1
|
Kozak A, Ninghetto M, Wieteska M, Fiedorowicz M, Wełniak-Kamińska M, Kossowski B, Eysel UT, Arckens L, Burnat K. Visual training after central retinal loss limits structural white matter degradation: an MRI study. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:13. [PMID: 38789988 PMCID: PMC11127408 DOI: 10.1186/s12993-024-00239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Macular degeneration of the eye is a common cause of blindness and affects 8% of the worldwide human population. In adult cats with bilateral lesions of the central retina, we explored the possibility that motion perception training can limit the associated degradation of the visual system. We evaluated how visual training affects behavioral performance and white matter structure. Recently, we proposed (Kozak et al. in Transl Vis Sci Technol 10:9, 2021) a new motion-acuity test for low vision patients, enabling full visual field functional assessment through simultaneous perception of shape and motion. Here, we integrated this test as the last step of a 10-week motion-perception training. RESULTS Cats were divided into three groups: retinal-lesioned only and two trained groups, retinal-lesioned trained and control trained. The behavioral data revealed that trained cats with retinal lesions were superior in motion tasks, even when the difficulty relied only on acuity. 7 T-MRI scanning was done before and after lesioning at 5 different timepoints, followed by Fixel-Based and Fractional Anisotropy Analysis. In cats with retinal lesions, training resulted in a more localized and reduced percentage decrease in Fixel-Based Analysis metrics in the dLGN, caudate nucleus and hippocampus compared to untrained cats. In motion-sensitive area V5/PMLS, the significant decreases in fiber density were equally strong in retinal-lesioned untrained and trained cats, up to 40% in both groups. The only cortical area with Fractional Anisotropy values not affected by central retinal loss was area V5/PMLS. In other visual ROIs, the Fractional Anisotropy values increased over time in the untrained retinal lesioned group, whereas they decreased in the retinal lesioned trained group and remained at a similar level as in trained controls. CONCLUSIONS Overall, our MRI results showed a stabilizing effect of motion training applied soon after central retinal loss induction on white matter structure. We propose that introducing early motion-acuity training for low vision patients, aimed at the intact and active retinal peripheries, may facilitate brain plasticity processes toward better vision.
Collapse
Affiliation(s)
- Anna Kozak
- Laboratory of Brain Imaging, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marco Ninghetto
- Laboratory of Brain Imaging, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Wieteska
- Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marlena Wełniak-Kamińska
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Kossowski
- Laboratory of Brain Imaging, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ulf T Eysel
- Department of Neurophysiology, Ruhr University, Bochum, Germany
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Louvain, Belgium
- KU Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Kalina Burnat
- Laboratory of Brain Imaging, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Abstract
The most striking structure in the nervous system is the complex yet stereotyped morphology of the neuronal dendritic tree. Dendritic morphologies and the connections they make govern information flow and integration in the brain. The fundamental mechanisms that regulate dendritic outgrowth and branching are subjects of extensive study. In this review, we summarize recent advances in the molecular and cellular mechanisms for routing dendrites in layers and columns, prevalent organizational structures in the brain. We highlight how dendritic patterning influences the formation of synaptic circuits.
Collapse
Affiliation(s)
- Jiangnan Luo
- a Section on Neuronal Connectivity, Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| | - Philip G McQueen
- b Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology , National Institutes of Health , Bethesda , MD , USA
| | - Bo Shi
- a Section on Neuronal Connectivity, Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA ;,c Biological Sciences Graduate Program, College of Computer, Mathematical, and Natural Sciences , University of Maryland , College Park , MD , USA
| | - Chi-Hon Lee
- a Section on Neuronal Connectivity, Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| | - Chun-Yuan Ting
- a Section on Neuronal Connectivity, Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development , Bethesda , MD , USA
| |
Collapse
|
3
|
Yip ZC, Heiman MG. Duplication of a Single Neuron in C. elegans Reveals a Pathway for Dendrite Tiling by Mutual Repulsion. Cell Rep 2016; 15:2109-2117. [PMID: 27239028 DOI: 10.1016/j.celrep.2016.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/16/2016] [Accepted: 04/24/2016] [Indexed: 11/30/2022] Open
Abstract
Simple cell-cell interactions can give rise to complex cellular patterns. For example, neurons of the same type can interact to create a complex patchwork of non-overlapping dendrite arbors, a pattern known as dendrite tiling. Dendrite tiling often involves mutual repulsion between neighboring neurons. While dendrite tiling is found across nervous systems, the nematode Caenorhabditis elegans has a relatively simple nervous system with few opportunities for tiling. Here, we show that genetic duplication of a single neuron, PVD, is sufficient to create dendrite tiling among the resulting ectopic neurons. We use laser ablation to show that this tiling is mediated by mutual repulsion between neighbors. Furthermore, we find that tiling requires a repulsion signal (UNC-6/Netrin and its receptors UNC-40/DCC and UNC-5) that normally patterns the PVD dendrite arbor. These results demonstrate that an apparently complex cellular pattern can emerge in a simple nervous system merely by increasing neuron number.
Collapse
Affiliation(s)
- Zhiqi Candice Yip
- Division of Genetics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Maxwell G Heiman
- Division of Genetics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Abstract
The nervous system is populated by numerous types of neurons, each bearing a dendritic arbor with a characteristic morphology. These type-specific features influence many aspects of a neuron's function, including the number and identity of presynaptic inputs and how inputs are integrated to determine firing properties. Here, we review the mechanisms that regulate the construction of cell type-specific dendrite patterns during development. We focus on four aspects of dendrite patterning that are particularly important in determining the function of the mature neuron: (a) dendrite shape, including branching pattern and geometry of the arbor; (b) dendritic arbor size;
Collapse
Affiliation(s)
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138;
| | - Jeremy N Kay
- Departments of Neurobiology and Ophthalmology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
5
|
Reese BE, Keeley PW. Design principles and developmental mechanisms underlying retinal mosaics. Biol Rev Camb Philos Soc 2014; 90:854-76. [PMID: 25109780 DOI: 10.1111/brv.12139] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 01/26/2023]
Abstract
Most structures within the central nervous system (CNS) are composed of different types of neuron that vary in both number and morphology, but relatively little is known about the interplay between these two features, i.e. about the population dynamics of a given cell type. How such arrays of neurons are distributed within a structure, and how they differentiate their dendrites relative to each other, are issues that have recently drawn attention in the invertebrate nervous system, where the genetic and molecular underpinnings of these organizing principles are being revealed in exquisite detail. The retina is one of the few locations where these principles have been extensively studied in the vertebrate CNS, indeed, where the design principles of 'mosaic regularity' and 'uniformity of coverage' were first explicitly defined, quantified, and related to each other. Recent studies have revealed a number of genes that influence the formation of these histotypical features in the retina, including homologues of those invertebrate genes, although close inspection reveals that they do not always mediate comparable developmental processes nor elucidate fundamental design principles. The present review considers just how pervasive these features of 'mosaic regularity' and 'uniform dendritic coverage' are within the mammalian retina, discussing the means by which such features can be assessed in the mature and developing nervous system and examining the limitations associated with those assessments. We then address the extent to which these two design principles co-exist within different populations of neurons, and how they are achieved during development. Finally, we consider the neural phenotypes obtained in mutant nervous systems, to address whether a prospective gene of interest underlies those very design principles.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, U.S.A.,Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, U.S.A
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, U.S.A.,Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA 93106-9625, U.S.A
| |
Collapse
|
6
|
Hoon M, Okawa H, Della Santina L, Wong ROL. Functional architecture of the retina: development and disease. Prog Retin Eye Res 2014; 42:44-84. [PMID: 24984227 DOI: 10.1016/j.preteyeres.2014.06.003] [Citation(s) in RCA: 348] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/08/2014] [Accepted: 06/22/2014] [Indexed: 12/22/2022]
Abstract
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina.
