1
|
Pellicer-Morata V, Wang L, de Jongh Curry A, Tsao JW, Waters RS. Sources of Rapid and Delayed New Lower Jaw Input in the Forepaw Barrel Subfield (FBS) in Rat Primary Somatosensory Cortex (SI) Following Forelimb Deafferentation. J Comp Neurol 2024; 532:e25664. [PMID: 39235156 PMCID: PMC11506729 DOI: 10.1002/cne.25664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
Previously, we reported an immediate emergence of new lower jaw input to the anterior forepaw barrel subfield (FBS) in primary somatosensory cortex (SI) following forelimb deafferentation. However, a delay of 7 weeks or more post-amputation results in the presence of this new input to both anterior and posterior FBS. The immediate change suggests pre-existing latent lower jaw input in the FBS, whereas the delayed alteration implies the involvement of alternative sources. One possible source for immediate lower jaw responses is the neighboring lower jaw barrel subfield (LJBSF). We used anatomical tracers to investigate the possible projection of LJBSF to the FBS in normal and forelimb-amputated rats. Our findings are as follows: (1) anterograde tracer injection into LJBSF in normal and amputated rats labeled fibers and terminals exclusively in the anterior FBS; (2) retrograde tracer injection in the anterior FBS in normal and forelimb-amputated rats, heavily labeled cell bodies predominantly in the posterior LJBSF, with fewer in the anterior LJBSF; (3) retrograde tracer injection in the posterior FBS in normal and forelimb-amputated rats, sparsely labeled cell bodies in the posterior LJBSF; (4) retrograde tracer injection in anterior and posterior FBS in normal and forelimb-amputated rats, labeled cells exclusively in ventral posterior lateral (VPL) nucleus and posterior thalamus (PO); (5) retrograde tracer injection in LJBSF-labeled cell bodies exclusively in ventral posterior medial thalamic nucleus and PO. These findings suggest that LJBSF facilitates rapid lower jaw reorganization in the anterior FBS, whereas VPL and/or other subcortical sites provide a likely substrate for delayed reorganization observed in the posterior FBS.
Collapse
Affiliation(s)
- Violeta Pellicer-Morata
- Department of Physiology, University of Tennessee Health Science Center, College of Medicine, 956 Court Avenue, Memphis, TN 38163, USA
| | - Lie Wang
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite, Memphis, TN 38163, USA
| | - Amy de Jongh Curry
- Department of Biomedical Engineering, University of Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152, USA
| | - Jack W. Tsao
- Department of Neurology, New York University, Langone School of Medicine, 550 1 Avenue, New York, NY 10016, USA
| | - Robert S. Waters
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite, Memphis, TN 38163, USA
- Department of Biomedical Engineering, University of Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152, USA
| |
Collapse
|
2
|
Hummel L, Frenzel T, Boyken J, Pietsch H, Seeliger E. Comprehensive Analysis of the Spatial Distribution of Gadolinium, Iron, Manganese, and Phosphorus in the Brain of Healthy Rats After High-Dose Administrations of Gadodiamide and Gadobutrol. Invest Radiol 2024; 59:150-164. [PMID: 38157437 PMCID: PMC11441738 DOI: 10.1097/rli.0000000000001054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
OBJECTIVES After the administration of gadolinium-based contrast agents (GBCAs), residual gadolinium (Gd) has been detected in a few distinct morphological structures of the central nervous system (CNS). However, a systematic, comprehensive, and quantitative analysis of the spatial Gd distribution in the entire brain is not yet available. The first aim of this study is to provide this analysis in healthy rats after administration of high GBCA doses. The second aim is to assess the spatial distributions and possible Gd colocalizations of endogenous iron (Fe), manganese (Mn), and phosphorus (P). In addition, the presence of Gd in proximity to blood vessels was assessed by immunohistochemistry. MATERIALS AND METHODS Male rats were randomly assigned to 3 groups (n = 3/group): saline (control), gadodiamide (linear GBCA), and gadobutrol (macrocyclic GBCA) with cumulative Gd doses of 14.4 mmol/kg of body mass. Five weeks after the last administration, the brains were collected and cryosectioned. The spatial distributions of Gd, Fe, Mn, and P were analyzed in a total of 130 sections, each covering the brain in 1 of the 3 perpendicular anatomical orientations, using laser ablation coupled with inductively coupled plasma mass spectrometry. Quantitative spatial element maps were generated, and the concentrations of Gd, Fe, and Mn were measured in 31 regions of interest covering various distinct CNS structures. Correlation analyses were performed to test for possible colocalization of Gd, Fe, and Mn. The spatial proximity of Gd and blood vessels was studied using metal-tagged antibodies against von Willebrand factor with laser ablation coupled with inductively coupled plasma mass spectrometry. RESULTS After administration of linear gadodiamide, high Gd concentrations were measured in many distinct structures of the gray matter. This involved structures previously reported to retain Gd after linear GBCA, such as the deep cerebellar nuclei or the globus pallidus, but also structures that had not been reported so far including the dorsal subiculum, the retrosplenial cortex, the superior olivary complex, and the inferior colliculus. The analysis in all 3 orientations allowed the localization of Gd in specific subregions and layers of certain structures, such as the hippocampus and the primary somatosensory cortex. After macrocyclic gadobutrol, the Gd tissue concentration was significantly lower than after gadodiamide. Correlation analyses of region of interest concentrations of Gd, Fe, and Mn revealed no significant colocalization of Gd with endogenous Fe or Mn in rats exposed to either GBCA. Immunohistochemistry revealed a colocalization of Gd traces with vascular endothelium in the deep cerebellar nuclei after gadobutrol, whereas the majority of Gd was found outside the vasculature after gadodiamide. CONCLUSIONS In rats exposed to gadodiamide but not in rats exposed to gadobutrol, high Gd concentrations were measured in various distinct CNS structures, and structures not previously reported were identified to contain Gd, including specific subregions and layers with different cytoarchitecture and function. Knowledge of these distinct spatial patterns may pave the way for tailored functional neurological testing. Signs for the localization of the remaining Gd in the vascular endothelium were prominent for gadobutrol but not gadodiamide. The results also indicate that local transmetalation with endogenous Fe or Mn is unlikely to explain the spatial patterns of Gd deposition in the brain, which argues against a general role of these metals in local transmetalation and release of Gd ions in the CNS.
Collapse
|
3
|
Urban III ET, Hudson HM, Li Y, Nishibe M, Barbay S, Guggenmos DJ, Nudo RJ. Corticocortical connections of the rostral forelimb area in rats: a quantitative tract-tracing study. Cereb Cortex 2024; 34:bhad530. [PMID: 38265300 PMCID: PMC10839842 DOI: 10.1093/cercor/bhad530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
The rostral forelimb area (RFA) in the rat is a premotor cortical region based on its dense efferent projections to primary motor cortex. This study describes corticocortical connections of RFA and the relative strength of connections with other cortical areas. The goal was to provide a better understanding of the cortical network in which RFA participates, and thus, determine its function in sensorimotor behavior. The RFA of adult male Long-Evans rats (n = 6) was identified using intracortical microstimulation techniques and injected with the tract-tracer, biotinylated dextran amine (BDA). In post-mortem tissue, locations of BDA-labeled terminal boutons and neuronal somata were plotted and superimposed on cortical field boundaries. Quantitative estimates of terminal boutons in each region of interest were based on unbiased stereological methods. The results demonstrate that RFA has dense connections with primary motor cortex and frontal cortex medial and lateral to RFA. Moderate connections were found with insular cortex, primary somatosensory cortex (S1), the M1/S1 overlap zone, and lateral somatosensory areas. Cortical connections of RFA in rat are strikingly similar to cortical connections of the ventral premotor cortex in non-human primates, suggesting that these areas share similar functions and allow greater translation of rodent premotor cortex studies to primates.
Collapse
Affiliation(s)
- Edward T Urban III
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Heather M Hudson
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yanming Li
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Mariko Nishibe
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Scott Barbay
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David J Guggenmos
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Randolph J Nudo
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Alonso I, Scheer I, Palacio-Manzano M, Frézel-Jacob N, Philippides A, Prsa M. Peripersonal encoding of forelimb proprioception in the mouse somatosensory cortex. Nat Commun 2023; 14:1866. [PMID: 37045825 PMCID: PMC10097678 DOI: 10.1038/s41467-023-37575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Conscious perception of limb movements depends on proprioceptive neural responses in the somatosensory cortex. In contrast to tactile sensations, proprioceptive cortical coding is barely studied in the mammalian brain and practically non-existent in rodent research. To understand the cortical representation of this important sensory modality we developed a passive forelimb displacement paradigm in behaving mice and also trained them to perceptually discriminate where their limb is moved in space. We delineated the rodent proprioceptive cortex with wide-field calcium imaging and optogenetic silencing experiments during behavior. Our results reveal that proprioception is represented in both sensory and motor cortical areas. In addition, behavioral measurements and responses of layer 2/3 neurons imaged with two-photon microscopy reveal that passive limb movements are both perceived and encoded in the mouse cortex as a spatial direction vector that interfaces the limb with the body's peripersonal space.
Collapse
Affiliation(s)
- Ignacio Alonso
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Irina Scheer
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Mélanie Palacio-Manzano
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Noémie Frézel-Jacob
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Antoine Philippides
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Mario Prsa
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
5
|
Taylor JA, Smith ZZ, Barth DS. Spike-wave discharges in Sprague-Dawley rats reflect precise intra- and interhemispheric synchronization of somatosensory cortex. J Neurophysiol 2022; 128:1152-1167. [PMID: 36169203 PMCID: PMC9621715 DOI: 10.1152/jn.00303.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Spike-wave discharges (SWDs) are among the most prominent electrical signals recordable from the rat cerebrum. Increased by inbreeding, SWDs have served as an animal model of human genetic absence seizures. Yet, SWDs are ubiquitous in inbred and outbred rats, suggesting they reflect normal brain function. We hypothesized that SWDs represent oscillatory neural ensemble activity underlying sensory encoding. To test this hypothesis, we simultaneously mapped SWDs from wide areas (8 × 8 mm) of both hemispheres in anesthetized rats, using 256-electrode epicortical arrays that covered primary and secondary somatosensory, auditory and visual cortex bilaterally. We also recorded the laminar pattern of SWDs with linear microelectrode arrays. We compared the spatial and temporal organization of SWDs to somatosensory-evoked potentials (SEPs), as well as auditory- and visual-evoked potentials (AEPs and VEPs) to examine similarities and/or differences between sensory-evoked and spontaneous oscillations in the same animals. We discovered that SWDs are confined to the facial representation of primary and secondary somatosensory cortex (SI and SII, respectively), areas that are preferentially engaged during environmental exploration in the rat. Furthermore, these oscillations exhibit highly synchronized bilateral traveling waves in SI and SII, simultaneously forming closely matched spread patterns in both hemispheres. We propose that SWDs could reflect a previously unappreciated capacity for rat somatosensory cortex to perform precise spatial and temporal analysis of rapidly changing sensory input at the level of large neural ensembles synchronized both within and between the cerebral hemispheres.NEW & NOTEWORTHY We simultaneously mapped electrocortical SWDs from both cerebral hemispheres of Sprague-Dawley rats and discovered that they reflect systematic activation of the facial representation of somatosensory cortex. SWDs form mirror spatiotemporal patterns in both hemispheres that are precisely aligned in both space and time. Our data suggest that SWDs may reflect a substrate by which large neural ensembles perform precise spatiotemporal processing of rapidly changing somatosensory input.
