1
|
Han D, Carr CE. Auditory pathway for detection of vibration in the tokay gecko. Curr Biol 2024:S0960-9822(24)01227-2. [PMID: 39368471 DOI: 10.1016/j.cub.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Otolithic endorgans such as the saccule were thought to be strictly vestibular in amniotes (reptiles, birds, and mammals), with little evidence supporting the auditory function found in fish and amphibians (frogs and salamanders). Here, we demonstrate an auditory role for the saccule in the tokay gecko (Gekko gecko). The nucleus vestibularis ovalis (VeO) in the hindbrain exclusively receives input from the saccule and projects to the auditory midbrain, the torus semicircularis, via an ascending pathway parallel to cochlear pathways. Single-unit recordings show that VeO is exquisitely sensitive to low-frequency vibrations. Moreover, VeO is present in other lepidosaurs, including snakes and Sphenodon. These findings indicate that the ancestral auditory function of the saccule is likely preserved at least in the lepidosaurian lineage of amniotes and mediates sensitive encoding of vibration. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Dawei Han
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
2
|
Barmack NH, Pettorossi VE. Adaptive Balance in Posterior Cerebellum. Front Neurol 2021; 12:635259. [PMID: 33767662 PMCID: PMC7985352 DOI: 10.3389/fneur.2021.635259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/16/2021] [Indexed: 11/26/2022] Open
Abstract
Vestibular and optokinetic space is represented in three-dimensions in vermal lobules IX-X (uvula, nodulus) and hemisphere lobule X (flocculus) of the cerebellum. Vermal lobules IX-X encodes gravity and head movement using the utricular otolith and the two vertical semicircular canals. Hemispheric lobule X encodes self-motion using optokinetic feedback about the three axes of the semicircular canals. Vestibular and visual adaptation of this circuitry is needed to maintain balance during perturbations of self-induced motion. Vestibular and optokinetic (self-motion detection) stimulation is encoded by cerebellar climbing and mossy fibers. These two afferent pathways excite the discharge of Purkinje cells directly. Climbing fibers preferentially decrease the discharge of Purkinje cells by exciting stellate cell inhibitory interneurons. We describe instances adaptive balance at a behavioral level in which prolonged vestibular or optokinetic stimulation evokes reflexive eye movements that persist when the stimulation that initially evoked them stops. Adaptation to prolonged optokinetic stimulation also can be detected at cellular and subcellular levels. The transcription and expression of a neuropeptide, corticotropin releasing factor (CRF), is influenced by optokinetically-evoked olivary discharge and may contribute to optokinetic adaptation. The transcription and expression of microRNAs in floccular Purkinje cells evoked by long-term optokinetic stimulation may provide one of the subcellular mechanisms by which the membrane insertion of the GABAA receptors is regulated. The neurosteroids, estradiol (E2) and dihydrotestosterone (DHT), influence adaptation of vestibular nuclear neurons to electrically-induced potentiation and depression. In each section of this review, we discuss how adaptive changes in the vestibular and optokinetic subsystems of lobule X, inferior olivary nuclei and vestibular nuclei may contribute to the control of balance.
Collapse
Affiliation(s)
- Neal H. Barmack
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, United States
| | - Vito Enrico Pettorossi
- Section of Human Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Histochemical Characterization of the Vestibular Y-Group in Monkey. THE CEREBELLUM 2020; 20:701-716. [PMID: 33083961 PMCID: PMC8629908 DOI: 10.1007/s12311-020-01200-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 12/18/2022]
Abstract
The Y-group plays an important role in the generation of upward smooth pursuit eye movements and contributes to the adaptive properties of the vertical vestibulo-ocular reflex. Malfunction of this circuitry may cause eye movement disorders, such as downbeat nystagmus. To characterize the neuron populations in the Y-group, we performed immunostainings for cellular proteins related to firing characteristics and transmitters (calretinin, GABA-related proteins and ion channels) in brainstem sections of macaque monkeys that had received tracer injections into the oculomotor nucleus. Two histochemically different populations of premotor neurons were identified: The calretinin-positive population represents the excitatory projection to contralateral upgaze motoneurons, whereas the GABAergic population represents the inhibitory projection to ipsilateral downgaze motoneurons. Both populations receive a strong supply by GABAergic nerve endings most likely originating from floccular Purkinje cells. All premotor neurons express nonphosphorylated neurofilaments and are ensheathed by strong perineuronal nets. In addition, they contain the voltage-gated potassium channels Kv1.1 and Kv3.1b which suggests biophysical similarities to high-activity premotor neurons of vestibular and oculomotor systems. The premotor neurons of Y-group form a homogenous population with histochemical characteristics compatible with fast-firing projection neurons that can also undergo plasticity and contribute to motor learning as found for the adaptation of the vestibulo-ocular reflex in response to visual-vestibular mismatch stimulation. The histochemical characterization of premotor neurons in the Y-group allows the identification of the homologue cell groups in human, including their transmitter inputs and will serve as basis for correlated anatomical-neuropathological studies of clinical cases with downbeat nystagmus.
Collapse
|
4
|
|
5
|
Genzel D, Firzlaff U, Wiegrebe L, MacNeilage PR. Dependence of auditory spatial updating on vestibular, proprioceptive, and efference copy signals. J Neurophysiol 2016; 116:765-75. [PMID: 27169504 DOI: 10.1152/jn.00052.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/09/2016] [Indexed: 11/22/2022] Open
Abstract
Humans localize sounds by comparing inputs across the two ears, resulting in a head-centered representation of sound-source position. When the head moves, information about head movement must be combined with the head-centered estimate to correctly update the world-centered sound-source position. Spatial updating has been extensively studied in the visual system, but less is known about how head movement signals interact with binaural information during auditory spatial updating. In the current experiments, listeners compared the world-centered azimuthal position of two sound sources presented before and after a head rotation that depended on condition. In the active condition, subjects rotated their head by ∼35° to the left or right, following a pretrained trajectory. In the passive condition, subjects were rotated along the same trajectory in a rotating chair. In the cancellation condition, subjects rotated their head as in the active condition, but the chair was counter-rotated on the basis of head-tracking data such that the head effectively remained fixed in space while the body rotated beneath it. Subjects updated most accurately in the passive condition but erred in the active and cancellation conditions. Performance is interpreted as reflecting the accuracy of perceived head rotation across conditions, which is modeled as a linear combination of proprioceptive/efference copy signals and vestibular signals. Resulting weights suggest that auditory updating is dominated by vestibular signals but with significant contributions from proprioception/efference copy. Overall, results shed light on the interplay of sensory and motor signals that determine the accuracy of auditory spatial updating.
Collapse
Affiliation(s)
- Daria Genzel
- Department Biology II, Ludwig-Maximilian University of Munich, Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience Munich, Planegg-Martinsried, Germany
| | - Uwe Firzlaff
- Bernstein Center for Computational Neuroscience Munich, Planegg-Martinsried, Germany; Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany; and
| | - Lutz Wiegrebe
- Department Biology II, Ludwig-Maximilian University of Munich, Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience Munich, Planegg-Martinsried, Germany
| | - Paul R MacNeilage
- Bernstein Center for Computational Neuroscience Munich, Planegg-Martinsried, Germany; Deutsches Schwindel- und Gleichgewichtszentrum, University Hospital of Munich, Munich, Germany
| |
Collapse
|
6
|
Corfield JR, Kolominsky J, Craciun I, Mulvany-Robbins BE, Wylie DR. Is Cerebellar Architecture Shaped by Sensory Ecology in the New Zealand Kiwi (Apteryx mantelli). BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:88-104. [PMID: 27192984 DOI: 10.1159/000445315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 03/09/2016] [Indexed: 11/19/2022]
Abstract
Among some mammals and birds, the cerebellar architecture appears to be adapted to the animal's ecological niche, particularly their sensory ecology and behavior. This relationship is, however, not well understood. To explore this, we examined the expression of zebrin II (ZII) in the cerebellum of the kiwi (Apteryx mantelli), a fully nocturnal bird with auditory, tactile, and olfactory specializations and a reduced visual system. We predicted that the cerebellar architecture, particularly those regions receiving visual inputs and those that receive trigeminal afferents from their beak, would be modified in accordance with their unique way of life. The general stripe-and-transverse region architecture characteristic of birds is present in kiwi, with some differences. Folium IXcd was characterized by large ZII-positive stripes and all Purkinje cells in the flocculus were ZII positive, features that resemble those of small mammals and suggest a visual ecology unlike that of other birds. The central region in kiwi appeared reduced or modified, with folium IV containing ZII+/- stripes, unlike that of most birds, but similar to that of Chilean tinamous. It is possible that a reduced visual system has contributed to a small central region, although increased trigeminal input and flightlessness have undoubtedly played a role in shaping its architecture. Overall, like in mammals, the cerebellar architecture in kiwi and other birds may be substantially modified to serve a particular ecological niche, although we still require a larger comparative data set to fully understand this relationship.
