1
|
Pross A, Metwalli AH, Abellán A, Desfilis E, Medina L. Subpopulations of corticotropin-releasing factor containing neurons and internal circuits in the chicken central extended amygdala. J Comp Neurol 2024; 532:e25569. [PMID: 38104270 DOI: 10.1002/cne.25569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/18/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
In mammals, the central extended amygdala is critical for the regulation of the stress response. This regulation is extremely complex, involving multiple subpopulations of GABAergic neurons and complex networks of internal and external connections. Two neuron subpopulations expressing corticotropin-releasing factor (CRF), located in the central amygdala and the lateral bed nucleus of the stria terminalis (BSTL), play a key role in the long-term component of fear learning and in sustained fear responses akin to anxiety. Very little is known about the regulation of stress by the amygdala in nonmammals, hindering efforts for trying to improve animal welfare. In birds, one of the major problems relates to the high evolutionary divergence of the telencephalon, where the amygdala is located. In the present study, we aimed to investigate the presence of CRF neurons of the central extended amygdala in chicken and the local connections within this region. We found two major subpopulations of CRF cells in BSTL and the medial capsular central amygdala of chicken. Based on multiple labeling of CRF mRNA with different developmental transcription factors, all CRF neurons seem to originate within the telencephalon since they express Foxg1, and there are two subtypes with different embryonic origins that express Islet1 or Pax6. In addition, we demonstrated direct projections from Pax6 cells of the capsular central amygdala to BSTL and the oval central amygdala. We also found projections from Islet1 cells of the oval central amygdala to BSTL, which may constitute an indirect pathway for the regulation of BSTL output cells. Part of these projections may be mediated by CRF cells, in agreement with the expression of CRF receptors in both Ceov and BSTL. Our results show a complex organization of the central extended amygdala in chicken and open new venues for studying how different cells and circuits regulate stress in these animals.
Collapse
Affiliation(s)
- Alessandra Pross
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Alek H Metwalli
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| |
Collapse
|
2
|
Monopoli MR, Guzman DSM, Paul-Murphy J, Beaufrère H, Hawkins MG. Evaluation of Thermal Antinociceptive Effects of Intramuscular Hydromorphone Hydrochloride in Great Horned Owls ( Bubo virginianus). J Avian Med Surg 2023; 37:209-216. [PMID: 37962314 DOI: 10.1647/jams-d-22-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Across the Americas, great horned owls (Bubo virginianus) are often presented to veterinarians for conditions requiring pain management. Although recent studies have evaluated opioid drugs in raptor species, information in Strigiformes is lacking. The objective of this study was to evaluate the analgesic effect and duration of action of hydromorphone hydrochloride, a full µ-opioid receptor agonist, in great horned owls. In a randomized, blinded, balanced crossover study, 6 adult birds (5 females and 1 male) received hydromorphone (0.3 and 0.6 mg/kg) or saline (0.9% NaCl) solution (0.03 mL/kg; control) in the left pectoral muscle, with a 7-day washout interval between treatments. Each bird was assigned an agitation-sedation score, and the thermal foot withdrawal threshold (TFWT) was measured at predetermined times before (t = 0 hours) and after treatment administration (t = 0.5, 1.5, 3, and 6 hours). Measurements of the TFWT were obtained with a test box equipped with a thermal perch, which delivered a gradually increasing temperature 40-62°C (104-143.6°F) to the right plantar surface of the owl's foot. Compared with controls, hydromorphone at 0.3 mg/kg dose resulted in significantly higher mean TFWT at 0.5 hours (P < 0.001), 1.5 hours (P = 0.003), and 3 hours (P = 0.005), whereas the 0.6 mg/kg dose resulted in significantly higher mean TFWT from 0.5 hours (P = 0.035) to 1.5 hours (P = 0.001). Both hydromorphone doses were associated with a significant change in the agitation-sedation score (P = 0.001), consistent with mild to moderate sedation. Two owls were observed tremoring after administration of the 0.6 mg/kg dose, which was not noted after the 0.5-hour timepoint; no other adverse effects were identified. This study offers scientific evidence to support the use of a µ-opioid agonist in great horned owls for pain management. Pharmacokinetics and other pharmacodynamic studies of other pain models evaluating hydromorphone and other opioid drugs in this species are still needed.