Collapse
Affiliation(s)
- Mrinalini Hoon
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Luca Della Santina
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Chen LF, FitzGibbon T, He JR, Yin ZQ. Localization and developmental expression patterns of CSPG-cs56 (aggrecan) in normal and dystrophic retinas in two rat strains. Exp Neurol 2012; 234:488-98. [PMID: 22306080 DOI: 10.1016/j.expneurol.2012.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Proteoglycans have a number of important functions in the central nervous system. Aggrecan (hyaluronan-binding proteoglycan, CSPG-cs56) is found in the extracellular matrix of cartilage as well as in the developing brain. We compared the postnatal distribution of CSPG-cs56 in Long Evans (LE) and Royal College of Surgeons (RCS) rat retinas to determine if this proteoglycan played a role in the development of dystrophic retinas. CSPG-cs56 expression was examined in rat retinas aged between birth (postnatal day 0, P0) and P150 using immunofluorescence and Western-blots. Immunofluorescence was quantified using ImageJ. GFAP staining was used to compare Müller cell labeling and the distribution of CSPG-cs56. Both rat strains showed a significant rise in total retinal CSPG-cs56 between P0 and P21; values peaked on P21 in LE rats and P14 in RCS rats. CSPG-cs56 then significantly decreased to lower levels (P35) in both strains before reaching significantly higher levels by P90-P150. CSPG-cs56 positive staining was present in the ganglion cell layer at birth and clear layering of the inner plexiform layer was seen between P7 and P21 due to dendritic staining of retinal ganglion cells. Staining was less intense and diffuse within the outer plexiform over a similar time-course. Light CSPG-cs56 labeling in the region of the outer segments was present at (P14) and became more intense as the retina approached maturity. CSPG-cs56 in the outer segments was the main contributor to the higher expression in older animals. Substantial differences in CSPG-cs56 labeling were not seen between LE and RCS rats. There was no evidence to suggest that Müller cells were the source of CSPG-cs56 in either rat strain, although their staining distributions had a degree of overlap. The lack of significant differences between LE and RCS rats indicates that CSPG-cs56 may not be involved in the degenerative process or the reorganization of the RCS rat retina. We suggest that the main role of CPSG-cs56 is to maintain retinal ganglion cell dendritic structure in the inner plexiform layer and is closely related to providing adequate support and flexibility for the photoreceptor outer segments, which is necessary to maintain their function.
Collapse
Affiliation(s)
- Li-Feng Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China.
| | | | | | | |
Collapse
|
8
|
Liu J, Lester BM. Reconceptualizing in a dual-system model the effects of prenatal cocaine exposure on adolescent development: a short review. Int J Dev Neurosci 2011; 29:803-9. [PMID: 21946244 DOI: 10.1016/j.ijdevneu.2011.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022] Open
Abstract
The mechanisms of long-term effects of prenatal cocaine exposure (PCE) and consequent elevated impulsivity during adolescence are poorly understood. In this review, the development-programmed neural maturation is summarized to highlight adolescence as another critical period of brain development. We further synthesize maladaptation of the dopamine (DA) system, hypothalamic-pituitary-adrenal-axis (HPA-axis) and pathological interactions between these two systems originating from previous fetal programming into a dual-system model to explain insufficient behavioral inhibition in affected adolescents.
Collapse
Affiliation(s)
- Jie Liu
- Brown Center for the Study of Children at Risk, The Warren Alpert Medical School of Brown University and Women & Infants Hospital of Rhode Island, Providence, RI 02905, USA
| | | |
Collapse
|
9
|
Reese BE. Development of the retina and optic pathway. Vision Res 2010; 51:613-32. [PMID: 20647017 DOI: 10.1016/j.visres.2010.07.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 07/04/2010] [Accepted: 07/13/2010] [Indexed: 12/30/2022]
Abstract
Our understanding of the development of the retina and visual pathways has seen enormous advances during the past 25years. New imaging technologies, coupled with advances in molecular biology, have permitted a fuller appreciation of the histotypical events associated with proliferation, fate determination, migration, differentiation, pathway navigation, target innervation, synaptogenesis and cell death, and in many instances, in understanding the genetic, molecular, cellular and activity-dependent mechanisms underlying those developmental changes. The present review considers those advances associated with the lineal relationships between retinal nerve cells, the production of retinal nerve cell diversity, the migration, patterning and differentiation of different types of retinal nerve cells, the determinants of the decussation pattern at the optic chiasm, the formation of the retinotopic map, and the establishment of ocular domains within the thalamus.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute and Department of Psychology, University of California at Santa Barbara, Santa Barbara, CA 93106-5060, USA.
| |
Collapse
|
10
|
Grueber WB, Sagasti A. Self-avoidance and tiling: Mechanisms of dendrite and axon spacing. Cold Spring Harb Perspect Biol 2010; 2:a001750. [PMID: 20573716 DOI: 10.1101/cshperspect.a001750] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The spatial pattern of branches within axonal or dendritic arbors and the relative arrangement of neighboring arbors with respect to one another impact a neuron's potential connectivity. Although arbors can adopt diverse branching patterns to suit their functions, evenly spread branches that avoid clumping or overlap are a common feature of many axonal and dendritic arbors. The degree of overlap between neighboring arbors innervating a surface is also characteristic within particular neuron types. The arbors of some populations of neurons innervate a target with a comprehensive and nonoverlapping "tiled" arrangement, whereas those of others show substantial territory overlap. This review focuses on cellular and molecular studies that have provided insight into the regulation of spatial arrangements of neurite branches within and between arbors. These studies have revealed principles that govern arbor arrangements in dendrites and axons in both vertebrates and invertebrates. Diverse molecular mechanisms controlling the spatial patterning of sister branches and neighboring arbors have begun to be elucidated.
Collapse
Affiliation(s)
- Wesley B Grueber
- Department of Physiology and Cellular Biophysics, Department of Neuroscience, Columbia University Medical Center, New York, New York 10032, USA.
| | | |
Collapse
|
11
|
Anishchenko A, Greschner M, Elstrott J, Sher A, Litke AM, Feller MB, Chichilnisky EJ. Receptive field mosaics of retinal ganglion cells are established without visual experience. J Neurophysiol 2010; 103:1856-64. [PMID: 20107116 DOI: 10.1152/jn.00896.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A characteristic feature of adult retina is mosaic organization: a spatial arrangement of cells of each morphological and functional type that produces uniform sampling of visual space. How the mosaics of visual receptive fields emerge in the retina during development is not fully understood. Here we use a large-scale multielectrode array to determine the mosaic organization of retinal ganglion cells (RGCs) in rats around the time of eye opening and in the adult. At the time of eye opening, we were able to reliably distinguish two types of ON RGCs and two types of OFF RGCs in rat retina based on their light response and intrinsic firing properties. Although the light responses of individual cells were not yet mature at this age, each of the identified functional RGC types formed a receptive field mosaic, where the spacing of the receptive field centers and the overlap of the receptive field extents were similar to those observed in the retinas of adult rats. These findings suggest that, although the light response properties of RGCs may need vision to reach full maturity, extensive visual experience is not required for individual RGC types to form a regular sensory map of visual space.
Collapse
|
12
|
O’Brien GS, Martin SM, Söllner C, Wright GJ, Becker CG, Portera-Cailliau C, Sagasti A. Developmentally regulated impediments to skin reinnervation by injured peripheral sensory axon terminals. Curr Biol 2009; 19:2086-90. [PMID: 19962310 PMCID: PMC2805760 DOI: 10.1016/j.cub.2009.10.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 11/26/2022]
Abstract
The structural plasticity of neurites in the central nervous system (CNS) diminishes dramatically after initial development, but the peripheral nervous system (PNS) retains substantial plasticity into adulthood. Nevertheless, functional reinnervation by injured peripheral sensory neurons is often incomplete [1-6]. To investigate the developmental control of skin reinnervation, we imaged the regeneration of trigeminal sensory axon terminals in live zebrafish larvae following laser axotomy. When axons were injured during early stages of outgrowth, regenerating and uninjured axons grew into denervated skin and competed with one another for territory. At later stages, after the establishment of peripheral arbor territories, the ability of uninjured neighbors to sprout diminished severely, and although injured axons reinitiated growth, they were repelled by denervated skin. Regenerating axons were repelled specifically by their former territories, suggesting that local inhibitory factors persist in these regions. Antagonizing the function of several members of the Nogo receptor (NgR)/RhoA pathway improved the capacity of injured axons to grow into denervated skin. Thus, as in the CNS, impediments to reinnervation in the PNS arise after initial establishment of axon arbor structure.