Collapse
Affiliation(s)
- Jeremy R Corfield
- Department of Biological Sciences, Salisbury University, Salisbury, Md., USA
| | | | | | | | | |
Collapse
|
7
|
Beaton KH, Huffman WC, Schubert MC. Binocular misalignments elicited by altered gravity provide evidence for nonlinear central compensation. Front Syst Neurosci 2015; 9:81. [PMID: 26082691 PMCID: PMC4451361 DOI: 10.3389/fnsys.2015.00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/09/2015] [Indexed: 12/05/2022] Open
Abstract
Increased ocular positioning misalignments upon exposure to altered gravity levels (g-levels) have been strongly correlated with space motion sickness (SMS) severity, possibly due to underlying otolith asymmetries uncompensated in novel gravitational environments. We investigated vertical and torsional ocular positioning misalignments elicited by the 0 and 1.8 g g-levels of parabolic flight and used these data to develop a computational model to describe how such misalignments might arise. Ocular misalignments were inferred through two perceptual nulling tasks: Vertical Alignment Nulling (VAN) and Torsional Alignment Nulling (TAN). All test subjects exhibited significant differences in ocular misalignments in the novel g-levels, which we postulate to be the result of healthy individuals with 1 g-tuned central compensatory mechanisms unadapted to the parabolic flight environment. Furthermore, the magnitude and direction of ocular misalignments in hypo-g and hyper-g, in comparison to 1 g, were nonlinear and nonmonotonic. Previous linear models of central compensation do not predict this. Here we show that a single model of the form a + bg (ε), where a, b, and ε are the model parameters and g is the current g-level, accounts for both the vertical and torsional ocular misalignment data observed inflight. Furthering our understanding of oculomotor control is critical for the development of interventions that promote adaptation in spaceflight (e.g., countermeasures for novel g-level exposure) and terrestrial (e.g., rehabilitation protocols for vestibular pathology) environments.
Collapse
Affiliation(s)
- Kara H. Beaton
- Department of Otolaryngology – Head and Neck Surgery, The Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - W. Cary Huffman
- Department of Mathematics and Statistics, Loyola UniversityChicago, IL, USA
| | - Michael C. Schubert
- Department of Otolaryngology – Head and Neck Surgery, The Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Physical Medicine and Rehabilitation, The Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
8
|
Beh SC, Frohman TC, Frohman EM. Neuro-ophthalmic Manifestations of Cerebellar Disease. Neurol Clin 2014; 32:1009-80. [DOI: 10.1016/j.ncl.2014.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shin C Beh
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Teresa C Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Elliot M Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
9
|
Kitama T, Komagata J, Ozawa K, Suzuki Y, Sato Y. Plane-specific Purkinje cell responses to vertical head rotations in the cat cerebellar nodulus and uvula. J Neurophysiol 2014; 112:644-59. [DOI: 10.1152/jn.00029.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded simple spike (SS) and complex spike (CS) firing of Purkinje cell in the cerebellar nodulus and uvula of awake, head-restrained cats during sinusoidal vertical rotation of the head in four stimulus planes (pitch, roll, and two vertical canal planes). Two SS response types (position- and velocity-types) with response phases close to those of head position and velocity, respectively, were recognized. Optimal response planes and directions for SS and CS of each cell were estimated from the response amplitudes in the four stimulus planes by fitting with a sinusoidal function. The principal findings are as follows: 1) two rostrocaudally oriented functional zones of Purkinje cells can be distinguished; 2) the medially located parasagittal band is active during rotation in the pitch plane; 3) the laterally located band is active during rotation in the roll plane. These two zones are the same as previously reported zones in the cerebellar flocculus active during head rotation in the canal planes in the point that both cerebellar sagittal zones are plane-specific functional zones, suggesting that the anatomical sagittal zones serve as functional plane-specific zones at least in the vestibulocerebellum.
Collapse
Affiliation(s)
- Toshihiro Kitama
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| | - Junya Komagata
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| | - Kenichi Ozawa
- Department of Occupational Therapy, Health Science University, Yamanashi, Japan
| | - Yutaka Suzuki
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| | - Yu Sato
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan; and
| |
Collapse
|
10
|
Lee RX, Huang JJ, Huang C, Tsai ML, Yen CT. Collateral projections from vestibular nuclear and inferior olivary neurons to lobules I/II and IX/X of the rat cerebellar vermis: a double retrograde labeling study. Eur J Neurosci 2014; 40:2811-21. [PMID: 24964034 DOI: 10.1111/ejn.12648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/11/2014] [Accepted: 05/04/2014] [Indexed: 11/29/2022]
Abstract
Axon collateral projections to various lobules of the cerebellar cortex are thought to contribute to the coordination of neuronal activities among different parts of the cerebellum. Even though lobules I/II and IX/X of the cerebellar vermis are located at the opposite poles in the anterior-posterior axis, they have been shown to receive dense vestibular mossy fiber projections. For climbing fibers, there is also a mirror-image-like organisation in their axonal collaterals between the anterior and posterior cerebellar cortex. However, the detailed organisation of mossy and climbing fiber collateral afferents to lobules I/II and IX/X is still unclear. Here, we carried out a double-labeling study with two retrograde tracers (FluoroGold and MicroRuby) in lobules I/II and IX/X. We examined labeled cells in the vestibular nuclei and inferior olive. We found a low percentage of double-labeled neurons in the vestibular nuclei (2.1 ± 0.9% of tracer-labeled neurons in this brain region), and a higher percentage of double-labeled neurons in the inferior olive (6.5 ± 1.9%), especially in its four small nuclei (18.5 ± 8.0%; including the β nucleus, dorsal cap of Kooy, ventrolateral outgrowth, and dorsomedial cell column), which are relevant for vestibular function. These results provide strong anatomical evidence for coordinated information processing in lobules I/II and IX/X for vestibular control.
Collapse
Affiliation(s)
- Ray X Lee
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Mahmoud A, Reed C, Maklad A. Central projections of lagenar primary neurons in the chick. J Comp Neurol 2014; 521:3524-40. [PMID: 23749554 DOI: 10.1002/cne.23369] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/06/2013] [Accepted: 05/23/2013] [Indexed: 12/19/2022]
Abstract
Perception of linear acceleration and head position is the function of the utricle and saccule in mammals. Nonmammalian vertebrates possess a third otolith endorgan, the macula lagena. Different functions have been ascribed to the lagena in arboreal birds, including hearing, equilibrium, homing behavior, and magnetoreception. However, no conclusive evidence on the function of the lagena in birds is currently available. The present study is aimed at providing a neuroanatomical substrate for the function of the lagena in the chicken as an example of terrestrial birds. The afferents from the lagena of chick embryos (E19) to the brainstem and cerebellum were investigated by the sensitive lipophilic tracer Neuro Vue Red in postfixed ears. The results revealed that all the main vestibular nuclei, including the tangential nucleus, received lagenar projections. No lagenar terminals were found in auditory centers, including the cochlear nuclei. In the cerebellum, the labeled terminals were found variably in all of the cerebellar nuclei. In the cerebellar cortex, the labeled fibers were found mostly in the uvula, with fewer afferents in the flocculus and paraflocculus. None was seen in the nodulus. The absence of lagenar afferent projections in auditory nuclei and the presence of a projection pattern in the vestibular nuclei and cerebellum similar to that of the utricle and saccule suggest that the primary role of the lagena in the chick lies in the processing of vestibular information related to linear acceleration and static head position.
Collapse
Affiliation(s)
- Amany Mahmoud
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, 39216
| | | | | |
Collapse
|
12
|
Papathanasiou ES, Murofushi T, Akin FW, Colebatch JG. International guidelines for the clinical application of cervical vestibular evoked myogenic potentials: an expert consensus report. Clin Neurophysiol 2014; 125:658-666. [PMID: 24513390 DOI: 10.1016/j.clinph.2013.11.042] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/15/2013] [Accepted: 11/20/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cervical vestibular evoked myogenic potentials (cVEMPs) are electromyogram responses evoked by high-level acoustic stimuli recorded from the tonically contracting sternocleidomastoid (SCM) muscle, and have been accepted as a measure of saccular and inferior vestibular nerve function. As more laboratories are publishing cVEMP data, there is a wider range of recording methods and interpretation, which may be confusing and limit comparisons across laboratories. OBJECTIVE To recommend minimum requirements and guidelines for the recording and interpretation of cVEMPs in the clinic and for diagnostic purposes. MATERIAL AND METHODS We have avoided proposing a single methodology, as clinical use of cVEMPs is evolving and questions still exist about its underlying physiology and its measurement. The development of guidelines by a panel of international experts may provide direction for accurate recording and interpretation. RESULTS cVEMPs can be evoked using air-conducted (AC) sound or bone conducted (BC) vibration. The technical demands of galvanic stimulation have limited its application. For AC stimulation, the most effective frequencies are between 400 and 800 Hz below safe peak intensity levels (e.g. 140 dB peak SPL). The highpass filter should be between 5 and 30 Hz, the lowpass filter between 1000 and 3000 Hz, and the amplifier gain between 2500 and 5000. The number of sweeps averaged should be between 100 and 250 per run. Raw amplitude correction by the level of background SCM activity narrows the range of normal values. There are few publications in children with consistent results. CONCLUSION The present recommendations outline basic terminology and standard methods. Because research is ongoing, new methodologies may be included in future guidelines.
Collapse
Affiliation(s)
| | - Toshihisa Murofushi
- Department of Otolaryngology, Teikyo University School of Medicine, Mizonokuchi Hospital, 3-8-3 Mizonokuchi, Takatsu-ku, Kawasaki, Japan
| | - Faith W Akin
- Audiology 126, VA Medical Center, Mountain Home, TN 37684, USA
| | - James G Colebatch
- Prince of Wales Clinical School and Neuroscience Research Australia, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
13
|
Spatiotemporal properties of optic flow and vestibular tuning in the cerebellar nodulus and uvula. J Neurosci 2013; 33:15145-60. [PMID: 24048845 DOI: 10.1523/jneurosci.2118-13.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Convergence of visual motion and vestibular information is essential for accurate spatial navigation. Such multisensory integration has been shown in cortex, e.g., the dorsal medial superior temporal (MSTd) and ventral intraparietal (VIP) areas, but not in the parieto-insular vestibular cortex (PIVC). Whether similar convergence occurs subcortically remains unknown. Many Purkinje cells in vermal lobules 10 (nodulus) and 9 (uvula) of the macaque cerebellum are tuned to vestibular translation stimuli, yet little is known about their visual motion responsiveness. Here we show the existence of translational optic flow-tuned Purkinje cells, found exclusively in the anterior part of the nodulus and ventral uvula, near the midline. Vestibular responses of Purkinje cells showed a remarkable similarity to those in MSTd (but not PIVC or VIP) neurons, in terms of both response latency and relative contributions of velocity, acceleration, and position components. In contrast, the spatiotemporal properties of optic flow responses differed from those in MSTd, and matched the vestibular properties of these neurons. Compared with MSTd, optic flow responses of Purkinje cells showed smaller velocity contributions and larger visual motion acceleration responses. The remarkable similarity between the nodulus/uvula and MSTd vestibular translation responsiveness suggests a functional coupling between the two areas for vestibular processing of self-motion information.