Collapse
Affiliation(s)
- Jeremy A Taylor
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Zachary Z Smith
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Daniel S Barth
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| |
Collapse
|
6
|
Vardar B, Güçlü B. Effects of basal forebrain stimulation on the vibrotactile responses of neurons from the hindpaw representation in the rat SI cortex. Brain Struct Funct 2020; 225:1761-1776. [PMID: 32495132 DOI: 10.1007/s00429-020-02091-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 05/13/2020] [Indexed: 11/28/2022]
Abstract
Basal forebrain (BF) cholinergic system is important for attention and modulates sensory processing. We focused on the hindpaw representation in rat primary somatosensory cortex (S1), which receives inputs related to mechanoreceptors identical to those in human glabrous skin. Spike data were recorded from S1 tactile neurons (n = 87) with (ON condition: 0.5-ms bipolar current pulses at 100 Hz; amplitude 50 μA, duration 0.5 s at each trial) and without (OFF condition) electrical stimulation of BF in anesthetized rats. We expected that prior activation of BF would induce changes in the vibrotactile responses of neurons during sinusoidal (5, 40, and 250 Hz) mechanical stimulation of the glabrous skin. The experiment consisted of sequential OFF-ON conditions in two-time blocks separated by 30 min to test possible remaining effects. Average firing rates (AFRs) and vector strengths of spike phases (VS) were analyzed for different neuron types [regular spiking (RS) and fast spiking (FS)] in different cortical layers (III-VI). Immediate effect of BF activation was only significant by increasing synchronization to 5-Hz vibrotactile stimulus within the second block. Regardless of frequency, ON-OFF paired VS differences were significantly higher in the second block compared to the first, more prominent for RS neurons, and in general for neurons in layers III and VI. No such effects could be found on AFRs. The results suggest that cholinergic activation induces some changes in the hindpaw area, enabling relatively higher increases in synchronization to vibrotactile inputs with subsequent BF modulation. In addition, this modulation depends on neuron type and layer, which may be related to detailed projection pattern from BF.
Collapse
Affiliation(s)
- Bige Vardar
- Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Çengelköy, 34684, Istanbul, Turkey
| | - Burak Güçlü
- Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Çengelköy, 34684, Istanbul, Turkey.
| |
Collapse
|
7
|
Khasabov SG, Truong H, Rogness VM, Alloway KD, Simone DA, Giesler GJ. Responses of neurons in the primary somatosensory cortex to itch- and pain-producing stimuli in rats. J Neurophysiol 2020; 123:1944-1954. [PMID: 32292106 DOI: 10.1152/jn.00038.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding of cortical encoding of itch is limited. Injection of pruritogens and algogens into the skin of the cheek produces distinct behaviors, making the rodent cheek a useful model for understanding mechanisms of itch and pain. We examined responses of neurons in the primary somatosensory cortex by application of mechanical stimuli (brush, pressure, and pinch) and stimulations with intradermal injections of pruritic and algesic chemical of receptive fields located on the skin of the cheek in urethane-anesthetized rats. Stimuli included chloroquine, serotonin, β-alanine, histamine, capsaicin, and mustard oil. All 33 neurons studied were excited by noxious mechanical stimuli applied to the cheek. Based on mechanical stimulation most neurons were functionally classified as high threshold. Of 31 neurons tested for response to chemical stimuli, 84% were activated by one or more pruritogens/partial pruritogens. No cells were activated by all five substances. Histamine activated the greatest percentage of neurons and evoked the greatest mean discharge. Importantly, no cells were excited exclusively by pruritogens or partial pruritogens. The recording sites of all neurons that responded to chemical stimuli applied to the cheek were located in the dysgranular zone (DZ) and in deep laminae of the medial border of the vibrissal barrel fields (VBF). Therefore, neurons in the DZ/VBF of rats encode mechanical and chemical pruritogens and algogens. This cortical region appears to contain primarily nociceptive neurons as defined by responses to noxious pinching of the skin. Its role in encoding itch and pain from the cheek of the face needs further study.NEW & NOTEWORTHY Processing of information related to itch sensation at the level of cerebral cortex is not well understood. In this first single-unit electrophysiological study of pruriceptive cortical neurons, we show that neurons responsive to noxious and pruritic stimulation of the cheek of the face are concentrated in a small area of the dysgranular cortex, indicating that these neurons encode information related to itch and pain.
Collapse
Affiliation(s)
- Sergey G Khasabov
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota
| | - Hai Truong
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Victoria M Rogness
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota
| | - Kevin D Alloway
- Center for Neural Engineering, Penn State University, University Park, Pennsylvania.,Department of Neural and Behavioral Sciences, Penn State University, University Park, Pennsylvania
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota
| | - Glenn J Giesler
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
8
|
Valdés-Hernández PA, Bae J, Song Y, Sumiyoshi A, Aubert-Vázquez E, Riera JJ. Validating Non-invasive EEG Source Imaging Using Optimal Electrode Configurations on a Representative Rat Head Model. Brain Topogr 2019; 32:599-624. [PMID: 27026168 DOI: 10.1007/s10548-016-0484-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/05/2016] [Indexed: 12/20/2022]
Abstract
The curtain of technical limitations impeding rat multichannel non-invasive electroencephalography (EEG) has risen. Given the importance of this preclinical model, development and validation of EEG source imaging (ESI) is essential. We investigate the validity of well-known human ESI methodologies in rats which individual tissue geometries have been approximated by those extracted from an MRI template, leading also to imprecision in electrode localizations. With the half and fifth sensitivity volumes we determine both the theoretical minimum electrode separation for non-redundant scalp EEG measurements and the electrode sensitivity resolution, which vary over the scalp because of the head geometry. According to our results, electrodes should be at least ~3 to 3.5 mm apart for an optimal configuration. The sensitivity resolution is generally worse for electrodes at the boundaries of the scalp measured region, though, by analogy with human montages, concentrates the sensitivity enough to localize sources. Cramér-Rao lower bounds of source localization errors indicate it is theoretically possible to achieve ESI accuracy at the level of anatomical structures, such as the stimulus-specific somatosensory areas, using the template. More validation for this approximation is provided through the comparison between the template and the individual lead field matrices, for several rats. Finally, using well-accepted inverse methods, we demonstrate that somatosensory ESI is not only expected but also allows exploring unknown phenomena related to global sensory integration. Inheriting the advantages and pitfalls of human ESI, rat ESI will boost the understanding of brain pathophysiological mechanisms and the evaluation of ESI methodologies, new pharmacological treatments and ESI-based biomarkers.
Collapse
Affiliation(s)
- Pedro A Valdés-Hernández
- Neuroimaging Department, Cuban Neuroscience Center, Havana, Cuba
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Jihye Bae
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Yinchen Song
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Jorge J Riera
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA.
| |
Collapse
|
9
|
Lehnhoff J, Strauss U, Wierschke S, Grosser S, Pollali E, Schneider UC, Holtkamp M, Dehnicke C, Deisz RA. The anticonvulsant lamotrigine enhances Ih in layer 2/3 neocortical pyramidal neurons of patients with pharmacoresistant epilepsy. Neuropharmacology 2019; 144:58-69. [DOI: 10.1016/j.neuropharm.2018.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 11/29/2022]
|
10
|
Johnson BA, Frostig RD. Long-Range, Border-Crossing, Horizontal Axon Radiations Are a Common Feature of Rat Neocortical Regions That Differ in Cytoarchitecture. Front Neuroanat 2018; 12:50. [PMID: 29977194 PMCID: PMC6021490 DOI: 10.3389/fnana.2018.00050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/25/2018] [Indexed: 11/13/2022] Open
Abstract
Employing wide-field optical imaging techniques supported by electrophysiological recordings, previous studies have demonstrated that stimulation of a spatially restricted area (point) in the sensory periphery results in a large evoked neuronal activity spread in mammalian primary cortices. In rats' primary cortices, such large evoked spreads extend diffusely in multiple directions, cross cortical cytoarchitectural borders and can trespass into other unimodal sensory areas. These point spreads are supported by a spatially matching, diffuse set of long-range horizontal projections within gray matter that extend in multiple directions and cross borders to interconnect different cortical areas. This horizontal projection system is in addition to well-known area-to-area clustered projections to defined targets through white matter. Could similar two-projection cortical systems also be found in cortical regions that differ in their cytoarchitectural structure? To address this question, an adeno-associated viral vector expressing green fluorescent protein (GFP) was injected as an anterograde tract tracer into granular somatosensory cortex (trunk area), dysgranular cortex (somatosensory dysgranular zone and extrastriate cortex) and agranular motor cortex (MCx). Irrespective of the injection site the same two projection systems were found, and their quantification revealed a close similarity to findings in primary sensory cortices. Following detailed reconstruction, the diffuse horizontal axon radiation was found to possess numerous varicosities and to include short, medium and long axons, the latter extending up to 5.2 mm. These "proof of concept" findings suggest that the similarity of the two projection systems among different cortical areas could potentially constitute a canonical motif of neocortical organization.
Collapse
Affiliation(s)
- Brett A Johnson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Ron D Frostig
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,The Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
11
|
Kuehn E, Dinse J, Jakobsen E, Long X, Schäfer A, Bazin PL, Villringer A, Sereno MI, Margulies DS. Body Topography Parcellates Human Sensory and Motor Cortex. Cereb Cortex 2018; 27:3790-3805. [PMID: 28184419 PMCID: PMC6248394 DOI: 10.1093/cercor/bhx026] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Indexed: 12/25/2022] Open
Abstract
The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand-face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing.
