR and PMR. These data characterize distinct sources of 5-HT innervation to the pigeon nBOR and suggest that those afferents could represent part of a modulatory system that contributes to the role of the nBOR in optokinetic mechanisms.
Collapse
Affiliation(s)
- C A Toledo
- Department of Physiological Sciences, Federal University of Santa Catarina, Brazil
| | | | | |
Collapse
|
24
|
Liu S, Nordlander RH. Growth cones and axon trajectories of the earliest descending serotonergic pathway of Xenopus. Neuroscience 1995; 69:309-20. [PMID: 8637628 DOI: 10.1016/0306-4522(95)00224-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- S Liu
- Department of Oral Biology, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
25
|
Guglielmone R. Cerebrospinal fluid-contacting neurons in the paraventricular organ and in the spinal cord of the quail embryo: a fluorescence-histochemical study. Cell Tissue Res 1995; 281:163-8. [PMID: 7621520 DOI: 10.1007/bf00307970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although the cerebrospinal fluid-contacting neurons of the avian paraventricular organ exhibit considerable amounts of catecholamines, they show no tyrosine hydroxylase immunoreactivity. In the quail embryo, the development of these neurons has been studied using the paraformaldeyde-glutaraldeyde method for the fluorescence-histochemical localization of catecholamines. The timing of the appearance of catecholamine fluorescence in cerebrospinal fluid-contacting neurons and that in catecholamine-containing neurons of the brainstem have been compared. The first neurons displaying catecholamine fluorescence are found within the locus coeruleus and the nucleus subcoeruleus ventralis on the 5.5th day of incubation. Catecholaminergic neuronal groups of the medulla and mesencephalon can be identified by embryonic day 7, and fluorescent cerebrospinal fluid-contacting neurons of the hypothalamic paraventricular organ can be first recognized at the 8th day of incubation. If the catecholamine content of cerebrospinal fluid-contacting neurons that lack tyrosine hydroxylase depends upon an uptake mechanism, it may be significant that, in fluorescence-histochemical preparations, these neurons can be identified 1-3 days later than those in which catecholamines are synthesized and from which catecholamines are released at an earlier developmental stage. Moreover, cerebrospinal fluid-contacting neurons that have previously been shown to be tyrosine-hydroxylase immunoreactive, and that lie at the spinal-medullary junction display a different developmental pattern. By fluorescence histochemistry, they can be detected only by embryonic day 10.5. The chemical, developmental and topographical differences suggest that the catecholamine-containing cerebrospinal fluid-contacting elements of the paraventricular organ and those of the spinal cord represent two different subsets of cerebrospinal fluid-contacting neurons whose respective functional roles remain to be investigated.
Collapse
Affiliation(s)
- R Guglielmone
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Ospedale San Luigi Gonzaga, Italy
| |
Collapse
|
26
|
Ekström P. Developmental changes in the brain-stem serotonergic nuclei of teleost fish and neural plasticity. Cell Mol Neurobiol 1994; 14:381-93. [PMID: 7788645 DOI: 10.1007/bf02088718] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
1. During early ontogeny, the serotonergic neurons in the brain stem of the three-spined stickleback shows a temporal and spatial developmental pattern that closely resembles that of amniotes. 2. However, in the adult fish, only the midline nuclei of the rostral group (dorsal and median raphe nuclei) and the dorsal lateral tegmental nucleus are consistently serotonin-immunoreactive (5-HTir), whereas the groups of the upper and lower rhombencephalon (raphe pontis, raphe magnus, and raphe pallidus/obscurus nuclei) are variable and, when present, contain relatively small numbers of 5-HTir neurons. 3. Using specific antisera against tryptophan 5-hydroxylase and aromatic L-amino acid decarboxylase, we have shown that the lateral B9 group and the groups of the upper and lower rhombencephalon are consistently present in adult sticklebacks. The results are discussed in relation to other known instances of neurotransmitter plasticity or transient neurotransmitter expression in teleost fish. 4. While there are several instances of transient expression of neurotransmitter markers by discrete neuronal populations, there is so far no evidence of changes from one neurotransmitter phenotype to another in the brain of teleost fish. However, there are indications of plasticity of expression of catecholamines and indoleamines, and their respective synthesizing enzymes, as reflected in age-dependent changes and variation between individuals of different physiological status. 5. As the brain grows continuously in teleost fish, and new neurons are added from proliferative regions, synaptic connections may be expected to undergo remodeling in all brain regions throughout life. Thus, the teleostean brain may be considered a suitable model for experimental studies of different aspects of neural plasticity.