Collapse
|
14
|
Meng H, Blázquez PM, Dickman JD, Angelaki DE. Diversity of vestibular nuclei neurons targeted by cerebellar nodulus inhibition. J Physiol 2013; 592:171-88. [PMID: 24127616 DOI: 10.1113/jphysiol.2013.259614] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A functional role of the cerebellar nodulus and ventral uvula (lobules X and IXc,d of the vermis) for vestibular processing has been strongly suggested by direct reciprocal connections with the vestibular nuclei, as well as direct vestibular afferent inputs as mossy fibres. Here we have explored the types of neurons in the macaque vestibular nuclei targeted by nodulus/ventral uvula inhibition using orthodromic identification from the caudal vermis. We found that all nodulus-target neurons are tuned to vestibular stimuli, and most are insensitive to eye movements. Such non-eye-movement neurons are thought to project to vestibulo-spinal and/or thalamo-cortical pathways. Less than 20% of nodulus-target neurons were sensitive to eye movements, suggesting that the caudal vermis can also directly influence vestibulo-ocular pathways. In general, response properties of nodulus-target neurons were diverse, spanning the whole continuum previously described in the vestibular nuclei. Most nodulus-target cells responded to both rotation and translation stimuli and only a few were selectively tuned to translation motion only. Other neurons were sensitive to net linear acceleration, similar to otolith afferents. These results demonstrate that, unlike the flocculus and ventral paraflocculus which target a particular cell group, nodulus/ventral uvula inhibition targets a large diversity of cell types in the vestibular nuclei, consistent with a broad functional significance contributing to vestibulo-ocular, vestibulo-thalamic and vestibulo-spinal pathways.
Collapse
Affiliation(s)
- Hui Meng
- D. Angelaki: Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
15
|
Barmack NH, Yakhnitsa V. Modulated discharge of Purkinje and stellate cells persists after unilateral loss of vestibular primary afferent mossy fibers in mice. J Neurophysiol 2013; 110:2257-74. [PMID: 23966673 DOI: 10.1152/jn.00352.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebellar Purkinje cells are excited by two afferent pathways: climbing and mossy fibers. Climbing fibers evoke large "complex spikes" (CSs) that discharge at low frequencies. Mossy fibers synapse on granule cells whose parallel fibers excite Purkinje cells and may contribute to the genesis of "simple spikes" (SSs). Both afferent systems convey vestibular information to folia 9c-10. After making a unilateral labyrinthectomy (UL) in mice, we tested how the discharge of CSs and SSs was changed by the loss of primary vestibular afferent mossy fibers during sinusoidal roll tilt. We recorded from cells identified by juxtacellular neurobiotin labeling. The UL preferentially reduced vestibular modulation of CSs and SSs in folia 8-10 contralateral to the UL. The effects of a UL on Purkinje cell discharge were similar in folia 9c-10, to which vestibular primary afferents project, and in folia 8-9a, to which they do not project, suggesting that vestibular primary afferent mossy fibers were not responsible for the UL-induced alteration of SS discharge. UL also induced reduced vestibular modulation of stellate cell discharge contralateral to the UL. We attribute the decreased modulation to reduced vestibular modulation of climbing fibers. In summary, climbing fibers modulate CSs directly and SSs indirectly through activation of stellate cells. Whereas vestibular primary afferent mossy fibers cannot account for the modulated discharge of SSs or stellate cells, the nonspecific excitation of Purkinje cells by parallel fibers may set an operating point about which the discharges of SSs are sculpted by climbing fibers.
Collapse
Affiliation(s)
- N H Barmack
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | | |
Collapse
|
16
|
Wang J, Chi FL, Xin Y, Regner MF. The distribution of vestibular efferent neurons receiving innervation of secondary vestibular afferent nerves in rats. Laryngoscope 2013; 123:1266-71. [PMID: 23483514 DOI: 10.1002/lary.23847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS To explore the innervation areas of the medial vestibular nucleus (MVN) afferent neurons onto vestibular efferent neurons in the brain stem of rats. STUDY DESIGN A morphology study in the central vestibular system. METHODS Two neuronal tracers were used. Lectin PHA-L Conjugates (PHA-L, Invitrogen L - 11270,) was injected into the MVN as an anterograde tracer, and 5% FluoSpheres carboxylate-modified microspheres (MFS, Molecular Probe F-8793) was injected into the contralateral peripheral vestibule using as a retrograde tracer. All animals were allowed to recover for 12 days to facilitate sufficient transportation of the tracers. Then brain stems were sliced coronally on a freezing microtome and observed under a fluorescence microscope and laser confocal microscopy. RESULTS Neurons in the MVN labeled with PHA-L exhibited green fluorescence, and their axons were distributed near the genu of the facial nerve (g7) and in the reticulation structure, as well as in the cerebellum or oculomotor-related nuclei. Neurons labeled with red fluorescence of MFS were mainly located dorsomedial and dorsolateral to g7 and in the caudal pontine reticular nucleus (PnC) bilaterally and presented different morphologies at different locations. The synaptic junctions would display color overlap (fluoresced yellow). Under three-dimensional reconstruction of the confocal laser microscopy, the synaptic junctions were visualized dorsomedial and dorsolateral to g7 bilaterally, predominantly ipsilateral to the MVN injection site. CONCLUSIONS Morphologic evidence of the distribution of vestibular efferent neurons synapsed by afferent nerves from MVN was demonstrated. These efferent neurons constitute short closed-loop circuits with neurons in the MVN.
Collapse
Affiliation(s)
- Jing Wang
- Department of Otology and Skull Base Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
17
|
Kim J. Tonic eye movements induced by bilateral and unilateral galvanic vestibular stimulation (GVS) in guinea pigs. Brain Res Bull 2013; 90:72-8. [DOI: 10.1016/j.brainresbull.2012.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 09/12/2012] [Accepted: 09/17/2012] [Indexed: 11/26/2022]
|
18
|
Interactions between the vestibular nucleus and the dorsal cochlear nucleus: implications for tinnitus. Hear Res 2012; 292:80-2. [PMID: 22960359 DOI: 10.1016/j.heares.2012.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 11/21/2022]
Abstract
The peripheral auditory and vestibular systems are recognised to be closely related anatomically and physiologically; however, less well understood is the interaction of these two sensory systems in the brain. A number of previous studies in different species have reported that the dorsal and ventral cochlear nuclei receive direct projections from the primary vestibular nerve and one previous study had reported projections from the vestibular nucleus to the dorsal cochlear nucleus (DCN) in rabbit. Recently, Barker et al. (2012 PLoS One. 7(5): e35955) have reported new evidence that the lateral vestibular nucleus (LVN) projects to the DCN in rat and that these synapses are mediated by glutamate acting on AMPA and NMDA receptors. These recent findings, in addition to the earlier ones, suggest that the auditory and vestibular systems may be intimately connected centrally as well as peripherally and this may have important implications for disorders such as tinnitus.
Collapse
|
19
|
Voogd J, Schraa-Tam CKL, van der Geest JN, De Zeeuw CI. Visuomotor cerebellum in human and nonhuman primates. CEREBELLUM (LONDON, ENGLAND) 2012; 11:392-410. [PMID: 20809106 PMCID: PMC3359447 DOI: 10.1007/s12311-010-0204-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula-nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed.
Collapse
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
| | | | | | | |
Collapse
|
20
|
Holstein GR, Friedrich Jr. VL, Martinelli GP, Ogorodnikov D, Yakushin SB, Cohen B. Fos expression in neurons of the rat vestibulo-autonomic pathway activated by sinusoidal galvanic vestibular stimulation. Front Neurol 2012; 3:4. [PMID: 22403566 PMCID: PMC3289126 DOI: 10.3389/fneur.2012.00004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/04/2012] [Indexed: 12/12/2022] Open
Abstract
The vestibular system sends projections to brainstem autonomic nuclei that modulate heart rate and blood pressure in response to changes in head and body position with regard to gravity. Consistent with this, binaural sinusoidally modulated galvanic vestibular stimulation (sGVS) in humans causes vasoconstriction in the legs, while low frequency (0.02-0.04 Hz) sGVS causes a rapid drop in heart rate and blood pressure in anesthetized rats. We have hypothesized that these responses occur through activation of vestibulo-sympathetic pathways. In the present study, c-Fos protein expression was examined in neurons of the vestibular nuclei and rostral ventrolateral medullary region (RVLM) that were activated by low frequency sGVS. We found c-Fos-labeled neurons in the spinal, medial, and superior vestibular nuclei (SpVN, MVN, and SVN, respectively) and the parasolitary nucleus. The highest density of c-Fos-positive vestibular nuclear neurons was observed in MVN, where immunolabeled cells were present throughout the rostro-caudal extent of the nucleus. c-Fos expression was concentrated in the parvocellular region and largely absent from magnocellular MVN. c-Fos-labeled cells were scattered throughout caudal SpVN, and the immunostained neurons in SVN were restricted to a discrete wedge-shaped area immediately lateral to the IVth ventricle. Immunofluorescence localization of c-Fos and glutamate revealed that approximately one third of the c-Fos-labeled vestibular neurons showed intense glutamate-like immunofluorescence, far in excess of the stain reflecting the metabolic pool of cytoplasmic glutamate. In the RVLM, which receives a direct projection from the vestibular nuclei and sends efferents to preganglionic sympathetic neurons in the spinal cord, we observed an approximately threefold increase in c-Fos labeling in the sGVS-activated rats. We conclude that localization of c-Fos protein following sGVS is a reliable marker for sGVS-activated neurons of the vestibulo-sympathetic pathway.
