1
|
Whiddon ZD, Marshall JB, Alston DC, McGee AW, Krimm RF. Rapid structural remodeling of peripheral taste neurons is independent of taste cell turnover. PLoS Biol 2023; 21:e3002271. [PMID: 37651406 PMCID: PMC10499261 DOI: 10.1371/journal.pbio.3002271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/13/2023] [Accepted: 07/22/2023] [Indexed: 09/02/2023] Open
Abstract
Taste bud cells are constantly replaced in taste buds as old cells die and new cells migrate into the bud. The perception of taste relies on new taste bud cells integrating with existing neural circuitry, yet how these new cells connect with a taste ganglion neuron is unknown. Do taste ganglion neurons remodel to accommodate taste bud cell renewal? If so, how much of the structure of taste axons is fixed and how much remodels? Here, we measured the motility and branching of individual taste arbors (the portion of the axon innervating taste buds) in mice over time with two-photon in vivo microscopy. Terminal branches of taste arbors continuously and rapidly remodel within the taste bud. This remodeling is faster than predicted by taste bud cell renewal, with terminal branches added and lost concurrently. Surprisingly, blocking entry of new taste bud cells with chemotherapeutic agents revealed that remodeling of the terminal branches on taste arbors does not rely on the renewal of taste bud cells. Although terminal branch remodeling was fast and intrinsically controlled, no new arbors were added to taste buds, and few were lost over 100 days. Taste ganglion neurons maintain a stable number of arbors that are each capable of high-speed remodeling. We propose that terminal branch plasticity permits arbors to locate new taste bud cells, while stability of arbor number supports constancy in the degree of connectivity and function for each neuron over time.
Collapse
Affiliation(s)
- Zachary D. Whiddon
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jaleia B. Marshall
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - David C. Alston
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Aaron W. McGee
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Robin F. Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| |
Collapse
|
2
|
Ohman L, Hanbali L, Krimm R. Taste arbor structural variability analyzed across taste regions. J Comp Neurol 2023; 531:743-758. [PMID: 36740741 PMCID: PMC10082444 DOI: 10.1002/cne.25459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
Taste ganglion neurons are functionally and molecularly diverse, but until recently morphological diversity was completely unexplored. Specifically, taste arbors (the portion of the neuron within the taste bud) vary in structure, but the reason for this variability is unclear. Here, we analyzed structural variability in taste arbors to determine which factors determine their morphological diversity. To characterize arbor morphology and its relationship to taste bud cells capable of transducing taste stimuli (taste-transducing cell) number and type, we utilized sparse cell genetic labeling of taste ganglion neurons in combination with whole-mount immunohistochemistry. Reconstruction of 151 taste arbors revealed variation in arbor size, complexity, and symmetry. Overall, taste arbors exist on a continuum of complexity, cannot be categorized into discrete morphological groups, and do not have stereotyped endings. Arbor size/complexity was not related to the size of the taste bud in which it was located or the type of taste-transducing cell contacted (membranes within 180 nm). Instead, arbors could be broadly categorized into three groups: large asymmetrical arbors contacting many taste-transducing cells, small symmetrical arbors contacting one or two taste-transducing cells, and unbranched arbors. Neurons with multiple arbors had arbors in more than one of these categories, indicating that this variability is not an intrinsic feature of neuron type. Instead, we speculate that arbor structure is determined primarily by nerve fiber remodeling in response to cell turnover and that large asymmetrical arbors represent a particularly plastic state.
Collapse
Affiliation(s)
- Lisa Ohman
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lama Hanbali
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Robin Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
3
|
Doyle ME, Premathilake HU, Yao Q, Mazucanti CH, Egan JM. Physiology of the tongue with emphasis on taste transduction. Physiol Rev 2023; 103:1193-1246. [PMID: 36422992 PMCID: PMC9942923 DOI: 10.1152/physrev.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Collapse
Affiliation(s)
- Máire E Doyle
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hasitha U Premathilake
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qin Yao
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Caio H Mazucanti
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
4
|
Derby CD, McClintock TS, Caprio J. Understanding responses to chemical mixtures: looking forward from the past. Chem Senses 2022; 47:bjac002. [PMID: 35226060 PMCID: PMC8883806 DOI: 10.1093/chemse/bjac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our goal in this article is to provide a perspective on how to understand the nature of responses to chemical mixtures. In studying responses to mixtures, researchers often identify "mixture interactions"-responses to mixtures that are not accurately predicted from the responses to the mixture's individual components. Critical in these studies is how to predict responses to mixtures and thus to identify a mixture interaction. We explore this issue with a focus on olfaction and on the first level of neural processing-olfactory sensory neurons-although we use examples from taste systems as well and we consider responses beyond sensory neurons, including behavior and psychophysics. We provide a broadly comparative perspective that includes examples from vertebrates and invertebrates, from genetic and nongenetic animal models, and from literature old and new. In the end, we attempt to recommend how to approach these problems, including possible future research directions.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - John Caprio
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
5
|
Huang T, Ohman LC, Clements AV, Whiddon ZD, Krimm RF. Variable Branching Characteristics of Peripheral Taste Neurons Indicates Differential Convergence. J Neurosci 2021; 41:4850-4866. [PMID: 33875572 PMCID: PMC8260161 DOI: 10.1523/jneurosci.1935-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 11/21/2022] Open
Abstract
Taste neurons are functionally and molecularly diverse, but their morphologic diversity remains completely unexplored. Using sparse cell genetic labeling, we provide the first reconstructions of peripheral taste neurons. The branching characteristics across 96 taste neurons show surprising diversity in their complexities. Individual neurons had 1-17 separate arbors entering between one and seven taste buds, 18 of these neurons also innervated non-taste epithelia. Axon branching characteristics are similar in gustatory neurons from male and female mice. Cluster analysis separated the neurons into four groups according to branch complexity. The primary difference between clusters was the amount of the nerve fiber within the taste bud available to contact taste-transducing cells. Consistently, we found that the maximum number of taste-transducing cells capable of providing convergent input onto individual gustatory neurons varied with a range of 1-22 taste-transducing cells. Differences in branching characteristics across neurons indicate that some neurons likely receive input from a larger number of taste-transducing cells than other neurons (differential convergence). By dividing neurons into two groups based on the type of taste-transducing cell most contacted, we found that neurons contacting primarily sour transducing cells were more heavily branched than those contacting primarily sweet/bitter/umami transducing cells. This suggests that neuron morphologies may differ across functional taste quality. However, the considerable remaining variability within each group also suggests differential convergence within each functional taste quality. Each possibility has functional implications for the system.SIGNIFICANCE STATEMENT Taste neurons are considered relay cells, communicating information from taste-transducing cells to the brain, without variation in morphology. By reconstructing peripheral taste neuron morphologies for the first time, we found that some peripheral gustatory neurons are simply branched, and can receive input from only a few taste-transducing cells. Other taste neurons are heavily branched, contacting many more taste-transducing cells than simply branched neurons. Based on the type of taste-transducing cell contacted, branching characteristics are predicted to differ across (and within) quality types (sweet/bitter/umami vs sour). Therefore, functional differences between neurons likely depends on the number of taste-transducing cells providing input and not just the type of cell providing input.
Collapse
Affiliation(s)
- Tao Huang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Lisa C Ohman
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Anna V Clements
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Zachary D Whiddon
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Robin F Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| |
Collapse
|
6
|
Jang JH, Kwon O, Moon SJ, Jeong YT. Recent Advances in Understanding Peripheral Taste Decoding I: 2010 to 2020. Endocrinol Metab (Seoul) 2021; 36:469-477. [PMID: 34139798 PMCID: PMC8258330 DOI: 10.3803/enm.2021.302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023] Open
Abstract
Taste sensation is the gatekeeper for direct decisions on feeding behavior and evaluating the quality of food. Nutritious and beneficial substances such as sugars and amino acids are represented by sweet and umami tastes, respectively, whereas noxious substances and toxins by bitter or sour tastes. Essential electrolytes including Na+ and other ions are recognized by the salty taste. Gustatory information is initially generated by taste buds in the oral cavity, projected into the central nervous system, and finally processed to provide input signals for food recognition, regulation of metabolism and physiology, and higher-order brain functions such as learning and memory, emotion, and reward. Therefore, understanding the peripheral taste system is fundamental for the development of technologies to regulate the endocrine system and improve whole-body metabolism. In this review article, we introduce previous widely-accepted views on the physiology and genetics of peripheral taste cells and primary gustatory neurons, and discuss key findings from the past decade that have raised novel questions or solved previously raised questions.