Collapse
Affiliation(s)
- Esther Kuehn
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Department of Psychology and Language Sciences, University College London, London WC1H 0DG, UK.,Center for Behavioral Brain Sciences Magdeburg, Magdeburg 39106, Germany.,Aging and Cognition Research Group, DZNE, Magdeburg 39106, Germany
| | - Juliane Dinse
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Faculty of Computer Science, Otto-von-Guericke University, Magdeburg 39106, Germany
| | - Estrid Jakobsen
- Max Planck Research Group for Neuroanatomy & Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Xiangyu Long
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Andreas Schäfer
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Pierre-Louis Bazin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| | - Martin I Sereno
- Department of Psychology and Language Sciences, University College London, LondonWC1H 0DG, UK
| | - Daniel S Margulies
- Max Planck Research Group for Neuroanatomy & Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig04103, Germany
| |
Collapse
|
12
|
Yamashita T, Vavladeli A, Pala A, Galan K, Crochet S, Petersen SSA, Petersen CCH. Diverse Long-Range Axonal Projections of Excitatory Layer 2/3 Neurons in Mouse Barrel Cortex. Front Neuroanat 2018; 12:33. [PMID: 29765308 PMCID: PMC5938399 DOI: 10.3389/fnana.2018.00033] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/16/2018] [Indexed: 11/13/2022] Open
Abstract
Excitatory projection neurons of the neocortex are thought to play important roles in perceptual and cognitive functions of the brain by directly connecting diverse cortical and subcortical areas. However, many aspects of the anatomical organization of these inter-areal connections are unknown. Here, we studied long-range axonal projections of excitatory layer 2/3 neurons with cell bodies located in mouse primary somatosensory barrel cortex (wS1). As a population, these neurons densely projected to secondary whisker somatosensory cortex (wS2) and primary/secondary whisker motor cortex (wM1/2), with additional axon in the dysgranular zone surrounding the barrel field, perirhinal temporal association cortex and striatum. In three-dimensional reconstructions of 6 individual wS2-projecting neurons and 9 individual wM1/2-projecting neurons, we found that both classes of neurons had extensive local axon in layers 2/3 and 5 of wS1. Neurons projecting to wS2 did not send axon to wM1/2, whereas a small subset of wM1/2-projecting neurons had relatively weak projections to wS2. A small fraction of projection neurons solely targeted wS2 or wM1/2. However, axon collaterals from wS2-projecting and wM1/2-projecting neurons were typically also found in subsets of various additional areas, including the dysgranular zone, perirhinal temporal association cortex and striatum. Our data suggest extensive diversity in the axonal targets selected by individual nearby cortical long-range projection neurons with somata located in layer 2/3 of wS1.
Collapse
Affiliation(s)
- Takayuki Yamashita
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Angeliki Vavladeli
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aurélie Pala
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Katia Galan
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sara S A Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
13
|
Tornero D, Tsupykov O, Granmo M, Rodriguez C, Grønning-Hansen M, Thelin J, Smozhanik E, Laterza C, Wattananit S, Ge R, Tatarishvili J, Grealish S, Brüstle O, Skibo G, Parmar M, Schouenborg J, Lindvall O, Kokaia Z. Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli. Brain 2017; 140:692-706. [PMID: 28115364 DOI: 10.1093/brain/aww347] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/20/2016] [Indexed: 12/20/2022] Open
Abstract
Transplanted neurons derived from stem cells have been proposed to improve function in animal models of human disease by various mechanisms such as neuronal replacement. However, whether the grafted neurons receive functional synaptic inputs from the recipient's brain and integrate into host neural circuitry is unknown. Here we studied the synaptic inputs from the host brain to grafted cortical neurons derived from human induced pluripotent stem cells after transplantation into stroke-injured rat cerebral cortex. Using the rabies virus-based trans-synaptic tracing method and immunoelectron microscopy, we demonstrate that the grafted neurons receive direct synaptic inputs from neurons in different host brain areas located in a pattern similar to that of neurons projecting to the corresponding endogenous cortical neurons in the intact brain. Electrophysiological in vivo recordings from the cortical implants show that physiological sensory stimuli, i.e. cutaneous stimulation of nose and paw, can activate or inhibit spontaneous activity in grafted neurons, indicating that at least some of the afferent inputs are functional. In agreement, we find using patch-clamp recordings that a portion of grafted neurons respond to photostimulation of virally transfected, channelrhodopsin-2-expressing thalamo-cortical axons in acute brain slices. The present study demonstrates, for the first time, that the host brain regulates the activity of grafted neurons, providing strong evidence that transplanted human induced pluripotent stem cell-derived cortical neurons can become incorporated into injured cortical circuitry. Our findings support the idea that these neurons could contribute to functional recovery in stroke and other conditions causing neuronal loss in cerebral cortex.
Collapse
Affiliation(s)
- Daniel Tornero
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| | - Oleg Tsupykov
- Bogomoletz Institute of Physiology, and State Institute of Genetic and Regenerative Medicine, 01024, Kyiv, Ukraine
| | - Marcus Granmo
- Neuronano Research Center, Lund University, Scheelevägen 2, 223 81, Lund, Sweden
| | - Cristina Rodriguez
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| | - Marita Grønning-Hansen
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| | - Jonas Thelin
- Neuronano Research Center, Lund University, Scheelevägen 2, 223 81, Lund, Sweden
| | - Ekaterina Smozhanik
- Bogomoletz Institute of Physiology, and State Institute of Genetic and Regenerative Medicine, 01024, Kyiv, Ukraine
| | - Cecilia Laterza
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| | - Somsak Wattananit
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| | - Ruimin Ge
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| | - Jemal Tatarishvili
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| | - Shane Grealish
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, BMC A11, 221 84, Lund, Sweden
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, and German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Straße 25, D-53127, Bonn, Germany
| | - Galina Skibo
- Bogomoletz Institute of Physiology, and State Institute of Genetic and Regenerative Medicine, 01024, Kyiv, Ukraine
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, BMC A11, 221 84, Lund, Sweden
| | - Jens Schouenborg
- Neuronano Research Center, Lund University, Scheelevägen 2, 223 81, Lund, Sweden
| | - Olle Lindvall
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, BMC B10, 221 84, Lund, Sweden
| |
Collapse
|
14
|
Johnson BA, Frostig RD. Long, intrinsic horizontal axons radiating through and beyond rat barrel cortex have spatial distributions similar to horizontal spreads of activity evoked by whisker stimulation. Brain Struct Funct 2015; 221:3617-39. [PMID: 26438334 DOI: 10.1007/s00429-015-1123-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/23/2015] [Indexed: 01/11/2023]
Abstract
Stimulation of a single whisker evokes a peak of activity that is centered over the associated barrel in rat primary somatosensory cortex, and yet the evoked local field potential and the intrinsic signal optical imaging response spread symmetrically away from this barrel for over 3.5 mm to cross cytoarchitectonic borders into other "unimodal" sensory cortical areas. To determine whether long horizontal axons have the spatial distribution necessary to underlie this activity spread, we injected adeno-associated viral vectors into barrel cortex and characterized labeled axons extending from the injection site in transverse sections of flattened cortex. Combined qualitative and quantitative analyses revealed labeled axons radiating diffusely in all directions for over 3.5 mm from supragranular injection sites, with density declining over distance. The projection pattern was similar at four different cortical depths, including infragranular laminae. Infragranular vector injections produced patterns similar to the supragranular injections. Long horizontal axons were detected both using a vector with a permissive cytomegalovirus promoter to label all neuronal subtypes and using a calcium/calmodulin-dependent protein kinase II α vector to restrict labeling to excitatory cortical pyramidal neurons. Individual axons were successfully reconstructed from series of supragranular sections, indicating that they traversed gray matter only. Reconstructed axons extended from the injection site, left the barrel field, branched, and sometimes crossed into other sensory cortices identified by cytochrome oxidase staining. Thus, radiations of long horizontal axons indeed have the spatial characteristics necessary to explain horizontal activity spreads. These axons may contribute to multimodal cortical responses and various forms of cortical neural plasticity.
Collapse
Affiliation(s)
- B A Johnson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697-4550, USA
| | - R D Frostig
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697-4550, USA. .,Department of Biomedical Engineering and Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
15
|
Decosta-Fortune TM, Li CX, de Jongh Curry AL, Waters RS. Differential Pattern of Interhemispheric Connections Between Homotopic Layer V Regions in the Forelimb Representation in Rat Barrel Field Cortex. Anat Rec (Hoboken) 2015; 298:1885-902. [PMID: 26332205 DOI: 10.1002/ar.23262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/12/2015] [Accepted: 04/07/2015] [Indexed: 11/05/2022]
Abstract
Layer V neurons in forelimb and shoulder representations in rat first somatosensory cortex (SI) project to the contralateral SI. However, few studies have addressed whether projections from specific subregions of the forelimb representation, namely forepaw, wrist, or forearm, terminate at homotopic sites in the contralateral SI. Neuroanatomical retrograde (cholera toxin B subunit [CT-B]) or anterograde (biodextran amine [BDA]) tracers were injected into physiologically identified sites in layer V in specific forelimb and/or shoulder representations in SI to examine the projection to contralateral SI in young adult rats (N = 17). Injection and target sites were flattened and cut in a tangential plane to relate labeling to the body map or cut along a coronal plane to relate labeling to cortical layers. Results indicate that layer V neurons project to cortical laminae II-VI in contralateral SI, with the densest labeling in layer V followed by layer III. In contrast, layer V neurons send sparse projections to layer IV. Furthermore, layer V neurons in wrist, forearm, and shoulder project to homotopic sites in contralateral layer V, while neurons in the forepaw representation project largely to sites in perigranular and dysgranular cortex adjacent to their homotopic territory. Our results provide evidence for a differential pattern of interhemispheric projections from forelimb and shoulder representations to the opposite SI and a detailed description of areal and laminar projection patterns of layer V neurons in the SI forelimb and shoulder cortices.
Collapse
Affiliation(s)
- Tina M Decosta-Fortune
- Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, Memphis, Tennessee
| | - Cheng X Li
- Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, Memphis, Tennessee.,Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Amy L de Jongh Curry
- Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, Memphis, Tennessee
| | - Robert S Waters
- Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, Memphis, Tennessee.,Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
16
|
Stehberg J, Dang PT, Frostig RD. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex. Front Neuroanat 2014; 8:93. [PMID: 25309339 PMCID: PMC4174042 DOI: 10.3389/fnana.2014.00093] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/23/2014] [Indexed: 11/23/2022] Open
Abstract
Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI) of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI) and primary visual (VI). It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA) and retrograde (CTb) tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging, and cortical parcellation are discussed.