Collapse
Affiliation(s)
- Georgeann S. O’Brien
- Department of Molecular Cell and Developmental Biology, University
of California, Los Angeles, California, 90095, USA
| | - Seanna M. Martin
- Department of Molecular Cell and Developmental Biology, University
of California, Los Angeles, California, 90095, USA
| | - Christian Söllner
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger
Institute, Hinxton, Cambridge CB10 1HH, United Kingdom
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger
Institute, Hinxton, Cambridge CB10 1HH, United Kingdom
| | - Catherina G. Becker
- Centre for Neuroregeneration, School of Biomedical Sciences,
University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | - Carlos Portera-Cailliau
- Departments of Neurology and Neurobiology, David Geffen School of
Medicine at UCLA, Los Angeles, California, 90095, USA
| | - Alvaro Sagasti
- Department of Molecular Cell and Developmental Biology, University
of California, Los Angeles, California, 90095, USA
| |
Collapse
|
13
|
Keeley PW, Whitney IE, Raven MA, Reese BE. Dendritic spread and functional coverage of starburst amacrine cells. J Comp Neurol 2008; 505:539-46. [PMID: 17924572 DOI: 10.1002/cne.21518] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The network of starburst amacrine cells plays a fundamental role in the neural circuitry underlying directional selectivity within the retina. Individual sectors of the starburst dendritic field are directionally selective by virtue of a mutually inhibitory relationship between starburst amacrine cells with overlapping dendrites. These features of the starburst amacrine cell network suggest that starburst cells regulate their dendritic overlap to ensure a uniform coverage of the retinal surface. The present study has compared the dendritic morphology of starburst amacrine cells in two different strains of mice that differ in starburst amacrine cell number. The A/J (A) strain contains about one-quarter fewer starburst amacrine cells than does the C57BL/6J (B6) strain, although the mosaics of starburst amacrine cells in both strains are comparably patterned. Dendritic field size, however, does not compensate for the difference in density, the A strain having a slightly smaller dendritic field relative to the B6 strain, yielding a significantly larger dendritic coverage factor for individual cells in the B6 strain. The area of the distal (output) annulus of the dendritic field occupies a comparable proportion of the overall field area in the two strains, but overlapping annuli establish a finer meshwork of co-fasciculating processes in the B6 strain. These results would suggest that the architecture of the dendritic network, rather than the overall size of the dendritic field, is dependent on the density of starburst amacrine cells.
Collapse
Affiliation(s)
- Patrick W Keeley
- Neuroscience Research Institute and Department of Psychology, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
14
|
Galli-Resta L, Leone P, Bottari D, Ensini M, Rigosi E, Novelli E. The genesis of retinal architecture: an emerging role for mechanical interactions? Prog Retin Eye Res 2008; 27:260-83. [PMID: 18374618 DOI: 10.1016/j.preteyeres.2008.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Patterns in nature have always fascinated human beings. They convey the idea of order, organization and optimization, and, to the enquiring mind, the alluring promise that understanding their building rules may uncover the forces that shaped them. In the retina, two patterns are outstanding: the stacking of cells in layers and, within the layers, the prevalent arrangement of neurons of the same type in orderly arrays, often referred to as mosaics for the crystalline-like order that some can display. Layers and mosaics have been essential keys to our present understanding of retinal circuital organization and function. Now, they may also be a precious guide in our exploration of how the retina is built. Here, we will review studies addressing the mechanisms controlling the formation of retinal mosaics and layers, illustrating common themes and unsolved problems. Among the intricacies of the building process, a world of physical forces is making its appearance. Cells are extremely complex to model as "physical entities", and many aspects of cell mechanotransduction are still obscure. Yet, recent experiments, focusing on the mechanical aspects of growth and differentiation, suggest that adopting this viewpoint will open new ways of understanding retinal formation and novel possibilities to approach retinal pathologies and repair.
Collapse
|
15
|
Sharma SC. Changes of central visual receptive fields in experimental glaucoma. PROGRESS IN BRAIN RESEARCH 2008; 173:479-91. [PMID: 18929129 DOI: 10.1016/s0079-6123(08)01133-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Retinal ganglion cell apoptotic death in experimental glaucoma is protracted over several months and it leads to the visual dysfunction. In the rat with increased intraocular pressure (IOP), the lack of visual scotoma was observed where visual field was determined electrophysiologically on the contralateral optic tectum in the early stages of the disease. Increases in the sizes of receptive fields on the periphery represented early stage of glaucomatous dysfunction. The relationship of duration and magnitude of IOP elevation had a significant correlation between percentages of receptive field sizes in the tectum. Large increases in receptive field sizes noted in the glaucomatous retinal terminal areas suggest the ability of the remaining retinal axons to compete and compensate for the loss of retinal axons. This compensatory adaptation leads to the degradation of the visual acuity and visual thresholds when measured psychophysically.
Collapse
Affiliation(s)
- S C Sharma
- Department of Ophthalmology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
16
|
Novelli E, Leone P, Resta V, Galli-Resta L. A three-dimensional analysis of the development of the horizontal cell mosaic in the rat retina: implications for the mechanisms controlling pattern formation. Vis Neurosci 2007; 24:91-8. [PMID: 17430612 DOI: 10.1017/s0952523807070046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 12/11/2006] [Indexed: 11/07/2022]
Abstract
The horizontal cells are known to form a mono-layered mosaic in the adult retina, but are scattered at different retinal depths in early development. To help clarifying when and which spatial constraints appear in the relative positioning of these cells, we have performed a quantitative analysis of the three-dimensional (3D) organization of the horizontal cell mosaic at different developmental stages in the postnatal rat retina. We first analyzed the two-dimensional (2D) distribution of the horizontal cell projections onto a plane parallel to the upper retinal surface in retinal flat-mounts, and thus to the future mature horizontal cell mosaic. We found that this 2D distribution was non random since postnatal day 1 (P1), and had a subsequent stepwise improvement in regularity. This preceded the alignment of cells in a single monolayer, which was observed on P6. We then computed true horizontal cell spacing in 3D, finding non-random 3D positioning already on P1. Simulation studies showed that this order might simply derive from the 2D order observed in the projections of the cells in flat-mount, combined with their limited spread in retinal depth. Throughout the period analyzed, the relative positions of horizontal cells are in good agreement with a minimal spacing rule in which the exclusion zone corresponds to the average size of the inner core of the cell dendritic tree estimated from P1 samples. These data indicate the existence of different phases in the process of horizontal cell 3D spatial ordering, supporting the view that multiple mechanisms are involved in the development of the horizontal cell mosaic.
Collapse
|
17
|
King WM, Sarup V, Sauvé Y, Moreland CM, Carpenter DO, Sharma SC. Expansion of visual receptive fields in experimental glaucoma. Vis Neurosci 2006; 23:137-42. [PMID: 16597357 DOI: 10.1017/s0952523806231122] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 10/19/2005] [Indexed: 11/06/2022]
Abstract
Glaucoma is a major cause of blindness and is characterized by death of retinal ganglion cells. In a rat model of glaucoma in which intraocular pressure is raised by cautery of episcleral veins, the somata and dendritic arbors of surviving retinal ganglion cells expand. To assess physiological consequences of this change, we have measured visual receptive-field size in a primary retinal target, the superior colliculus. Using multiunit recording, receptive-field sizes were measured for glaucomatous eyes and compared to both those measured for contralateral control eyes and to homolateral eyes of unoperated animals. Episcleral vein occlusion increased intraocular pressure. This was accompanied by a significant increase in receptive-field size across the superior colliculus. The expansion of receptive fields was proportional to both degree and duration of the increase of intraocular pressure. We suggest that this increase in the size of receptive fields of glaucomatous eyes may be related to the increase in the size of dendritic arbors of the surviving ganglion cells in retina.
Collapse
Affiliation(s)
- Wayne Michael King
- Departments of Ophthalmology and Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | |
Collapse
|
18
|
Fitzgibbon T. Does the development of the perigeniculate nucleus support the notion of a hierarchical progression within the visual pathway? Neuroscience 2006; 140:529-46. [PMID: 16650939 DOI: 10.1016/j.neuroscience.2006.02.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 02/08/2006] [Accepted: 02/10/2006] [Indexed: 10/24/2022]
Abstract
The development of the visual pathway has been extensively studied. However, despite of the importance of the perigeniculate nucleus within this pathway, there is a lack of information concerning its development. The present study examined the dendritic development of perigeniculate nucleus cells using single cell injections in 400-500 microm thick fixed brain slices from kittens of different ages between postnatal day 0 and postnatal day 125. A total of 189 perigeniculate nucleus cells were reconstructed from serial sections for qualitative and quantitative analysis. Cells during the first month were characterized by an abundance of branch points and appendages. There was a significant (P>0.05), albeit variable, increase in the number of branch points and appendages up to about postnatal day 12 after which the numbers were rapidly reduced over the next two weeks. Similarly, appendage numbers significantly increased over the first two weeks until postnatal day 17 and then fell to near adult levels by postnatal day 34. The majority of branch points and appendages occur within 100-200 microm of the soma (10-30% of the dendritic diameter). The data indicate that perigeniculate nucleus dendritic maturation lags shortly behind that of the retina but may precede that of its dorsal thalamic target, the lateral geniculate nucleus. Thus, it may be that the earlier maturation of the perigeniculate nucleus and its inhibitory input is a necessary requirement for the proper development of retinogeniculate and corticothalamic topographic maps within the dorsal lateral geniculate nucleus and perigeniculate nucleus.