Collapse
Affiliation(s)
- Jea Hwa Jang
- BK21 Graduate Program, Department of Biomedical Sciences, Yonsei University College of Dentistry, Seoul,
Korea
- Department of Pharmacology, Korea University College of Medicine, Yonsei University College of Dentistry, Seoul,
Korea
| | - Obin Kwon
- Departments of Biochemistry and Molecular Biology, Yonsei University College of Dentistry, Seoul,
Korea
- Biomedical Sciences, Seoul National University College of Medicine, Yonsei University College of Dentistry, Seoul,
Korea
| | - Seok Jun Moon
- Department of Oral Biology, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul,
Korea
| | - Yong Taek Jeong
- BK21 Graduate Program, Department of Biomedical Sciences, Yonsei University College of Dentistry, Seoul,
Korea
- Department of Pharmacology, Korea University College of Medicine, Yonsei University College of Dentistry, Seoul,
Korea
| |
Collapse
|
7
|
Roper SD. Chemical and electrical synaptic interactions among taste bud cells. CURRENT OPINION IN PHYSIOLOGY 2021; 20:118-125. [PMID: 33521414 DOI: 10.1016/j.cophys.2020.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chemical synapses between taste cells were first proposed based on electron microscopy of fish taste buds. Subsequently, researchers found considerable evidence for electrical coupling in fish, amphibian, and possibly mammalian taste buds. The development lingual slice and isolated cell preparations allowed detailed investigations of cell-cell interactions, both chemical and electrical, in taste buds. The identification of serotonin and ATP as taste neurotransmitters focused attention onto chemical synaptic interactions between taste cells and research on electrical coupling faded. Findings from Ca2+ imaging, electrophysiology, and molecular biology indicate that several neurotransmitters, including ATP, serotonin, GABA, acetylcholine, and norepinephrine, are secreted by taste cells and exert paracrine interactions in taste buds. Most work has been done on interactions between Type II and Type III taste cells. This brief review follows the trail of studies on cell-cell interactions in taste buds, from the initial ultrastructural observations to the most recent optogenetic manipulations.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology & Biophysics and Department of Otolaryngology, Miller School of Medicine, University of Miami, FL 33136
| |
Collapse
|
8
|
Aydin MD, Aydin A, Caglar O, Aydin ME, Karadeniz E, Nalci KA, Demirtas R. New description of vagal nerve commanted intrapancreatic taste buds and blood glucose level: An experimental analysis. ACTA ACUST UNITED AC 2020; 11:181-185. [PMID: 34336606 PMCID: PMC8314032 DOI: 10.34172/bi.2021.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/19/2020] [Accepted: 07/04/2020] [Indexed: 11/17/2022]
Abstract
![]()
Introduction: There have been thousands of neurochemical mechanism about blood glucose level regulation, but intrapancreatic taste buds and their roles in blood glucose level has not been described. We aimed to investigate if there are taste buds cored neural networks in the pancreas, and there is any relationship between blood glucose levels. Methods: This examination was done on 32 chosen rats with their glucose levels. Animals are divided into owned blood glucose levels. If mean glucose levels were equal to 105 ± 10 mg/dL accepted as euglycemic (G-I; n = 14), 142 ± 18 mg/dL values accepted as hyperglycemic (G-II; n = 9) and 89 ± 9 mg/dL accepted as hypoglycemic (G-III; n = 9). After the experiment, animals were sacrificed under general anesthesia. Their pancreatic tissues were examined histological methods and numbers of newly described taste bud networks analyzed by Stereological methods. Results compared with Mann-Whitney U test P < 0.005 considered as significant. Results: The mean normal blood glucose level (mg/dL) and taste bud network densities of per cm3 were: 105 ± 10 mg/dL; 156±21 in G-I; 142 ± 18 mg/dL and 95 ± 14 in G-II and 89 ± 9 mg/dL and 232 ± 34 in G-III. P values as follows: P < 0.001 of G-II/G-I; P < 0.005 of G-III/G-I and P < 0.0001 of G-III/G-II. We detected periarterial located taste buds like cell clusters and peripherally located ganglia connected with Langerhans cells via thin nerve fibers. There was an inverse relationship between the number of taste buds networks and blood glucose level. Conclusion: Newly described intrapancreatic taste buds may have an important role in the regulation of blood glucose level.
Collapse
Affiliation(s)
- Mehmet Dumlu Aydin
- Department of Neurosurgery, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Aybike Aydin
- Medical Faculty of Cerrapasa, Istanbul University, Istanbul, Turkey
| | - Ozgur Caglar
- Department of Pediatric Surgery, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Muhammed Enes Aydin
- Department of Anesthesiology and Reanimation, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Erdem Karadeniz
- Department of General Surgery, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Kemal Alp Nalci
- Department of Pharmacology, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Rabia Demirtas
- Department of Pathology, Medical Faculty of Ataturk University, Erzurum, Turkey
| |
Collapse
|
9
|
Yang R, Dzowo YK, Wilson CE, Russell RL, Kidd GJ, Salcedo E, Lasher RS, Kinnamon JC, Finger TE. Three-dimensional reconstructions of mouse circumvallate taste buds using serial blockface scanning electron microscopy: I. Cell types and the apical region of the taste bud. J Comp Neurol 2019; 528:756-771. [PMID: 31587284 DOI: 10.1002/cne.24779] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/21/2019] [Accepted: 09/07/2019] [Indexed: 12/20/2022]
Abstract
Taste buds comprise four types of taste cells: three mature, elongate types, Types I-III; and basally situated, immature postmitotic type, Type IV cells. We employed serial blockface scanning electron microscopy to delineate the characteristics and interrelationships of the taste cells in the circumvallate papillae of adult mice. Type I cells have an indented, elongate nucleus with invaginations, folded plasma membrane, and multiple apical microvilli in the taste pore. Type I microvilli may be either restricted to the bottom of the pore or extend outward reaching midway up into the taste pore. Type II cells (aka receptor cells) possess a large round or oval nucleus, a single apical microvillus extending through the taste pore, and specialized "atypical" mitochondria at functional points of contact with nerve fibers. Type III cells (aka "synaptic cells") are elongate with an indented nucleus, possess a single, apical microvillus extending through the taste pore, and are characterized by a small accumulation of synaptic vesicles at points of contact with nerve fibers. About one-quarter of Type III cells also exhibit an atypical mitochondrion near the presynaptic vesicle clusters at the synapse. Type IV cells (nonproliferative "basal cells") have a nucleus in the lower quarter of the taste bud and a foot process extending to the basement membrane often contacting nerve processes along the way. In murine circumvallate taste buds, Type I cells represent just over 50% of the population, whereas Types II, III, and IV (basal cells) represent 19, 15, and 14%, respectively.
Collapse
Affiliation(s)
- Ruibiao Yang
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver, Colorado
| | - Yannick K Dzowo
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver, Colorado.,Modern Human Anatomy Program, University of Colorado School of Medicine, Denver, Colorado
| | - Courtney E Wilson
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver, Colorado
| | - Rae L Russell
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver, Colorado.,Modern Human Anatomy Program, University of Colorado School of Medicine, Denver, Colorado
| | - Grahame J Kidd
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,3D-Electron Microscopy, Renovo Neural Inc., Cleveland, Ohio
| | - Ernesto Salcedo
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver, Colorado.,Modern Human Anatomy Program, University of Colorado School of Medicine, Denver, Colorado
| | - Robert S Lasher
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver, Colorado
| | - John C Kinnamon
- Department of Biological Sciences, University of Denver, Denver, Colorado
| | - Thomas E Finger
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver, Colorado.,Modern Human Anatomy Program, University of Colorado School of Medicine, Denver, Colorado
| |
Collapse
|
10
|
Witt M. Anatomy and development of the human taste system. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:147-171. [DOI: 10.1016/b978-0-444-63855-7.00010-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
11
|
Honda K, Tomooka Y. Nerve-independent and ectopically additional induction of taste buds in organ culture of fetal tongues. In Vitro Cell Dev Biol Anim 2016; 52:911-919. [PMID: 27368433 DOI: 10.1007/s11626-016-0067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
An improved organ culture system allowed to observe morphogenesis of mouse lingual papillae and taste buds relatively for longer period, in which fetal tongues were analyzed for 6 d. Taste cells were defined as eosinophobic epithelial cells expressing CK8 and Sox2 within lingual epithelium. Addition of glycogen synthase kinase 3 beta inhibitor CHIR99021 induced many taste cells and buds in non-gustatory and gustatory stratified lingual epithelium. The present study clearly demonstrated induction of taste cells and buds ectopically and without innervation.
Collapse
Affiliation(s)
- Kotaro Honda
- Graduate School of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| | - Yasuhiro Tomooka
- Graduate School of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| |
Collapse
|
12
|
Zaidi FN, Cicchini V, Kaufman D, Ko E, Ko A, Van Tassel H, Whitehead MC. Innervation of taste buds revealed with Brainbow-labeling in mouse. J Anat 2016; 229:778-790. [PMID: 27476649 PMCID: PMC5108162 DOI: 10.1111/joa.12527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2016] [Indexed: 11/29/2022] Open
Abstract
Nerve fibers that surround and innervate the taste bud were visualized with inherent fluorescence using Brainbow transgenic mice that were generated by mating the founder line L with nestin-cre mice. Multicolor fluorescence revealed perigemmal fibers as branched within the non-taste epithelium and ending in clusters of multiple rounded swellings surrounding the taste pore. Brainbow-labeling also revealed the morphology and branching pattern of single intragemmal fibers. These taste bud fibers frequently innervated both the peripheral bud, where immature gemmal cells are located, and the central bud, where mature, differentiated cells are located. The fibers typically bore preterminal and terminal swellings, growth cones with filopodia, swellings, and rounded retraction bulbs. These results establish an anatomical substrate for taste nerve fibers to contact and remodel among receptor cells at all stages of their differentiation, an interpretation that was supported by staining with GAP-43, a marker for growing fibers and growth cones.