Collapse
Affiliation(s)
- Marissa Rae Monopoli
- University of California, Davis, School of Veterinary Medicine, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
3
|
Mikoni NA, Guzman DSM, Paul-Murphy J. Pain Recognition and Assessment in Birds. Vet Clin North Am Exot Anim Pract 2023; 26:65-81. [PMID: 36402489 DOI: 10.1016/j.cvex.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The recognition and assessment of pain in avian species are crucial tools in providing adequate supportive care in clinical, laboratory, zoologic, rehabilitation, and companion animal settings. With birds being a highly diverse class of species, there is still much to be determined regarding how to create specific criteria to recognize and assess pain in these animals. This article provides a clinical review on the physiology of pain in birds, observed behavioral and physiologic alterations with pain, how different sources and degrees of pain can alter behaviors observed, and how this information can be applied in a clinical setting.
Collapse
Affiliation(s)
- Nicole A Mikoni
- William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis School of Veterinary Medicine, 944 Garrod Drive, Davis, CA 95616, USA
| | - David Sanchez-Migallon Guzman
- Department of Medicine and Epidemiology, University of California, Davis School of Veterinary Medicine, Davis, CA 95616, USA.
| | - Joanne Paul-Murphy
- Department of Medicine and Epidemiology, University of California, Davis School of Veterinary Medicine, Davis, CA 95616, USA
| |
Collapse
|
4
|
Marchese GA, Calvo Carrasco D, Pascal M. Multimodal analgesic technique in a peacock (
Pavo cristatus
) anaesthetised for orthopaedic surgery. VETERINARY RECORD CASE REPORTS 2022. [DOI: 10.1002/vrc2.469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Singh UA, Iyengar S. The Role of the Endogenous Opioid System in the Vocal Behavior of Songbirds and Its Possible Role in Vocal Learning. Front Physiol 2022; 13:823152. [PMID: 35273519 PMCID: PMC8902293 DOI: 10.3389/fphys.2022.823152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
The opioid system in the brain is responsible for processing affective states such as pain, pleasure, and reward. It consists of three main receptors, mu- (μ-ORs), delta- (δ-ORs), and kappa- (κ-ORs), and their ligands – the endogenous opioid peptides. Despite their involvement in the reward pathway, and a signaling mechanism operating in synergy with the dopaminergic system, fewer reports focus on the role of these receptors in higher cognitive processes. Whereas research on opioids is predominated by studies on their addictive properties and role in pain pathways, recent studies suggest that these receptors may be involved in learning. Rodents deficient in δ-ORs were poor at recognizing the location of novel objects in their surroundings. Furthermore, in chicken, learning to avoid beads coated with a bitter chemical from those without the coating was modulated by δ-ORs. Similarly, μ-ORs facilitate long term potentiation in hippocampal CA3 neurons in mammals, thereby having a positive impact on spatial learning. Whereas these studies have explored the role of opioid receptors on learning using reward/punishment-based paradigms, the role of these receptors in natural learning processes, such as vocal learning, are yet unexplored. In this review, we explore studies that have established the expression pattern of these receptors in different brain regions of birds, with an emphasis on songbirds which are model systems for vocal learning. We also review the role of opioid receptors in modulating the cognitive processes associated with vocalizations in birds. Finally, we discuss the role of these receptors in regulating the motivation to vocalize, and a possible role in modulating vocal learning.