Collapse
Affiliation(s)
- T Fitzgibbon
- Discipline of Anatomy and Histology, School of Medical Sciences, Institute for Biomedical Research, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
19
|
Szmajda BA, Grünert U, Martin PR. Mosaic properties of midget and parasol ganglion cells in the marmoset retina. Vis Neurosci 2005; 22:395-404. [PMID: 16212698 DOI: 10.1017/s0952523805224021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 03/11/2005] [Indexed: 11/06/2022]
Abstract
We measured mosaic properties of midget and parasol ganglion cells in the retina of a New World monkey, the common marmosetCallithrix jacchus. We addressed the functional specialization of these populations for color and spatial vision, by comparing the mosaic of ganglion cells in dichromatic (“red–green color blind”) and trichromatic marmosets. Ganglion cells were labelled by photolytic amplification of retrograde marker (“photofilling”) following injections into the lateral geniculate nucleus, or by intracellular injection in anin vitroretinal preparation. The dendritic-field size, shape, and overlap of neighboring cells were measured. We show that in marmosets, both midget and parasol cells exhibit a radial bias, so that the long axis of the dendritic field points towards the fovea. The radial bias is similar for parasol cells and midget cells, despite the fact that midget cell dendritic fields are more elongated than are those of parasol cells. The dendritic fields of midget ganglion cells from the same (ON or OFF) response-type array show very little overlap, consistent with the low coverage of the midget mosaic in humans. No large differences in radial bias, or overlap, were seen on comparing retinae from dichromatic and trichromatic animals. These data suggest that radial bias in ganglion cell populations is a consistent feature of the primate retina. Furthermore, they suggest that the mosaic properties of the midget cell population are associated with high spatial resolution rather than being specifically associated with trichromatic color vision.
Collapse
Affiliation(s)
- Brett A Szmajda
- National Vision Research Institute of Australia, Carlton, and the Department of Optometry and Vision Sciences, The University of Melbourne, Australia
| | | | | |
Collapse
|
20
|
Lee EJ, Merwine DK, Mann LB, Grzywacz NM. Ganglion cell densities in normal and dark-reared turtle retinas. Brain Res 2005; 1060:40-6. [PMID: 16214118 DOI: 10.1016/j.brainres.2005.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 08/05/2005] [Accepted: 08/08/2005] [Indexed: 11/25/2022]
Abstract
In dark-reared, neonatal turtle retinas, ganglion cell receptive fields and dendritic trees grow faster than normal. As a result, their areas may become, on average, up to twice as large as in control retinas. This raises the question of whether the coverage factor of dark-reared ganglion cells is larger than normal. Alternatively, dark rearing may lead to smaller-than-normal cell densities by accelerating apoptosis. To test these alternatives, we investigated the effect of light deprivation on densities and soma sizes of turtle retinal ganglion cells. For this purpose, we marked these cells using retrograde labeling of fixed turtle retinas with DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate). Control turtles were maintained in a regular 12-h light/dark cycle from hatching until 4 weeks of age, whereas dark-reared turtles were maintained in total darkness for the same period. Ganglion cells in the control and dark-reared retinas were found to be similar in density and soma sizes. These results show that the mean coverage factor of turtle dark-reared ganglion cells is larger than normal.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Biomedical Engineering, Neuroscience Graduate Program, University of Southern California, Denney Research Building 140, Los Angeles, CA 90089-1111, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Many subtypes of neurons are precisely arranged with little overlap of their dendritic arbors, which has been suggested to arise due to homotypic dendritic repulsion. In this issue of Neuron, Lin et al. demonstrate that subtypes of retinal ganglion cells establish normal dendritic field sizes and morphologies in the absence of contact with cells of the same class.
Collapse
Affiliation(s)
- Mary A Logan
- Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, Utah 83142, USA
| | | |
Collapse
|
22
|
Lin B, Wang SW, Masland RH. Retinal Ganglion Cell Type, Size, and Spacing Can Be Specified Independent of Homotypic Dendritic Contacts. Neuron 2004; 43:475-85. [PMID: 15312647 DOI: 10.1016/j.neuron.2004.08.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 05/27/2004] [Accepted: 07/29/2004] [Indexed: 11/29/2022]
Abstract
In Brn3b(-/-) mice, where 80% of retinal ganglion cells degenerate early in development, the remaining 20% include most or all ganglion cell types. Cells of the same type cover the retinal surface evenly but tile it incompletely, indicating that a regular mosaic and normal dendritic field size can be maintained in the absence of contact among homotypic cells. In Math5(-/-) mice, where only approximately 5% of ganglion cells are formed, the dendritic arbors of at least two types among the residual ganglion cells are indistinguishable from normal in shape and size, even though throughout development they are separated by millimeters from the nearest neighboring ganglion cell of the same type. It appears that the primary phenotype of retinal ganglion cells can develop without homotypic contact; dendritic repulsion may be an end-stage mechanism that fine-tunes the dendritic arbors for more efficient coverage of the retinal surface.
Collapse
Affiliation(s)
- Bin Lin
- Howard Hughes Medical Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
23
|
Farajian R, Raven MA, Cusato K, Reese BE. Cellular positioning and dendritic field size of cholinergic amacrine cells are impervious to early ablation of neighboring cells in the mouse retina. Vis Neurosci 2004; 21:13-22. [PMID: 15137578 DOI: 10.1017/s0952523804041021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have examined the role of neighbor relationships between cholinergic amacrine cells upon their positioning and dendritic field size by producing partial ablations of this population of cells during early development. We first determined the effectiveness of L-glutamate as an excitotoxin for ablating cholinergic amacrine cells in the developing mouse retina. Subcutaneous injections (4 mg/g) made on P-3 and thereafter were found to produce a near-complete elimination, while injections at P-2 were ineffective. Lower doses on P-3 produced only partial reductions, and were subsequently used to examine the effect of partial ablation upon mosaic organization and dendritic growth of the remaining cells. Four different Voronoi-based measures of mosaic geometry were examined in L-glutamate-treated and normal (saline-treated) retinas. Partial depletions of around 40% produced cholinergic mosaics that, when scaled for density, approximated the mosaic geometry of the normal retina. Separate comparisons simulating a 40% random deletion of the normal retina produced mosaics that were no different from those experimentally depleted retinas. Consequently, no evidence was found for positional regulation in the absence of normal neighbor relationships. Single cells in the ganglion cell layer were intracellularly filled with Lucifer Yellow to examine the morphology and dendritic field extent following partial ablation of the cholinergic amacrine cells. No discernable effect was found on their starburst morphology, and total dendritic field area, number of primary dendrites, and branch frequency were not significantly different. Cholinergic amacrine cells normally increase their dendritic field area after P-3 in excess of retinal expansion; despite this, the present results show that this growth is not controlled by the density of neighboring processes.
Collapse
Affiliation(s)
- Reza Farajian
- Neuroscience Research Institute, Department of Psychology, University of California at Santa Barbara, Santa Barbara 93106-5060, USA
| | | | | | | |
Collapse
|
24
|
Distinct developmental modes and lesion-induced reactions of dendrites of two classes of Drosophila sensory neurons. J Neurosci 2003. [PMID: 12736346 DOI: 10.1523/jneurosci.23-09-03752.2003] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Little has been understood about the underlying mechanisms that generate the morphological diversity of dendritic trees. Dendritic arborization neurons in Drosophila provide an excellent model system to tackle this question, and they are classified into classes I-IV in order of increasing arbor complexity. Here we have developed transgenic green fluorescent protein markers for class I or class IV cells, which allowed time-lapse recordings of dendritic birth in the embryo, its maturation processes in the larva, and lesion-induced reactions. The two classes used distinct strategies of dendritic emergence from the cell body and branching, which contributed to differences in their basic arbor patterns. In contrast to the class I cells examined, one cell of class IV, which was a focus in this study, continued to elaborate branches throughout larval stages, and it was much more capable of responding to the severing of branches. We also investigated the cellular basis of field formation between adjacent class IV cells. Our results support the fact that class-specific inhibitory interaction is necessary and sufficient for tiling and confirmed that this intercellular communication was at work at individual dendrodendritic interfaces. Finally, this inhibitory signaling appeared to play a central role when arbors of adjacent cells started meeting midway between the cells and until the body wall became partitioned into abutting, minimal-overlapping territories.