Collapse
Affiliation(s)
- Faisal N Zaidi
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Vanessa Cicchini
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Kaufman
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth Ko
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Abraham Ko
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Heather Van Tassel
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Mark C Whitehead
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Irune E, Dwivedi RC, Nutting CM, Harrington KJ. Treatment-related dysgeusia in head and neck cancer patients. Cancer Treat Rev 2014; 40:1106-17. [PMID: 25064135 DOI: 10.1016/j.ctrv.2014.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
Head and neck cancer patients treated with radiotherapy and/or chemotherapy agents may develop altered taste acuity. This, together with radiation induced xerostomia and dysphagia, is a major contributory factor to the anorexia and concomitant morbidity often seen in this group of patients. This paper examines the existing literature in order to assess the prevalence of clinician and patient-reported dysgeusia in HNC patients undergoing oncological treatment. We also describe the temporal manifestations of the same and its reported impact on QOL.
Collapse
Affiliation(s)
- Ekpemi Irune
- Head & Neck Research Unit, Royal Marsden Hospital, 3rd Floor, Mulberry House, London SW3 6JJ, UK.
| | - Raghav C Dwivedi
- Head & Neck Research Unit, Royal Marsden Hospital, 3rd Floor, Mulberry House, London SW3 6JJ, UK.
| | - Christopher M Nutting
- Head & Neck Research Unit, Royal Marsden Hospital, 3rd Floor, Mulberry House, London SW3 6JJ, UK; Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| | - Kevin J Harrington
- Head & Neck Research Unit, Royal Marsden Hospital, 3rd Floor, Mulberry House, London SW3 6JJ, UK; Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
14
|
Immunocytochemical analysis of P2X2 in rat circumvallate taste buds. BMC Neurosci 2012; 13:51. [PMID: 22621423 PMCID: PMC3507709 DOI: 10.1186/1471-2202-13-51] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/20/2012] [Indexed: 11/23/2022] Open
Abstract
Background Our laboratory has shown that classical synapses and synaptic proteins are associated with Type III cells. Yet it is generally accepted that Type II cells transduce bitter, sweet and umami stimuli. No classical synapses, however, have been found associated with Type II cells. Recent studies indicate that the ionotropic purinergic receptors P2X2/P2X3 are present in rodent taste buds. Taste nerve processes express the ionotropic purinergic receptors (P2X2/P2X3). P2X2/P2X3Dbl−/− mice are not responsive to sweet, umami and bitter stimuli, and it has been proposed that ATP acts as a neurotransmitter in taste buds. The goal of the present study is to learn more about the nature of purinergic contacts in rat circumvallate taste buds by examining immunoreactivity to antisera directed against the purinergic receptor P2X2. Results P2X2-like immunoreactivity is present in intragemmal nerve processes in rat circumvallate taste buds. Intense immunoreactivity can also be seen in the subgemmal nerve plexuses located below the basal lamina. The P2X2 immunoreactive nerve processes also display syntaxin-1-LIR. The immunoreactive nerves are in close contact with the IP3R3-LIR Type II cells and syntaxin-1-LIR and/or 5-HT-LIR Type III cells. Taste cell synapses are observed only from Type III taste cells onto P2X2-LIR nerve processes. Unusually large, “atypical” mitochondria in the Type II taste cells are found only at close appositions with P2X2-LIR nerve processes. P2X2 immunogold particles are concentrated at the membranes of nerve processes at close appositions with taste cells. Conclusions Based on our immunofluorescence and immunoelectron microscopical studies we believe that both perigemmal and most all intragemmal nerve processes display P2X2-LIR. Moreover, colloidal gold immunoelectron microscopy indicates that P2X2-LIR in nerve processes is concentrated at sites of close apposition with Type II cells. This supports the hypothesis that ATP may be a key neurotransmitter in taste transduction and that Type II cells release ATP, activating P2X2 receptors in nerve processes.
Collapse
|
15
|
Iwasaki SI, Aoyagi H, Asami T, Wanichanon C, Jackowiak H. Patterns of immunoreactivity specific for gustducin and for NCAM differ in developing rat circumvallate papillae and their taste buds. Acta Histochem 2012; 114:259-69. [PMID: 21703667 DOI: 10.1016/j.acthis.2011.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/24/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
Abstract
α-Gustducin and neural cell adhesion molecule (NCAM) are molecules previously found to be expressed in different cell types of mammalian taste buds. We examined the expression of α-gustducin and NCAM during the morphogenesis of circumvallate papillae and the formation of their taste buds by immunofluorescence staining and laser-scanning microscopy of semi-ultrathin sections of fetal and juvenile rat tongues. Images obtained by confocal laser scanning microscopy in transmission mode were also examined to provide outlines of histology and cell morphology. Morphogenesis of circumvallate papillae had already started on embryonic day 13 (E13) and was evident as the formation of placode. By contrast, taste buds in the circumvallate papillae started to appear between postnatal day 0 (P0) and P7. Although no cells with immunoreactivity specific for α-gustducin were detected in fetuses from E13 to E19, cells with NCAM-specific immunoreactivity were clearly apparent in the entire epithelium of the circumvallate papillary placode, the rudiment of each circumvallate papilla and the developing circumvallate papilla itself from E13 to E19. However, postnatally, both α-gustducin and NCAM became concentrated within taste cells as the formation of taste buds advanced. After P14, neither NCAM nor α-gustducin was detectable in the epithelium around the taste buds. In conclusion, α-gustducin appeared in the cytoplasm of taste cells during their formation after birth, while NCAM appeared in the epithelium of the circumvallate papilla-forming area. However, these two markers of taste cells were similarly distributed within mature taste cells.
Collapse
|
16
|
Abstract
In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors [P2X2 and P2X3 double knock-out (DKO) mice]. The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca(2+) in taste Receptor (Type II) cells from DKO mice, as from wild-type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we used reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion.
Collapse
|
17
|
Abstract
Exocytosis, consisting of the merger of vesicle and plasma membrane, is a common mechanism used by different types of nucleated cells to release their vesicular contents. Taste cells possess vesicles containing various neurotransmitters to communicate with adjacent taste cells and afferent nerve fibers. However, whether these vesicles engage in exocytosis on a stimulus is not known. Since vesicle membrane merger with the plasma membrane is reflected in plasma membrane area fluctuations, we measured membrane capacitance (C(m)), a parameter linearly related to membrane surface area. To investigate whether taste cells undergo regulated exocytosis, we used the compensated tight-seal whole-cell recording technique to monitor depolarization-induced changes in C(m) in the different types of taste cells. To identify taste cell types, mice expressing green fluorescent protein from the TRPM5 promoter or from the GAD67 promoter were used to discriminate type II and type III taste cells, respectively. Moreover, the cell types were also identified by monitoring their voltage-current properties. The results demonstrate that only type III taste cells show significant depolarization-induced increases in C(m), which were correlated to the voltage-activated calcium currents. The results suggest that type III, but neither type II nor type I cells exhibit depolarization-induced regulated exocytosis to release transmitter and activate gustatory afferent nerve fibers.
Collapse
|
18
|
Expression of GABAergic receptors in mouse taste receptor cells. PLoS One 2010; 5:e13639. [PMID: 21049022 PMCID: PMC2964312 DOI: 10.1371/journal.pone.0013639] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 10/04/2010] [Indexed: 12/05/2022] Open
Abstract
Background Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD) for gamma-aminobutyric acid (GABA) is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABAA and GABAC) or metabotropic receptors (GABAB) while it is terminated by the re-uptake of GABA through transporters (GATs). Methodology/Principal Findings Using reverse transcriptase-PCR (RT-PCR) analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs) in the circumvallate papillae express multiple subunits of the GABAA and GABAB receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABAA-and GABAB- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP) in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. Conclusions/Significance The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.
