1
|
Sacchini S, Bombardi C, Arbelo M, Herráez P. The amygdaloid body of the family Delphinidae: a morphological study of its central nucleus through calbindin-D28k. Front Neuroanat 2024; 18:1382036. [PMID: 38899230 PMCID: PMC11186458 DOI: 10.3389/fnana.2024.1382036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction The amygdala is a noticeable bilateral structure in the medial temporal lobe and it is composed of at least 13 different nuclei and cortical areas, subdivided into the deep nuclei, the superficial nuclei, and the remaining nuclei which contain the central nucleus (CeA). CeA mediates the behavioral and physiological responses associated with fear and anxiety through pituitary-adrenal responses by modulating the liberation of the hypothalamic Corticotropin Releasing Factor/Hormone. Methods Five dolphins of three different species, belonging to the family Delphinidae (three striped dolphins, one common dolphin, and one Atlantic spotted dolphin), were used for this study. For a precise overview of the CeA's structure, thionine staining and the immunoperoxidase method using calbindin D-28k were employed. Results CeA extended mainly dorsal to the lateral nucleus and ventral to the striatum. It was medial to the internal capsule and lateral to the optic tract and the medial nucleus of the amygdala. Discussion The dolphin amygdaloid complex resembles that of primates, including the subdivision, volume, and location of the CeA.
Collapse
Affiliation(s)
- Simona Sacchini
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
- Department of Morphology, Campus Universitario de San Cristobal, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
| | - Pedro Herráez
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
| |
Collapse
|
2
|
Bisconti M, Damarco P, Tartarelli G, Pavia M, Carnevale G. A natural endocast of an early Miocene odontocete and its implications in cetacean brain evolution. J Comp Neurol 2020; 529:1198-1227. [PMID: 32840887 DOI: 10.1002/cne.25015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
The natural endocast Museo di Geologia e Paleontologia of the Università degli Studi di Torino (MGPT)-PU 13873 is described and analyzed in order to interpret its taxonomic affinities and its potential significance on our understanding of cetacean brain evolution. The endocast is from the early Miocene of Piedmont (between ca. 19 and 16 million years ago), Northwestern Italy, and shows a number of plesiomorphic characters. These include: scarcely rounded cerebral hemispheres, cerebellum exposed in dorsal view with little superimposition by the cerebral hemispheres, short temporal lobe, and long sylvian fissure. The distance between the hypophysis and the rostral pons is particularly high, as it was determined by the calculus of the hypothalamus quotient, suggesting that the development of a deep interpeduncular fossa was not as advanced as in living odontocetes. The encephalization quotient (EQ) of MGPT-PU 13873 is ~1.81; therefore, this specimen shows an EQ in line with other fossil whales of the same geological age (early Miocene). Comparative analysis shows that there is a critical lack of data from the late Miocene and Pliocene that prevents us to fully understand the recent evolution of the EQ diversity in whales. Moreover, the past diversity of brain size and shape in mysticetes is virtually unknown. All these observations point to the need of additional efforts to uncover evolutionary patterns and processes on cetacean brain evolution.
Collapse
Affiliation(s)
- Michelangelo Bisconti
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy.,San Diego Natural History Museum, San Diego, California, USA
| | - Piero Damarco
- Ente di Gestione del Parco Paleontologico Astigiano, Museo Paleontologico Territoriale dell'Astigiano, Asti, Italy
| | | | - Marco Pavia
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy.,Museo di Geologia e Paleontologia, Università degli Studi di Torino, Torino, Italy
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
3
|
Parolisi R, Cozzi B, Bonfanti L. Non-neurogenic SVZ-like niche in dolphins, mammals devoid of olfaction. Brain Struct Funct 2017; 222:2625-2639. [PMID: 28238073 DOI: 10.1007/s00429-016-1361-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/22/2016] [Indexed: 11/29/2022]
Abstract
Adult neurogenesis has been implicated in brain plasticity and brain repair. In mammals, it is mostly restricted to specific brain regions and specific physiological functions. The function and evolutionary history of mammalian adult neurogenesis has been elusive so far. The largest neurogenic site in mammals (subventricular zone, SVZ) generates neurons destined to populate the olfactory bulb. The SVZ neurogenic activity appears to be related to the dependence of the species on olfaction since it occurs at high rates throughout life in animals strongly dependent on this function for their survival. Indeed, it dramatically decreases in humans, who do not depend so much on it. This study investigates whether the SVZ neurogenic site exists in mammals devoid of olfaction and olfactory brain structures, such as dolphins. Our results demonstate that a small SVZ-like region persists in these aquatic mammals. However, this region seems to have lost its neurogenic capabilities since neonatal stages. In addition, instead of the typical newly generated neuroblasts, some mature neurons were observed in the dolphin SVZ. Since cetaceans evolved from terrestrial ancestors, non-neurogenic SVZ may indicate extinction of adult neurogenesis in the absence of olfactory function, with the retention of an SVZ-like anatomical region either vestigial or of still unknown role.