Collapse
Affiliation(s)
- Gay R. Holstein
- Department of Neurology, Mount Sinai School of MedicineNew York, NY, USA
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
- Department of Anatomy/Functional Morphology, Mount Sinai School of MedicineNew York, NY, USA
| | | | | | - Dmitri Ogorodnikov
- Department of Neurology, Mount Sinai School of MedicineNew York, NY, USA
| | - Sergei B. Yakushin
- Department of Neurology, Mount Sinai School of MedicineNew York, NY, USA
| | - Bernard Cohen
- Department of Neurology, Mount Sinai School of MedicineNew York, NY, USA
| |
Collapse
|
21
|
McArthur KL, Zakir M, Haque A, Dickman JD. Spatial and temporal characteristics of vestibular convergence. Neuroscience 2011; 192:361-71. [PMID: 21756981 DOI: 10.1016/j.neuroscience.2011.06.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 11/24/2022]
Abstract
In all species studied, afferents from semicircular canals and otolith organs converge on central neurons in the brainstem. However, the spatial and temporal relationships between converging inputs and how these contribute to vestibular behaviors is not well understood. In the current study, we used discrete rotational and translational motion stimuli to characterize canal- and otolith-driven response components of convergent non-eye movement (NEM) neurons in the vestibular nuclear complex of alert pigeons. When compared to afferent responses, convergent canal signals had similar gain and phase ranges but exhibited greater spatial variability in their axes of preferred rotation. Convergent otolith signals also had similar mean gain and phase values to the afferent population but were spatially well-matched with the corresponding canal signals, cell-by-cell. However, neither response component alone nor a simple linear combination of these components was sufficient to predict actual net responses during combined canal-otolith stimulation. We discuss these findings in the context of previous studies of pigeon vestibular behaviors, and we compare our findings to similar studies in other species.
Collapse
Affiliation(s)
- K L McArthur
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | |
Collapse
|
22
|
Mugnaini E, Sekerková G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. BRAIN RESEARCH REVIEWS 2011; 66:220-45. [PMID: 20937306 PMCID: PMC3030675 DOI: 10.1016/j.brainresrev.2010.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 12/17/2022]
Abstract
Unipolar brush cells (UBC) are small, glutamatergic neurons residing in the granular layer of the cerebellar cortex and the granule cell domain of the cochlear nuclear complex. Recent studies indicate that this neuronal class consists of three or more subsets characterized by distinct chemical phenotypes, as well as by intrinsic properties that may shape their synaptic responses and firing patterns. Yet, all UBCs have a unique morphology, as both the dendritic brush and the large endings of the axonal branches participate in the formation of glomeruli. Although UBCs and granule cells may share the same excitatory and inhibitory inputs, the two cell types are distinctively differentiated. Typically, whereas the granule cell has 4-5 dendrites that are innervated by different mossy fibers, and an axon that divides only once to form parallel fibers after ascending to the molecular layer, the UBC has but one short dendrite whose brush engages in synaptic contact with a single mossy fiber terminal, and an axon that branches locally in the granular layer; branches of UBC axons form a non-canonical, cortex-intrinsic category of mossy fibers synapsing with granule cells and other UBCs. This is thought to generate a feed-forward amplification of single mossy fiber afferent signals that would reach the overlying Purkinje cells via ascending granule cell axons and their parallel fibers. In sharp contrast to other classes of cerebellar neurons, UBCs are not distributed homogeneously across cerebellar lobules, and subsets of UBCs also show different, albeit overlapping, distributions. UBCs are conspicuously rare in the expansive lateral cerebellar areas targeted by the cortico-ponto-cerebellar pathway, while they are a constant component of the vermis and the flocculonodular lobe. The presence of UBCs in cerebellar regions involved in the sensorimotor processes that regulate body, head and eye position, as well as in regions of the cochlear nucleus that process sensorimotor information suggests a key role in these critical functions; it also invites further efforts to clarify the cellular biology of the UBCs and their specific functions in the neuronal microcircuits in which they are embedded. High density of UBCs in specific regions of the cerebellar cortex is a feature largely conserved across mammals and suggests an involvement of these neurons in fundamental aspects of the input/output organization as well as in clinical manifestation of focal cerebellar disease.
Collapse
Affiliation(s)
- Enrico Mugnaini
- Department of Cellular and Molecular Biology, The Feinberg School of Medicine of Northwestern University, Chicago, IL, USA.
| | | | | |
Collapse
|
23
|
Angelaki DE, Yakusheva TA, Green AM, Dickman JD, Blazquez PM. Computation of egomotion in the macaque cerebellar vermis. THE CEREBELLUM 2010; 9:174-82. [PMID: 20012388 DOI: 10.1007/s12311-009-0147-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nodulus and uvula (lobules X and IX of the vermis) receive mossy fibers from both vestibular afferents and vestibular nuclei neurons and are thought to play a role in spatial orientation. Their properties relate to a sensory ambiguity of the vestibular periphery: otolith afferents respond identically to translational (inertial) accelerations and changes in orientation relative to gravity. Based on theoretical and behavioral evidence, this sensory ambiguity is resolved using rotational cues from the semicircular canals. Recordings from the cerebellar cortex have identified a neural correlate of the brain's ability to resolve this ambiguity in the simple spike activities of nodulus/uvula Purkinje cells. This computation, which likely involves the cerebellar circuitry and its reciprocal connections with the vestibular nuclei, results from a remarkable convergence of spatially- and temporally-aligned otolith-driven and semicircular canal-driven signals. Such convergence requires a spatio-temporal transformation of head-centered canal-driven signals into an estimate of head reorientation relative to gravity. This signal must then be subtracted from the otolith-driven estimate of net acceleration to compute inertial motion. At present, Purkinje cells in the nodulus/uvula appear to encode the output of this computation. However, how the required spatio-temporal matching takes place within the cerebellar circuitry and what role complex spikes play in spatial orientation and disorientation remains unknown. In addition, the role of visual cues in driving and/or modifying simple and complex spike activity, a process potentially critical for long-term adaptation, constitutes another important direction for future studies.
Collapse
Affiliation(s)
- Dora E Angelaki
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
24
|
Relationship between complex and simple spike activity in macaque caudal vermis during three-dimensional vestibular stimulation. J Neurosci 2010; 30:8111-26. [PMID: 20554862 DOI: 10.1523/jneurosci.5779-09.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lobules 10 and 9 in the caudal posterior vermis [also known as nodulus and uvula (NU)] are thought important for spatial orientation and balance. Here, we characterize complex spike (CS) and simple spike (SS) activity in response to three-dimensional vestibular stimulation. The strongest modulation was seen during translation (CS: 12.8 +/- 1.5, SS: 287.0 +/- 23.2 spikes/s/G, 0.5 Hz). Preferred directions tended to cluster along the cardinal axes (lateral, fore-aft, vertical) for CSs and along the semicircular canal axes for SSs. Most notably, the preferred directions for CS/SS pairs arising from the same Purkinje cells were rarely aligned. During 0.5 Hz pitch/roll tilt, only about a third of CSs had significant modulation. Thus, most CSs correlated best with inertial rather than net linear acceleration. By comparison, all SSs were selective for translation and ignored changes in spatial orientation relative to gravity. Like SSs, tilt modulation of CSs increased at lower frequencies. CSs and SSs had similar response dynamics, responding to linear velocity during translation and angular position during tilt. The most salient finding is that CSs did not always modulate out-of-phase with SSs. The CS/SS phase difference varied broadly among Purkinje cells, yet for each cell it was precisely matched for the otolith-driven and canal-driven components of the response. These findings illustrate a spatiotemporal mismatch between CS/SS pairs and provide the first comprehensive description of the macaque NU, an important step toward understanding how CSs and SSs interact during complex movements and spatial disorientation.
Collapse
|
25
|
Lai CH, Yiu CN, Lai SK, Ng KP, Yung KK, Shum DK, Chan YS. Maturation of canal-related brainstem neurons in the detection of horizontal angular acceleration in rats. J Comp Neurol 2010; 518:1742-63. [DOI: 10.1002/cne.22300] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Angelaki DE, Yakusheva TA. How vestibular neurons solve the tilt/translation ambiguity. Comparison of brainstem, cerebellum, and thalamus. Ann N Y Acad Sci 2009; 1164:19-28. [PMID: 19645876 PMCID: PMC2860452 DOI: 10.1111/j.1749-6632.2009.03939.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The peripheral vestibular system is faced by a sensory ambiguity, where primary otolith afferents respond identically to translational (inertial) accelerations and changes in head orientation relative to gravity. Under certain conditions, this sensory ambiguity can be resolved using extra-otolith cues, including semicircular canal signals. Here we review and summarize how neurons in the vestibular nuclei, rostral fastigial nuclei, cerebellar nodulus/uvula, and thalamus respond during combinations of tilt and translation. We focus primarily on cerebellar cortex responses, as nodulus/uvula Purkinje cells reliably encode translation rather than net gravito-inertial acceleration. In contrast, neurons in the vestibular and rostral fastigial nuclei, as well as the ventral lateral and ventral posterior nuclei of the thalamus represent a continuum, with some encoding translation and some net gravito-inertial acceleration. This review also outlines how Purkinje cells use semicircular canal signals to solve the ambiguity problem and how this solution fails at low frequencies. We conclude by attempting to bridge the gap between the proposed roles of nodulus/uvula in tilt/translation discrimination and velocity storage.