Collapse
|
6
|
Parishar P, Sehgal N, Iyengar S. The expression of delta opioid receptor mRNA in adult male zebra finches (Taenopygia guttata). PLoS One 2021; 16:e0256599. [PMID: 34464410 PMCID: PMC8407588 DOI: 10.1371/journal.pone.0256599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
The endogenous opioid system is evolutionarily conserved across reptiles, birds and mammals and is known to modulate varied brain functions such as learning, memory, cognition and reward. To date, most of the behavioral and anatomical studies in songbirds have mainly focused on μ-opioid receptors (ORs). Expression patterns of δ-ORs in zebra finches, a well-studied species of songbird have not yet been reported, possibly due to the high sequence similarity amongst different opioid receptors. In the present study, a specific riboprobe against the δ-OR mRNA was used to perform fluorescence in situ hybridization (FISH) on sections from the male zebra finch brain. We found that δ-OR mRNA was expressed in different parts of the pallium, basal ganglia, cerebellum and the hippocampus. Amongst the song control and auditory nuclei, HVC (abbreviation used as a formal name) and NIf (nucleus interfacialis nidopallii) strongly express δ-OR mRNA and stand out from the surrounding nidopallium. Whereas the expression of δ-OR mRNA is moderate in LMAN (lateral magnocellular nucleus of the anterior nidopallium), it is low in the MSt (medial striatum), Area X, DLM (dorsolateral nucleus of the medial thalamus), RA (robust nucleus of the arcopallium) of the song control circuit and Field L, Ov (nucleus ovoidalis) and MLd (nucleus mesencephalicus lateralis, pars dorsalis) of the auditory pathway. Our results suggest that δ-ORs may be involved in modulating singing, song learning as well as spatial learning in zebra finches.
Collapse
Affiliation(s)
- Pooja Parishar
- National Brain Research Centre, Gurugram, Haryana, India
| | - Neha Sehgal
- National Brain Research Centre, Gurugram, Haryana, India
| | - Soumya Iyengar
- National Brain Research Centre, Gurugram, Haryana, India
| |
Collapse
|
7
|
Duvall A, Tully TN, Carpenter JW, KuKanich B, Beaufrère H, Magnin GC. Pilot Study of a Single Dose of Orally Administered Tapentadol Suspension in Hispaniolan Amazon Parrots ( Amazona ventralis). J Avian Med Surg 2021; 35:45-50. [PMID: 33892588 DOI: 10.1647/1082-6742-35.1.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tapentadol is an analgesic agent that acts as both a µ-opioid receptor agonist and a norepinephrine reuptake inhibitor. It is a common therapeutic agent in human medicine for management of acute and chronic pain, and it is currently being investigated for use in veterinary medicine. Tapentadol was evaluated in Hispaniolan Amazon parrots (Amazona ventralis) because there is only 1 other oral opioid-like analgesic agent, tramadol, which has been evaluated in an avian species. The effectiveness of tramadol after administration to a patient involves a complex physiologic metabolism and has been found to have variable pharmacokinetics between species. Because of the lack of active metabolites from tapentadol, less interspecific variation was expected. Seven Hispaniolan Amazon parrots were used to evaluate the pharmacokinetics of tapentadol after a single 30 mg/kg PO administration of a compounded 5 mg/mL tapentadol suspension. Blood samples were collected before (time 0) and 0.25, 0.5, 0.75, 1, 1.5, 3, and 6 hours after administration, following a balanced, incomplete-block design. Plasma tapentadol concentrations were measured by high-pressure liquid chromatography with mass spectrometry. Results revealed detectable plasma concentrations in only 2 of 7 birds (29%), and the bird with the highest plasma levels had a peak concentration (Cmax) of 143 ng/mL and a half-life (T 1/2) of 24.8 minutes. The variable plasma concentrations and short half-life of this drug in Hispaniolan Amazon parrots suggests that this drug would be of limited clinical use in this species; however, it is possible that this drug will be more bioavailable in other avian species.
Collapse
Affiliation(s)
| | - Thomas N Tully
- Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - James W Carpenter
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Butch KuKanich
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Hugues Beaufrère
- Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Geraldine C Magnin
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
8
|
Burns-Cusato M, Rieskamp J, Nagy M, Rana A, Hawkins W, Panting S. A role for endogenous opiates in incubation behavior in ring neck doves (Streptopelia risoria). Behav Brain Res 2020; 399:113052. [PMID: 33279638 DOI: 10.1016/j.bbr.2020.113052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/20/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
Incubation of eggs is a critical component of parental care in avian species. However, we do not fully understand the neuroendocrine mechanisms underlying this vital behavior. While prolactin is clearly involved, it alone cannot explain the fine-tuning of incubation behavior. The present experiments explored the possibility that incubation is reinforced through a hedonic system in which contact with eggs elicited an opiate-mediated reinforcing state. Blockade of opiate receptors with naloxone reduced time ring neck doves (Streptopelia risoria) spent on the nest, possibly by uncoupling the opiate-receptor mediated hedonic experience of contact with eggs from nest-sitting behavior. Likewise, activation of opiate receptors with morphine also reduced time spent on the nest, possibly by activating an opiate-receptor mediated hedonic experience, hence rendering the eliciting behavior (contact with eggs) unnecessary. Taken together, the results suggest that the opiate system may play a previously unrecognized role in facilitating incubation through reinforcement.