Collapse
Affiliation(s)
- Jimmy Stehberg
- Department of Neurobiology and Behavior, University of California, Irvine Irvine, CA, USA ; Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello Santiago, Chile
| | - Phat T Dang
- Department of Neurobiology and Behavior, University of California, Irvine Irvine, CA, USA
| | - Ron D Frostig
- Department of Neurobiology and Behavior, University of California, Irvine Irvine, CA, USA ; Department of Biomedical Engineering, University of California, Irvine Irvine, CA, USA ; The Center for the Neurobiology of Learning and Memory, University of California, Irvine Irvine, CA, USA
| |
Collapse
|
17
|
Dooley JC, Franca JG, Seelke AMH, Cooke DF, Krubitzer LA. A connection to the past: Monodelphis domestica provides insight into the organization and connectivity of the brains of early mammals. J Comp Neurol 2014; 521:3877-97. [PMID: 23784751 DOI: 10.1002/cne.23383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/07/2013] [Accepted: 06/07/2013] [Indexed: 11/09/2022]
Abstract
The current experiment is one of a series of comparative studies in our laboratory designed to determine the network of somatosensory areas that are present in the neocortex of the mammalian common ancestor. Such knowledge is critical for appreciating the basic functional circuitry that all mammals possess and how this circuitry was modified to generate species-specific, sensory-mediated behavior. Our animal model, the gray short-tailed opossum (Monodelphis domestica), is a marsupial that is proposed to represent this ancestral state more closely than most other marsupials and, to some extent, even monotremes. We injected neuroanatomical tracers into the primary somatosensory area (S1), rostral and caudal somatosensory fields (SR and SC, respectively), and multimodal cortex (MM) and determined their connections with other architectonically defined cortical fields. Our results show that S1 has dense intrinsic connections, dense projections from the frontal myelinated area (FM), and moderate projections from S2 and SC. SR has strong projections from several areas, including S1, SR, FM, and piriform cortex. SC has dense projections from S1, moderate to strong projections from other somatosensory areas, FM, along with connectivity from the primary (V1) and second visual areas. Finally, MM had dense intrinsic connections, dense projections from SC and V1, and moderate projections from S1. These data support the proposition that ancestral mammals likely had at least four specifically interconnected somatosensory areas, along with at least one multimodal area. We discuss the possibility that these additional somatosensory areas (SC and SR) are homologous to somatosensory areas in eutherian mammals.
Collapse
Affiliation(s)
- James C Dooley
- Center for Neuroscience, University of California, Davis, Davis, California, 95618, USA
| | | | | | | | | |
Collapse
|
18
|
Kim U, Lee T. Intra-areal and corticocortical circuits arising in the dysgranular zone of rat primary somatosensory cortex that processes deep somatic input. J Comp Neurol 2014; 521:2585-601. [PMID: 23322443 DOI: 10.1002/cne.23300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/05/2012] [Accepted: 01/04/2013] [Indexed: 11/08/2022]
Abstract
Somesthesis-guided exploration of the external world requires cortical processing of both cutaneous and proprioceptive information and their integration into motor commands to guide further haptic movement. In the past, attention has been given mostly to the cortical circuits processing cutaneous information for somatic motor integration. By comparison, little has been examined about how cortical circuits are organized for higher order proprioceptive processing. Using the rat cortex as a model, we characterized the intrinsic and corticocortical circuits arising in the major proprioceptive region of the primary somatosensory cortex (SI) that is conventionally referred to as the dysgranular zone (DSZ). We made small injections of biotinylated dextran amine (BDA) as an anterograde tracer in various parts of the DSZ, revealing three distinct principles of its cortical circuit organization. First, its intrinsic circuits extend mainly along the major axis of DSZ to organize multiple patches of interconnections. Second, the central and peripheral regions of DSZ produce differential patterns of intra-areal and corticocortical circuits. Third, the projection fields of DSZ encompass only selective regions of the second somatic (SII), posterior parietal (PPC), and primary motor (MI) cortices. These projection fields are at least partially separated from those of SI cutaneous areas. We hypothesize, based on these observations, that the cortical circuits of DSZ facilitate a modular integration of proprioceptive information along its major axis and disseminate this information to only selective parts of higher order somatic and MI cortices in parallel with cutaneous information.
Collapse
Affiliation(s)
- Uhnoh Kim
- Department of Neurosurgery and Interdepartmental Neuroscience Program, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|
19
|
Porcaro C, Coppola G, Pierelli F, Seri S, Di Lorenzo G, Tomasevic L, Salustri C, Tecchio F. Multiple frequency functional connectivity in the hand somatosensory network: An EEG study. Clin Neurophysiol 2013; 124:1216-24. [DOI: 10.1016/j.clinph.2012.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/12/2012] [Accepted: 12/08/2012] [Indexed: 01/01/2023]
|
20
|
Lee T, Kim U. Descending projections from the dysgranular zone of rat primary somatosensory cortex processing deep somatic input. J Comp Neurol 2012; 520:1021-46. [PMID: 21935942 DOI: 10.1002/cne.22767] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the mammalian somatic system, peripheral inputs from cutaneous and deep receptors ascend via different subcortical channels and terminate in largely separate regions of the primary somatosensory cortex (SI). How these inputs are processed in SI and then projected back to the subcortical relay centers is critical for understanding how SI may regulate somatic information processing in the subcortex. Although it is now relatively well understood how SI cutaneous areas project to the subcortical structures, little is known about the descending projections from SI areas processing deep somatic input. We examined this issue by using the rodent somatic system as a model. In rat SI, deep somatic input is processed mainly in the dysgranular zone (DSZ) enclosed by the cutaneous barrel subfields. By using biotinylated dextran amine (BDA) as anterograde tracer, we characterized the topography of corticostriatal and corticofugal projections arising in the DSZ. The DSZ projections terminate mainly in the lateral subregions of the striatum that are also known as the target of certain SI cutaneous areas. This suggests that SI processing of deep and cutaneous information may be integrated, to a certain degree, in this striatal region. By contrast, at both thalamic and prethalamic levels as far as the spinal cord, descending projections from DSZ terminate in areas largely distinguishable from those that receive input from SI cutaneous areas. These subcortical targets of DSZ include not only the sensory but also motor-related structures, suggesting that SI processing of deep input may engage in regulating somatic and motor information flow between the cortex and periphery.
Collapse
Affiliation(s)
- Taehee Lee
- Department of Neurosurgery, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
21
|
Imaging the spatio-temporal dynamics of supragranular activity in the rat somatosensory cortex in response to stimulation of the paws. PLoS One 2012; 7:e40174. [PMID: 22829873 PMCID: PMC3400596 DOI: 10.1371/journal.pone.0040174] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/03/2012] [Indexed: 11/25/2022] Open
Abstract
We employed voltage-sensitive dye (VSD) imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1) Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2) While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3) Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4) Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli.
Collapse
|
22
|
Transcallosal Pathway of Whisker Information Between Rat Primary Somatosensory Cortices*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2012.00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Nemoto M, Hoshi Y, Sato C, Iguchi Y, Hashimoto I, Kohno E, Hirano T, Terakawa S. Diversity of neural-hemodynamic relationships associated with differences in cortical processing during bilateral somatosensory activation in rats. Neuroimage 2011; 59:3325-38. [PMID: 22166795 DOI: 10.1016/j.neuroimage.2011.11.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 11/17/2011] [Accepted: 11/19/2011] [Indexed: 11/30/2022] Open
Abstract
The neural-hemodynamic relationships may vary depending on cortical processing patterns. To investigate how cortical hemodynamics reflects neural activity involving different cortical processing patterns, we delivered electrical stimulation pulses to rat hindpaws, unilaterally or bilaterally, and simultaneously measured electrophysiological (local field potential, LFP < 100 Hz; multiunit activity, MUA>300 Hz) and optical intrinsic signals associated with changes in cerebral blood volume (CBV). Unilateral stimulation evoked neural and optical signals in bilateral primary somatosensory cortices. Ipsilateral optical responses indicating an increased CBV exhibited a peak magnitude of ~30% and mediocaudal shifts relative to contralateral responses. Correlation analyses revealed different scale factors between contralateral and ipsilateral responses in LFP-MUA and LFP-CBV relationships. Bilateral stimulation at varying time intervals evoked hemodynamic responses that were strongly suppressed at 40-ms intervals. This suppression quantitatively reflected suppressed LFP responses to contralateral testing stimulation and not linear summation, with slowly fluctuating LFP responses to ipsilateral conditioning stimulation. Consequently, in the overall responses to bilateral stimulation, CBV-related responses were more linearly correlated with MUA than with LFPs. When extracting high-frequency components (>30 Hz) from LFPs, we found similar scale factors between contralateral and ipsilateral responses in LFP-MUA and LFP-CBV relationships, resulting in significant linear relationships among these components, MUA, and cortical hemodynamics in overall responses to bilateral stimulation. The dependence of LFP-MUA-hemodynamic relationships on cortical processing patterns and the LFP temporal/spectral structure is important for interpreting hemodynamic signals in complex functional paradigms driving diverse cortical processing.
Collapse
Affiliation(s)
- Masahito Nemoto
- Integrated Neuroscience Research Team, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cooke DF, Padberg J, Zahner T, Krubitzer L. The functional organization and cortical connections of motor cortex in squirrels. Cereb Cortex 2011; 22:1959-78. [PMID: 22021916 DOI: 10.1093/cercor/bhr228] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite extraordinary diversity in the rodent order, studies of motor cortex have been limited to only 2 species, rats and mice. Here, we examine the topographic organization of motor cortex in the Eastern gray squirrel (Sciurus carolinensis) and cortical connections of motor cortex in the California ground squirrel (Spermophilus beecheyi). We distinguish a primary motor area, M1, based on intracortical microstimulation (ICMS), myeloarchitecture, and patterns of connectivity. A sensorimotor area between M1 and the primary somatosensory area, S1, was also distinguished based on connections, functional organization, and myeloarchitecture. We term this field 3a based on similarities with area 3a in nonrodent mammals. Movements are evoked with ICMS in both M1 and 3a in a roughly somatotopic pattern. Connections of 3a and M1 are distinct and suggest the presence of a third far rostral field, termed "F," possibly involved in motor processing based on its connections. We hypothesize that 3a is homologous to the dysgranular zone (DZ) in S1 of rats and mice. Our results demonstrate that squirrels have both similar and unique features of M1 organization compared with those described in rats and mice, and that changes in 3a/DZ borders appear to have occurred in both lineages.