Collapse
|
19
|
Szebenyi SA, Laskowski AI, Medler KF. Sodium/calcium exchangers selectively regulate calcium signaling in mouse taste receptor cells. J Neurophysiol 2010; 104:529-38. [PMID: 20463203 DOI: 10.1152/jn.00118.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Taste cells use multiple signaling mechanisms to generate appropriate cellular responses to discrete taste stimuli. Some taste stimuli activate G protein coupled receptors (GPCRs) that cause calcium release from intracellular stores while other stimuli depolarize taste cells to cause calcium influx through voltage-gated calcium channels (VGCCs). While the signaling mechanisms that initiate calcium signals have been described in taste cells, the calcium clearance mechanisms (CCMs) that contribute to the termination of these signals have not been identified. In this study, we used calcium imaging to define the role of sodium-calcium exchangers (NCXs) in the termination of evoked calcium responses. We found that NCXs regulate the calcium signals that rely on calcium influx at the plasma membrane but do not significantly contribute to the calcium signals that depend on calcium release from internal stores. Our data indicate that this selective regulation of calcium signals by NCXs is due primarily to their location in the cell rather than to the differences in cytosolic calcium loads. This is the first report to define the physiological role for any of the CCMs utilized by taste cells to regulate their evoked calcium responses.
Collapse
Affiliation(s)
- Steven A Szebenyi
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | | | | |
Collapse
|
20
|
Yoshida R, Ninomiya Y. New Insights into the Signal Transmission from Taste Cells to Gustatory Nerve Fibers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 279:101-34. [DOI: 10.1016/s1937-6448(10)79004-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
21
|
Laskowski AI, Medler KF. Sodium-calcium exchangers contribute to the regulation of cytosolic calcium levels in mouse taste cells. J Physiol 2009; 587:4077-89. [PMID: 19581381 DOI: 10.1113/jphysiol.2009.173567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Taste cells use multiple signalling mechanisms to generate unique calcium responses to distinct taste stimuli. Some taste stimuli activate G-protein coupled receptors (GPCRs) that cause calcium release from intracellular stores while other stimuli depolarize taste cells to cause calcium influx through voltage-gated calcium channels (VGCCs). We recently demonstrated that a constitutive calcium influx exists in taste cells that is regulated by mitochondrial calcium transport and that the magnitude of this calcium influx correlates with the signalling mechanisms used by the taste cells. In this study, we used calcium imaging to determine that sodium-calcium exchangers (NCXs) also routinely contribute to the regulation of basal cytosolic calcium and that their relative role correlates with the signalling mechanisms used by the taste cells. RT-PCR analysis revealed that multiple NCXs and sodium-calcium-potassium exchangers (NCKXs) are expressed in taste cells. Thus, a dynamic relationship exists between calcium leak channels and calcium regulatory mechanisms in taste cells that functions to keep cytosolic calcium levels in the appropriate range for cell function.
Collapse
Affiliation(s)
- Agnieszka I Laskowski
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
22
|
Synaptophysin as a probable component of neurotransmission occurring in taste receptor cells. J Mol Histol 2009; 40:59-70. [DOI: 10.1007/s10735-009-9214-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 02/18/2009] [Indexed: 12/18/2022]
|
23
|
Wang Y, Danilova V, Cragin T, Roberts TW, Koposov A, Hellekant G. The sweet taste quality is linked to a cluster of taste fibers in primates: lactisole diminishes preference and responses to sweet in S fibers (sweet best) chorda tympani fibers of M. fascicularis monkey. BMC PHYSIOLOGY 2009; 9:1. [PMID: 19224647 PMCID: PMC2662785 DOI: 10.1186/1472-6793-9-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 02/18/2009] [Indexed: 11/10/2022]
Abstract
Background Psychophysically, sweet and bitter have long been considered separate taste qualities, evident already to the newborn human. The identification of different receptors for sweet and bitter located on separate cells of the taste buds substantiated this separation. However, this finding leads to the next question: is bitter and sweet also kept separated in the next link from the taste buds, the fibers of the taste nerves? Previous studies in non-human primates, P. troglodytes, C. aethiops, M. mulatta, M. fascicularis and C. jacchus, suggest that the sweet and bitter taste qualities are linked to specific groups of fibers called S and Q fibers. In this study we apply a new sweet taste modifier, lactisole, commercially available as a suppressor of the sweetness of sugars on the human tongue, to test our hypothesis that sweet taste is conveyed in S fibers. Results We first ascertained that lactisole exerted similar suppression of sweetness in M. fascicularis, as reported in humans, by recording their preference of sweeteners and non- sweeteners with and without lactisole in two-bottle tests. The addition of lactisole significantly diminished the preference for all sweeteners but had no effect on the intake of non-sweet compounds or the intake of water. We then recorded the response to the same taste stimuli in 40 single chorda tympani nerve fibers. Comparison between single fiber nerve responses to stimuli with and without lactisole showed that lactisole only suppressed the responses to sweeteners in S fibers. It had no effect on the responses to any other stimuli in all other taste fibers. Conclusion In M. fascicularis, lactisole diminishes the attractiveness of compounds, which taste sweet to humans. This behavior is linked to activity of fibers in the S-cluster. Assuming that lactisole blocks the T1R3 monomer of the sweet taste receptor T1R2/R3, these results present further support for the hypothesis that S fibers convey taste from T1R2/R3 receptors, while the impulse activity in non-S fibers originates from other kinds of receptors. The absence of the effect of lactisole on the faint responses in some S fibers to other stimuli as well as the responses to sweet and non-sweet stimuli in non-S fibers suggest that these responses originate from other taste receptors.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Physiology and Pharmacology, Medical School, University of Minnesota-Duluth, 1035 University Dr, Duluth, MN 55812, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Benetti EJ, Pícoli LC, Guimarães JP, Motoyama AA, Miglino MA, Watanabe LS. Characteristics of Filiform, Fungiform and Vallate Papillae and Surface of Interface Epithelium-Connective Tissue of the Maned Sloth Tongue Mucosa (Bradypus torquatus, Iliger, 1811): Light and Scanning Electron Microscopy Study. Anat Histol Embryol 2009; 38:42-8. [DOI: 10.1111/j.1439-0264.2008.00890.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Hacker K, Medler KF. Mitochondrial calcium buffering contributes to the maintenance of Basal calcium levels in mouse taste cells. J Neurophysiol 2008; 100:2177-91. [PMID: 18684902 DOI: 10.1152/jn.90534.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Taste stimuli are detected by taste receptor cells present in the oral cavity using diverse signaling pathways. Some taste stimuli are detected by G protein-coupled receptors (GPCRs) that cause calcium release from intracellular stores, whereas other stimuli depolarize taste cells to cause calcium influx through voltage-gated calcium channels (VGCCs). Although taste cells use two distinct mechanisms to transmit taste signals, increases in cytosolic calcium are critical for normal responses in both pathways. This creates a need to tightly control intracellular calcium levels in all transducing taste cells. To date, however, the mechanisms used by taste cells to regulate cytosolic calcium levels have not been identified. Studies in other cell types have shown that mitochondria can be important calcium buffers, even during small changes in calcium loads. In this study, we used calcium imaging to characterize the role of mitochondria in buffering calcium levels in taste cells. We discovered that mitochondria make important contributions to the maintenance of resting calcium levels in taste cells by routinely buffering a constitutive calcium influx across the plasma membrane. This is unusual because in other cell types, mitochondrial calcium buffering primarily affects large evoked calcium responses. We also found that the amount of calcium that is buffered by mitochondria varies with the signaling pathways used by the taste cells. A transient receptor potential (TRP) channel, likely TRPV1 or a taste variant of TRPV1, contributes to the constitutive calcium influx.
Collapse
Affiliation(s)
- Kyle Hacker
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
26
|
Kataoka S, Yang R, Ishimaru Y, Matsunami H, Sévigny J, Kinnamon JC, Finger TE. The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse. Chem Senses 2007; 33:243-54. [PMID: 18156604 DOI: 10.1093/chemse/bjm083] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The transient receptor potential channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCbeta2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1-positive cells are immunoreactive for neural cell adhesion molecule, serotonin, PGP-9.5 (ubiquitin carboxy-terminal transferase), and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about "sour", but have little or no role in transmission of taste information of other taste qualities.
Collapse
Affiliation(s)
- Shinji Kataoka
- Department of Cell and Developmental Biology, University of Colorado at Denver and Health Science Center, Mail Stop 8108, P.O. Box 6511, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Palay SL. The general architecture of sensory neuroepithelia. CIBA FOUNDATION SYMPOSIUM 2007; 160:3-17; discussion 17-24. [PMID: 1752170 DOI: 10.1002/9780470514122.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
All neuroepithelia are sheets of cells lining an internal or external surface of the body and resting on a basement membrane. They consist of at least two kinds of cell, receptor cells and sustentacular (supporting) cells. Some contain undifferentiated precursor cells and senescent or degenerating cells. The potential for plasticity and regeneration in different sensory neuroepithelia varies widely according to their origins and structure in any individual animal and according to the species in which they occur. Four sensory neuroepithelia are described as examples of the range of construction, complexity, and life history.