Collapse
Affiliation(s)
| | | | - Madeleine Nagy
- Centre College, Department of Behavioral Neuroscience, USA
| | - Arpit Rana
- Centre College, Department of Behavioral Neuroscience, USA
| | | | - Sierra Panting
- Centre College, Department of Behavioral Neuroscience, USA
| |
Collapse
|
9
|
Sanchez-Migallon Guzman D, Knych H, Douglas J, Paul-Murphy JR. Pharmacokinetics of hydromorphone hydrochloride after intramuscular and intravenous administration of a single dose to orange-winged Amazon parrots ( Amazona amazonica). Am J Vet Res 2020; 81:894-898. [PMID: 33107746 DOI: 10.2460/ajvr.81.11.894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the pharmacokinetics of hydromorphone hydrochloride after IM and IV administration to orange-winged Amazon parrots (Amazona amazonica). ANIMALS 8 orange-winged Amazon parrots (4 males and 4 females). PROCEDURES Hydromorphone (1 mg/kg) was administered once IM. Blood samples were collected 5 minutes and 0.5, 1.5, 2, 3, 6, and 9 hours after drug administration. Plasma hydromorphone concentrations were determined with liquid chromatography-tandem mass spectrometry, and pharmacokinetic parameters were calculated with a compartmental model. The experiment was repeated 1 month later with the same dose of hydromorphone administered IV. RESULTS Plasma hydromorphone concentrations were > 1 ng/mL for 6 hours in 8 of 8 and 6 of 7 parrots after IM and IV injection, respectively. After IM administration, mean bioavailability was 97.6%, and mean maximum plasma concentration was 179.1 ng/mL 17 minutes after injection. Mean volume of distribution and plasma drug clearance were 4.24 L/kg and 64.2 mL/min/kg, respectively, after IV administration. Mean elimination half-lives were 1.74 and 1.45 hours after IM and IV administration, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Hydromorphone hydrochloride had high bioavailability and rapid elimination after IM administration, with rapid plasma clearance and a large volume of distribution after IV administration in orange-winged Amazon parrots. Drug elimination half-lives were short. Further pharmacokinetic studies of hydromorphone and its metabolites, including investigation of multiple doses, different routes of administration, and sustained-release formulations, are recommended.
Collapse
|
10
|
Fousse SL, Golsen BM, Sanchez-Migallon Guzman D, Paul-Murphy JR, Stern JA. Varying Expression of Mu and Kappa Opioid Receptors in Cockatiels ( Nymphicus hollandicus) and Domestic Pigeons ( Columba livia domestica). Front Genet 2020; 11:549558. [PMID: 33193624 PMCID: PMC7593685 DOI: 10.3389/fgene.2020.549558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
Avian species have varying analgesic responses to opioid drugs. Some of this variability could be due to extrinsic factors such as administration route or dose. However, intrinsic factors such as gene expression or polymorphic differences in opioid receptors may be important components.