Collapse
Affiliation(s)
- Dylan F Cooke
- Center for Neuroscience, University of California, Davis, 95618, USA
| | | | | | | |
Collapse
|
25
|
Bosman LWJ, Houweling AR, Owens CB, Tanke N, Shevchouk OT, Rahmati N, Teunissen WHT, Ju C, Gong W, Koekkoek SKE, De Zeeuw CI. Anatomical pathways involved in generating and sensing rhythmic whisker movements. Front Integr Neurosci 2011; 5:53. [PMID: 22065951 PMCID: PMC3207327 DOI: 10.3389/fnint.2011.00053] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/26/2011] [Indexed: 11/29/2022] Open
Abstract
The rodent whisker system is widely used as a model system for investigating sensorimotor integration, neural mechanisms of complex cognitive tasks, neural development, and robotics. The whisker pathways to the barrel cortex have received considerable attention. However, many subcortical structures are paramount to the whisker system. They contribute to important processes, like filtering out salient features, integration with other senses, and adaptation of the whisker system to the general behavioral state of the animal. We present here an overview of the brain regions and their connections involved in the whisker system. We do not only describe the anatomy and functional roles of the cerebral cortex, but also those of subcortical structures like the striatum, superior colliculus, cerebellum, pontomedullary reticular formation, zona incerta, and anterior pretectal nucleus as well as those of level setting systems like the cholinergic, histaminergic, serotonergic, and noradrenergic pathways. We conclude by discussing how these brain regions may affect each other and how they together may control the precise timing of whisker movements and coordinate whisker perception.
Collapse
Affiliation(s)
- Laurens W. J. Bosman
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and SciencesAmsterdam, Netherlands
| | | | - Cullen B. Owens
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | - Nouk Tanke
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Negah Rahmati
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Chiheng Ju
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | - Wei Gong
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and SciencesAmsterdam, Netherlands
| |
Collapse
|
26
|
Goloshevsky AG, Wu CWH, Dodd SJ, Koretsky AP. Mapping cortical representations of the rodent forepaw and hindpaw with BOLD fMRI reveals two spatial boundaries. Neuroimage 2011; 57:526-38. [PMID: 21504796 DOI: 10.1016/j.neuroimage.2011.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/25/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022] Open
Abstract
Electrical stimulation of the rat forepaw and hindpaw was employed to study the spatial distribution of BOLD fMRI. Averaging of multiple fMRI sessions significantly improved the spatial stability of the BOLD signal and enabled quantitative determination of the boundaries of the BOLD fMRI maps. The averaged BOLD fMRI signal was distributed unevenly over the extent of the map and the data at the boundaries could be modeled with major and minor spatial components. Comparison of three-dimensional echo-planar imaging (EPI) fMRI at isotropic 300 μm resolution demonstrated that the border locations of the major spatial component of BOLD signal did not overlap between the forepaw and hindpaw maps. Interestingly, the border positions of the minor BOLD fMRI spatial components extended significantly into neighboring representations. Similar results were found for cerebral blood volume (CBV) weighted fMRI obtained using iron oxide particles, suggesting that the minor spatial components may not be due to vascular mislocalization typically associated with BOLD fMRI. Comparison of the BOLD fMRI maps of the forepaw and hindpaw to histological determination of these representations using cytochrome oxidase (CO) staining demonstrated that the major spatial component of the BOLD fMRI activation maps accurately localizes the borders. Finally, 2-3 weeks following peripheral nerve denervation, cortical reorganization/plasticity at the boundaries of somatosensory limb representations in adult rat brain was studied. Denervation of the hindpaw caused a growth in the major component of forepaw representation into the adjacent border of hindpaw representation, such that fitting to two components no longer led to a better fit as compared to using one major component. The border of the representation after plasticity was the same as the border of its minor component in the absence of any plasticity. It is possible that the minor components represent either vascular effects that extend from the real neuronal representations or the neuronal communication between neighboring regions. Either way the results will be useful for studying mechanisms of plasticity that cause alterations in the boundaries of neuronal representations.
Collapse
Affiliation(s)
- Artem G Goloshevsky
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
27
|
Lee T, Alloway KD, Kim U. Interconnected cortical networks between primary somatosensory cortex septal columns and posterior parietal cortex in rat. J Comp Neurol 2011; 519:405-19. [PMID: 21192075 DOI: 10.1002/cne.22505] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Visual and somesthetic cues are used for spatial processing in the posterior parietal cortex (PPC) of the mammalian brain. In rats, somatic information collected by the mystacial whiskers is critically involved in constructing a neural representation of the external space. Here, we delineated the topography of the cortical pathway from the primary somatosensory cortex (SI) that may deliver vibrissal cues to PPC for spatial processing. For anterograde tracing, we made small injections of biotinylated dextran amine (BDA) into SI barrel cortex. The injections in the regions directly above the septal compartments produced dense terminals in PPC, whereas injections above the center of the barrels resulted in sparse terminals. For retrograde tracing, we made large injections of cholera toxin subunit B (CtB) in PPC. Retrogradely labeled neurons within SI barrel cortex formed multiple, parallel strips. In layer IV, these strips of labeled neurons were confined within the septal rows, extending from barrel arc position 0 to 5. In the extragranular layers, labeled neurons were clustered primarily within the vertical extensions of the septal rows and extended to the edges of neighboring barrel columns. Based on these findings, in which SI projections to PPC arise mainly from the septal columns, we hypothesize that septal columns may form interconnected cortical networks that engage in spatial information processing contingent on somestheic cues.
Collapse
Affiliation(s)
- Taehee Lee
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, 17033, USA
| | | | | |
Collapse
|
28
|
Cross-sensory modulation of primary sensory cortex is developmentally regulated by early sensory experience. J Neurosci 2011; 31:2526-36. [PMID: 21325520 DOI: 10.1523/jneurosci.5547-10.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The presence of cross-sensory influences on neuronal responses in primary sensory cortex has been observed previously using several different methods. To test this idea in rat S1 barrel cortex, we hypothesized that auditory stimuli combined with whisker stimulation ("cross-sensory" stimuli) may modify response levels to whisker stimulation. Since the brain has been shown to have a remarkable capacity to be modified by early postnatal sensory activity, manipulating postnatal sensory experiences would be predicted to alter the degree of cross-sensory interactions. To test these ideas, we raised rats with or without whisker deprivation and with or without postnatal exposure to repeated auditory clicks. We recorded extracellular responses under urethane anesthesia from barrel cortex neurons in response to principal whisker stimulation alone, to auditory click stimulation alone, or to a cross-sensory stimulus. The responses were compared statistically across different stimulus conditions and across different rearing groups. Barrel neurons did not generate action potentials in response to auditory click stimuli alone in any rearing group. However, in cross-sensory stimulus conditions the response magnitude was facilitated in the 0-15 ms post-whisker-stimulus epoch in all rearing conditions, whereas modulation of response magnitude in a later 15-30 ms post-whisker-stimulus epoch was significantly different in each rearing condition. The most significant cross-sensory effect occurred in rats that were simultaneously whisker deprived and click reared. We conclude that there is a modulatory type of cross-sensory auditory influence on normal S1 barrel cortex, which can be enhanced by early postnatal experiences.
Collapse
|
29
|
Sehara K, Kawasaki H. Neuronal circuits with whisker-related patterns. Mol Neurobiol 2011; 43:155-62. [PMID: 21365361 DOI: 10.1007/s12035-011-8170-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
Neuronal circuits with whisker-related patterns, such as those observed in the rodent somatosensory barrel cortex, have been widely used as a model system for investigating the anatomical organization, development and physiological roles of functional neuronal circuits. Whisker-related patterns exist not only in the barrel cortex but also in subcortical structures along the trigeminal neuraxis from the brainstem to the cortex. Here, we briefly summarize the organization, formation, and function of each neuronal circuit with whisker-related patterns, including the novel axonal trajectories that we recently found with the aid of in utero electroporation. We also discuss their biological implications as model systems for the studies of functional neuronal circuits.
Collapse
Affiliation(s)
- Keisuke Sehara
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
30
|
Gabel LA. Layer I neocortical ectopia: cellular organization and local cortical circuitry. Brain Res 2011; 1381:148-58. [PMID: 21256119 DOI: 10.1016/j.brainres.2011.01.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 12/31/2022]
Abstract
Focal cortical dysplasia (FCD) are associated with neurological disorders and cognitive impairments in humans. Molecular layer ectopia, clusters of misplaced cells in layer I of the neocortex, have been identified in patients with developmental dyslexia and psychomotor retardation. Mouse models of this developmental disorder display behavioral impairments and increased seizure susceptibility. Although there is a correlation between cortical malformations and neurological dysfunction, little is known about the morphological and physiological properties of cells within cortical malformations. In the present study we used electrophysiological and immunocytochemical analyses to examine the distribution of neuronal and non-neuronal cell types within and surrounding layer I neocortical ectopia in NXSMD/EiJ mice. We show that cells within ectopia have membrane properties of both pyramidal and a variety of non-pyramidal cell types, including fast-spiking cells. Immunocytochemical analysis for different interneuronal subtypes demonstrates that ectopia contain nonpyramidal cells immunoreactive for calbindin-D28K (CALB), parvalbumin (PARV), and calretinin (CR). Ectopia also contains astrocytes, positive for glial fibrillary acidic protein (GFAP) and oligodendrocyte precursor cells positive for NG2 proteoglycan (NG2). Lastly, we provide electrophysiological and morphological evidence to demonstrate that cells within ectopia receive input from cells within layers I, upper and deeper II/III, and V and provide outputs to cells within deep layer II/III and layer V, but not layers I and upper II/III. These results indicate that ectopia contain cells of different lineages with diverse morphological and physiological properties, and appear to cause disruptions in local cortical circuitry.