Collapse
|
25
|
|
26
|
Ahmed FA, Chaudhary P, Sharma SC. Effects of increased intraocular pressure on rat retinal ganglion cells. Int J Dev Neurosci 2001; 19:209-18. [PMID: 11255034 DOI: 10.1016/s0736-5748(00)00073-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The effects of elevated intraocular pressure (IOP) on the morphology of rat retinal ganglion cells (RGCs) was analyzed in this study. After cauterizing two limbal derived episcleral veins, IOP in experimental eyes was elevated 1.5--1.8 times that of control. RGCs of experimental and control eyes were analyzed after: bilateral tectal injections of Fluoro-Gold, and application of fluorescent dye crystals, 4-Di-10-ASP to the proximal stump of the cut optic nerve, at different time intervals after IOP elevation. The RGCs in control and experimental eyes were evaluated at 4, 6, 8, and 10 weeks by counting, as well as by determining the soma diameter. The dendritic field of three types (I, II, III) of RGCs between control and experimental eyes were also studied at 4,6,10 weeks after IOP elevation. At every time point, the number of cells in experimental eyes were significantly less than those of the control eyes. The average retinal ganglion cell death was 3--4% per week in the eyes with elevated IOP. The soma and dendritic field diameter of the RGCs in the experimental eyes were significantly larger in all cell types. However, types I and III cells expanded their dendritic fields more rapidly than type II cells. Furthermore, dendritic fields of surviving RGCs in experimental eyes occupied about the same extent of the retina as the controls. The increase in soma diameter and expansion of dendritic fields in the remaining RGCs in eyes with elevated IOP suggests the existence of plasticity in adult retina.
Collapse
Affiliation(s)
- F A Ahmed
- Department of Ophthalmology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
27
|
Abstract
In this review, we summarize the main stages of structural and functional development of retinal ganglion cells (RGCs). We first consider the various mechanisms that are involved in restructuring of dendritic trees. To date, many mechanisms have been implicated including target-dependent factors, interactions from neighboring RGCs, and afferent signaling. We also review recent evidence showing how rapidly such dendritic remodeling might occur, along with the intracellular signaling pathways underlying these rearrangements. Concurrent with such structural changes, the functional responses of RGCs also alter during maturation, from sub-threshold firing to reliable spiking patterns. Here we consider the development of intrinsic membrane properties and how they might contribute to the spontaneous firing patterns observed before the onset of vision. We then review the mechanisms by which this spontaneous activity becomes correlated across neighboring RGCs to form waves of activity. Finally, the relative importance of spontaneous versus light-evoked activity is discussed in relation to the emergence of mature receptive field properties.
Collapse
Affiliation(s)
- E Sernagor
- Department of Neurobiology, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | |
Collapse
|
28
|
Lohmann C, Wong RO. Cell-type specific dendritic contacts between retinal ganglion cells during development. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/neu.1048] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Linden R. The anti-death league: associative control of apoptosis in developing retinal tissue. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:146-58. [PMID: 10751664 DOI: 10.1016/s0165-0173(99)00073-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Apoptosis, the major form of programmed cell death (PCD), is executed through a proteolytic cascade that can be differentially engaged by various extracellular signals. Modulation of both the sensitivity to PCD and of the actual sequence of apoptotic events is, therefore, strongly dependent on cell interactions. This paper reviews the use of a retinal explant preparation as a model of the organized nervous tissue, to study the effects of neural messengers in the control of sensitivity to apoptosis. Studies of retinal explants showed that dopamine, glutamate and nitric oxide may have anti-apoptotic effects upon developing retinal cells. At least the effects of nitric oxide are clearly paracrine. In addition, preliminary evidence has been gathered of a role for gap junctional communication in the control of sensitivity of retinal cells to the induction of apoptosis. These findings underscore the importance of selective cell interactions in the control of PCD in the developing nervous system.
Collapse
Affiliation(s)
- R Linden
- Instituto de Biofísica da UFRJ, Cidade Universitaria, Centro de Ciencias da Saude, Rio de Janeiro, Brazil.
| |
Collapse
|
30
|
Deplano S, Gargini C, Bisti S. Electrical activity regulates dendritic reorganization in ganglion cells after neonatal retinal lesion in the cat. J Comp Neurol 1999; 405:262-70. [PMID: 10023814 DOI: 10.1002/(sici)1096-9861(19990308)405:2<262::aid-cne9>3.0.co;2-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During the first month of postnatal life, the dendritic arborizations of cat retinal ganglion cells continue to develop and undergo a substantial remodeling. Mechanical and pharmacological interferences with the normal development induce, during this period of time, substantial modifications in ganglion cell morphology. Specifically, the degeneration of those neurons whose axons were severed by a neonatal retinal lesion leads to a zone depleted of ganglion cells. Neurons at the border of the depleted area develop an abnormal elongation of the dendritic trees toward the empty space. In the present paper, we report data showing that this dendritic reorganization can be prevented by blocking the electrical activity with repeated tetrodotoxin injections into the eye during the whole critical period. Our analysis was performed on neurons filled with horseradish peroxidase.
Collapse
Affiliation(s)
- S Deplano
- Istituto di Anatomia Comparata, Università degli Studi di Genova, Italy
| | | | | |
Collapse
|
31
|
Weber A, Kalil R, Stanford L. Dendritic field development of retinal ganglion cells in the cat following neonatal damage to visual cortex: Evidence for cell class specific interactions. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980126)390:4<470::aid-cne2>3.0.co;2-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Campbell G, Ramoa AS, Stryker MP, Shatz CJ. Dendritic development of retinal ganglion cells after prenatal intracranial infusion of tetrodotoxin. Vis Neurosci 1997; 14:779-88. [PMID: 9279005 DOI: 10.1017/s0952523800012724] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The dendritic form of a cell may be established by many factors both intrinsic and environmental. Blockade of action potentials along the course of axons and in their postsynaptic targets dramatically alters the development of axonal morphology. The extent to which blockade of target cell activity retrogradely alters the dendritic morphology of the presynaptic cells is unknown. To determine whether the establishment of dendritic form by developing retinal ganglion cells depends on activity within their targets, the sodium channel blocker, tetrodotoxin (TTX), was administered via minipumps to the diencephalon of cat fetuses from embryonic day 43 (E43) to E57. At E57 retinae were removed and living retinal ganglion cells injected in vitro with Lucifer yellow to reveal their dendritic morphology. In the TTX-treated animals both alpha and beta types of retinal ganglion cells were present, as were putative gamma cells. Overall, the dendrites of retinal ganglion cells in TTX-treated animals appeared qualitatively and quantitatively similar to those of untreated animals. The only significant change in the TTX-treated cases was a small increase in the number of dendritic spines on the non-beta cells. These results indicate that the acquisition of basic dendritic form of developing ganglion cells is not influenced by the action potential activity within their targets, and that it is also independent of the terminal branching patterns of their axons.