Collapse
Affiliation(s)
- P Ekström
- Department of Zoology, University of Lund, Sweden
| |
Collapse
|
27
|
Jessell TM, Dodd J. Midline signals that control the dorso-ventral polarity of the neural tube. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/1044-5765(92)90021-s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Beltz BS, Helluy SM, Ruchhoeft ML, Gammill LS. Aspects of the embryology and neural development of the American lobster. ACTA ACUST UNITED AC 1992; 261:288-97. [PMID: 1352795 DOI: 10.1002/jez.1402610308] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is feasible to study the anatomical, physiological, and biochemical properties of identifiable neurons in lobster embryos. To exploit fully the advantages of this preparation and to lay the foundation for single-cell studies, our recent goals have been to 1) establish a quantitative staging system for embryos, 2) document in detail the lobster's embryonic development, 3) determine when uniquely identifiable neurons first acquire their transmitter phenotypes, and 4) identify particular neurons that may serve developmental functions. Behavioral, anatomical, morphometric, and immunocytochemical studies have led to a detailed characterization of the growth and maturation of lobster embryos and to the adoption of a percent-staging system based upon the eye index of Perkins (Fish. Bull., 70:95-99, 1972). It is clear from these studies that the lobster nauplius molts at approximately 12% embryonic development (E12%) into a metanauplius, which subsequently undergoes a complete molt cycle within the egg. This molt cycle climaxes with the emergence of the first-stage larva shortly after hatching. Serotonin and proctolin, neurohormones widely distributed in the lobster nervous system, appear at different times in development. Serotonin immunoreactive neurons begin to appear at approximately E10%, with the adult complement being established by E50%. In contrast, proctolin immunoreactive neurons appear later and attain their full complement over a protracted period including larval and juvenile stages. The development of serotonergic deutocerebral neurons and their targets, the olfactory and accessory lobes in the brain, are also examined. The olfactory lobes are forming by E10% and have acquired their glomerular organization by E50%, whereas the formation of the accessory lobes is delayed; the early rudiments of the accessory lobes are seen by E50%, and glomeruli do not form until the second larval stage.
Collapse
Affiliation(s)
- B S Beltz
- Department of Biological Sciences, Wellesley College, Massachusetts 02181
| | | | | | | |
Collapse
|
29
|
Pierre J, Repérant J, Ward R, Vesselkin NP, Rio JP, Miceli D, Kratskin I. The serotoninergic system of the brain of the lamprey, Lampetra fluviatilis: an evolutionary perspective. J Chem Neuroanat 1992; 5:195-219. [PMID: 1418750 DOI: 10.1016/0891-0618(92)90046-s] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The distribution of serotonin(5HT)-immunoreactive cell bodies, nerve fibers and terminals was investigated by light microscopy in the lamprey Lampetra fluviatilis. Twenty-three distinct groups of 5HT neuronal somata were identified from diencephalic to rhombencephalic levels in the brain. The diencephalon contained a subependymal population of immunoreactive cells in contact with the cerebrospinal fluid (CSF), which could be subdivided into five separate groups situated in the hypothalamus and ventral thalamus; five additional groups of immunoreactive diencephalic neurons, situated in the dorsal thalamus and thalamo-pretectum, which were not in contact with the CSF, were also identified. In the midbrain, in addition to a few labelled neurons in the optic tectum, two structures containing immunoreactive cells were identified in the tegmentum mesencephali. None of these 5HT cells corresponded to the retinopetal neurons which are situated in the same region. A very large number of 5HT neurons were observed in the hindbrain which could be divided into seven groups in the isthmus rhombencephali and a further three in the rhombencephalon proper. Immunoreactive fibers and terminals were widely distributed throughout the neuraxis. In the telencephalon two 5HT fibers assemblies, lateral and medial, could be identified which terminated in both pallial and subpallial structures. The richest serotoninergic innervation in the telencephalon was found in the lateral portion of the primordium hippocampi and the medial part of the corpus striatum. In the diencephalon, the distribution of immunoreactive fibers and terminals was heterogeneous, being most pronounced in the lateral hypothalamic area and in the infundibulum. The densest arborization of fibers in the mesencephalon was found in the stratum fibrosum et cellulare externum of the optic tectum, a major site of retinal projection, and in the nucleus interpeduncularis mesencephali as well as in the oculomotor nuclei. The rhombencephalon is richly endowed with serotoninergic fibers and terminals, many labelled arborizations being found in the nuclei isthmi rhombencephali and around the nucleus motorius nervi trigemini. Comparative analysis of the serotoninergic systems of petromyzontiforms and gnathostomes indicates that the evolution of this system involves a progressive elimination of the rostral immunoreactive cells and an increasing complexity of the caudal population of serotoninergic neurons.