Collapse
Affiliation(s)
- Lisa Ann Gabel
- Department of Psychology and Program in Neuroscience, Lafayette College, Easton, PA 18042, USA.
| |
Collapse
|
31
|
Matsutani S. Trajectory and terminal distribution of single centrifugal axons from olfactory cortical areas in the rat olfactory bulb. Neuroscience 2010; 169:436-48. [DOI: 10.1016/j.neuroscience.2010.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 04/27/2010] [Accepted: 05/01/2010] [Indexed: 11/26/2022]
|
32
|
Sehara K, Toda T, Iwai L, Wakimoto M, Tanno K, Matsubayashi Y, Kawasaki H. Whisker-related axonal patterns and plasticity of layer 2/3 neurons in the mouse barrel cortex. J Neurosci 2010; 30:3082-92. [PMID: 20181605 PMCID: PMC6633930 DOI: 10.1523/jneurosci.6096-09.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/09/2010] [Accepted: 01/14/2010] [Indexed: 02/07/2023] Open
Abstract
Elucidating neuronal circuits and their plasticity in the cerebral cortex is one of the important questions in neuroscience research. Here we report novel axonal trajectories and their plasticity in the mouse somatosensory barrel cortex. We selectively visualized layer 2/3 neurons using in utero electroporation and examined the axonal trajectories of layer 2/3 neurons. We found that the axons of layer 2/3 neurons preferentially run in the septal regions of layer 4 and named this axonal pattern "barrel nets." The intensity of green fluorescent protein in the septal regions was markedly higher compared with that in barrel hollows. Focal in utero electroporation revealed that the axons in barrel nets were indeed derived from layer 2/3 neurons in the barrel cortex. During development, barrel nets became visible at postnatal day 10, which was well after the initial appearance of barrels. When whisker follicles were cauterized within 3 d after birth, the whisker-related pattern of barrel nets was altered, suggesting that cauterization of whisker follicles results in developmental plasticity of barrel nets. Our results uncover the novel axonal trajectories of layer 2/3 neurons with whisker-related patterns and their developmental plasticity in the mouse somatosensory cortex. Barrel nets should be useful for investigating the pattern formation and axonal reorganization of intracortical neuronal circuits.
Collapse
Affiliation(s)
- Keisuke Sehara
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Tomohisa Toda
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Lena Iwai
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Mayu Wakimoto
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Kaori Tanno
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Yutaka Matsubayashi
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Hiroshi Kawasaki
- Department of Molecular and Systems Neurobiology, Graduate School of Medicine
- The 21st Century Center of Excellence (COE) Program “Center for Integrated Brain Medical Sciences,” and
- Global COE Program “Comprehensive Center of Education and Research for Chemical Biology of the Diseases,” The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan, and
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Tokyo 102-0075, Japan
| |
Collapse
|
33
|
Colechio EM, Alloway KD. Differential topography of the bilateral cortical projections to the whisker and forepaw regions in rat motor cortex. Brain Struct Funct 2009; 213:423-39. [PMID: 19672624 DOI: 10.1007/s00429-009-0215-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 07/27/2009] [Indexed: 11/25/2022]
Abstract
Whisker and forelimb movements in rats have distinct behavioral functions that suggest differences in the neural connections of the brain regions that control their movements. To test this hypothesis, retrograde tracing methods were used to characterize the bilateral distribution of the cortical neurons that project to the whisker and forelimb regions in primary motor (MI) cortex. Tracer injections in each MI region revealed labeled neurons in more than a dozen cortical areas, but most labeling was concentrated in the sensorimotor areas. Cortical projections to the MI forepaw region originated primarily from the primary somatosensory (SI) cortex in the ipsilateral hemisphere. In contrast, most projections to the MI whisker region originated from the MI whisker region in the contralateral hemisphere. Tracer injections in the MI whisker region also revealed a higher proportion of labeled neurons in the claustrum and in the posterior parietal cortex. Injections of different tracers into the MI whisker and forepaw regions of some rats revealed a topographic organization of neuronal labeling in several sensorimotor regions. Collectively, these findings indicate that the MI whisker and forepaw regions receive different sets of cortical inputs. Whereas the MI whisker region is most strongly influenced by callosal projections, presumably to mediate bilateral coordination of the whiskers, the MI forepaw region is influenced mainly by ipsilateral SI inputs that convey somatosensory feedback.
Collapse
Affiliation(s)
- Elizabeth M Colechio
- Department of Neural and Behavioral Sciences H109, Hershey Medical Center, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033-2255, USA
| | | |
Collapse
|
34
|
Abstract
Exercise-induced cortical plasticity is associated with improved functional outcome after brain or nerve injury. Exercise also improves functional outcomes after spinal cord injury, but its effects on cortical plasticity are not known. The goal of this investigation was to study the effect of moderate exercise (treadmill locomotion, 3 min/d, 5 d/week) on the somatotopic organization of forelimb and hindlimb somatosensory cortex (SI) after neonatal thoracic transection. We used adult rats spinalized as neonates because some of these animals develop weight-supported stepping, and, therefore, the relationship between cortical plasticity and stepping could also be examined. Acute, single-neuron mapping was used to determine the percentage of cortical cells responding to cutaneous forelimb stimulation in normal, spinalized, and exercised spinalized rats. Multiple single-neuron recording from arrays of chronically implanted microwires examined the magnitude of response of these cells in normal and exercised spinalized rats. Our results show that exercise not only increased the percentage of responding cells in the hindlimb SI but also increased the magnitude of the response of these cells. This increase in response magnitude was correlated with behavioral outcome measures. In the forelimb SI, neonatal transection reduced the percentage of responding cells to forelimb stimulation, but exercise reversed this loss. This restoration in the percentage of responding cells after exercise was accompanied by an increase in their response magnitude. Therefore, the increase in responsiveness of hindlimb SI to forelimb stimulation after neonatal transection and exercise may be due, in part, to the effect of exercise on the forelimb SI.
Collapse
|
35
|
Chakrabarti S, Alloway KD. Differential response patterns in the si barrel and septal compartments during mechanical whisker stimulation. J Neurophysiol 2009; 102:1632-46. [PMID: 19535478 DOI: 10.1152/jn.91120.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A growing body of evidence suggests that the barrel and septal regions in layer IV of rat primary somatosensory (SI) cortex may represent separate processing channels. To assess this view, pairs of barrel and septal neurons were recorded simultaneously in the anesthetized rat while a 4x4 array of 16 whiskers was mechanically stimulated at 4, 8, 12, and 16 Hz. Compared with barrel neurons, regular-spiking septal neurons displayed greater increases in response latencies as the frequency of whisker stimulation increased. Cross-correlation analysis indicated that the incidence and strength of neuronal coordination varied with the relative spatial configuration (within vs. across rows) and compartmental location (barrel vs. septa) of the recorded neurons. Barrel and septal neurons were strongly coordinated if both neurons were in close proximity and resided in the same row. Some barrel neurons were weakly coordinated, but only if they resided in the same row. By contrast, the strength of coordination among pairs of septal neurons did not vary with their spatial proximity or their spatial configuration within the arcs and rows of the barrel field. These differential responses provide further support for the view that the barrel and septal regions represent the cortical gateway for processing streams that encode specific aspects of the sensorimotor information associated with whisking behavior.
Collapse
Affiliation(s)
- Shubhodeep Chakrabarti
- Department of Neural and Behavioral Sciences, Pennsylvania State University, College of Medicine, H109, Hershey Medical Ctr., 500 University Dr., Hershey, PA 17033-2255, USA
| | | |
Collapse
|
36
|
Abstract
The primary somatosensory cortex (SI) retains its capability for cortical reorganization after injury or differential use into adulthood. The plastic response of SI cells to peripheral stimulation is characterized by extension of cortical representations accompanied by changes of the receptive field size of neurons. We used intracortical microstimulation that is known to enforce local, intracortical synchronous activity, to induce cortical reorganization and applied immunohistochemical methods in the same individual animals to investigate how plasticity in the cortical topographic maps is linked to changes in the spatial layout of the inhibitory and excitatory neurotransmitter systems. The results reveal a differential spatiotemporal pattern of upregulation and downregulation of specific factors for an excitatory (glutamatergic) and an inhibitory (GABAergic) system, associated with changes of receptive field size and reorganization of the somatotopic map in the rat SI. Predominantly local mechanisms are the specific reduction of the calcium-binding protein parvalbumin in inhibitory neurons and the low expression of the activity marker c-Fos. Reorganization in the hindpaw representation and in the adjacent SI cortical areas (motor cortex and parietal cortex) is accompanied by a major increase of the excitatory transmitter glutamate and c-Fos. The spatial extent of the reorganization appears to be limited by an increase of glutamic acid decarboxylase and the inhibitory transmitter GABA. The local and medium-range net effects are excitatory and can facilitate receptive field enlargements and cortical map expansion. The longer-range increase of inhibition appears suited to limit these effects and to prevent neurons from pathological hyperexcitability.
Collapse
|
37
|
Frostig RD, Xiong Y, Chen-Bee CH, Kvasnák E, Stehberg J. Large-scale organization of rat sensorimotor cortex based on a motif of large activation spreads. J Neurosci 2008; 28:13274-84. [PMID: 19052219 PMCID: PMC2710304 DOI: 10.1523/jneurosci.4074-08.2008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 10/18/2008] [Indexed: 11/21/2022] Open
Abstract
Parcellation according to function (e.g., visual, somatosensory, auditory, motor) is considered a fundamental property of sensorimotor cortical organization, traditionally defined from cytoarchitectonics and mapping studies relying on peak evoked neuronal activity. In the adult rat, stimulation of single whiskers evokes peak activity at topographically appropriate locations within somatosensory cortex and provides an example of cortical functional specificity. Here, we show that single whisker stimulation also evokes symmetrical areas of suprathreshold and subthreshold neuronal activation that spread extensively away from peak activity, effectively ignoring cortical borders by spilling deeply into multiple cortical territories of different modalities (auditory, visual and motor), where they were blocked by localized neuronal activity blocker injections and thus ruled out as possibly caused by "volume conductance." These symmetrical activity spreads were supported by underlying border-crossing, long-range horizontal connections as confirmed with transection experiments and injections of anterograde neuronal tracer experiments. We found such large evoked activation spreads and their underlying connections regardless of whisker identity, cortical layer, or axis of recorded responses, thereby revealing a large scale nonspecific organization of sensorimotor cortex based on a motif of large symmetrical activation spreads. Because the large activation spreads and their underlying horizontal connections ignore anatomical borders between cortical modalities, sensorimotor cortex could therefore be viewed as a continuous entity rather than a collection of discrete, delineated unimodal regions, an organization that could coexist with established specificity of cortical organization and that could serve as a substrate for associative learning, direct multimodal integration and recovery of function after injury.