Collapse
Affiliation(s)
- S L Palay
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
28
|
Yoshida R, Yasumatsu K, Shigemura N, Ninomiya Y. Coding channels for taste perception: information transmission from taste cells to gustatory nerve fibers. ACTA ACUST UNITED AC 2007; 69:233-42. [PMID: 17287578 DOI: 10.1679/aohc.69.233] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Taste signals are first detected by the taste receptor cells, which are located in taste buds existing in the tongue, soft palate, larynx and epiglottis. Taste receptor cells contact with the chemical compounds in oral cavity through the apical processes which protrude into the taste pore. Interaction between chemical compounds and the taste receptor produces activation of taste receptor cells directly or indirectly. Then the signals are transmitted to gustatory nerve fibers and higher order neurons. A recent study demonstrated many similarities between response properties of taste receptor cells with action potentials and those of the gustatory nerve fibers innervating them, suggesting information derived from receptor cells generating action potentials may form a major component of taste information that is transmitted to gustatory nerve fibers. These findings may also indicate that there is no major modification of taste information sampled by taste receptor cells in synaptic transmission from taste cells to nerve fibers although there is indirect evidence. In the peripheral taste system, gustatory nerve fibers may selectively contact with taste receptor cells that have similar response properties and convey constant taste information to the higher order neurons.
Collapse
Affiliation(s)
- Ryusuke Yoshida
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, Japan
| | | | | | | |
Collapse
|
29
|
Qualitative and quantitative differences between taste buds of the rat and mouse. BMC Neurosci 2007; 8:5. [PMID: 17207280 PMCID: PMC1779794 DOI: 10.1186/1471-2202-8-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 01/05/2007] [Indexed: 11/11/2022] Open
Abstract
Background Numerous electrophysiological, ultrastructural, and immunocytochemical studies on rodent taste buds have been carried out on rat taste buds. In recent years, however, the mouse has become the species of choice for molecular and other studies on sensory transduction in taste buds. Do rat and mouse taste buds have the same cell types, sensory transduction markers and synaptic proteins? In the present study we have used antisera directed against PLCβ2, α-gustducin, serotonin (5-HT), PGP 9.5 and synaptobrevin-2 to determine the percentages of taste cells expressing these markers in taste buds in both rodent species. We also determined the numbers of taste cells in the taste buds as well as taste bud volume. Results There are significant differences (p < 0.05) between mouse and rat taste buds in the percentages of taste cells displaying immunoreactivity for all five markers. Rat taste buds display significantly more immunoreactivity than mice for PLCβ2 (31.8% vs 19.6%), α-gustducin (18% vs 14.6%), and synaptobrevin-2 (31.2% vs 26.3%). Mice, however, have more cells that display immunoreactivity to 5-HT (15.9% vs 13.7%) and PGP 9.5 (14.3% vs 9.4%). Mouse taste buds contain an average of 85.8 taste cells vs 68.4 taste cells in rat taste buds. The average volume of a mouse taste bud (42,000 μm3) is smaller than a rat taste bud (64,200 μm3). The numerical density of taste cells in mouse circumvallate taste buds (2.1 cells/1000 μm3) is significantly higher than that in the rat (1.2 cells/1000 μm3). Conclusion These results suggest that rats and mice differ significantly in the percentages of taste cells expressing signaling molecules. We speculate that these observed dissimilarities may reflect differences in their gustatory processing.
Collapse
|
30
|
Yang R, Ma H, Thomas SM, Kinnamon JC. Immunocytochemical analysis of syntaxin-1 in rat circumvallate taste buds. J Comp Neurol 2007; 502:883-93. [PMID: 17447252 DOI: 10.1002/cne.21317] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mammalian buds contain a variety of morphological taste cell types, but the type III taste cell is the only cell type that has synapses onto nerve processes. We hypothesize that taste cell synapses utilize the SNARE protein machinery syntaxin, SNAP-25, and synaptobrevin, as is used by synapses in the central nervous system (CNS) for Ca2+-dependent exocytosis. Previous studies have shown that taste cells with synapses display SNAP-25- and synaptobrevin-2-like immunoreactivity (LIR) (Yang et al. [2000a] J Comp Neurol 424:205-215, [2004] J Comp Neurol 471:59-71). In the present study we investigated the presynaptic membrane protein, syntaxin-1, in circumvallate taste buds of the rat. Our results indicate that diffuse cytoplasmic and punctate syntaxin-1-LIR are present in different subsets of taste cells. Diffuse, cytoplasmic syntaxin-1-LIR is present in type III cells while punctate syntaxin-1-LIR is present in type II cells. The punctate syntaxin-1-LIR is believed to be associated with Golgi bodies. All of the synapses associated with syntaxin-1-LIR taste cells are from type III cells onto nerve processes. These results support the proposition that taste cell synapses use classical SNARE machinery such as syntaxin-1 for neurotransmitter release in rat circumvallate taste buds.
Collapse
Affiliation(s)
- Ruibiao Yang
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208, USA
| | | | | | | |
Collapse
|
31
|
Yoshida R, Shigemura N, Sanematsu K, Yasumatsu K, Ishizuka S, Ninomiya Y. Taste Responsiveness of Fungiform Taste Cells With Action Potentials. J Neurophysiol 2006; 96:3088-95. [PMID: 16971686 DOI: 10.1152/jn.00409.2006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is known that a subset of taste cells generate action potentials in response to taste stimuli. However, responsiveness of these cells to particular tastants remains unknown. In the present study, by using a newly developed extracellular recording technique, we recorded action potentials from the basolateral membrane of single receptor cells in response to taste stimuli applied apically to taste buds isolated from mouse fungiform papillae. By this method, we examined taste-cell responses to stimuli representing the four basic taste qualities (NaCl, Na saccharin, HCl, and quinine-HCl). Of 72 cells responding to taste stimuli, 48 (67%) responded to one, 22 (30%) to two, and 2 (3%) to three of four taste stimuli. The entropy value presenting the breadth of responsiveness was 0.158 ± 0.234 (mean ± SD), which was close to that for the nerve fibers (0.183 ± 0.262). In addition, the proportion of taste cells predominantly sensitive to each of the four taste stimuli, and the grouping of taste cells based on hierarchical cluster analysis, were comparable with those of chorda tympani (CT) fibers. The occurrence of each class of taste cells with different taste responsiveness to the four taste stimuli was not significantly different from that of CT fibers except for classes with broad taste responsiveness. These results suggest that information derived from taste cells generating action potentials may provide the major component of taste information that is transmitted to gustatory nerve fibers.
Collapse
Affiliation(s)
- Ryusuke Yoshida
- Section of Oral Neuroscience, Graduate School of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Taste bud cells communicate with sensory afferent fibers and may also exchange information with adjacent cells. Indeed, communication between taste cells via conventional and/or novel synaptic interactions may occur prior to signal output to primary afferent fibers. This review discusses synaptic processing in taste buds and summarizes results showing that it is now possible to measure real-time release of synaptic transmitters during taste stimulation using cellular biosensors. There is strong evidence that serotonin and ATP play a role in cell-to-cell signaling and sensory output in the gustatory end organs.
Collapse
Affiliation(s)
- S D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Ave., Miami, FL, 33136, USA.
| |
Collapse
|
33
|
Clapp TR, Medler KF, Damak S, Margolskee RF, Kinnamon SC. Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25. BMC Biol 2006; 4:7. [PMID: 16573824 PMCID: PMC1444931 DOI: 10.1186/1741-7007-4-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 03/30/2006] [Indexed: 12/02/2022] Open
Abstract
Background Taste receptor cells are responsible for transducing chemical stimuli from the environment and relaying information to the nervous system. Bitter, sweet and umami stimuli utilize G-protein coupled receptors which activate the phospholipase C (PLC) signaling pathway in Type II taste cells. However, it is not known how these cells communicate with the nervous system. Previous studies have shown that the subset of taste cells that expresses the T2R bitter receptors lack voltage-gated Ca2+ channels, which are normally required for synaptic transmission at conventional synapses. Here we use two lines of transgenic mice expressing green fluorescent protein (GFP) from two taste-specific promoters to examine Ca2+ signaling in subsets of Type II cells: T1R3-GFP mice were used to identify sweet- and umami-sensitive taste cells, while TRPM5-GFP mice were used to identify all cells that utilize the PLC signaling pathway for transduction. Voltage-gated Ca2+ currents were assessed with Ca2+ imaging and whole cell recording, while immunocytochemistry was used to detect expression of SNAP-25, a presynaptic SNARE protein that is associated with conventional synapses in taste cells. Results Depolarization with high K+ resulted in an increase in intracellular Ca2+ in a small subset of non-GFP labeled cells of both transgenic mouse lines. In contrast, no depolarization-evoked Ca2+ responses were observed in GFP-expressing taste cells of either genotype, but GFP-labeled cells responded to the PLC activator m-3M3FBS, suggesting that these cells were viable. Whole cell recording indicated that the GFP-labeled cells of both genotypes had small voltage-dependent Na+ and K+ currents, but no evidence of Ca2+ currents. A subset of non-GFP labeled taste cells exhibited large voltage-dependent Na+ and K+ currents and a high threshold voltage-gated Ca2+ current. Immunocytochemistry indicated that SNAP-25 was expressed in a separate population of taste cells from those expressing T1R3 or TRPM5. These data indicate that G protein-coupled taste receptors and conventional synaptic signaling mechanisms are expressed in separate populations of taste cells. Conclusion The taste receptor cells responsible for the transduction of bitter, sweet, and umami stimuli are unlikely to communicate with nerve fibers by using conventional chemical synapses.