Collapse
Affiliation(s)
- J Pierre
- INSERM U-106, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Okado N, Sako H, Homma S, Ishikawa K. Development of serotoninergic system in the brain and spinal cord of the chick. Prog Neurobiol 1992; 38:93-123. [PMID: 1736325 DOI: 10.1016/0301-0082(92)90036-e] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
(1) Development of serotonin positive cells and fibers was immunohistochemically studied by the use of an antibody against serotonin. (2) Serotoninergic neurons were first observed in the immature rohmbencephalon raphe nuclei on embryonic day (E)4, where two clusters of serotonin positive neurons were located: one observed at the rostral part of the rohmbencephalon corresponding to the dorsal raphe nuclei had many serotonin positive cells: the other located at the caudal part of the rohmbencephalon corresponding to the medullary raphe nuclei of the adult animals had only a small number of serotoninergic cells. (3) By E8 the number of serotonin positive cells in the brain stem increased, and virtually all the raphe nuclei found in an adult animal were located. (4) Serotonin positive fibers in the marginal layer reached up to the diencephalon and telencephalon on E6 and E8, respectively. (5) Serotonin positive cells were found beside the midline regions in the ventral part of the spinal cord of the embryonic as well as posthatching chick. (6) Because almost all the serotoninergic fibers in the spinal cord originated from the brain stem raphe nuclei, propriospinal serotonin positive cells were considered as phylogenetic vestiges. (7) Serotoninergic fibers were first found in the marginal layer of the cervical and lumbar spinal cord on E6 and E8, respectively. (8) There was a waiting period of a few days before they penetrated into the mantle layer. (9) Terminal arbolization of the serotoninergic fibers started from late embryonic periods (E16 less than), and was maximized within one week of hatching. (10) Thereafter the density of serotonin positive fibers decreased in all the regions of the spinal cord. (11) Developmental changes of the density of serotonin determined with a high performance liquid chromatography were the same as those determined through immunohistochemistry. Namely the density of serotonin increased linearly from E6 to hatching period, and reached the maximum value one week posthatching. (12( The density of the serotonin in the adult spinal cord was about half of the maximum value. (13) It is to say that the densities of serotonin and serotoninergic fibers transiently increased around one week posthatching. (14) Following the transient increase serotoninergic fibers were eliminated from the neuropil, the fibers were localized in the specific regions of the motor nucleus: motor neuron pools of extensor muscles of the hip joint in the lumbosacral spinal cord.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- N Okado
- Department of Anatomy, University of Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
31
|
|
32
|
Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 1991; 64:635-47. [PMID: 1991324 DOI: 10.1016/0092-8674(91)90247-v] [Citation(s) in RCA: 567] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Individual classes of neural cells differentiate at distinct locations in the developing vertebrate nervous system. We provide evidence that the pattern of cell differentiation along the dorsoventral axis of the chick neural tube is regulated by signals derived from two ventral midline cell groups, the notochord and floor plate. Grafting an additional notochord or floor plate to ectopic positions, or deleting both cell groups, resulted in changes in the fate and position of neural cell types, defined by expression of specific antigens. These results suggest that the differentiation of neural cells is controlled, in part, by their position with respect to the notochord and floor plate.