Collapse
Affiliation(s)
- Ron D Frostig
- Department of Neurobiology and Behavior, The Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697-4550, USA.
| | | | | | | | | |
Collapse
|
38
|
Hirokawa J, Watakabe A, Ohsawa S, Yamamori T. Analysis of area-specific expression patterns of RORbeta, ER81 and Nurr1 mRNAs in rat neocortex by double in situ hybridization and cortical box method. PLoS One 2008; 3:e3266. [PMID: 18815614 PMCID: PMC2533703 DOI: 10.1371/journal.pone.0003266] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 09/04/2008] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The mammalian neocortex is subdivided into many areas, each of which exhibits distinctive lamina architecture. To investigate such area differences in detail, we chose three genes for comparative analyses, namely, RORbeta, ER81 and Nurr1, mRNAs of which have been reported to be mainly expressed in layers 4, 5 and 6, respectively. To analyze their qualitative and quantitative coexpression profiles in the rat neocortex, we used double in situ hybridization (ISH) histochemistry and cortical box method which we previously developed to integrate the data of different staining and individuals in a standard three-dimensional space. PRINCIPAL FINDINGS Our new approach resulted in three main observations. First, the three genes showed unique area distribution patterns that are mostly complementary to one another. The patterns revealed by cortical box method matched well with the cytoarchitectonic areas defined by Nissl staining. Second, at single cell level, RORbeta and ER81 mRNAs were coexpressed in a subpopulation of layer 5 neurons, whereas Nurr1 and ER81 mRNAs were not colocalized. Third, principal component analysis showed that the order of hierarchical processing in the cortex correlates well with the expression profiles of these three genes. Based on this analysis, the dysgranular zone (DZ) in the somatosensory area was considered to exhibit a profile of a higher order area, which is consistent with previous proposal. CONCLUSIONS/SIGNIFICANCE The tight relationship between the expression of the three layer specific genes and functional areas were revealed, demonstrating the usefulness of cortical box method in the study on the cerebral cortex. In particular, it allowed us to perform statistical evaluation and pattern matching, which would become important in interpreting the ever-increasing data of gene expression in the cortex.
Collapse
Affiliation(s)
- Junya Hirokawa
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Sonoko Ohsawa
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
39
|
Rema V, Bali KK, Ramachandra R, Chugh M, Darokhan Z, Chaudhary R. Cytidine-5-diphosphocholine supplement in early life induces stable increase in dendritic complexity of neurons in the somatosensory cortex of adult rats. Neuroscience 2008; 155:556-64. [PMID: 18619738 PMCID: PMC2860221 DOI: 10.1016/j.neuroscience.2008.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 04/09/2008] [Accepted: 04/09/2008] [Indexed: 11/25/2022]
Abstract
Cytidine-5-diphosphocholine (CDP-choline or citicholine) is an essential molecule that is required for biosynthesis of cell membranes. In adult humans it is used as a memory-enhancing drug for treatment of age-related dementia and cerebrovascular conditions. However the effect of CDP-choline on perinatal brain is not known. We administered CDP-choline to Long Evans rats each day from conception (maternal ingestion) to postnatal day 60 (P60). Pyramidal neurons from supragranular layers 2/3, granular layer 4 and infragranular layer 5 of somatosensory cortex were examined with Golgi–Cox staining at P240. CDP-choline treatment significantly increased length and branch points of apical and basal dendrites. Sholl analysis shows that the complexity of apical and basal dendrites of neurons is maximal in layers 2/3 and layer 5. In layer 4 significant increases were seen in basilar dendritic arborization. CDP-choline did not increase the number of primary basal dendrites on neurons in the somatosensory cortex. Primary cultures from somatosensory cortex were treated with CDP-choline to test its effect on neuronal survival. CDP-choline treatment neither enhanced the survival of neurons in culture nor increased the number of neurites. However significant increases in neurite length, branch points and total area occupied by the neurons were observed. We conclude that exogenous supplementation of CDP-choline during development causes stable changes in neuronal morphology. Significant increase in dendritic growth and branching of pyramidal neurons from the somatosensory cortex resulted in enlarging the surface area occupied by the neurons which we speculate will augment processing of sensory information.
Collapse
Affiliation(s)
- V Rema
- National Brain Research Centre, NH-8, Nainwal Mode, Manesar, Haryana-122050, India.
| | | | | | | | | | | |
Collapse
|
40
|
Alloway KD. Information processing streams in rodent barrel cortex: the differential functions of barrel and septal circuits. Cereb Cortex 2007; 18:979-89. [PMID: 17702950 DOI: 10.1093/cercor/bhm138] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rodent somatosensory cortex contains an isomorphic map of the mystacial whiskers in which each whisker is represented by neuronal populations, or barrels, that are separated from each other by intervening septa. Separate afferent pathways convey somatosensory information to the barrels and septa that represent the input stages for 2 partially segregated circuits that extend throughout the other layers of barrel cortex. Whereas the barrel-related circuits process spatiotemporal information generated by whisker contact with external objects, the septa-related circuits encode the frequency and other kinetic features of active whisker movements. The projection patterns from barrel cortex indicate that information processed by the septa-related circuits is used both separately and in combination with information from the barrel-related circuits to mediate specific functions. According to this theory, outputs from the septal processing stream modulate the brain regions that regulate whisking behavior, whereas both processing streams cooperate with each other to identify external stimuli encountered by passive or active whisker movements. This theoretical view prompts several testable hypotheses about the coordination of neuronal activity during whisking behavior. Foremost among these, motor brain regions that control whisker movements are more strongly coordinated with the septa-related circuits than with the barrel-related circuits.
Collapse
Affiliation(s)
- Kevin D Alloway
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033-2255, USA.
| |
Collapse
|
41
|
Chakrabarti S, Alloway KD. Differential origin of projections from SI barrel cortex to the whisker representations in SII and MI. J Comp Neurol 2006; 498:624-36. [PMID: 16917827 DOI: 10.1002/cne.21052] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously shown that projections from SI barrel cortex to the MI whisker representation originate primarily from columns of neurons that are aligned with the layer IV septa. SI barrel cortex also projects to SII cortex, but the origin of these projections has not been characterized with respect to the barrel and septal compartments. To address this issue, we injected retrograde tracers into the SII whisker representation and then reconstructed the location of the labeled neurons in SI with respect to the layer IV barrels. In some animals, two different tracers were injected into the whisker representations of SII and MI to detect double-labeled neurons that would indicate that some SI neurons project to both of these cortical areas. We found that the projections to SII cortex originate from sites that are uniformly distributed throughout the extragranular layers of barrel cortex. In cases in which different tracers were injected in SII and MI, double-labeled neurons appeared above and below the layer IV septal compartment and at sites aligned with the boundaries of the layer IV barrels. To the extent that the columns of neurons aligned with the barrel and septal compartments represent functionally distinct circuits, these results indicate that SII receives information from both circuits, whereas MI receives inputs primarily from the septal circuits.
Collapse
Affiliation(s)
- Shubhodeep Chakrabarti
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-2255, USA
| | | |
Collapse
|
42
|
Henry EC, Remple MS, O'Riain MJ, Catania KC. Organization of somatosensory cortical areas in the naked mole-rat (Heterocephalus glaber). J Comp Neurol 2006; 495:434-52. [PMID: 16485289 DOI: 10.1002/cne.20883] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multiunit electrophysiology was combined with histological analysis of cortical sections to investigate the organization of somatosensory areas in the naked mole-rat. We provide new details for the organization of primary somatosensory cortex (S1) and identify cortical modules and barrels that correspond to the representations of different body parts. In addition, details of the location and organization of secondary somatosensory cortex (S2) are reported, and evidence for a third somatosensory representation, likely the parietal ventral area (PV), is provided and discussed. S1 contained a complete and systematic representation of the contralateral body surface and oral structures. The orientation of S1 was inverted, with the lower body represented medially and the face and oral structures located rostrolaterally. The S2 representation was found in caudolateral cortex forming a mirror image of S1. The two areas were joined at the representation of the vibrissae and snout, so that the orientation of S2 formed an upright representation of the body in cortex. Receptive fields for S2 were consistently larger than those in S1. Evidence for the presumptive parietal ventral area, lateral to S2, suggests that this area may be an inverted mirror image of S2. By aligning the electrophysiological maps of body representations with cytochrome oxidase-reacted cortical sections we were able to identify modules related to the buccal pad, chin, vibrissae, forelimb, hindlimb, trunk, tongue, lower incisor, and upper incisors. The orofacial modules in lateral cortex resemble similar modules reported to relate to oral structures previously described in the laboratory rat, owl monkey, and squirrel monkey.
Collapse
Affiliation(s)
- Erin C Henry
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | |
Collapse
|
43
|
Steen PA, Mason M, Pham L, Lefebvre Y, Hickmott PW. Axonal bias at a representational border in adult rat somatosensory cortex (S1). J Comp Neurol 2006; 500:634-45. [PMID: 17154268 DOI: 10.1002/cne.21199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cortex is a highly organized structure and this organization is integral to cortical function. However, the circuitry underlying cortical organization is only partially understood, thus limiting our understanding of cortical function. Within the somatosensory cortex, organization is manifest as a map of the body surface. At the level of the cortical circuitry the horizontal connections of Layer 2/3 express a physiological bias that reflects discontinuities within the somatosensory map. Both excitation and inhibition are smaller when evoked from across a representational border, as compared to when they are evoked from within the representation. This physiological bias may be due to a bias in either the strength or number of synapses and/or the number of axons that cross this border and the extent of their arborization. In this study we used both an anterograde (Phaseolus vulgaris leucoagglutinin) and a retrograde (cholera toxin B) tracer to examine Layer 2/3 horizontal projections in rat S1. We determined that there is a bias in the amount of horizontal axonal projections that cross the forepaw/lower jaw border as compared to projections remaining within an individual representation. This bias in axonal projection and the correlated bias in excitation and inhibition may underlie the expression of the representational border.
Collapse
Affiliation(s)
- Patricia A Steen
- Department of Psychology, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
44
|
Henry EC, Catania KC. Cortical, callosal, and thalamic connections from primary somatosensory cortex in the naked mole-rat (Heterocephalus glaber), with special emphasis on the connectivity of the incisor representation. ACTA ACUST UNITED AC 2006; 288:626-45. [PMID: 16652365 DOI: 10.1002/ar.a.20328] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated the distribution of cortical, callosal, and thalamic connections from the primary somatosensory area (S1) in naked mole-rats, concentrating on lower incisor and forelimb representations. A neuronal tracer (WGA-HRP) was injected into the center of each respective representation under guidance from microelectrode recordings of neuronal activity. The locations of cells and terminals were determined by aligning plots of labeled cells with flattened cortical sections reacted for cytochrome oxidase. The S1 lower incisor area was found to have locally confined intrahemispheric connections and longer connections to a small cluster of cells in the presumptive secondary somatosensory (S2) and parietal ventral (PV) incisor fields. The S1 incisor area also had sparse connections with anterior cortex, in presumptive primary motor cortex. Homotopic callosal projections were identified between the S1 lower incisor areas in each hemisphere. Thalamocortical connections related to the incisor were confined to ventromedial portions of the ventral posterior medial subnucleus (VPM) and posterior medial nucleus (Po). Injections into the S1 forelimb area revealed reciprocal intrahemispheric connections to S2 and PV, to two areas in frontal cortex, and to two areas posterior to S1 that appear homologous to posterior lateral area and posterior medial area in rats. The S1 forelimb representation also had callosal projections to the contralateral S1 limb area and to contralateral S2 and PV. Thalamic distribution of label from forelimb injections included ventral portions of the ventral posterior lateral subnucleus (VPL), dorsolateral Po, the ventral lateral nucleus, and the ventral medial nucleus and neighboring intralaminar nuclei.