Collapse
Affiliation(s)
- Roberta Parolisi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Department of Veterinary Sciences, University of Turin, Via Leonardo da Vinci, 44, 10095, Grugliasco, TO, Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy. .,Department of Veterinary Sciences, University of Turin, Via Leonardo da Vinci, 44, 10095, Grugliasco, TO, Italy.
| |
Collapse
|
4
|
Ichishima H. The ethmoid and presphenoid of cetaceans. J Morphol 2016; 277:1661-1674. [DOI: 10.1002/jmor.20615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/27/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Hiroto Ichishima
- Fukui Prefectural Dinosaur Museum; Terao 51-11, Muroko Katsuyama Fukui Japan
| |
Collapse
|
5
|
Bird DJ, Amirkhanian A, Pang B, Van Valkenburgh B. Quantifying the cribriform plate: influences of allometry, function, and phylogeny in Carnivora. Anat Rec (Hoboken) 2015; 297:2080-92. [PMID: 25312366 DOI: 10.1002/ar.23032] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 11/12/2022]
Abstract
The small, perforated bony cup of the anterior cranial fossa called the cribriform plate (CP) is perhaps the best-preserved remnant of olfactory anatomy in fossil mammal skulls. The CP and its myriad foramina record the passage of peripheral olfactory nerves from nasal cavity to olfactory bulb. Previous work has suggested that CP surface area reflects aspects of olfactory capacity (as inferred from habitat and observed behavior) in mammals. To further explore the utility of CP as a proxy for olfactory function, we designed novel, nondestructive digital methods to quantify CP morphology from dry skulls. Using CT scans and 3-D imaging software, we quantified CP features from 42 species of Carnivora, a group that represents a wide spectrum of ecologies and sensory demands. Two metrics, CP surface area (CPSA) and cumulative CP foramina area (FXSA), scaled to skull length with negative allometry, and differed between aquatic and terrestrial species, with the former having reduced areas. Number of foramina (NF) was not correlated with skull length but tended to be greater in caniforms than feliforms. Both CPSA and FXSA are well correlated with ethmoturbinal surface area, a known osteological correlate of olfactory function. This suggests that CPSA and FXSA are useful proxies for olfactory ability, especially when studying fossils or skulls in which turbinals are not preserved. Total area of CP foramina (FXSA), an exacting measure of olfactory nerve endocasts, is tightly correlated with CPSA. Because of this, it may be desirable to use CPSA alone as a proxy given that it is easier to measure than FXSA.