Collapse
|
33
|
Cozzi B, Viglietti-Panzica C, Aste N, Panzica GC. The serotoninergic system in the brain of the Japanese quail. An immunohistochemical study. Cell Tissue Res 1991; 263:271-84. [PMID: 2007251 DOI: 10.1007/bf00318769] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The presence and topographical localization of the serotoninergic system in the brain of the Japanese quail (Coturnix coturnix japonica) have been studied by means of peroxidase-anti-peroxidase immunocytochemistry. The perimeter, diameter, area, and shape factor of immunoreactive cells have been recorded and analyzed morphometrically for intra- and interspecies comparison. The data reported here confirm and extend results previously obtained in the brain of other avian species. Serotonin-immunoreactive neurons of the quail are mainly located in the hypothalamic paraventricular organ and adjacent areas, and in the brainstem where they form three separate groups. The first of these groups consists of small-sized neurons located in the ventro-rostral mesencephalon. The second group is composed of medium-sized neurons located in the dorsal mesencephalo-pontine region. The third group is also formed by medium-sized neurons, and is located ventrally in the ponto-medullary region. In the quail brain, serotoninergic neurons are not restricted to nuclei located in the vicinity of the midsagittal plane, but show some lateralization, especially in the brainstem. The organization of the different groups of immunoreactive neurons based on this topographical distribution and morphometric analysis has been compared with descriptions of the serotoninergic system in other birds. Serotonin-immunoreactive nerve fibers are widely distributed throughout the brain, but appear to be particularly abundant in regions involved in the control of reproductive activities, such as the septal region, the medial preoptic nucleus, the nucleus intercollicularis, and the external zone of the median eminence. The data reported here have allowed the drawing of a map of serotonin-immunoreactive structures.
Collapse
Affiliation(s)
- B Cozzi
- Institute of Anatomy of Domestic Animals, University of Milano, Italy
| | | | | | | |
Collapse
|
34
|
Beltz BS, Pontes M, Helluy SM, Kravitz EA. Patterns of appearance of serotonin and proctolin immunoreactivities in the developing nervous system of the American lobster. JOURNAL OF NEUROBIOLOGY 1990; 21:521-42. [PMID: 2376728 DOI: 10.1002/neu.480210402] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Serotonin (5-HT) and proctolin, neurohormones widely distributed in the lobster nervous system, have been implicated in a variety of behaviors and also are known to coexist in large pairs of identified neurons in the fifth thoracic (T5) and first abdominal ganglia (A1) of adults (Siwicki, Beltz, and Kravitz, 1987). Earlier studies also have shown that these paired neurons already contain 5-HT in embryos approximately halfway through development, whereas proctolin immunoreactivity does not appear in these cells until near the time of hatching (Beltz and Kravitz, 1987a). In the current studies, the brain and ventral nerve cord have been screened for the appearance of serotonin and proctolin immunoreactivities using immunocytochemical and biochemical methods, in order to determine whether the late appearance of proctolin in the paired T5 and A1 cells is a general feature of development in other neurons as well. In embryos approximately halfway through development, the adult complement of 5-HT-staining cells is already present. In several cases, embryonic serotonin cells are proportionally very large and prominent, suggesting possible developmental roles. In contrast to serotonin, fewer than 10% of the proctolin-staining neurons of juvenile animals are seen in embryos halfway through development. The number of immunoreactive cells gradually increases, but even by the sixth larval stage only half the number of cells that will eventually stain for proctolin are observed. Therefore, the developmental appearance of proctolin in lobster neurons, assayed using immunocytochemical methods, is relatively late and protracted compared to the appearance of serotonin. Quantitative measurements for 5-HT in lobster larvae were performed using high pressure liquid chromatography (HPLC) with dual electrochemical detection and for proctolin using radioimmunoassay. A gradual, probably growth-related increase in the amounts of serotonin and proctolin were seen during larval development. The implications of the biochemical data, in light of the immunocytochemical studies, are discussed.