Collapse
Affiliation(s)
- Tod R Clapp
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Rocky Mountain Taste and Smell Center, UCDHSC, Aurora, CO, USA
| | - Kathryn F Medler
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Rocky Mountain Taste and Smell Center, UCDHSC, Aurora, CO, USA
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sami Damak
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
- SD, Nestle Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland
| | - Robert F Margolskee
- Dept. of Physiology and Biophysics, Mount. Sinai School of Medicine, New York, NY, USA
| | - Sue C Kinnamon
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Rocky Mountain Taste and Smell Center, UCDHSC, Aurora, CO, USA
| |
Collapse
|
34
|
Abe J, Hosokawa H, Okazawa M, Kandachi M, Sawada Y, Yamanaka K, Matsumura K, Kobayashi S. TRPM8 protein localization in trigeminal ganglion and taste papillae. ACTA ACUST UNITED AC 2005; 136:91-8. [PMID: 15893591 DOI: 10.1016/j.molbrainres.2005.01.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 12/30/2004] [Accepted: 01/09/2005] [Indexed: 11/19/2022]
Abstract
TRPM8 is a TRP family cation channel which can be activated by cold stimuli or l-menthol. However, TRPM8 protein localization of nerve terminals in sensory organs remains unknown. Here we generated an antibody against TRPM8 and analyzed TRPM8 protein localization in trigeminal ganglia (TG) and in sensory nerve fibers in the tongue. TRPM8 immunoreactivity was detected in a subset of neurons with a small diameter in TG and in nerve fibers in the tongue. TRPM8-immunoreactive nerve fibers were rich in fungiform papillae, but sparse in foliate and circumvallate papillae. The TRPM8-immunoreactive nerve fibers reached the outer epithelial layer in each papilla, while no TRPM8-immunoreactive nerve fibers penetrated into taste buds. Double labeling analysis revealed that TRPM8 immunoreactivity was co-expressed with a part of TRPV1 or CGRP-immunoreactive neurons in TG. However, TRPM8 immunoreactivity was not observed in TRPV1- or CGRP-positive nerve fibers in fungiform, foliate, and circumvallate papillae. These results suggest that TRPM8 protein is present in sensory lingual nerve fibers mainly projected from TG and might work as cold and l-menthol receptors on tongue.
Collapse
Affiliation(s)
- Junji Abe
- Division of Biological Information, Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Clapp TR, Yang R, Stoick CL, Kinnamon SC, Kinnamon JC. Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway. J Comp Neurol 2004; 468:311-21. [PMID: 14681927 DOI: 10.1002/cne.10963] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rat taste buds contain three morphologically distinct cell types that are candidates for taste transduction. The physiologic roles of these cells are, however, not clear. Inositol 1,4,5-triphosphate (IP(3)) has been implicated as an important second messenger in bitter, sweet, and umami taste transductions. Previously, we identified the type III IP(3) receptor (IP(3)R3) as the dominant isoform in taste receptor cells. In addition, a recent study showed that phospholipase Cbeta(2) (PLCbeta(2)) is essential for the transduction of bitter, sweet, and umami stimuli. IP(3)R3 and PLCbeta(2) are expressed in the same subset of cells. To identify the taste cell types that express proteins involved in PLC signal transduction, we used 3,3'diaminobenzidine tetrahydrochloride immunoelectron microscopy and fluorescence microscopy to identify cells with IP(3)R3. Confocal microscopy was used to compare IP(3)R3 or PLCbeta(2) immunoreactivity with that of some known cell type markers such as serotonin, protein gene-regulated product 9.5, and neural cell adhesion molecule. Here we show that a large subset of type II cells and a small subset of type III cells display IP(3)R3 immunoreactivity within their cytoplasm. These data suggest that type II cells are the principal transducers of bitter, sweet, and umami taste transduction. However, we did not observe synapses between type II taste cells and nerve fibers. Interestingly, we observed subsurface cisternae of smooth endoplasmic reticulum at the close appositions between the plasma membrane of type II taste cells and nerve processes. We speculate that some type II cells may communicate to the nervous system via subsurface cisternae of smooth endoplasmic reticulum in lieu of conventional synapses.
Collapse
MESH Headings
- Animals
- Calcium Channels/analysis
- Calcium Channels/metabolism
- Endoplasmic Reticulum, Smooth/ultrastructure
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Isoenzymes/analysis
- Isoenzymes/metabolism
- Male
- Microscopy, Confocal
- Microscopy, Fluorescence
- Microscopy, Immunoelectron
- Neural Cell Adhesion Molecules/analysis
- Phospholipase C beta
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/analysis
- Receptors, Cytoplasmic and Nuclear/metabolism
- Serotonin/analysis
- Signal Transduction
- Synapses/ultrastructure
- Taste
- Taste Buds/chemistry
- Taste Buds/cytology
- Taste Buds/ultrastructure
- Type C Phospholipases/analysis
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Tod R Clapp
- Department of Biomedical Sciences, Anatomy and Neurobiology Section, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
The receptor cells of taste buds have a life span of about 10 days but it is not known if response characteristics of these receptors alter during the turnover cycle. To examine taste cell responses over time, a micromachined polyimide sieve electrode array was implanted between the cut ends of the rat chorda tympani nerve, which then regenerated through the electrode array. Long-term stable recordings from regenerated single afferent fibers innervating taste buds were possible using this technique for up to 21 days. Responses to taste stimuli recorded from the same fiber changed with time. The changes occurred in both the magnitude of response and the relative response profiles to four chemical stimuli, NaCl, sucrose, HCl, and quinine HCl. These changes in response characteristics were hypothesized to result from changes in the taste receptor cells as the receptor cells turnover in the taste buds.
Collapse
Affiliation(s)
- Yuichi Shimatani
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | | | | | | |
Collapse
|
37
|
Yang R, Stoick CL, Kinnamon JC. Synaptobrevin-2-like immunoreactivity is associated with vesicles at synapses in rat circumvallate taste buds. J Comp Neurol 2004; 471:59-71. [PMID: 14983476 DOI: 10.1002/cne.20021] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Synaptobrevin is a vesicle-associated membrane protein (VAMP) that is believed to play a critical role with presynaptic membrane proteins (SNAP-25 and syntaxin) during regulated synaptic vesicle docking and exocytosis of neurotransmitter at the central nervous system. Synaptic contacts between taste cells and nerve processes have been found to exist, but little is known about synaptic vesicle docking and neurotransmitter release at taste cell synapses. Previously we demonstrated that immunoreactivity to SNAP-25 is present in taste cells with synapses. Our present results show that synaptobrevin-2-like immunoreactivity (-LIR) is present in approximately 35% of the taste cells in rat circumvallate taste buds. Synaptobrevin-2-LIR colocalizes with SNAP-25-, serotonin-, and protein gene product 9.5-LIR. Synaptobrevin-2-LIR also colocalizes with immunoreactivity for type III inositol 1,4,5-triphosphate receptor (IP3R3), a taste-signaling molecule in taste cells. All IP3R3-LIR taste cells express synaptobrevin-2-LIR. However, approximately 27% of the synaptobrevin-2-LIR taste cells do not display IP3R3-LIR. We believe, based on ultrastructural and biochemical features, that both type II and type III taste cells display synaptobrevin-2-LIR. All of the synapses that we observed from taste cells onto nerve processes express synaptobrevin-2-LIR, as well as some taste cells without synapses. By using colloidal gold immunoelectron microscopy, we found that synaptobrevin-2-LIR is associated with synaptic vesicles at rat taste cell synapses. The results of this study suggest that soluble NSF attachment receptor (SNARE) machinery may control synaptic vesicle fusion and exocytosis at taste cell synapses.
Collapse
Affiliation(s)
- Ruibiao Yang
- Department of Biological Sciences, University of Denver, and Rocky Mountain Taste and Smell Center, Denver, Colorado 80208, USA
| | | | | |
Collapse
|
38
|
Huang YJ, Wu YH, Lu KS. Immunoelectron microscopic studies on protein gene product 9.5 and calcitonin gene-related peptide in vallate taste cells and related nerves in the guinea pig. Microsc Res Tech 2003; 62:383-95. [PMID: 14601144 DOI: 10.1002/jemt.10396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
On the basis of our previous report that protein gene product 9.5 (PGP 9.5)-immunoreactive nerve fibers and taste cells and calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers are found in guinea pig vallate papillae [Huang and Lu (1996b) Arch. Histol. Cytol. 59:433-441]. We speculated that PGP 9.5 might be a marker for taste receptor cells and that CGRP might play an important role in taste transmission. We, therefore, performed an immunohistochemical and ultrastructural analysis of taste cells and related nerves in guinea pig vallate papillae. In the connective tissue of the vallate papilla, the ultrastructural data revealed that the PGP 9.5-immunoreactive nerve fibers were both myelinated and unmyelinated. The CGRP-immunoreactive nerve fibers were unmyelinated and surrounded by the cytoplasm of Schwann cells as were the non-immunoreactive fibers. In the vallate taste buds, only type III cells, which make synaptic contacts with intragemmal nerves, were PGP 9.5-immunoreactive, while the nerve terminals making synaptic contact with the underlying type III cells were CGRP-immunoreactive. From these observations, we conclude that: (1) PGP 9.5 might be a useful specific marker for type III cells in guinea pig vallate taste buds; and (2) CGRP-containing nerve fibers might be primarily involved in the neural transmission of taste stimuli.