Collapse
Affiliation(s)
- Deborah J Bird
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California
| | | | | | | |
Collapse
|
6
|
Magnetic resonance microscopy of prenatal dolphins (Mammalia, Odontoceti, Delphinidae) – Ontogenetic and phylogenetic implications. ZOOL ANZ 2012. [DOI: 10.1016/j.jcz.2011.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Huggenberger S, Rauschmann MA, Vogl TJ, Oelschläger HH. Functional Morphology of the Nasal Complex in the Harbor Porpoise (Phocoena phocoenaL.). Anat Rec (Hoboken) 2009; 292:902-20. [DOI: 10.1002/ar.20854] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Oelschläger H, Haas-Rioth M, Fung C, Ridgway S, Knauth M. Morphology and Evolutionary Biology of the Dolphin ( Delphinus sp.) Brain – MR Imaging and Conventional Histology. BRAIN, BEHAVIOR AND EVOLUTION 2007; 71:68-86. [DOI: 10.1159/000110495] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 07/05/2007] [Indexed: 11/19/2022]
|
9
|
Abstract
The adaptation of cetaceans to a fully aquatic lifestyle represents one of the most dramatic transformations in mammalian evolutionary history. Two of the most salient features of modern cetaceans are their fully aquatic lifestyle and their large brains. This review article will offer an overview of comparative neuroanatomical research on aquatic mammals, including analyses of odontocete cetacean, sirenian, pinniped, and fossil archaeocete brains. In particular, the question of whether a relationship exists between being fully aquatic and having a large brain is addressed. It has been hypothesized that the large, well-developed cetacean brain is a direct product of adaptation to a fully aquatic lifestyle. The current consensus is that the paleontological evidence on brain size evolution in cetaceans is not consistent with this hypothesis. Cetacean brain enlargement took place millions of years after adaptation to a fully aquatic existence. Neuroanatomical comparisons with sirenians and pinnipeds provide no evidence for the idea that the odontocete's large brain, high encephalization level, and extreme neocortical gyrification is an adaptation to a fully aquatic lifestyle. Although echolocation has been suggested as a reason for the high encephalization level in odontocetes, it should be noted that not all aquatic mammals echolocate and echolocating terrestrial mammals (e.g., bats) are not particularly highly encephalized. Echolocation is not a requirement of a fully aquatic lifestyle and, thus, cannot be considered a sole effect of aquaticism on brain enlargement. These results indicate that the high encephalization level of odontocetes is likely related to their socially complex lifestyle patterns that transcend the influence of an aquatic environment.
Collapse
Affiliation(s)
- Lori Marino
- Neuroscience and Behavioral Biology Program, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
10
|
Rauschmann MA, Huggenberger S, Kossatz LS, Oelschläger HHA. Head morphology in perinatal dolphins: A window into phylogeny and ontogeny. J Morphol 2006; 267:1295-315. [PMID: 17051542 DOI: 10.1002/jmor.10477] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this paper on the ontogenesis and evolutionary biology of odontocete cetaceans (toothed whales), we investigate the head morphology of three perinatal pantropical spotted dolphins (Stenella attenuata) with the following methods: computer-assisted tomography, magnetic resonance imaging, conventional X-ray imaging, cryo-sectioning as well as gross dissection. Comparison of these anatomical methods reveals that for a complete structural analysis, a combination of modern imaging techniques and conventional morphological methods is needed. In addition to the perinatal dolphins, we include series of microslides of fetal odontocetes (S. attenuata, common dolphin Delphinus delphis, narwhal Monodon monoceros). In contrast to other mammals, newborn cetaceans represent an extremely precocial state of development correlated to the fact that they have to swim and surface immediately after birth. Accordingly, the morphology of the perinatal dolphin head is very similar to that of the adult. Comparison with early fetal stages of dolphins shows that the ontogenetic change from the general mammalian bauplan to cetacean organization was characterized by profound morphological transformations of the relevant organ systems and roughly seems to parallel the phylogenetic transition from terrestrial ancestors to modern odontocetes.
Collapse
Affiliation(s)
- Michael A Rauschmann
- Department of Orthopedics (Friedrichsheim Foundation), Johann Wolfgang Goethe-University, 60528 Frankfurt, Germany
| | | | | | | |
Collapse
|
11
|
Marino L, Sudheimer K, Sarko D, Sirpenski G, Johnson JI. Neuroanatomy of the harbor porpoise (Phocoena phocoena) from magnetic resonance images. J Morphol 2003; 257:308-47. [PMID: 12833372 DOI: 10.1002/jmor.10126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cetacean (dolphin, whale, and porpoise) brains are among the least-studied mammalian brains because of the formidability of collecting and histologically preparing such relatively rare and large specimens. Among cetaceans, there exist relatively few studies of the brain of the harbor porpoise (Phocoena phocoena). Magnetic resonance imaging (MRI) offers a means of observing the internal structure of the brain when traditional histological procedures are not practical. Therefore, MRI has become a critical tool in the study of the brain of cetaceans and other large species. This article represents the first MRI-based anatomically labeled three-dimensional description of the harbor porpoise brain. Coronal plane sections of the brain of a young harbor porpoise were originally acquired and used to produce virtual digital scans in the other two orthogonal spatial planes. A sequential set of images in all three planes has been anatomically labeled and displays the proportions and positions of major neuroanatomical features. These images allow for the visualizing of the distinctive features of the harbor porpoise brain from various orientations by preserving the gross morphological structure of the specimen.