Collapse
Affiliation(s)
- Erin C Henry
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
45
|
Zhang M, Alloway KD. Intercolumnar synchronization of neuronal activity in rat barrel cortex during patterned airjet stimulation: a laminar analysis. Exp Brain Res 2005; 169:311-25. [PMID: 16284753 DOI: 10.1007/s00221-005-0152-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 07/27/2005] [Indexed: 11/25/2022]
Abstract
We used cross-correlation analysis to characterize the incidence and strength of stimulus-induced neuronal synchronization in different layers of SI barrel cortex and as a function of neuronal location in different barrel columns. To reduce the possibility of evoking responses that were coordinated by simultaneous whisker movements, multiple whiskers were sequentially stimulated with airjets that moved back-and-forth across the peripheral whisker pad. From a sample of 627 neurons, we characterized 1,182 neuron pairs and found that 687 (58.1%) of these displayed significant peaks of synchronized activity that exceeded the 99.9% confidence limits. Whereas 88% of the infragranular neuron pairs were synchronized during whisker stimulation, only 30% of the neuron pairs in the granular or supragranular layers displayed synchronized responses. The strength of synchronization, as measured by the correlation coefficient, was significantly higher in the infragranular layers than in the other layers. These results indicate that synchronized outputs from the infragranular layers do not depend on synchronized inputs from the upper cortical layers. We also found that synchronization varies with the spatial configuration of the neurons and is strongest for neuron pairs residing in the same row. Given the dense local projections between neighboring barrel columns in the same row, our results indicate that neuronal synchronization is greatest when stimuli simultaneously activate those peripheral receptors whose cortical representations are most densely interconnected. Finally, we compared the present results with synchronized responses in somatosensory (SI) barrel cortex that were evoked by controlled, pulsatile whisker movements in a previous study. We conclude that highly-controlled whisker stimulation increases stimulus coordination and may exaggerate the incidence and strength of synchronization among neurons in the granular or supragranular layers.
Collapse
Affiliation(s)
- Mengliang Zhang
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA, 17033-2255, USA
| | | |
Collapse
|
46
|
Tutunculer B, Foffani G, Himes BT, Moxon KA. Structure of the Excitatory Receptive Fields of Infragranular Forelimb Neurons in the Rat Primary Somatosensory Cortex Responding To Touch. Cereb Cortex 2005; 16:791-810. [PMID: 16120794 DOI: 10.1093/cercor/bhj023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We quantitatively studied the excitatory receptive fields of 297 neurons recorded from the forelimb infragranular somatosensory cortex of the rat while touch stimuli were applied to discrete locations on the forelimbs. Receptive fields were highly heterogeneous, but they were regulated, on average, by an underlying spatio-temporal structure. We found the following. (i) Neurons responded with decreasing magnitude and increasing latency when the stimulus was moved from the primary location to secondary locations and to far ispilateral locations of their excitatory receptive fields, displaying smooth transitions from the primary location to secondary locations. (ii) Receptive field patterns revealed functional connectivity between the digits and ventral palm, which did not depend on whether the digits were stimulated dorsally or ventrally. (iii) The structure of the receptive fields (i.e. the neural responses to stimulation of secondary locations compared to the neural responses to stimulation of the primary location), reflected cortical (rather than body) distances. (iv) There was a functional separation between the forepaw and the rest of the forelimb. Namely: if the primary location was in the digits or palm, secondary locations were biased toward the digits and palm; if the primary location was in rest of the forelimb, secondary locations appeared equally distributed over forelimb, digits and palm. (v) More than 40% of neurons extended their receptive field to the ipsilateral forelimb, without any evident spatial organization. Overall, the stimuli evoked approximately 3 times more spikes from secondary responses than from primary responses. These results suggest that a rich repertoire of spatio-temporal responses is available for encoding tactile information. This highly distributed receptive field structure provides the electrophysiological architecture for studying organization and plasticity of cortical somatosensory processing.
Collapse
Affiliation(s)
- Banu Tutunculer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
47
|
Dupont E, Canu MH, Stevens L, Falempin M. Effects of a 14-day period of hindpaw sensory restriction on mRNA and protein levels of NGF and BDNF in the hindpaw primary somatosensory cortex. ACTA ACUST UNITED AC 2005; 133:78-86. [PMID: 15661367 DOI: 10.1016/j.molbrainres.2004.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2004] [Indexed: 10/26/2022]
Abstract
Neurotrophins have been reported to play an important role in neuronal plasticity and to be regulated by neuronal activity and/or neurotransmitters. Recently, we have shown that hindpaw sensory restriction induces a cortical reorganisation in the hindpaw primary somatosensory cortex, and that acetylcholine plays a significant role in this process. Sensory restriction was obtained by hindlimb suspension for 14 days. In this study, we examined the effects of a long period of hindpaw sensory restriction on the NGF and BDNF mRNA and protein expressions in the hindpaw somatosensory cortex. mRNA and protein levels were assessed by RT-PCR and ELISA, respectively. First, we found that NGF and BDNF mRNA relative levels increased after hindpaw sensory restriction. Second, the level of NGF protein increased, whereas that of BDNF remained unchanged. This differential response of NGF and BDNF proteins to sensory restriction suggested different levels of gene regulation, i.e., at pretranslational or posttranslational states. Moreover, inasmuch as our results differ from other models of sensory restriction (dark rearing, whisker removal, etc.), we hypothesized that the regulation of neurotrophin expression is dependent on the type and duration of the sensory restriction. In conclusion, we argue that neuronal plasticity induced by hindpaw sensory restriction requires neurotrophin expression.
Collapse
Affiliation(s)
- Erwan Dupont
- Laboratoire de Plasticité Neuromusculaire, EA 1032, IFR 118 Université des Sciences et Technologies de Lille, Bâtiment SN4 F-59655 Villeneuve d'Ascq Cedex, France
| | | | | | | |
Collapse
|
48
|
Alloway KD, Zhang M, Chakrabarti S. Septal columns in rodent barrel cortex: functional circuits for modulating whisking behavior. J Comp Neurol 2005; 480:299-309. [PMID: 15515173 DOI: 10.1002/cne.20339] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In rodents, each mystacial whisker is represented in the granular layer of primary somatosensory (SI) cortex by a compact cluster of cells known as a barrel, and barrels are separated from each other by domains that are called septa. Vertical columns of neurons aligned with each barrel act as a functional assembly to process information from a "principal" whisker, but a functional role has not been identified for vertical columns of neurons that are aligned with the septa. To determine whether these septal columns provide the main source of projections to primary motor (MI) cortex, we placed retrograde tracers in MI cortex and analyzed the location of the retrogradely labeled neurons with respect to the septal and barrel compartments of SI barrel cortex. In cases in which SI barrel cortex was sectioned tangentially, retrogradely labeled neurons in the extragranular layers of SI were plotted and superimposed onto reconstructions of the layer IV barrel field. In each of these cases, most labeled neurons were located above or below the septal regions of layer IV. When SI barrel cortex was sectioned coronally, we observed multiple columns of labeled SI neurons that were vertically aligned with the septal zones of layer IV. These results indicate that columns of neurons that are vertically aligned with the septa, or septal columns, are functionally linked by virtue of their projections to MI cortex. We hypothesize that these septal columns represent an interconnected and functionally distinct circuit that transmits information to MI and other brain regions involved in motor control.
Collapse
Affiliation(s)
- Kevin D Alloway
- Department of Neural & Behavioral Sciences, H109, Pennsylvania State University College of Medicine, Hershey Medical Center, 500 University Drive, Hershey, Pennsylvania 17033-2255, USA.
| | | | | |
Collapse
|
49
|
Abstract
We explore the extent to which neocortical circuits generalize, i.e., to what extent can neocortical neurons and the circuits they form be considered as canonical? We find that, as has long been suspected by cortical neuroanatomists, the same basic laminar and tangential organization of the excitatory neurons of the neocortex is evident wherever it has been sought. Similarly, the inhibitory neurons show characteristic morphology and patterns of connections throughout the neocortex. We offer a simple model of cortical processing that is consistent with the major features of cortical circuits: The superficial layer neurons within local patches of cortex, and within areas, cooperate to explore all possible interpretations of different cortical input and cooperatively select an interpretation consistent with their various cortical and subcortical inputs.
Collapse
Affiliation(s)
- Rodney J Douglas
- Institute of Neuroinformatics, University/ETH Zurich, Zurich 8057, Switzerland.
| | | |
Collapse
|
50
|
Qi HX, Kaas JH. Myelin stains reveal an anatomical framework for the representation of the digits in somatosensory area 3b of macaque monkeys. J Comp Neurol 2004; 477:172-87. [PMID: 15300788 DOI: 10.1002/cne.20247] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Brain sections cut parallel to the cortical surface revealed myelin-light septa that isolated representations of the digits and parts of the face, teeth, and tongue in area 3b of adult and infant macaque monkeys. The widths of the bands of cortex representing individual digits, as measured by the distances between isolating septa, were proportionally similar in infant (2-4 week) and adult monkeys. However, the bands for digits 1-3 were somewhat narrower in infant than adult monkeys. There was little variation in absolute widths across individuals in the infant or adult groups, or between left and right hemispheres of the same group. Widths for digits 1-4 progressively decreased. The results suggest that these isomorphs of digits emerge in prenatal or early postnatal development and typical variations in postnatal hand use have little impact on subsequent development. As the hand representation in somatosensory cortex of monkeys may be significantly altered after the partial loss of peripheral nerve inputs, the physiological representation is not completely constrained by the isolating septa. Instead, the septa may serve as a persistent marker of normal organization in studies of cortical reorganization.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203, USA
| | | |
Collapse
|