Collapse
Affiliation(s)
- B S Beltz
- Biology Department, Wellesley College, Massachusetts 02181
| | | | | | | |
Collapse
|
35
|
Phelps PE, Barber RP, Brennan LA, Maines VM, Salvaterra PM, Vaughn JE. Embryonic development of four different subsets of cholinergic neurons in rat cervical spinal cord. J Comp Neurol 1990; 291:9-26. [PMID: 2298930 DOI: 10.1002/cne.902910103] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The developmental stage at which a neuron becomes committed to a neurotransmitter phenotype is an important time in its ontogenetic history. The present study examines when choline acetyltransferase (ChAT) is first detected within each of four different subsets of cholinergic neurons previously identified in the cervical enlargement of the spinal cord: namely, motor neurons, partition cells, central canal cluster cells, and dorsal horn neurons. By examining the temporal sequence of embryonic development of these cholinergic neurons, we can infer the relationships between ChAT expression and other important developmental events. ChAT was first detected reliably on embryonic day 13 (E13) by both biochemical and immunocytochemical methods, and it was localized predominantly within motor neurons. A second group of primitive-appearing ChAT-positive cells was detected adjacent to the ventricular zone on E14. These neurons seemed to disperse laterally into the intermediate zone by E15, and, on the basis of their location, were tentatively identified as partition cells. A third group of primitive ChAT-immunoreactive cells was detected on E16, both within and around the ventral half of the ventricular zone. By E17, some members of this "U"-shaped group appeared to have dispersed dorsally and laterally, probably giving rise to dorsal horn neurons as well as dorsal central canal cluster cells. Other members of this group remained near the ventral ventricular zone, most likely differentiating into ventral central canal cluster cells. Combined findings from the present study and a previous investigation of neurogenesis (Phelps et al.: J. Comp. Neurol. 273:459-472, '88), suggest that premitotic precursor cells have not yet acquired the cholinergic phenotype because ChAT is not detectable until after the onset of neuronal generation for each of the respective subsets of cholinergic neurons. However, ChAT is expressed in primitive bipolar neurons located within or adjacent to the germinal epithelium. Transitional stages of embryonic development suggest that these primitive ChAT-positive cells migrate to different locations within the intermediate zone to differentiate into the various subsets of mature cholinergic neurons. Therefore, it seems likely that spinal cholinergic neurons are committed to the cholinergic phenotype at pre- or early migratory stages of their development. Our results also hint that the subsets of cholinergic cells may follow different migration routes. For example, presumptive partition cells may use radial glial processes for guidance, whereas dorsal horn neurons may migrate along nerve fibers of the commissural pathway. Cell-cell interactions along such diverse migratory pathways could play a role in determining the different morphological, and presumably functional, phenotypes expressed by spinal cholinergic neurons.
Collapse
Affiliation(s)
- P E Phelps
- Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | | | | | | | | |
Collapse
|
36
|
Okado N, Shibanoki S, Ishikawa K, Sako H. Developmental changes in serotonin levels in the chick spinal cord and brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1989; 50:217-23. [PMID: 2611984 DOI: 10.1016/0165-3806(89)90197-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developmental changes in 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in the developing chick spinal cord and brain were examined using high-performance liquid chromatography with electrochemical detection and immunohistochemistry. On embryonic day (E)6 only small amounts of 5-HT (0.086 ng) and 5-HIAA (0.0144 ng) were found in the spinal cord. By contrast, large amounts of 5-HT (x30) and 5-HIAA (x60) were detected in non-neuronal tissue outside the spinal cord; a similar distribution of 5-HT was also detected by immunohistochemistry. Up to E10, the highest concentrations of 5-HT in the spinal cord were found in the cervical region, followed by the thoracic and lumbar regions. In embryos older than E16, as well as in posthatched chicks, however, the highest and lowest concentrations of 5-HT were found in the lumbar and thoracic spinal cord, respectively. The concentration of spinal cord 5-HT reached maximal values on posthatching day (P)7, after which there was a marked decrease. By P120, 5-HT levels in the spinal cord decreased to the same level as on E10-E16. Concentrations in the brain, however, gradually increased with development. The basic pattern of development of 5-HIAA was similar to that of 5-HT.
Collapse
Affiliation(s)
- N Okado
- Department of Anatomy, University of Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
37
|
Alesci R, Raffaelli A, Bagnoli P. Developmental changes of serotonin and 5-hydroxyindoleacetic acid levels in specific regions of the pigeon central nervous system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1989; 48:151-6. [PMID: 2473856 DOI: 10.1016/0165-3806(89)90099-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels were determined in the visual Wulst, optic lobes, retina, cerebellum and brainstem of the pigeon during embryonic and posthatching periods. 5-HT content increased during development in almost all regions. 5-HIAA content generally showed the highest values within the second posthatching week and then decreased to reach adult values. The high 5-HT turnover (as indicated by high (5-HIAA/5-HT ratio) observed over the first posthatching week suggests a possible role of 5-HT on developmental processes which occur in pigeon visual areas over the same time.