Collapse
Affiliation(s)
- Lori Marino
- Neuroscience and Behavioral Biology Program, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
12
|
Marino L, Sudheimer KD, Pabst DA, McLellan WA, Filsoof D, Johnson JI. Neuroanatomy of the common dolphin (Delphinus delphis) as revealed by magnetic resonance imaging (MRI). THE ANATOMICAL RECORD 2002; 268:411-29. [PMID: 12420290 DOI: 10.1002/ar.10181] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, magnetic resonance (MR) images of the brain of an adult common dolphin (Delphinus delphis) were acquired in the coronal plane at 66 antero-posterior levels. From these scans a computer-generated set of resectioned virtual images in orthogonal planes was constructed using the programs VoxelView and VoxelMath (Vital Images, Inc., Michigan State Univ.). Sections in all three planes reveal major neuroanatomical structures. These structures in the adult common dolphin brain are compared with those from a fetal common dolphin brain from a previously published study as well as with MR images of adult brains of other odontocetes. This study, like previous ones, demonstrates the utility of MR imaging (MRI) for comparative neuroanatomical investigations of dolphin brains.
Collapse
Affiliation(s)
- Lori Marino
- Neuroscience and Behavioral Biology Program, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Richardson MK, Oelschläger HHA. Time, pattern, and heterochrony: a study of hyperphalangy in the dolphin embryo flipper. Evol Dev 2002; 4:435-44. [PMID: 12492144 DOI: 10.1046/j.1525-142x.2002.02032.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The forelimb of whales and dolphins is a flipper that shows hyperphalangy (numerous finger bones). Hyperphalangy is also present in marine reptiles, including ichthyosaurs and plesiosaurs. The developmental basis of hyper-phalangy is unclear. Kükenthal suggested that phalanx anlagen split into three pieces during cetacean development, thereby multiplying the ancestral number. Alternatively, Holder suggested that apical ectodermal ridge (AER)-directed limb outgrowth might be prolonged by a timing shift (heterochrony), leading to terminal addition of extra phalanges. We prepared a series of whole mounted and serially sectioned embryonic flipper buds of the spotted dolphin Stenella attenuata. This cetacean shows marked hyperphalangy on digits II and III. We confirm previous reports that the proximodistal laying down of phalanges is prolonged in digits II and III. Histology showed that the apical ectoderm was thickened into a cap. There was a weak ridge-like structure in some embryos. The cap or ridge formed part of a bud-like mass that persisted on digits II and III at stages when it had disappeared from other digits. Thus the dolphin differs from other mammals in showing a second period of limb outgrowth during which localized hyperphalangy develops. New phalanges only formed at the tip of the digits. These findings are consistent with a model in which heterochrony leads to the terminal addition of new phalanges. Our results are more easily reconciled with the progress zone model than one in which the AER is involved in the expansion of a prepattern. We suggest that patterning mechanisms with a temporal component (i.e., the "progress zone" mechanism) are potential targets for heterochrony during limb evolution.
Collapse
Affiliation(s)
- Michael K Richardson
- Institute of Evolutionary and Ecological Sciences, Leiden University, Kaiserstraat 63, 2300 RA Leiden, The Netherlands.
| | | |
Collapse
|
14
|
Marino L, Sudheimer KD, Murphy TL, Davis KK, Pabst DA, McLellan WA, Rilling JK, Johnson JI. Anatomy and three-dimensional reconstructions of the brain of a bottlenose dolphin (Tursiops truncatus) from magnetic resonance images. THE ANATOMICAL RECORD 2001; 264:397-414. [PMID: 11745095 DOI: 10.1002/ar.10018] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cetacean (dolphin, whale, and porpoise) brains are among the least studied mammalian brains because of the formidable challenge of collecting and histologically preparing such relatively rare and large specimens. Magnetic resonance imaging offers a means of observing the internal structure of the brain when traditional histological procedures are not practical. Furthermore, internal structures can be analyzed in their precise anatomic positions, which is difficult to accomplish after the spatial distortions often accompanying histological processing. In this study, images of the brain of an adult bottlenose dolphin, Tursiops truncatus, were scanned in the coronal plane at 148 antero-posterior levels. From these scans a computer-generated three-dimensional model was constructed using the programs VoxelView and VoxelMath (Vital Images, Inc.). This model, wherein details of internal and external morphology are represented in three-dimensional space, was then resectioned in orthogonal planes to produce corresponding series of virtual sections in the horizontal and sagittal planes. Sections in all three planes display the sizes and positions of major neuroanatomical features such as the arrangement of cortical lobes and subcortical structures such as the inferior and superior colliculi, and demonstrate the utility of MRI for neuroanatomical investigations of dolphin brains.