Collapse
Affiliation(s)
- G Campbell
- Department of Anatomy, University College London, UK
| | | | | | | |
Collapse
|
33
|
Jacquin MF, Rana JZ, Miller MW, Chiaia NL, Rhoades RW. Development of trigeminal nucleus principalis in the rat: effects of target removal at birth. Eur J Neurosci 1996; 8:1641-57. [PMID: 8921255 DOI: 10.1111/j.1460-9568.1996.tb01308.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Little is known about how neurons develop in the trigeminal nucleus principalis (PrV) despite their acknowledged role in establishing whisker-related patterns in the thalamus and cortex. Golgi-impregnated PrV cells were studied in newborn, 4-day-old and adult rats. Adult neurons typically had short dendrites that were confined to a hemisphere around the soma. In contrast, at birth PrV neurons had radial trees and more primary dendrites than did adults, but adult-like numbers of dendritic spines. By day 4, most neurons had eccentric dendritic trees and the numbers of primary dendrites per neuron were adult-like, yet spines were more prevalent than in adults and newborns. Thus, it appears that there is a pruning of the dendritic tree during the first postnatal week. To assess the role of retrograde signals from the thalamus on PrV development, the right thalamus was destroyed at birth. By postnatal day 6, the number of neurons in the left PrV was 59% of that in the right PrV, PrV transverse area was reduced by 21%, cell density was reduced by 48%, and somatic diameter was increased by 36%, relative to the intact right PrV. By contrast, in the left V subnucleus interpolaris, which has only a weak thalamic projection, these measures were unaffected. Thus, neonatal thalamic lesions selectively depopulated the PrV. The morphology of PrV neurons was affected by the thalamic lesions: e.g. the total dendritic length, the number of dendritic branch points and the total number of spines were increased. The number of primary dendrites and the tree's eccentricity, area, and volume of influence were unaffected by the lesion. The structure of neurons in subnucleus interpolaris was unaffected by the lesion. Thus, normal afferent patterning is insufficient for normal development of PrV cells. Interactions among dendrites and retrograde signals from a target are also important.
Collapse
Affiliation(s)
- M F Jacquin
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
34
|
Troilo D, Xiong M, Crowley JC, Finlay BL. Factors controlling the dendritic arborization of retinal ganglion cells. Vis Neurosci 1996; 13:721-33. [PMID: 8870228 DOI: 10.1017/s0952523800008609] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of changing retinal ganglion cell (RGC) density and availability of presynaptic sites on the development of RGC dendritic arbor in the developing chick retina were contrasted. Visual form deprivation was used to induce ocular enlargement and expanded retinal area resulting in a 20-30% decrease in RGC density. In these retinas, RGC dendritic arbors increased in a compensatory manner to maintain the inner nuclear layer to RGC convergence ratio in a way that is consistent with simple stretching; RGC dendritic arbors become larger with increased branch lengths, but without change in the total number of branches. In the second manipulation, partial optic nerve section was used to produce areas of RGC depletion of approximately 60% in the central retina. This reduction in density is comparable to the density of locations in the normal peripheral retina. In RGC depleted retinas, dendritic arbor areas of RGCs in the central retina grow to match the size of normal peripheral arbors. In contrast to the expanded case, two measures of intrinsic arbor structure are changed in RGC-depleted retinas; the branch density of RGC dendrites is greater, and the relative areas of the two arbors of bistratified cells are altered. We discuss the potential roles of retinal growth, local RGC density, and availability of presynaptic terminals in the developmental control of RGC dendritic arbor.
Collapse
Affiliation(s)
- D Troilo
- Section of Neurobiology and Behavior, Cornell University, Ithaca, USA
| | | | | | | |
Collapse
|
35
|
Ramoa AS, Yamasaki EN. Transient retinal ganglion cells in the developing rat are characterized by specific morphological properties. J Comp Neurol 1996; 368:582-96. [PMID: 8744445 DOI: 10.1002/(sici)1096-9861(19960513)368:4<582::aid-cne9>3.0.co;2-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To determine whether dendritic development of mammalian retinal ganglion cells (RGCs) is affected by axonal target specificity, the morphology of three populations of maturing RGCs was examined. These included RGCs that exhibited either a transient, topographically incorrect, projection to the caudal superior colliculus (SC), or a transient projection to the caudal inferior colliculus (IC), in addition to a control group that exhibited a topographically correct projection to the caudal SC. Projection populations were identified by retrograde transport of rhodamine labeled latex microspheres injected into target nuclei. Labeled RGCs were then injected in vitro with Lucifer yellow to reveal the details of their dendritic morphology. Retinal ganglion cells making target errors, most of which ultimately die, were found to undergo a remarkable degree of morphological differentiation and could be categorized according to the adult type I, II, or III criteria. However, the relative proportions of these cell types were different among RGCs making transient connections versus those whose projections were preserved. Approximately half of the RGCs making topographically incorrect projections to the SC belonged to type III, in contrast to 6% that made a topographically correct projection. In addition, the population of cells sending axons to caudal IC did not include type III RGCs, but consisted of small type II neurons. The development of the basic dendritic form of each RGC type was only modestly influenced by its projection pattern; dendritic trees of cells making transient projections were essentially normal with only a slight, but statistically significant, reduction in dimensions. Moreover, dendritic remodeling was evident during maturation of neurons making either transient or normal projections. Together, these findings indicate that target specificity plays a relatively minor role on dendritic development of retinal ganglion cells.
Collapse
Affiliation(s)
- A S Ramoa
- Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0709, USA
| | | |
Collapse
|
36
|
Wingate RJ. Retinal ganglion cell dendritic development and its control. Filling the gaps. Mol Neurobiol 1996; 12:133-44. [PMID: 8818147 DOI: 10.1007/bf02740650] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The way in which central neurons acquire their complex and precise dendrite arbors is of considerable developmental interest. Using retinal ganglion cells (RGCs) as a model, the mechanisms that pattern dendritic development are beginning to emerge. As in other systems, final dendrite phenotype is achieved by a mixture of intrinsic and extrinsic determinants. The extrinsic determinants of RGC dendrite shape reflect the anatomical constraints of producing a paracrystalline mosaic of arbors that laminates the inner plexiform layer of the retina. In this article, the key features of RGC dendrite development are reviewed. The emerging molecular mechanisms behind dendritic laminar segregation and "dendritic competition" are described. The role of afferent extrinsic influences are contrasted with those of retrograde, activity-dependent target influences that may regulate the final maturational phase of dendrite remodeling.
Collapse
Affiliation(s)
- R J Wingate
- Department of Developmental Neurobiology, UMDS, Guy's Hospital, London
| |
Collapse
|
37
|
Levick W. Receptive fields of cat retinal ganglion cells with special reference to the Alpha cells. Prog Retin Eye Res 1996. [DOI: 10.1016/1350-9462(96)00011-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Wingate RJ, Thompson ID. Axonal target choice and dendritic development of ferret beta retinal ganglion cells. Eur J Neurosci 1995; 7:723-31. [PMID: 7620621 DOI: 10.1111/j.1460-9568.1995.tb00676.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have investigated the relationship between axon targeting and dendritic morphology in beta retinal ganglion cells in the postnatal ferret. Axonal projections were assessed by making separate injections of different fluorescent retrograde tracers into either the superior colliculus or lateral geniculate nucleus in vivo. The dendritic morphology of retrogradely labelled cells was revealed by the in vitro intracellular injection of lucifer yellow in fixed retina. In this way, 405 retinal ganglion cells were triple- or double-labelled and characterized by their dendritic branching styles. Both the distinct dendritic morphology of beta cells and the characteristic restriction of their adult axonal terminals to the lateral geniculate nucleus emerge postnatally. Beta cell dendritic morphology is established between postnatal days 5 and 9. As in the cat (Ramoa et al., 1989), beta cells extend and then retract a projection to the superior colliculus as part of their normal development. Transient beta axonal collaterals to the superior colliculus persist beyond the period of cell death, but nearly all are withdrawn by postnatal day 15. No dendritically distinct beta cell projects to the superior colliculus alone, at any age. Heterochronic injections of different colours of retrograde tracer into the superior colliculus were used to study changes in the complement of the retinocollicular projection over time. A significant proportion of cells (58%) labelled at postnatal day 0 from the superior colliculus, which subsequently survived the period of cell death, were found to be beta cells that could no longer be demonstrated to have a retinocollicular axon.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R J Wingate
- University Laboratory of Physiology, Oxford University, UK
| | | |
Collapse
|
39
|
Arendt T, Marcova L, Bigl V, Brückner MK. Dendritic reorganisation in the basal forebrain under degenerative conditions and its defects in Alzheimer's disease. I. Dendritic organisation of the normal human basal forebrain. J Comp Neurol 1995; 351:169-88. [PMID: 7699111 DOI: 10.1002/cne.903510202] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the present study, the dendritic organisation of neurones in the normal human basal forebrain was analysed as a prerequisite for the evaluation of pathological changes occurring in Alzheimer's disease and related conditions (see other Arendt et al. papers in this issue). Neurones in the basal nucleus of Meynert (NbM), the nucleus of the vertical limb of the diagonal band, and the medial septal nucleus were examined after Golgi impregnation. Cells were classified according to the dendritic branching pattern and soma shape as either reticular neurones or multipolar giant neurones. The reticular type of neurones constitutes more than 90% of neurones in the BnM. Cholinergic neurones also belong to this cell type. Reticular neurones were further subdivided into four subtypes. Morphological features and arrangement of reticular basal forebrain neurones were identical to those described for "reticular formation cells" or "isodendritic" neurones. Dendritic trees of reticular neurones show a spatial orientation perpendicular to passing fibres as well as a high degree of overlap, both of which are hallmarks of "open nuclei." The qualitative classification of Golgi-impregnated basal forebrain neurones was substantiated by a computer-based three-dimensional analysis. Topologic and metric parameters of the dendritic tree were calculated for each type of neurone to characterise the degree of dendritic branching, the shape and orientation of the dendritic arborisation, the spatial extension of the dendritic tree, and soma size. The classification criteria were evaluated according to their power of discrimination between different cell types by means of a discriminant analysis. The quantitative approach applied in the present study not only provides an objective measure for the description and comparison of the structure of various types of neurones but also makes it possible to elucidate fine structural changes that might occur under pathologic conditions and that are not evident during qualitative studies alone.