Collapse
Affiliation(s)
- R Alesci
- Department of Physiology and Biochemistry, University of Pisa, Italy
| | | | | |
Collapse
|
38
|
Radwan WA, Granger NA, Lauder JM. Development and distribution of serotonin in the central nervous system of Manduca sexta during embryogenesis. I. The brain and frontal ganglion. Int J Dev Neurosci 1989; 7:27-41. [PMID: 2711867 DOI: 10.1016/0736-5748(89)90042-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Development of the serotonergic system in the brain and frontal ganglion of the Manduca embryo between 35 and 100% of development was studied immunocytochemically with an antiserum to serotonin (5-HT). Serotonin immunoreactivity was initially detectable at 40-45% development in short fibers in the head region, prior to differentiation of the brain. Immunoreactive cell bodies were first seen in the brain at 60% development, located in the protocerebrum and tritocerebrum. Thick fiber tracts crossing the midline (commissures) could also be observed at this early stage. As development of the embryo progressed, eight immunoreactive cell groups, containing a total of about 38-40 cells, and four commissures with terminal arborizations appeared successively in the brain. From 75 to 100% development, no obvious changes occurred in the number or distribution of cells, and the brain exhibited the same pattern of 5-HT immunoreactive cells, fiber tracts and arborizations as in last instar larvae of Manduca. However, an increase in the size of the cells in both the brain and frontal ganglion was noted between 75 and 80% development, followed by a decrease by 100% development. The frontal ganglion was found to contain three 5-HT immunoreactive cells, which appeared to send bilateral projections into the frontal connectives and the recurrent nerve. During embryonic development, the dendritic arborizations of these frontal ganglion cells increased, while the amount of 5-HT immunoreactivity in the cell bodies decreased. Thus, the serotonergic system first appears in the Manduca embryo at an early stage of development, similar to the situation in other insects as well as vertebrates. By the end of the embryonic period, the same number of serotonergic neurons are present in the brain as in larval and adult Manduca, suggesting that once formed, these cells persist through postembryonic development and metamorphosis.
Collapse
Affiliation(s)
- W A Radwan
- Department of Entomology, Faculty of Science, Ain-Shams University, Abbassia, Cairo, Egypt
| | | | | |
Collapse
|
39
|
Abstract
Hormones and neurohormones act on the nervous system to produce important changes in behavior. Amine actions in the lobster nervous system and their possible relations to aggressive behavior in lobsters were studied in order to explore how such changes might come about.
Collapse
Affiliation(s)
- E A Kravitz
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
40
|
Emanuelsson H, Carlberg M, Löwkvist B. Presence of serotonin in early chick embryos. CELL DIFFERENTIATION 1988; 24:191-9. [PMID: 3264758 DOI: 10.1016/0045-6039(88)90050-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With biochemical analysis and with autoradiography based on injection of 5-[3H]hydroxytryptophan, it was possible to demonstrate the presence of serotonin (5-hydroxytryptamine) in early chick embryos as early as the pre-streak stage. The biochemical analysis which covered the early developmental period (0.5-6 days of incubation) revealed an elevated concentration of serotonin at gastrulation; from then it stayed at a lower and fairly even level. Autoradiographs of embryos at the pre-streak stage, the primitive streak stage, the head fold stage and the 4-6 somites stage indicated the presence of serotonin in intracellular yolk granules and in cell nuclei. Moreover, the amine appeared associated with microfilaments and microtubules, particularly in developing neural cells. Notably the elevated concentration of serotonin at gastrulation, but also the intracellular distribution of the amine during early organogenesis, indicates a prominent role for it in cell-shape changes and morphogenesis in the early chick embryo.
Collapse
Affiliation(s)
- H Emanuelsson
- Department of Zoophysiology, University of Lund, Sweden
| | | | | |
Collapse
|
41
|
Wallace JA, Mondragon RM, Allgood PC, Hoffman TJ, Maez RR. Two populations of tyrosine hydroxylase-positive cells occur in the spinal cord of the chick embryo and hatchling. Neurosci Lett 1987; 83:253-8. [PMID: 2894625 DOI: 10.1016/0304-3940(87)90095-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The existence of tyrosine hydroxylase (TH)-containing neurons in the spinal cord of the chick embryo was investigated by anti-TH immunocytochemistry. Two populations of intensely immunostained cells were observed along the entire extent of the cord, beginning late in chick embryogenesis. One group of TH-positive cells was particularly numerous and found ventral to the central canal. The other group, which was smaller in number, was located along the superficial and lateral border of the dorsal horn of the spinal cord. When examined by the glyoxylic acid histofluorescence technique, cells could be visualized only very infrequently ventral to the central canal, and not at all within the dorsal horn. However, after pretreatment of hatchlings with the catecholamine synthesis precursor L-DOPA, cells ventral to the canal were readily observed by histofluorescence, while the dorsally located cells seldom visualized. Since these populations of TH-positive cells appear to only partially express the catecholaminergic phenotype, these cells may provide a model in which factors regulating the expression of neurotransmitter phenotypes can be examined in neurons of the developing CNS.