Collapse
Affiliation(s)
- L Marino
- Neuroscience and Behavioral Biology Program, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Marino L, Murphy TL, Deweerd AL, Morris JA, Fobbs AJ, Humblot N, Ridgway SH, Johnson JI. Anatomy and three-dimensional reconstructions of the brain of the white whale (Delphinapterus leucas) from magnetic resonance images. THE ANATOMICAL RECORD 2001; 262:429-39. [PMID: 11275973 DOI: 10.1002/ar.1051] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Magnetic resonance imaging offers a means of observing the internal structure of the brain where traditional procedures of embedding, sectioning, staining, mounting, and microscopic examination of thousands of sections are not practical. Furthermore, internal structures can be analyzed in their precise quantitative spatial interrelationships, which is difficult to accomplish after the spatial distortions often accompanying histological processing. For these reasons, magnetic resonance imaging makes specimens that were traditionally difficult to analyze, more accessible. In the present study, images of the brain of a white whale (Beluga) Delphinapterus leucas were scanned in the coronal plane at 119 antero-posterior levels. From these scans, a computer-generated three-dimensional model was constructed using the programs VoxelView and VoxelMath (Vital Images, Inc.). This model, wherein details of internal and external morphology are represented in three-dimensional space, was then resectioned in orthogonal planes to produce corresponding series of "virtual" sections in the horizontal and sagittal planes. Sections in all three planes display the sizes and positions of such structures as the corpus callosum, internal capsule, cerebral peduncles, cerebral ventricles, certain thalamic nuclear groups, caudate nucleus, ventral striatum, pontine nuclei, cerebellar cortex and white matter, and all cerebral cortical sulci and gyri.
Collapse
Affiliation(s)
- L Marino
- Neuroscience and Behavioral Biology Program, Psychology Building, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The development of the sperm whale brain (Physeter macrocephalus) was investigated in 12 embryos and early fetuses to obtain a better understanding of the morphological and physiological adaptations in this most exotic cetacean concerning locomotion, deep diving, and orientation. In male adult sperm whales, the average absolute brain mass and the relative size of the telencephalic hemisphere are the largest within the mammalia, whereas the ratio of the brain mass to the total body mass is one of the smallest. In the early sperm whale fetus, the rostral part of the olfactory system (olfactory nerves and bulbs) is lost, whereas the nervus terminalis seems to persist. Several components of the limbic system show signs of regression (hippocampus, fornix, mamillary body). In contrast, some components of the auditory system (trapezoid body, inferior colliculus) show marked enlargement in the early fetal period, thereby reflecting their dominant position in the adult. The cerebellum and pons grow slower than in most smaller toothed whales. The pyramidal tract develops poorly (reduction of the limbs), whereas marked growth of the striatum and inferior olive may be related to the animal's locomotion via trunk and tail. In the early fetal period, the trigeminal, vestibulocochlear, and facial nerves are the dominant cranial nerves (besides the vagus nerve). Whereas the number of axons in the vestibulocochlear nerve is high in adult, toothed whales and their diameters are considerable, the trigeminal nerve of the sperm whale may be the thickest of all cranial nerves and has the largest number of axons (innervation of the huge forehead region). A similar situation seems to exist for the facial nerve: It innervates the blowhole musculature that surrounds the very large spermaceti organ and melon (generation and emission of sonar clicks).
Collapse
Affiliation(s)
- H H Oelschläger
- Department of Anatomy, Johann Wolfgang Goethe-University Frankfurt am Main, Federal Republic of Germany.
| | | |
Collapse
|