Collapse
Affiliation(s)
- T Arendt
- Department of Neurochemistry, Paul Flechsig Institute of Brain Research, University of Leipzig, Germany
| | | | | | | |
Collapse
|
40
|
Jacquin MF, Renehan WE. Structure-function relationships in rat brainstem subnucleus interpolaris: XII. neonatal deafferentation effects on cell morphology. Somatosens Mot Res 1995; 12:209-33. [PMID: 8834299 DOI: 10.3109/08990229509093659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the developing whisker-barrel neuraxis, it is known that pattern formation, receptive fields, axon projections, and even cell survival are under the control of peripheral signals transmitted through the infraorbital nerve. However, afferent influences upon the development of single-cell morphologies have not received thorough study. Intracellular recording, antidromic activation, receptive field mapping, dye injection, and computer-assisted cell reconstruction methods were used to assess the morphology of trigeminal (V) brainstem neurons in adult rats whose infraorbital nerves were transected at birth. Projection and local-circuit neurons in the spinal V subnucleus interpolaris (SpVi; n = 43) and local-circuit neurons in the adjacent subnucleus caudalis (SpVc; n = 11) were compared with similar cell types in normal control rats, as well as with spinal V neurons located outside of the deafferented region in experimental rats. SpVi cells displayed abnormally convergent and discontinuous receptive fields that included greater-than-normal numbers of vibrissae and other receptor organs. However, their morphologies did not differ significantly from normal on any quantitative measure, including soma size, number of proximal dendrites, or dendritic tree area, perimeter, or shape. Moreover, SpVi cells near deafferented brainstem territories did not display dendritic tree polarity toward or away from the deafferented region. In SpVc, laminae I-V cells had responses and morphologies that were indistinguishable from those of controls. Thus, (1) altered receptive fields of neonatally deafferented SpVi neurons are not attributable to changes in their morphology; (2) SpVc cells are resilient following deafferentation; and (3) the development of SpV dendrites and local axon collaterals is controlled by factors other than those directly conveyed by primary afferents.
Collapse
Affiliation(s)
- M F Jacquin
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
41
|
|
42
|
Deplano S, Ratto GM, Bisti S. Interplay between the dendritic trees of alpha and beta ganglion cells during the development of the cat retina. J Comp Neurol 1994; 342:152-60. [PMID: 8207126 DOI: 10.1002/cne.903420114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have analyzed the effect of a small lesion to the retina of a two-day-old kitten and observed that after degeneration of ganglion cells whose axons were severed, a restricted region of the retina remained depleted of cells. Cells located near the borders of the depleted zone showed an abnormal elongation of dendrites towards the bare area. By means of a computer-aided system, we analyzed the whole population of cells at the two borders, and in agreement with previous data found that the effect was most prominent at the border and progressively decreased to eventually disappear at a distance of approximately 500 microns. The distance from the border, however, is not the only factor to influence the degree of asymmetry; with comparable distances, the vicinity of an alpha-cell reduces the projection of the beta-cell dendrites toward the empty area. We suggest that the organization of the adult retinal pattern is also influenced by interactions occurring between dendrites of different classes of ganglion cells.
Collapse
Affiliation(s)
- S Deplano
- Institute of Comparative Anatomy, University of Genoa, Italy
| | | | | |
Collapse
|
43
|
Ault SJ, Leventhal AG. Postnatal development of different classes of cat retinal ganglion cells. J Comp Neurol 1994; 339:106-16. [PMID: 8106655 DOI: 10.1002/cne.903390110] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous investigators have documented the postnatal development of alpha and beta type ganglion cells in cat retinae (Ramoa et al. [1987] Science 237:522-525; Ramoa et al. [1988] J. Neurosci. 8:4239-4261; Dann et al. [1987] Neurosci. Lett. 80:21-26; Dann et al. [1988] J. Neurosci. 8(5):1485-1499). The development of the remaining cells (about 50%), which constitute a heterogeneous group and are referred to here collectively as gamma cells (Boycott and Wässle, '74), has not been studied in detail. The purpose of this study was to compare the postnatal development of alpha, beta, and gamma cells in kitten and adult retinae using horseradish peroxidase histochemistry and the fluorescent dye DiI. In the kitten, alpha, beta, and gamma cells are recognizable. We find, as have others, that kitten alpha and beta cell bodies and dendritic fields are significantly smaller than in the adult. However, kitten gamma cells are nearly adult sized. In fact, at birth the cell bodies of beta cells throughout the retina are significantly smaller than those of gamma cells. During the first 12 weeks of life, alpha and beta cell bodies increase in size from 90% to 680% depending upon eccentricity. Gamma cells hardly increase in size at all. Also, the normal adult center-to-peripheral cell size gradient for alpha and beta cells is not seen in the neonate. Gamma cells show no such gradient in the neonate or adult. Our results suggest that the morphological development of alpha and beta cells occurs later than that of gamma cells and may explain some of the differences in the effects of visual deprivation and surgical manipulation upon the parallel Y-, X-, and W-cell pathways.
Collapse
Affiliation(s)
- S J Ault
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City 84132
| | | |
Collapse
|
44
|
Goldstein LA, Kurz EM, Kalkbrenner AE, Sengelaub DR. Changes in dendritic morphology of rat spinal motoneurons during development and after unilateral target deletion. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 73:151-63. [PMID: 8353928 DOI: 10.1016/0165-3806(93)90133-u] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During normal development, motoneuron dendrites in the spinal nucleus of the bulbocavernosus (SNB) grow exuberantly to almost twice their adult length and then retract. In this study, we retrogradely labeled SNB motoneurons with cholera toxin B-conjugated horseradish peroxidase (BHRP) to examine the maturation of SNB dendritic arbors in more detail, particularly with regard to its spatial distribution and reorganization. The number and orientation of SNB motoneuron primary processes did not change over the first ten weeks of life. In contrast, total dendritic length, radial extent and arbor area increased significantly through the first four postnatal weeks and declined thereafter. The declines in length and extent were restricted to particular portions of the arbor, specifically the dorsal, ipsi- and contralateral projections. Estimates of the degree of overlap between the dendritic arbors from both sides of the SNB reflected these changes, with overlap initially increasing and then decreasing as the SNB established its adult dendritic morphology. To determine if dendritic interactions facilitated by this arbor overlap might be involved in regulating the normal retraction of SNB dendrites, we reduced SNB motoneuron numbers unilaterally by target muscle removal on the day of birth. Somal size, number and orientation of primary processes developed normally in unilateral muscle-extirpated animals. The dendritic morphology of surviving SNB motoneurons in unilateral muscle extirpated males was altered, with significant increases in dendritic length, extent and arbor area relative to those of normal males. These results indicate that substantial changes in dendritic organization of SNB motoneurons occur in normal development and may be influenced by interactions between dendrites from the two halves of the SNB.