Collapse
Affiliation(s)
- Yi-Jen Huang
- Department of Anatomy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | | | |
Collapse
|
39
|
Noguchi T, Ikeda Y, Miyajima M, Yoshii K. Voltage-gated channels involved in taste responses and characterizing taste bud cells in mouse soft palates. Brain Res 2003; 982:241-59. [PMID: 12915259 DOI: 10.1016/s0006-8993(03)03013-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Taste bud cells (TBCs) on soft palates differ from those on tongues in innervation and chemosensitivity. We investigated voltage-gated channels involved in the taste responses of TBCs on mouse soft palates under in-situ tight-seal voltage/current-clamp conditions. Under the cell-attached mode, TBCs spontaneously fired action currents, which were blocked by application of 1 microM TTX to TBC basolateral membranes. Firing frequencies increased in response to taste substances applied to TBC receptor membranes. Under the whole-cell clamp mode, as expected, TBCs produced various voltage-gated currents such as TTX-sensitive Na+ currents (INa), outward currents (Iout) including TEA-sensitive and insensitive currents, inward rectifier K+ currents (Iir), and Ca2+ currents including T-type, P/Q-type, and L-type Ca2+ currents. We classified TBCs into three types based on the magnitude of their voltage-gated Na+ currents and membrane capacitance. HEX type (60% of TBCs examined) was significantly larger in Na+ current magnitude and smaller in membrane capacitance than LEX type (23%). NEX type (17%) had no Na+ currents. HEX type was equally distributed within single taste buds, while LEX type was centrally distributed, and NEX type was peripherally distributed. There were correlations between these electrophysiological cell types and morphological cell types determined by three-dimensional reconstruction. The present results show that soft palate taste buds contain TBCs with different electrophysiological properties, and suggest that their co-operation is required in taste transduction.
Collapse
Affiliation(s)
- Tomohiro Noguchi
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Fukuoka 808-0196, Japan
| | | | | | | |
Collapse
|
40
|
Abstract
Despite extensive immunological characterization of the cells within taste buds, little is known about the functional significance of the different cell types. In this study, we use taste cells isolated from mouse vallate and foliate papillae to characterize voltage-gated currents in the three principal elongate types of taste cells: type I, II, and III. Cell types are identified by using antibodies to external epitopes [antigen H for type I cells, antigen A for type II cells, and neural cell adhesion molecule (NCAM) for type III cells]. In addition, we identify the subset of type II cells that contains alpha-gustducin, a G-protein involved in bitter transduction, by using transgenic mice expressing green fluorescent protein under the control of the gustducin promoter. Our results indicate that antigen H-immunoreactive (-IR) cells and many of the antigen A-IR cells have small voltage-gated inward Na(+) and outward K(+) currents but no voltage-gated Ca(2+) currents. In contrast, a subset of antigen A-IR cells and all NCAM-IR cells have large inward Na(+) and outward K(+) currents as well as voltage-gated Ca(2+) currents. Unexpectedly, all gustducin-expressing cells lacked voltage-gated Ca(2+) currents, suggesting that these cells use mechanisms other than classical synapses to communicate signals to the brain.
Collapse
|
41
|
Tabata S, Wada A, Kobayashi T, Nishimura S, Muguruma M, Iwamoto H. Bovine circumvallate taste buds: taste cell structure and immunoreactivity to alpha-gustducin. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 271:217-24. [PMID: 12552638 DOI: 10.1002/ar.a.10028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The taste buds of bovine circumvallate papillae were investigated under light and electron microscopy both by histological and immunohistochemical methods. Taste buds existed in the inner epithelium of the trench of the papillae. Under electron microscopy, two types of taste cells, type I and type II, could be classified according to the existence of dense-cored vesicles and cytoplasmic density. Type I had electron-lucent cytoplasm and possessed many electron-dense cored vesicles in the apical cytoplasm. It was considered that the electron-dense materials of the vesicles were released and constituted the pore substance. This type of cell possessed long and thick apical processes in the taste pore. Type II had denser electron cytoplasm compared with that of type I and possessed many electron-lucent vesicles in the apical cytoplasm. This type of cell possessed microvilli in the taste pore. To know the immunoreactivity to alpha-gustducin in bovine circumvallate taste buds, we used the immunoblotting method and the immunohistochemical method. The alpha-gustducin reaction band at 40 kDa was displayed in the specimen of Western blots. The immunohistochemical property of the antiserum to alpha-gustducin was investigated by using the avidin-biotin complex (ABC) method and the 1.4-nm gold and silver enhancement methods. A subset of taste cells showed the immunoreactivity under light microscopy. The electron microscopic specimens with the 1.4-nm gold and silver enhancement method revealed that only type II cells exhibited the alpha-gustducin immunoreactivity.
Collapse
Affiliation(s)
- Shoji Tabata
- Laboratory of Functional Anatomy, Department of Animal Science, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Taste buds are sensory end organs that detect chemical substances occurring in foodstuffs and relay the relative information to the brain. The mechanisms by which the chemical stimuli are converted into biological signals represent a central issue in taste research. Our understanding of how taste buds accomplish this operation relies on the detailed knowledge of the biological properties of taste bud cells-the taste cells-and of the functional processes occurring in these cells during chemostimulation. The amphibian Necturus maculosus (mudpuppy) has proven to be a very useful model for studying basic cellular processes of vertebrate taste reception, some of which are still awaiting to be explored in mammals. The main advantages offered by Necturus are the large size of its taste cells and the relative accessibility of its taste buds, which can therefore be handled easily for experimental manipulations. In this review, I summarize the functional properties of Necturus taste cells studied with electrophysiological techniques (intracellular recordings and patch-clamp recordings). My focus is on ion channels in taste cells and on their role in signal transduction, as well as on the functional relationships among the cells inside Necturus taste buds. This information has revealed to be well suited to outline some of the general physiological processes occurring during taste reception in vertebrates, including mammals, and may represent a useful framework for understanding how taste buds work.
Collapse
Affiliation(s)
- Albertino Bigiani
- Dipartimento di Scienze Biomediche, Sezione di Fisiologia, Università di Modena e Reggio Emilia, via Campi 287, Italy.
| |
Collapse
|
43
|
Yee CL, Yang R, Böttger B, Finger TE, Kinnamon JC. "Type III" cells of rat taste buds: immunohistochemical and ultrastructural studies of neuron-specific enolase, protein gene product 9.5, and serotonin. J Comp Neurol 2001; 440:97-108. [PMID: 11745610 DOI: 10.1002/cne.1372] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Taste buds contain a variety of morphological and histochemical types of elongate cells. Serotonin, neuron-specific enolase (NSE), ubiquitin carboxyl terminal hydrolase (PGP 9.5), and neural cell adhesion molecule (N-CAM) all have been described as being present in the morphologically defined Type III taste cells in rats. In order to determine whether these substances coexist in a single cell, we undertook immunohistochemical and ultrastructural analysis of taste buds in rats. Double-label studies show that PGP 9.5 and NSE always colocalize. In contrast, PGP 9.5 and serotonin seldom colocalize. Further, whereas the serotonin-immunoreactive cells are always slender and elongate, the PGP 9.5/NSE population comprise two morphological types--one slender, the other broader and pyriform. Although gustducin-immunoreactive taste cells appear similar in overall shape to the pyriform PGP 9.5/NSE population, gustducin never colocalizes with PGP 9.5 or NSE. The serotonin-immunoreactive taste cells have an invaginated nucleus, synaptic contacts with nerve fibers, and taper apically to a single, large microvillus. These are all characteristics of Type III taste cells described previously in rabbits (Murray [1973] Ultrastructure of Sensory Organs I. Amsterdam: North Holland. p 1-81). PGP 9.5-immunoreactive taste cells exhibit two morphological varieties. One type is similar to the serotonin-immunoreactive population, containing an invaginated nucleus, synapses with nerve fibers, and a single large microvillus. The other type of PGP 9.5-immunoreactive taste cell has a large round nucleus and the apical end of the cell tapers to a tuft of short microvilli, which are characteristics of Type II taste cells. Thus, in rats, some Type III cells accumulate serotonin but do not express PGP 9.5, whereas others express PGP 9.5 but do not accumulate amines. Similarly, Type II taste cells come in at least two varieties: those immunoreactive for gustducin and those immunoreactive for PGP 9.5.