Collapse
Affiliation(s)
- Dora E Angelaki
- Department of Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
27
|
Lai SK, Lai CH, Tse YC, Yung KKL, Shum DKY, Chan YS. Developmental maturation of ionotropic glutamate receptor subunits in rat vestibular nuclear neurons responsive to vertical linear acceleration. Eur J Neurosci 2009; 28:2157-72. [PMID: 19046363 DOI: 10.1111/j.1460-9568.2008.06523.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the maturation profile of subunits of ionotropic glutamate receptors in vestibular nuclear neurons that were activated by sinusoidal linear acceleration along the vertical plane. The otolithic origin of Fos expression in these neurons was confirmed as a marker of functional activation when labyrinthectomized and/or stationary control rats contrasted by showing sporadically scattered Fos-labeled neurons in the vestibular nuclei. By double immunohistochemistry for Fos and one of the receptor subunits, otolith-related neurons that expressed either alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate or N-methyl-d-aspartate subunits were first identified in the medial vestibular nucleus, spinal vestibular nucleus and Group x by postnatal day (P)7, and in the lateral vestibular nucleus and Group y by P9. No double-labeled neurons were found in the superior vestibular nucleus. Within each vestibular subnucleus, these double-labeled neurons constituted approximately 90% of the total Fos-labeled neurons. The percentage of Fos-labeled neurons expressing the GluR1 or NR2A subunit showed developmental invariance in all subnuclei. For Fos-labeled neurons expressing the NR1 subunit, similar invariance was observed except that, in Group y, these neurons decreased from P14 onwards. For Fos-labeled neurons expressing the GluR2, GluR2/3, GluR4 or NR2B subunit, a significant decrease was found by the adult stage. In particular, those expressing the GluR4 subunit showed a two- to threefold decrease in the medial vestibular nucleus, spinal vestibular nucleus and Group y. Also, those expressing the NR2B subunit showed a twofold decrease in Group y. Taken together, the postsynaptic expression of ionotropic glutamate receptor subunits in different vestibular subnuclei suggests that glutamatergic transmission within subregions plays differential developmental roles in the coding of gravity-related vertical spatial information.
Collapse
Affiliation(s)
- Suk-King Lai
- Department of Physiology, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
28
|
Central projections of the lagena (the third otolith endorgan of the inner ear) in the pigeon. NEUROPHYSIOLOGY+ 2008. [DOI: 10.1007/s11062-008-9033-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Frequency-selective coding of translation and tilt in macaque cerebellar nodulus and uvula. J Neurosci 2008; 28:9997-10009. [PMID: 18829957 DOI: 10.1523/jneurosci.2232-08.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spatial orientation depends critically on the brain's ability to segregate linear acceleration signals arising from otolith afferents into estimates of self-motion and orientation relative to gravity. In the absence of visual information, this ability is known to deteriorate at low frequencies. The cerebellar nodulus/uvula (NU) has been shown to participate in this computation, although its exact role remains unclear. Here, we show that NU simple spike (SS) responses also exhibit a frequency dependent selectivity to self-motion (translation) and spatial orientation (tilt). At 0.5 Hz, Purkinje cells encode three-dimensional translation and only weakly modulate during pitch and roll tilt (0.4 +/- 0.05 spikes/s/degrees/s). But this ability to selectively signal translation over tilt is compromised at lower frequencies, such that at 0.05 Hz tilt response gains average 2.0 +/- 0.3 spikes/s/degrees/s. We show that such frequency-dependent properties are attributable to an incomplete cancellation of otolith-driven SS responses during tilt by a canal-driven signal coding angular position with a sensitivity of 3.9 +/- 0.3 spikes/s/degrees. This incomplete cancellation is brought about because otolith-driven SS responses are also partially integrated, thus encoding combinations of linear velocity and acceleration. These results are consistent with the notion that NU SS modulation represents an internal neural representation of similar frequency dependencies seen in behavior.
Collapse
|
30
|
Distribution of granule cells projecting to focal Purkinje cells in mouse uvula-nodulus. Neuroscience 2008; 156:216-21. [PMID: 18706489 DOI: 10.1016/j.neuroscience.2008.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 06/16/2008] [Accepted: 07/10/2008] [Indexed: 11/22/2022]
Abstract
Mossy and climbing fibers convey a broad array of signals from vestibular end organs to Purkinje cells in the vestibulo-cerebellum. We have shown previously that Purkinje cell simple spikes (SSs) and climbing fiber-evoked complex spikes (CSs) in the mouse uvula-nodulus are arrayed in 400 microm wide sagittal climbing fiber zones corresponding to the rotational axes of the vertical semicircular canals. It is often assumed that mossy fibers modulate a higher frequency of SSs through the intermediary action of granule cells whose parallel fibers course through the Purkinje cell dendritic tree. This assumption is complicated by the diffuse topography of vestibular primary afferent mossy fiber projections to the uvula-nodulus and the dispersion of mossy fiber signals along folial axes by parallel fibers. Here we measure this parallel fiber dispersion. We made microinjections of neurobiotin into the molecular layers of different folia within the mouse vestibulo-cerebellum and measured the distribution of granule cells retrogradely labeled by the injected neurobiotin. Sixty-two percent of labeled granule cells were located outside a 400 microm sagittal zone flanking the injection site. The dispersion of labeled granule cells was approximately 2.5 mm along folial axes that were 2.7-2.9 mm wide. Our data suggest that topographic specificity of SSs could not be attributed to the topography of vestibular primary afferent mossy fiber-granule cell projections. Rather the response specificity of SSs must be attributed to other mechanisms related to climbing fiber-evoked Purkinje cell and interneuronal activity.
Collapse
|
31
|
Pakan JMP, Graham DJ, Iwaniuk AN, Wylie DRW. Differential projections from the vestibular nuclei to the flocculus and uvula-nodulus in pigeons (Columba livia). J Comp Neurol 2008; 508:402-17. [PMID: 18335537 DOI: 10.1002/cne.21623] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The pigeon vestibulocerebellum is divided into two regions based on the responses of Purkinje cells to optic flow stimuli: the uvula-nodulus responds best to self-translation, and the flocculus responds best to self-rotation. We used retrograde tracing to determine whether the flocculus and uvula-nodulus receive differential mossy fiber input from the vestibular and cerebellar nuclei. From retrograde injections into the both the flocculus and uvula-nodulus, numerous cells were found in the superior vestibular nucleus (VeS), the cerebellovestibular process (pcv), the descending vestibular nucleus (VeD), and the medial vestibular nucleus (VeM). Less labeling was found in the prepositus hypoglossi, the cerebellar nuclei, the dorsolateral vestibular nucleus, and the lateral vestibular nucleus, pars ventralis. In the VeS, the differential input to the flocculus and uvula-nodulus was distinct: cells were localized to the medial and lateral regions, respectively. The same pattern was observed in the VeD, although there was considerable overlap. In the VeM, the majority of cells labeled from the flocculus were in rostral margins on the ipsilateral side, whereas labeling from uvula-nodulus injections was distributed bilaterally throughout the VeM. Finally, from injections in the flocculus but not the uvula-nodulus, moderate labeling was observed in a paramedian area, adjacent to the medial longitudinal fasciculus. In summary, there were clear differences with respect to the projections from the vestibular nuclei to functionally distinct parts of the vestibulocerebellum. Generally speaking, the mossy fibers to the flocculus and uvula-nodulus arise from regions of the vestibular nuclei that receive input from the semicircular canals and otolith organs, respectively.
Collapse
Affiliation(s)
- Janelle M P Pakan
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | | | |
Collapse
|
32
|
Tse YC, Lai CH, Lai SK, Liu JX, Yung KKL, Shum DKY, Chan YS. Developmental expression of NMDA and AMPA receptor subunits in vestibular nuclear neurons that encode gravity-related horizontal orientations. J Comp Neurol 2008; 508:343-64. [PMID: 18335497 DOI: 10.1002/cne.21688] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We examined the expression profile of subunits of ionotropic glutamate receptors [N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionate (AMPA)] during postnatal development of connectivity in the rat vestibular nucleus. Vestibular nuclear neurons were functionally activated by constant velocity off-vertical axis rotation, a strategy to stimulate otolith organs in the inner ear. These neurons indicated Fos expression as a result. By immunodetection for Fos, otolith-related neurons that expressed NMDA/AMPA receptor subunits were identified as early as P7, and these neurons were found to increase progressively up to adulthood. Although there was developmental invariance in the percentage of Fos-immunoreactive neurons expressing the NR1, NR2A, GluR1, or GluR2/3 subunits, those expressing the NR2B subunit decreased from P14 onward, and those expressing the GluR4 subunit decreased in adults. These double-immunohistochemical data were corroborated by combined immuno-/hybridization histochemical data obtained from Fos-immunoreactive neurons expressing NR2B mRNA or GluR4 mRNA. The staining of both NR2B and GluR4 in the cytoplasm of these neurons decreased upon maturation. The percentage of Fos-immunoreactive neurons expressing the other ionotropic glutamate receptor subunits (viz. NR1, NR2A, GluR1, and GluR2/3) remained relatively constant throughout postnatal maturation. Triple immunofluorescence further demonstrated coexpression of NR1 and NR2 subunits in Fos-immunoreactive neurons. Coexpression of NR1 subunit with each of the GluR subunits was also observed among the Fos-immunoreactive neurons. Taken together, the different expression profiles of ionotropic glutamate receptor subunits constitute the histological basis for glutamatergic neurotransmission in the maturation of central vestibular connectivity for the coding of gravity-related horizontal head movements.