Collapse
Affiliation(s)
- J A Wallace
- Department of Anatomy, University of New Mexico School of Medicine, Albuquerque 87131
| | | | | | | | | |
Collapse
|
42
|
Westenbroek RE, Westrum LE, Hendrickson AE, Wu JY. Immunocytochemical localization of cholecystokinin and glutamic acid decarboxylase during normal development in the prepyriform cortex of rats. Brain Res 1987; 431:191-206. [PMID: 3304540 DOI: 10.1016/0165-3806(87)90208-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Immunocytochemical localization of specific neurotransmitters in the brain is becoming increasingly important in studies of maturation. We have used the trilaminar prepyriform cortex (PC) of rats to study the distribution, patterns and relative number of cells, fibers and terminals during postnatal development using antisera to cholecystokinin (CCK) and glutamic acid decarboxylase (GAD). Both antisera show distinct patterns of immunoreactivity at birth and subsequent periods of distinct changes in these patterns. CCK immunoreactivity is rare but present at birth mostly in layer II. There is a dramatic increase of CCK-labeled structures between postnatal (PN) days 6 and 9 and between PN 13 and 21. The adult pattern is observed by PN 21 with large numbers of labeled cells in layer II, numerous terminals in layers II and deep I and large immunoreactive fibers in the lateral olfactory tract. At birth GAD-immunoreactive terminals are present mainly in layer I, forming a distinct pattern of superficial and deep bands. Subsequent major changes occur in this pattern between PN 9 and 13 and again between PN 13 and 21. By PN 21 there appears to be a loss in deeper laminae of GAD positive terminals which are possibly replaced by the increasing numbers of CCK terminals in the same sublaminae. The adult pattern of GAD immunoreactivity is established by PN 21 with terminals and a few cells in layer I. Therefore, throughout development of the rat PC, there is a distinct complementary and changing distribution of GAD and CCK. Factors that may influence these changes in immunoreactivity are discussed.
Collapse
|
43
|
Sako H, Kojima T, Okado N. Immunohistochemical study on the development of serotoninergic neurons in the chick: I. Distribution of cell bodies and fibers in the brain. J Comp Neurol 1986; 253:61-78. [PMID: 3540036 DOI: 10.1002/cne.902530106] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ontogenetic development of the serotoninergic system in the embryonic as well as in posthatching chick brain was studied with an indirect immunohistochemical technique with the aid of a specific antibody to serotonin (5-hydroxytryptamine). By embryonic day 4, rostral and caudal groups of serotonin-immunoreactive cell populations appeared in the mesencephalon and rostral and caudal rhombencephalon. At this stage, the rostral group had a considerable number of labelled cells that sent axons toward more rostral parts of brain, whereas the caudal group consisted of a small number of scattered serotonin-immunoreactive cells. The number of serotonin-positive cells increased with development, such that by embryonic day 8 almost all the serotoninergic cell groups found in the adult chick were already present. Serotoninergic-positive cells appeared in the paraventricular organ of the diencephalon as early as embryonic day 10. Judging from the cytoarchitectural organization of serotonin-immunoreactive cells, all of the serotoninergic cell groups in the chick brain seemed to be fully developed by embryonic day 16. On embryonic day 4, serotonin-immunoreactive fibers were found to enter into the marginal layer of the mesencephalon. Subsequently, serotonin-positive fibers ascended in the marginal layer of the brainstem up to the levels of the diencephalon and to the telencephalon on embryonic day 6 and 8, respectively. Serotonin-positive fibers, which first began to penetrate into the mantle layer on embryonic day 8, reached to the rostral pole of the telencephalon by embryonic day 10. In general, serotonin fibers were found in almost all brain regions by embryonic day 16. However, "terminal formation" in some nuclei did not seem to begin until the late embryonic or posthatching period. These observations indicate that the initial development of serotoninergic cell groups occurs during the first half of the 20th day of the incubation period of the chick. However, a longer time, ranging from early embryonic to posthatching stages, is necessary for the complete development of the serotoninergic projections.