Collapse
Affiliation(s)
- C L Yee
- Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Denver, Colorado 80262, USA.
| | | | | | | | | |
Collapse
|
44
|
Pumplin DW, Getschman E. Synaptic proteins in rat taste bud cells: appearance in the Golgi apparatus and relationship to alpha-gustducin and the Lewis(b) and A antigens. J Comp Neurol 2000; 427:171-84. [PMID: 11054686 DOI: 10.1002/1096-9861(20001113)427:2<171::aid-cne1>3.0.co;2-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Taste receptor cells are continuously replaced during the life of the animal, but many of their sensory axons respond primarily to stimuli belonging to a single taste quality. This suggests that a newly arising taste cell must form a synapse with an appropriate sensory axon, requiring cell recognition that is likely to be mediated by surface markers. As an approach to studying this process, we attempted to locate synapses by immunolabeling taste buds of rats for proteins involved in neurotransmitter release. In taste bud cells of vallate papillae and nasoincisor ducts, double-labeling experiments showed that syntaxin-1, SNAP-25, synaptobrevin, and synaptophysin colocalized with the Golgi marker beta COP in elongated cytoplasmic compartments that extended from the perinuclear region into apical and basal processes of the cells. Labeled cells were spindle-shaped, identifying them as light cells. Syntaxin-1 appeared only in taste cells, but SNAP-25, synaptobrevin, and synaptophysin were also seen in nerve fibers. The synaptic vesicle glycoprotein SV2 appeared only in nerve fibers. Taste cells of fungiform papillae did not show immunoreactivity for presynaptic proteins or Golgi markers, but axonal labeling was similar to that in other regions. Taste cells with alpha-gustducin could express either presynaptic proteins or the carbohydrate blood group antigen Lewis(b), but not both. Therefore, Lewis(b) and presynaptic proteins are not expressed during the same period in the life of a taste bud cell. Most taste cells expressing syntaxin-1 (82%) also expressed the A blood group antigen, whether or not they expressed alpha-gustducin.
Collapse
Affiliation(s)
- D W Pumplin
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1509, USA.
| | | |
Collapse
|
45
|
Yang R, Tabata S, Crowley HH, Margolskee RF, Kinnamon JC. Ultrastructural localization of gustducin immunoreactivity in microvilli of type II taste cells in the rat. J Comp Neurol 2000; 425:139-51. [PMID: 10940948 DOI: 10.1002/1096-9861(20000911)425:1<139::aid-cne12>3.0.co;2-#] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gustducin is a transducin-like G protein (guanine nucleotide-binding protein) that is expressed in taste bud cells. Gustducin is believed to be involved in bitter and possibly sweet taste transduction. In the present study, we demonstrate that a subset of type II cells displays immunoreactivity to antisera directed against gustducin in taste buds of rat circumvallate papilla. Immunogold particles are present both in the microvilli and cytoplasm of the immunoreactive cells. Quantitative analysis of the data suggests that the number of colloidal gold particles (P<0.001) and nanogold particles (P<0.01) in the immunoreactive type II cells are much greater than in type I cells. There are also approximately 2.5 times (P<0.05) as many colloidal gold particles associated with the microvilli versus the cytoplasm in the immunoreactive type II cells. The ultrastructural distribution of gustducin immunoreactivity is consistent with its proposed role in the initial events of sensory transduction by gustatory receptor cells.
Collapse
Affiliation(s)
- R Yang
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208, USA
| | | | | | | | | |
Collapse
|
46
|
Yang R, Crowley HH, Rock ME, Kinnamon JC. Taste cells with synapses in rat circumvallate papillae display SNAP-25-like immunoreactivity. J Comp Neurol 2000; 424:205-15. [PMID: 10906698 DOI: 10.1002/1096-9861(20000821)424:2<205::aid-cne2>3.0.co;2-f] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SNAP-25 is a 25 kDa protein believed to be involved in the processes of membrane fusion and exocytosis associated with neurotransmitter release. In the present study we present evidence that SNAP-25-like immunoreactivity can be used as a marker for taste cells with synapses in rat circumvallate papillae. SNAP-25 immunoreactivity is present in most intragemmal nerve processes and a small subset of taste cells. Intense immunoreactivity is associated with the nerve plexus located below the base of the taste bud. Of a total of 87 taste cells with synapses onto nerve processes, 80 of the presynaptic taste cells had SNAP-25 immunoreactivity. The association of SNAP-25 immunoreactivity with taste cells possessing synapses suggests that these cells may be gustatory receptor cells. Because this SNAP-25 antibody can label taste cells with synapses, it may also serve as a useful tool for future studies correlating structure with function in the taste bud.
Collapse
Affiliation(s)
- R Yang
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Robert P. Erickson's research and writings formed the intellectual backdrop and guiding force for much of the major research on sensory coding in taste. As articulated best by Erickson, consideration focused on the relative merits of labeled-line and across-fiber pattern theory. The present article focuses primarily on a review of the electrophysiological and behavioral studies on salt taste and salt taste-mediated behavior in rodents. The evidence clearly shows that the peripheral gustatory system consists of a few neuron types/groups with well-defined physiological response characteristics. Electrophysiological studies of the chorda tympani nerve define a physiological group of narrowly tuned neurons selectively responsive to NaCl stimuli. It appears that this is a sodium-sensing module that functions primarily in the detection, recognition, and ingestion of NaCl.
Collapse
Affiliation(s)
- R J Contreras
- Florida State University, Department of Psychology, Tallahassee 32306-1270,USA.
| | | |
Collapse
|
48
|
Abstract
The turnover of cells in renewing epithelia presents an opportunity to examine cell death pathways in adult vertebrates. In mouse lingual epithelium a typical taste receptor cell survives for 9 days, until it is killed by an unknown cascade of death factors. Apoptosis was implicated by the presence of fragmented DNA in about 8% of taste receptor cells in the vallate papilla. In using immunocytochemistry to seek putative death factors, we observed that squamous epithelial cells of the tongue were negative for Bax, a death factor in the Bcl-2 family of survival/death factors, and were also negative for p53, a tumor-suppressor protein linked to apoptosis and Bax transcription. In contrast, 8-10% of the taste receptor cells were Bax-positive, and 9-11% were p53 positive. These immunopositive taste receptor cells were more likely to display death-related morphologic defects than other receptor cells, and they frequently coexpressed p53 and Bax. In both neonatal and adult mice, the labeling of dividing cells with 5-bromo-2'-deoxyuridine indicated that all Bax-positive taste cells were at least 5 days old. On postnatal day 7, when few taste cells were old, no more than 1% of taste cells were immunopositive for either p53 or Bax. We inferred that old taste receptor cells employ p53 and Bax as part of their apoptotic death pathway. The routine expression of p53 by postmitotic, aged taste cells broadens the conventional view that p53 is restricted to mitotic cells that have stress-damaged DNA. Furthermore, the scattered distribution of aged receptor cells within the taste bud excludes some explanations for stable taste signals during receptor cell turnover.
Collapse
Affiliation(s)
- Q Zeng
- Department of Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | |
Collapse
|
49
|
Abstract
Taste receptor cells respond to gustatory stimuli using a complex arrangement of receptor molecules, signaling cascades, and ion channels. When stimulated, these cells produce action potentials that result in the release of neurotransmitter onto an afferent nerve fiber that in turn relays the identity and intensity of the gustatory stimuli to the brain. A variety of mechanisms are used in transducing the four primary tastes. Direct interaction of the stimuli with ion channels appears to be of particular importance in transducing stimuli reported as salty or sour, whereas the second messenger systems cyclic AMP and inositol trisphosphate are important in transducing bitter and sweet stimuli. In addition to the four basic tastes, specific mechanisms exist for the amino acid glutamate, which is sometimes termed the fifth primary taste, and for fatty acids, a so-called nonconventional taste stimulus. The emerging picture is that not only do individual taste qualities use more than one mechanism, but multiple pathways are available for individual tastants as well.
Collapse
Affiliation(s)
- M S Herness
- College of Dentistry, Ohio State University, Columbus 43210-1241, USA.
| | | |
Collapse
|
50
|
Hoon MA, Adler E, Lindemeier J, Battey JF, Ryba NJ, Zuker CS. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 1999; 96:541-51. [PMID: 10052456 DOI: 10.1016/s0092-8674(00)80658-3] [Citation(s) in RCA: 478] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Taste represents a major form of sensory input in the animal kingdom. In mammals, taste perception begins with the recognition of tastant molecules by unknown membrane receptors localized on the apical surface of receptor cells of the tongue and palate epithelium. We report the cloning and characterization of two novel seven-transmembrane domain proteins expressed in topographically distinct subpopulations of taste receptor cells and taste buds. These proteins are specifically localized to the taste pore and are members of a new group of G protein-coupled receptors distantly related to putative mammalian pheromone receptors. We propose that these genes encode taste receptors.
Collapse
Affiliation(s)
- M A Hoon
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|