Collapse
Affiliation(s)
- Yiu-Chung Tse
- Department of Physiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
Responses of caudal vestibular nucleus neurons of conscious cats to rotations in vertical planes, before and after a bilateral vestibular neurectomy. Exp Brain Res 2008; 188:175-86. [PMID: 18368395 DOI: 10.1007/s00221-008-1359-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 03/08/2008] [Indexed: 10/22/2022]
Abstract
Although many previous experiments have considered the responses of vestibular nucleus neurons to rotations and translations of the head, little data are available regarding cells in the caudalmost portions of the vestibular nuclei (CVN), which mediate vestibulo-autonomic responses among other functions. This study examined the responses of CVN neurons of conscious cats to rotations in vertical planes, both before and after a bilateral vestibular neurectomy. None of the units included in the data sample had eye movement-related activity. In labyrinth-intact animals, some CVN neurons (22%) exhibited graviceptive responses consistent with inputs from otolith organs, but most (55%) had dynamic responses with phases synchronized with stimulus velocity. Furthermore, the large majority of CVN neurons had response vector orientations that were aligned either near the roll or vertical canal planes, and only 18% of cells were preferentially activated by pitch rotations. Sustained head-up rotations of the body provide challenges to the cardiovascular system and breathing, and thus the response dynamics of the large majority of CVN neurons were dissimilar to those of posturally-related autonomic reflexes. These data suggest that vestibular influences on autonomic control mediated by the CVN are more complex than previously envisioned, and likely involve considerable processing and integration of signals by brainstem regions involved in cardiovascular and respiratory regulation. Following a bilateral vestibular neurectomy, CVN neurons regained spontaneous activity within 24 h, and a very few neurons (<10%) responded to vertical tilts <15 degrees in amplitude. These findings indicate that nonlabyrinthine inputs are likely important in sustaining the activity of CVN neurons; thus, these inputs may play a role in functional recovery following peripheral vestibular lesions.
Collapse
|
34
|
Abstract
The output signal of Purkinje cells is conveyed by the modulated discharge of simple spikes (SSs) often ascribed to mossy fiber-granule cell-parallel fiber inputs to Purkinje cell dendrites. Although generally accepted, this view lacks experimental support. We can address this view by controlling afferent signals that reach the cerebellum over climbing and mossy fiber pathways. Vestibular primary afferents constitute the largest mossy fiber projection to the uvula-nodulus. The discharge of vestibular primary afferent mossy fibers increases during ipsilateral roll tilt. The discharge of SSs decreases during ipsilateral roll tilt. Climbing fiber discharge [complex spikes (CSs)] increases during ipsilateral roll tilt. These observations suggest that the modulation of SSs during vestibular stimulation cannot be attributed directly to vestibular mossy fiber afferents. Rather we suggest that interneurons driven by vestibular climbing fibers may determine SS modulation. We recorded from cerebellar interneurons (granule, unipolar brush, Golgi, stellate, basket, and Lugaro cells) and Purkinje cells in the uvula-nodulus of anesthetized mice during vestibular stimulation. We identified all neuronal types by juxtacellular labeling with neurobiotin. Granule, unipolar brush, stellate, and basket cells discharge in phase with ipsilateral roll tilt and in phase with CSs. Golgi cells discharge out of phase with ipsilateral roll tilt and out of phase with CSs. The phases of stellate and basket cell discharge suggests that their activity could account for the antiphasic behavior of CSs and SSs. Because Golgi cells discharge in phase with SSs, Golgi cell activity cannot account for SS modulation. The sagittal array of Golgi cell axon terminals suggests that they contribute to the organization of discrete parasagittal vestibular zones.
Collapse
|
35
|
Lai SK, Lai CH, Yung KKL, Shum DKY, Chan YS. Maturation of otolith-related brainstem neurons in the detection of vertical linear acceleration in rats. Eur J Neurosci 2006; 23:2431-46. [PMID: 16706850 DOI: 10.1111/j.1460-9568.2006.04762.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the critical maturation time of otolith-related neurons in processing vertical orientations, rats (postnatal day 4 to adults) were studied for functional activation of c-fos expression in brainstem neurons by immuno-/hybridization histochemistry. Conscious rats were subjected to sinusoidal linear acceleration along the vertical plane. Labyrinthectomized and/or stationary controls showed only sporadically scattered Fos-labeled neurons in the vestibular nuclei, confirming an otolithic origin of c-fos expression. Functionally activated Fos expression in neurons of the medial and spinal vestibular nuclei and group x were identifiable by P7 and those in group y by P9. A small number of Fos-labeled neurons characterized by small soma size were found in the ventral part of lateral vestibular nucleus by P9. Other vestibular-related areas such as prepostitus hypoglossal nucleus, gigantocellular reticular nucleus and locus coeruleus of normal experimental rats showed functionally activated c-fos expression at P7. Neurons in dorsal medial cell column and beta subnucleus of the inferior olive only showed functionally activated c-fos expression by the second postnatal week. These findings revealed a unique critical maturation time for each of the vestibular-related brainstem areas in the recognition of gravity-related vertical head orientations. By mapping the three-dimensional distribution of Fos-immunoreactive neurons, we found an even distribution of otolith-related neurons within the spinal vestibular nucleus in groups x and y but a clustered distribution in the middle-lateral-ventral part of the medial vestibular nucleus. Taken together, our findings reveal the developmental profile of neuronal subpopulations within the vertical otolith system, thereby providing an anatomical basis for postnatal coding of gravity-related vertical head movements.
Collapse
Affiliation(s)
- Suk-King Lai
- Department of Physiology, Faculty of Medicine, the University of Hong Kong, Sassoon Road, Hong Kong
| | | | | | | | | |
Collapse
|
36
|
Yakhnitsa V, Barmack NH. Antiphasic Purkinje cell responses in mouse uvula-nodulus are sensitive to static roll-tilt and topographically organized. Neuroscience 2006; 143:615-26. [PMID: 16973298 DOI: 10.1016/j.neuroscience.2006.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/21/2006] [Accepted: 08/01/2006] [Indexed: 11/15/2022]
Abstract
Two vestibular pathways converge at the uvula-nodulus to modulate the discharge of Purkinje cell complex and simple spikes (CSs and SSs). In the mouse, vestibular primary afferent mossy fibers originate from each of the end organs of the ipsilateral labyrinth and terminate in the granule cell layers of folia 9c-10. Vestibular climbing fiber projections originate from the contralateral beta-nucleus and dorsomedial cell column (dmcc) and terminate directly on Purkinje cells. CSs and SSs could be regulated independently or they could be co-dependent. Here we examine how the discharges of CSs and SSs are modulated by sinusoidal and static roll-tilt in the uvula-nodulus of mice anesthetized with either chloralose-urethane or ketamine-xylazine. All vestibularly-driven CSs and SSs were sensitive to static roll-tilt. None were sensitive to horizontal vestibular stimulation. CSs were modulated in phase with ipsilateral roll-tilt. SSs were modulated out of phase. Spontaneous discharges of CSs were followed by a pause in SSs. Phase leads of CSs and SSs with respect to sinusoidal roll-tilt were advanced by ketamine-xylazine anesthesia relative to chloralose-urethane anesthesia by approximately 45 degrees. The antiphasic modulation of CSs and SSs was independent of anesthetic. Chloralose-urethane, but not ketamine-xylazine, induced spontaneous oscillations of CSs and SSs in 16% of Purkinje cells. Optimal planes of CSs in folia 9c-10 Purkinje cells were organized topographically into sagittal zones whose widths were approximately 400 microm. Purkinje cells with optimal planes in the posterior quadrant of the ipsilateral hemi-field were located in a medial zone. Purkinje cells with optimal planes in the anterior quadrant of the ipsilateral hemi-field were located in a lateral zone. The CS-associated pause in SSs establishes a vector-specific SS output. The amplitude of SS modulation may depend on parallel fiber-mediated signals to Purkinje cells as well as on the state of cerebellar interneurons.
Collapse
Affiliation(s)
- V Yakhnitsa
- Neurological Sciences Institute, Oregon Health and Sciences University, Beaverton, OR 97006, USA
| | | |
Collapse
|
37
|
Abstract
Three subnuclei within the inferior olive are implicated in the control of eye movement; the dorsal cap (DC), the beta-nucleus and the dorsomedial cell column (DMCC). Each of these subnuclei can be further divided into clusters of cells that encode specific parameters of optokinetic and vestibular stimulation. DC neurons respond to optokinetic stimulation in one of three planes, corresponding to the anatomical planes of the semicircular canals. Neurons in the beta-nucleus and DMCC respond to vestibular stimulation in the planes of the vertical semicircular canals and otoliths. Each these olivary nuclei receives excitatory and inhibitory signals from pre-olivary structures. The DC receives excitatory signals from the ipsilateral nucleus of the optic tract (NOT) and inhibitory signals from the contralateral nucleus prepositus hypoglossi (NPH). The beta-nucleus and DMCC receive inhibitory signals from the ipsilateral nucleus parasolitarius (Psol) and excitatory signals from the contralateral dorsal Y group. Consequently, the olivary projection to the cerebellum, although totally crossed, still represents bilateral sensory stimulation. Inputs to the inferior olive from the NOT, NPH, Psol or Y-group discharge at frequencies of 10-100 imp/s. CFRs discharge at 1-5 imp/s; a frequency reduction of an order of magnitude. Inferior olivary projections to the contralateral cerebellum are sagittally arrayed onto multiple cerebellar folia. These arrays establish coordinate systems in the flocculus and nodulus, representing head-body movement. These climbing fiber-defined spatial coordinate systems align Purkinje cell discharge onto subjacent cerebellar and vestibular nuclei. In the oculomotor system, olivo-cerebellar circuitry enhances and modifies eye movements based on movement of the head-body in space.