Collapse
Affiliation(s)
- L A Goldstein
- Program in Neural Science, Indiana University, Bloomington 47405
| | | | | | | |
Collapse
|
45
|
Linden R. Dendritic competition in the developing retina: ganglion cell density gradients and laterally displaced dendrites. Vis Neurosci 1993; 10:313-24. [PMID: 8485094 DOI: 10.1017/s0952523800003710] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dendrites of retinal ganglion cells (RGCs) tend to be distributed preferentially toward areas of reduced RGC density. This, however, does not occur in the retina of normal pigmented rats, in which it has been suggested that the centro-peripheral gradient of RGC density is too shallow to provide directional guidance to growing dendrites. In this study, laterally displaced dendrites of RGCs retrogradely labeled with horseradish peroxidase were related to cell density gradients induced experimentally in the rat retina. Neonatal unilateral lesions of the optic tract produced retrograde degeneration of contralaterally projecting RGCs, but spared ipsilaterally projecting neurons in the same retina. These lesions created an anomalous temporal to nasal gradient of cell density across the decussation line, opposite to the nasal to temporal gradient found along the same axis in either normal rats or rats that had the contralateral eye removed at birth. RGCs in rats that received optic tract lesions had their dendrites displaced laterally toward the depleted nasal retina, while in either normal or enucleated rats there was no naso-temporal asymmetry. The lateral displacement affected both primary dendrites and higher-order branches. However, the gradient of cell density after optic tract lesions was less steep than the gradient in either normal or enucleated rats. To test for the presence of steeper gradients at early stages of development, RGC density gradients were also examined at postnatal day 5 (P5). In normal rats, the RGCs were homogeneously distributed throughout the retina, while rats given optic tract lesions at birth already showed a temporo-nasal density gradient at P5. Still, this anomalous gradient was less steep than that found in normal adults. It is concluded that the time course, rather than the steepness of the RGC density gradient, is the major determinant of the lateral displacement of dendritic arbors with respect to the soma in developing RGCs. The data are consistent with the idea that the overall shape of dendritic arbors depends in part on dendritic competition during retinal development.
Collapse
Affiliation(s)
- R Linden
- Instituto de Biofisica da UFRJ, Brazil
| |
Collapse
|
46
|
Ault SJ, Thompson KG, Zhou Y, Leventhal AG. Selective depletion of beta cells affects the development of alpha cells in cat retina. Vis Neurosci 1993; 10:237-45. [PMID: 8485088 DOI: 10.1017/s0952523800003643] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The results of previous studies suggest that class-specific interactions contribute to the development of the different classes of retinal ganglion cells. We tested this hypothesis by examining the morphologies and distributions of alpha (alpha) cells in regions of mature cat retina selectively depleted of beta (beta) cells as a result of visual cortex lesions at birth. We find that alpha cells in regions of central retina depleted of beta cells are abnormally large while alpha cells in regions of peripheral retina depleted of beta cells are abnormally small. The normal central-to-peripheral alpha cell soma-size gradient is absent in hemiretinae depleted of beta cells. The dendritic fields of alpha cells in the border of beta-cell-depleted hemiretina extend preferentially into the beta-cell-poor hemiretina. In spite of this, alpha cell bodies retain their normal retinal distribution and remain distributed in a nonrandom mosaic-like pattern. Thus, it appears that the development of alpha retinal ganglion cells is influenced by interactions both with other alpha cells (class-specific interactions) and with surrounding beta cells (nonclass-specific interactions).
Collapse
Affiliation(s)
- S J Ault
- Department of Anatomy, University of Utah, School of Medicine, Salt Lake City 84132
| | | | | | | |
Collapse
|
47
|
Oyster CW, Amthor FR, Takahashi ES. Dendritic architecture of ON-OFF direction-selective ganglion cells in the rabbit retina. Vision Res 1993; 33:579-608. [PMID: 8351833 DOI: 10.1016/0042-6989(93)90181-u] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
ON-OFF direction-selective ganglion cells in rabbit retina have bistratified dendritic arbors that are formed by contributions from three or four primary dendrites and their dependent branches (dendritic systems). Most dendritic systems contribute to both branching planes, but some are confined to a single plane. The way in which dendritic systems combine to form the branching planes varies from cell to cell, but the dendritic systems always produce a non-overlapping tiling of the planes having a distinctive mesh-like appearance. This mesh-like pattern appears to be produced primarily by a large number of branches that terminate close to the cell somata. Despite clear differences in the detailed construction of the dendritic arbors, quantitative morphological attributes vary primarily with overall size, and the variation is nearly isometric. We therefore regard these cells as isomorphic, in the sense that they have developed according to the same rather liberal rules for dendritic growth. More importantly, however, we have not found any morphological feature that is correlated with the cells' preferred response directions. We conclude that the distinctive dendritic architecture of these cells is related to general requirements for dense, uniform sampling from specific input arrays, and not direction-selectivity per se. The most important rules governing the branching pattern of the ON-OFF direction-selective cells may be related to territoriality, wherein dendrites, dendritic systems, and cells of the same type establish non-overlapping domains.
Collapse
Affiliation(s)
- C W Oyster
- Department of Physiological Optics, School of Optometry, University of Alabama, Birmingham 35294
| | | | | |
Collapse
|
48
|
Chapter 11 Synaptic growth in the rod terminals after partial photoreceptor cell loss. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0278-4327(93)90012-i] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Chiaia NL, Bauer WR, Zhang S, King TA, Wright PC, Hobler SC, Freeman KA. Effects of neonatal transection of the infraorbital nerve upon the structural and functional organization of the ventral posteromedial nucleus in the rat. J Comp Neurol 1992; 326:561-79. [PMID: 1484124 DOI: 10.1002/cne.903260406] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present study examined the way in which an indirect partial deafferentation of the medial portion of the ventrobasal complex (VPM/VPL) induced by neonatal transection of the infraorbital nerve (ION) altered the structural and functional properties of its constituent neurons. This manipulation significantly reduced the volume of the contralateral VPM/VPL. In addition, cell counts in Nissl-stained material revealed a significant reduction of the number of VPM/VPL neurons contralateral to neonatal ION transection. We also analyzed the effect of neonatal ION transection on the soma-dendritic morphology of individual neurons in the ventral posteromedial nucleus of the thalamus (VPM) by intracellular injection of horseradish peroxidase (HRP) in vivo and Lucifer yellow in fixed slices. Neonatal transection of the ION resulted in increased dendritic length, area, and volume of VPM neurons in both preparations; however only the changes observed in fixed slices reached statistical significance. Alterations in the functional characteristics of VPM neurons were also observed following neonatal nerve damage. There was a significant decrease in the percentage of vibrissae-sensitive neurons and a corresponding increase in the percentages of neurons responsive to guard hair deflection or that were unresponsive to peripheral stimulation. Neonatal nerve damage also resulted in significantly longer latencies of VPM cells after stimulation of either trigeminal nucleus principalis or subnucleus interpolaris. The present results indicate that the development of normal response properties and soma-dendritic morphology of VPM neurons is dependent upon intact afferent input during development. Indirect partial deafferentation of VPM/VPL by neonatal transection of the ION results in reduced neuron number, which may result in decreased competition among the dendrites of these neurons. This proposal is consistent with observations of increased dendritic dimensions of VPM neurons contralateral to neonatal ION damage.
Collapse
Affiliation(s)
- N L Chiaia
- Department of Anatomy, Medical College of Ohio, Toledo 43699
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The topographical distribution of retinal ganglion cells in seven breeds of dog (Canis lupus f. familiaris) and in the wolf (Canis lupus) was studied in retinal wholemounts stained with cresyl violet or with a reduced silver method. A prominent feature of all wolf retinae was a pronounced "visual streak" of high ganglion cell density, extending from the central area far into both temporal and nasal retina. By contrast, either a pronounced or a moderate visual streak was found in dog retinae. It is hypothesized that a pronounced streak is an archetypal feature of Canis lupus, and that the moderate streak in some dogs is a corollary of breeding during domestication. Irrespective of the differences in streak form and retinal area, the estimated total number of ganglion cells was about 200,000 cells in the wolf and 115,000 in the dog. Ganglion cell density maxima in the central area of the wolf were about 12,000-14,000/mm2, and in the dog they ranged from 6,400/mm2 to 14,400/mm2. This implies individual differences in visual acuity. Alpha ganglion cells constituted 3-14% of all ganglion cells in the dog and 1-18% in the wolf, depending on retinal location. A distinct feature of all dogs and wolves was the absence of alpha cells in a substantial region of temporal peripheral retina. This has not been found in any other mammalian species and suggests corresponding functional deficits.
Collapse
Affiliation(s)
- L Peichl
- Max-Planck-Institut für Hirnforschung, Frankfurt, Germany
| |
Collapse
|