Collapse
|
44
|
Wallace JA, Allgood PC, Hoffman TJ, Mondragon RM, Maez RR. Analysis of the change in number of serotonergic neurons in the chick spinal cord during embryonic development. Brain Res Bull 1986; 17:297-305. [PMID: 3533221 DOI: 10.1016/0361-9230(86)90235-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The existence of serotonin (5-HT)-containing neurons in the spinal cord of the chick embryo was examined by anti-5-HT immunocytochemistry. The first immunoreactive cells were observed in embryos at 7 days of incubation (E7) and were initially located within the floor plate of the early spinal cord. By E9, immunostained cells occurred throughout the length of the spinal cord and were frequently encountered in most transverse sections of the cord. When examined at later embryonic ages of E12, 17 and at hatching (E21 or 22), the 5-HT cells became progressively more difficult to find with the advancing age of the embryos. To determine if this population of spinal cord 5-HT neurons actually diminished during development, a detailed quantitative analysis was undertaken to estimate the number of 5-HT cells in the cord of chick embryos at different ages. The results of this investigation demonstrated that the size of the 5-HT neuronal population rose rapidly from E7 and plateaued (at approximately 3500 neurons) between E9 and E12. As anticipated, the number of 5-HT cells at E17 decreased at all cord levels. Surprisingly, however, the number of spinal cord 5-HT neurons at hatching increased (depending on the cord level) either back to, or above, the counts estimated for the earlier ages of E9 and E12. Therefore, cells expressing the 5-HT phenotype in the spinal cord of the chick embryo persist throughout the period of embryonic development, rather than appear transiently.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
45
|
van Mier P, Joosten HW, van Rheden R, ten Donkelaar HJ. The development of serotonergic raphespinal projections in Xenopus laevis. Int J Dev Neurosci 1986; 4:465-75. [PMID: 3455605 DOI: 10.1016/0736-5748(86)90028-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The development of serotonin-immunoreactive neurons in the central nervous system of Xenopus laevis larvae has been studied with special emphasis on the development of the raphe nuclei and raphespinal projections. The first serotonergic neurons were observed in the rostral part of the brain stem at stage 25, only 28 hr after fertilization. By stage 28 some 20 serotonin-immunoreactive neurons were found in the rostral part of the brain stem, bearing small protrusions on the ventromedial side of the soma. These initial axonal outgrowths reach the rostral part of the spinal cord at stage 32. By stage 35/36 the growth cones of the descending serotonergic axons in the spinal cord have reached the level of the anus (10th to 15th myotome). Up to stage 45 the majority of the descending serotonergic axons was found in the dorsolateral part of the marginal zone of the spinal cord. After stage 45 some serotonergic axons were also found scattered over other parts of the spinal marginal zone. Collateral branches were first observed in the caudal part of the brain stem at stage 35/36. Later they occurred also in the rostral (stage 43) and caudal (stage 50) spinal cord, usually on fibers in the ventral half of the spinal cord. The number of serotonergic neurons in the central nervous system (brain stem and hypothalamus) increased steadily throughout development until stage 45. After that the total number of serotonergic neurons in the central nervous system increased about two times faster than the number of serotonergic neurons in the raphe nuclei, due to a massive increase of serotonergic neurons in the hypothalamus. The present study shows that young, just differentiated raphe neurons already contain serotonin. The generation of these neurons appears to take place in the ventricular zone (matrix) of the brain stem between the caudal border of the mesencephalon and the entrance of the nervus octavus. From here these neurons seem to migrate to their final destination. The distribution of serotonin-immunoreactive neurons in the brain stem suggests that a superior (not described so far in Anura) and an inferior raphe nucleus can be distinguished in Xenopus. A rostrocaudal gradient seems to be present in the production of serotonergic neurons which project to the spinal cord. Spinal projections from the raphe nuclei are particularly extensive from the nucleus raphes inferior and gradually decrease rostralwards. In the rostral part of the nucleus raphes superior almost no neurons projecting to the spinal cord are found.
Collapse
Affiliation(s)
- P van Mier
- Department of Anatomy and Embryology, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|