Collapse
Affiliation(s)
- Neal H Barmack
- Neurological Sciences Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| |
Collapse
|
38
|
Abstract
The anatomical, physiological, and behavioral evidence for the involvement of three regions of the cerebellum in oculomotor behavior is reviewed here: (1) the oculomotor vermis and paravermis of lobules V, IV, and VII; (2) the uvula and nodulus; (3) flocculus and ventral paraflocculus. No region of the cerebellum controls eye movements exclusively, but each receives sensory information relevant for the control of multiple systems. An analysis of the microcircuitry suggests how sagittal climbing fiber zones bring visual information to the oculomotor vermis; convey vestibular information to the uvula and nodulus, while optokinetic space is represented in the flocculus. The mossy fiber projections are more heterogeneous. The importance of the inferior olive in modulating Purkinje cell responses is discussed.
Collapse
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus Medical Center Rotterdam, Box 1738, 3000 DR Rotterdam, The Netherlands.
| | | |
Collapse
|
39
|
Newlands SD, Vrabec JT, Purcell IM, Stewart CM, Zimmerman BE, Perachio AA. Central projections of the saccular and utricular nerves in macaques. J Comp Neurol 2003; 466:31-47. [PMID: 14515239 DOI: 10.1002/cne.10876] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The central projections of the utricular and saccular nerve in macaques were examined using transganglionic labeling of vestibular afferent neurons. In these experiments, biotinylated dextran amine was injected directly into the saccular or utricular neuroepithelium of fascicularis (Macaca fascicularis) or rhesus (Macaca mulatta) monkeys. Two to 5 weeks later, the animals were killed and the peripheral vestibular sensory organs, brainstem, and cerebellum were collected for analysis. The principal brainstem areas of saccular nerve termination were lateral, particularly the spinal vestibular nucleus, the lateral portion of the superior vestibular nucleus, ventral nucleus y, the external cuneate nucleus, and cell group l. The principal cerebellar projection was to the uvula with a less dense projection to the nodulus. Principle brainstem areas of termination of the utricular nerve were the lateral/dorsal medial vestibular nucleus, ventral and lateral portions of the superior vestibular nucleus, and rostral portion of the spinal vestibular nucleus. In the cerebellum, a strong projection was observed to the nodulus and weak projections were present in the flocculus, ventral paraflocculus, bilateral fastigial nuclei, and uvula. Although there is extensive overlap of saccular and utricular projections, saccular inputs to the lateral portions of the vestibular nuclear complex suggest that saccular afferents contribute to the vestibulospinal system. In contrast, the utricular nerve projects more rostrally into areas of known concentration of vestibulo-ocular related cells. Although sparse, the projections of the utricle to the flocculus/ventral paraflocculus suggest a potential convergence with floccular projection inputs from the vestibular brainstem that have been implicated in vestibulo-ocular motor learning.
Collapse
Affiliation(s)
- Shawn D Newlands
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Purkinje cells have two action potentials: Climbing fiber responses (CFRs) and simple spikes (SSs). CFRs reflect the discharge of a single climbing fiber at multiple synaptic sites on the proximal dendrite of the Purkinje cell. SSs reflect the summed action of a subset of parallel fiber synapses on Purkinje cell dendritic spines. Because mossy fiber afferents terminate on granule cells, the ascending axons of which bifurcate, giving rise to parallel fibers, the modulation of SSs has been attributed to mossy fiber afferent signals. This inference has never been tested. Conversely, the low discharge frequency of CFRs has led many to conclude that they have a unique and intermittent role in cerebellar signal processing. We examine the relative potency of vestibularly modulated mossy fiber and climbing fiber signals in evoking CFRs and SSs in Purkinje cells of the uvula-nodulus in chloralose-urethane-anesthetized rabbits. Vestibular primary afferents were blocked by unilateral labyrinthectomy (UL). A UL destroys the vestibular primary afferent signal to the ipsilateral uvula-nodulus, while leaving intact the vestibular climbing fiber signal from the contralateral inferior olive. After UL, vestibular stimulation modulated CFRs and SSs in ipsilateral uvula-nodular Purkinje cells, demonstrating that the primary vestibular afferent mossy fiber input to the ipsilateral uvula-nodulus was not necessary for SS modulation. Unilateral microlesions of the caudal half of the beta-nucleus of the inferior olive reduced a modulated climbing fiber signal to the contralateral uvula-nodulus, causing loss of both vestibularly modulated CFRs and SSs in contralateral Purkinje cells. Vestibular climbing fibers not only evoke low-frequency CFRs, but also indirectly modulate higher-frequency SSs. This modulation must be attributed to cerebellar interneurons. Golgi cell inhibition of granule cells may provide the interneuronal mechanism for CFR-induced SS modulation.
Collapse
|
41
|
Maklad A, Fritzsch B. Development of vestibular afferent projections into the hindbrain and their central targets. Brain Res Bull 2003; 60:497-510. [PMID: 12787869 PMCID: PMC3901526 DOI: 10.1016/s0361-9230(03)00054-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In contrast to most other sensory systems, hardly anything is known about the neuroanatomical development of central projections of primary vestibular neurons and how their second order target neurons develop. Recent data suggest that afferent projections may develop not unlike other sensory systems, forming first the overall projection by molecular means followed by an as yet unspecified phase of activity mediated refinement. The latter aspect has not been tested critically and most molecules that guide the initial projection are unknown. The molecular and topological origin of the vestibular and cochlear nucleus neurons is also only partially understood. Auditory and vestibular nuclei form from several rhombomeres and a given rhombomere can contribute to two or more auditory or vestibular nuclei. Rhombomere compartments develop as functional subdivisions from a single column that extends from the hindbrain to the spinal cord. Suggestions are provided for the molecular origin of these columns but data on specific mutants testing these proposals are not yet available. Overall, the functional significance of both overlapping and segregated projections are not yet fully experimentally explored in mammals. Such lack of details of the adult organization compromises future developmental analysis.
Collapse
Affiliation(s)
| | - Bernd Fritzsch
- Corresponding author. Tel.: +1-402-280-2915; fax: +1-402-280-5556. (B. Fritzsch)
| |
Collapse
|
42
|
Abstract
The vestibular nuclei and posterior cerebellum are the destination of vestibular primary afferents and the subject of this review. The vestibular nuclei include four major nuclei (medial, descending, superior and lateral). In addition, smaller vestibular nuclei include: Y-group, parasolitary nucleus, and nucleus intercalatus. Each of the major nuclei can be subdivided further based primarily on cytological and immunohistochemical histological criteria or differences in afferent and/or efferent projections. The primary afferent projections of vestibular end organs are distributed to several ipsilateral vestibular nuclei. Vestibular nuclei communicate bilaterally through a commissural system that is predominantly inhibitory. Secondary vestibular neurons also receive convergent sensory information from optokinetic circuitry, central visual system and neck proprioceptive systems. Secondary vestibular neurons cannot distinguish between sources of afferent activity. However, the discharge of secondary vestibular neurons can distinguish between "active" and "passive" movements. The posterior cerebellum has extensive afferent and efferent connections with vestibular nuclei. Vestibular primary afferents are distributed to the ipsilateral uvula-nodulus as mossy fibers. Vestibular secondary afferents are distributed bilaterally. Climbing fibers to the cerebellum originate from two subnuclei of the contralateral inferior olive; the dorsomedial cell column and beta-nucleus. Vestibular climbing fibers carry information only from the vertical semicircular canals and otoliths. They establish a coordinate map, arrayed in sagittal zones on the surface of the uvula-nodulus. Purkinje cells respond to vestibular stimulation with antiphasic modulation of climbing fiber responses (CFRs) and simple spikes (SSs). The modulation of SSs is out of phase with the modulation of vestibular primary afferents. Modulation of SSs persists, even after vestibular primary afferents are destroyed by a unilateral labyrinthectomy, suggesting that an interneuronal network, triggered by CFRs is responsible for SS modulation. The vestibulo-cerebellum, imposes a vestibular coordinate system on postural responses and permits adaptive guidance of movement.
Collapse
Affiliation(s)
- Neal H Barmack
- Neurological Sciences Institute, Oregon Health and Sciences University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| |
Collapse
|
43
|
Newlands SD, Perachio AA. Central projections of the vestibular nerve: a review and single fiber study in the Mongolian gerbil. Brain Res Bull 2003; 60:475-95. [PMID: 12787868 DOI: 10.1016/s0361-9230(03)00051-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The primary purpose of this article is to review the anatomy of central projections of the vestibular nerve in amniotes. We also report primary data regarding the central projections of individual horseradish peroxidase (HRP)-filled afferents innervating the saccular macula, horizontal semicircular canal ampulla, and anterior semicircular canal ampulla of the gerbil. In total, 52 characterized primary vestibular afferent axons were intraaxonally injected with HRP and traced centrally to terminations. Lateral and anterior canal afferents projected most heavily to the medial and superior vestibular nuclei. Saccular afferents projected strongly to the spinal vestibular nucleus, weakly to other vestibular nuclei, to the interstitial nucleus of the eighth nerve, the cochlear nuclei, the external cuneate nucleus, and nucleus y. The current findings reinforce the preponderance of literature. The central distribution of vestibular afferents is not homogeneous. We review the distribution of primary afferent terminations described for a variety of mammalian and avian species. The tremendous overlap of the distributions of terminals from the specific vestibular nerve branches with one another and with other sensory inputs provides a rich environment for sensory integration.
Collapse
Affiliation(s)
- Shawn D Newlands
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX 77555-0521, USA.
| | | |
Collapse
|
44
|
Maklad A, Fritzsch B. Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 140:223-36. [PMID: 12586428 DOI: 10.1016/s0165-3806(02)00609-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The projection of the posterior canal crista and saccular afferents to the cerebellum of embryonic and neonatal mice was investigated using carbocyanine dyes. Anterograde tracing from these two endorgans reveals a partial segregation of these two sets of afferents. The saccule projects predominantly to the uvula, with very minor input to the nodulus. The posterior canal projects mainly to the nodulus and, to a lesser extent, to the uvula. Retrograde tracing from the uvula and nodulus confirms this partial segregation for these two endorgans and extends it to other vestibular endorgans. Uvular injections result in many more labeled fibers in the gravistatic maculae than in the canals' cristae. In contrast, nodular injection reveals many more labeled fibers in the canal cristae than in the gravistatic maculae. This partial segregation may play a role in the information processing in these folia. Our developmental data suggest that the initial segregation at E17 coincides with the formation of the postero-lateral fissure. This embryonic segregation of the primary vestibular mossy fibers to the uvula and nodulus commences long before the maturity of their targets, the granule cells and unipolar brush cells. Thus, the segregation of the primary vestibular projection to the uvula and nodulus does not depend on cues related to the target cells. Rather, the segregation may reflect more global cerebellar patterning mechanisms involving guidance for the vestibular afferent fibers independent of the future target cells.
Collapse
Affiliation(s)
- Adel Maklad
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | |
Collapse
|
45
|
Abstract
The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.
Collapse
Affiliation(s)
- M Zakir
- Research Department, Central Institute for the Deaf, Washington University, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
46
|
Barmack NH, Yakhnitsa V. Vestibularly evoked climbing-fiber responses modulate simple spikes in rabbit cerebellar Purkinje neurons. Ann N Y Acad Sci 2002; 978:237-54. [PMID: 12582057 DOI: 10.1111/j.1749-6632.2002.tb07571.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The nodulus receives a primary vestibular afferent input from the ipsilateral labyrinth and a vestibularly related climbing-fiber input originating from the contralateral labyrinth. Previously we demonstrated that increased discharge of vestibularly evoked climbing-fiber responses (CFRs) in nodular Purkinje cells was correlated with decreased discharge of simple spikes (SSs). This left unresolved the question of whether vestibularly evoked antiphasic behavior of CFRs and SSs reflects a common neural mechanism or the activation of two separate parallel pathways. We answered this question using natural vestibular stimulation to modulate the discharge of uvula-nodular Purkinje cells recorded extracellularly in unilaterally labyrinthectomized, chloralose urethane-anesthetized rabbits. In such animals, vestibular primary afferents projecting to the uvula-nodulus as mossy fibers remained intact on the side contralateral to the unilateral labyrinthectomy. The discharge of CFRs recorded in ipsilateral nodular Purkinje cells was increased by ipsilateral roll-tilt while the discharge of SSs was increased by contralateral roll-tilt. These polarities were reversed for Purkinje cells recorded in the contralateral uvula-nodulus. The polarity of SS discharge recorded from Purkinje cells on both sides of the nodulus was opposite to that of the vestibular primary mossy-fiber afferents. SSs continued to respond to contralateral roll-tilt even when the primary vestibular afferent mossy-fiber pathway was destroyed by the unilateral labyrinthectomy. Although the discharge of SSs recorded in the contralateral uvula-nodulus was increased by contralateral roll-tilt, this modulation was reduced relative to that observed in Purkinje cells recorded in the ipsilateral uvula-nodulus. We conclude that vestibularly evoked CFRs caused the modulation of SS discharge.
Collapse
Affiliation(s)
- Neal H Barmack
- Neurological Sciences Institute, Oregon Health and Sciences University, Beaverton, Oregon 97006, USA.
| | | |
Collapse
|
47
|
Newlands SD, Purcell IM, Kevetter GA, Perachio AA. Central projections of the utricular nerve in the gerbil. J Comp Neurol 2002; 452:11-23. [PMID: 12205706 DOI: 10.1002/cne.10350] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The central projections of primary afferent fibers in the utricular nerve, which convey linear head acceleration signals to neurons in the brainstem and cerebellum, are not completely defined. The purpose of this investigation was twofold: 1) to define the central projections of the gerbil utricular afferents by injecting horseradish peroxidase (HRP) and biotinylated dextran amine (BDA) into the utricular macula; and 2) to investigate the projections of individual utricular afferents by injecting HRP intracellularly into functionally identified utricular neurons. We found that utricular afferents in the gerbil projected to all divisions of the vestibular nuclear complex, except the dorsal lateral vestibular nucleus. In addition, terminals were observed in the interstitial nucleus of the eighth nerve, nucleus Y, external cuneate nucleus, and lobules I, IV, V, IX, and X of the cerebellar vermis. No projections appeared in the flocculus or paraflocculus. Fibers traversed the medial and intermediate cerebellar nuclei, but terminals appeared only occasionally. Individual utricular afferents collateralize extensively, projecting to much of the brainstem area innervated by the whole of the utricular nerve. This study did not produce complete filling of individual afferent collateral projections into the cerebellar cortex.
Collapse
Affiliation(s)
- Shawn D Newlands
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | |
Collapse
|
48
|
Maklad A, Fritzsch B. The developmental segregation of posterior crista and saccular vestibular fibers in mice: a carbocyanine tracer study using confocal microscopy. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 135:1-17. [PMID: 11978388 DOI: 10.1016/s0165-3806(01)00327-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The developmental segregation of gravistatic input mediated by saccular fibers and of angular acceleration input mediated by posterior crista (PC) fibers was analyzed for the first time in a developing mammal using carbocyanine dye tracing in fixed tissue. The data reveal a more extensive projection of either endorgan in 7-day-old mice (P7) than has previously been reported in adult mammals. While we confirm and extend many previous findings, we also describe a novel segregation of saccular and posterior crista fibers in the anterior half of the medial vestibular nucleus (Mv) not reported before. Our developmental analysis shows a progressive segregation of posterior crista and saccular fibers to their respective discrete projection areas between embryonic day 15 (E15) and birth (P0). Retention of overlap in young adult animals appears to reflect the early embryonic overlap found in most areas. The vestibular projection does not show a topological projection as has been described in many other sensory systems. We propose that the unique projection features of the vestibular endorgans may relate to the transformation of vestibular signals into a motor output in the three neuron reflex arc of the VOR, of which the primary vestibular projection constitutes the first leg.
Collapse
Affiliation(s)
- Adel Maklad
- Creighton University, School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | |
Collapse
|
49
|
Purcell IM, Perachio AA. Peripheral patterns of terminal innervation of vestibular primary afferent neurons projecting to the vestibulocerebellum in the gerbil. J Comp Neurol 2001; 433:48-61. [PMID: 11283948 DOI: 10.1002/cne.1124] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Retrograde transganglionic labeling techniques with biotinylated dextran amine (BDA) were used to examine the terminal field structure and topographical patterns of innervation within the vestibular sensory end organs of vestibular primary afferent neurons projecting to the cerebellar uvula/nodulus and flocculus lobules in the gerbil. Robust, dark labeling in the cristae ampullares suggested that the vast majority of the terminals of afferent neurons were of the dimorphic type. The majority (94% to the uvula/nodulus and 100% to the flocculus) innervates the peripheral zones of each of the three semicircular canal cristae. Comparison of the type and distribution of terminals across the canalicular sensory neuroepithelium with morphophysiological studies in chinchilla suggests that the labeled population consists predominantly of peripheral terminal fields of lower-to-intermediate gain, more regularly firing, tonic afferents. For otolith organ-related afferents, the uvula/nodulus receives strong inputs from primary otolith afferent neurons identified as dimorphic in type that predominately innervate the peristriolar zones of the utricular and saccular maculae. No direct otolith organ-related inputs to the flocculus were observed. In contrast to the canal afferents, the types and locations of labeled otolith afferent terminals suggest that they largely consist of irregularly firing, high-gain, phasic neurons.
Collapse
Affiliation(s)
- I M Purcell
- Department of Otolaryngology, The University of Texas Medical Branch, 7.102 Medical Research Building, 301 University Boulevard, Galveston, TX 77555-1063, USA
| | | |
Collapse
|
50
|
Abstract
A bilateral projection from the vestibular efferent neurons, located dorsal to the genu of the facial nerve, to the cerebellar flocculus and ventral paraflocculus was demonstrated. Efferent neurons were double-labeled by the unilateral injections of separate retrograde tracers into the labyrinth and into the floccular and ventral parafloccular lobules. Efferent neurons were found with double retrograde tracer labeling both ipsilateral and contralateral to the sites of injection. No double labeling was found when using a fluorescent tracer with non-fluorescent tracers such as horseradish peroxidase (HRP) or biotinylated dextran amine (BDA), but large percentages of efferent neurons were found to be double labeled when using two fluorescent substances including: fluorogold, microruby dextran amine, or rhodamine labeled latex beads. These data suggest a potential role for vestibular efferent neurons in modulating the dynamics of the vestibulo-ocular reflex (VOR) during normal and adaptive conditions.
Collapse
Affiliation(s)
- M E Shinder
- University of Texas Medical Branch, Department of Otolaryngology, 7.102 MRB, Galveston, TX 77555-1063, USA
| | | | | | | |
Collapse
|