Collapse
Affiliation(s)
- Samantha L Fousse
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States
| | - Bryce M Golsen
- College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - David Sanchez-Migallon Guzman
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States
| | - Joanne R Paul-Murphy
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States
| | - Joshua A Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States
| |
Collapse
|
11
|
Sivalingam M, Ogawa S, Parhar IS. Mapping of Morphine-Induced OPRM1 Gene Expression Pattern in the Adult Zebrafish Brain. Front Neuroanat 2020; 14:5. [PMID: 32153369 PMCID: PMC7044135 DOI: 10.3389/fnana.2020.00005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/29/2020] [Indexed: 11/13/2022] Open
Abstract
Morphine is a potent analgesic opiate commonly used in treating pain, and it is also a substance of abuse and highly addictive. Hence, it is vital to discover the action sites of morphine in the brain to increase its efficacy of treatment. In the present study, we aimed at identifying comprehensive neuroanatomical locations that are sensitive to morphine in the adult zebrafish (Danio rerio). We performed in situ hybridization to localize the mu opioid receptor (oprm1) gene and to map the morphine sensitive brain areas using neuronal PAS domain-containing protein 4a (npas4a), an early gene marker. Real-time PCR was used to detect changes in mRNA levels of oprm1 and npas4a in control and acute morphine treated fish (2 mg/L; 20 min). Intense positive oprm1 signals were seen in the telencephalon, preoptic area, habenula, hypothalamic area and periventricular gray zone of the optic tectum. Acute morphine exposure significantly increased oprm1 and npas4a mRNA levels in the medial zone of dorsal telencephalon (Dm), ventral region of the ventral telencephalon (Vv), preoptic area, and in the hypothalamus but a decrease in oprm1 and npas4a signals in the dorsal habenula. This study provides a detailed map of oprm1 localization in the brain, which includes previously unreported oprm1 in the habenula of teleost. Presence of oprm1 in multiple brain sites implies multiple action targets of morphine and potential brain functions which could include reward, cognitive and negative emotions.
Collapse
Affiliation(s)
- Mageswary Sivalingam
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
12
|
Duhamelle A, Raiwet DL, Langlois I, Fitzgerald G, Silversides DW. Preliminary Findings of Structure and Expression of Opioid Receptor Genes in a Peregrine Falcon ( Falco peregrinus), a Snowy Owl ( Bubo scandiacus), and a Blue-fronted Amazon Parrot ( Amazona aestiva). J Avian Med Surg 2019; 32:173-184. [PMID: 30204017 DOI: 10.1647/2017-270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To further knowledge of the physiology of opioid receptors in birds, the structure and expression of the μ-, δ-, and κ-opioid receptor genes were studied in a peregrine falcon ( Falco peregrinus), a snowy owl ( Bubo scandiacus), and a blue-fronted Amazon parrot ( Amazona aestiva). Tissue samples were obtained from birds that had been euthanatized for poor release prognosis or medical reasons. Samples were taken from the brain (telencephalon, thalamus, pituitary gland, cerebellum, pons, medulla oblongata, mesencephalon), the spinal cord and dorsal root ganglions, and plantar foot skin. Messenger RNA was recovered, and reverse transcription polymerase chain reaction (RT-PCR) was performed to generate complementary DNA (cDNA) sequences. Gene structures were documented by directly comparing cDNA sequences with recently published genomic sequences for the peregrine falcon and the blue-fronted Amazon parrot or by comparisons with genomic sequences of related species for the snowy owl. Structurally, the avian μ-opioid receptor messenger RNA (mRNA) species were complex, displaying differential splicing, alternative stop codons, and multiple polyadenylation signals. In comparison, the structure of the avian κ-receptor mRNA was relatively simple. In contrast to what is seen in humans, the avian δ-receptor mRNA structure was found to be complex, demonstrating novel 3-prime coding and noncoding exons not identified in mammals. The role of the δ-opioid receptor merits further investigation in avian species.
Collapse
|
13
|
|
14
|
Hawkins MG, Pascoe PJ, DiMaio Knych HK, Drazenovich TL, Kass PH, Sanchez-Migallon Guzman D. Effects of three fentanyl plasma concentrations on the minimum alveolar concentration of isoflurane in Hispaniolan Amazon parrots (Amazona ventralis). Am J Vet Res 2018; 79:600-605. [DOI: 10.2460/ajvr.79.6.600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Douglas JM, Sanchez-Migallon Guzman D, Paul-Murphy JR. Pain in Birds: The Anatomical and Physiological Basis. Vet Clin North Am Exot Anim Pract 2018; 21:17-31. [PMID: 29146030 DOI: 10.1016/j.cvex.2017.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This article reviews the current understanding of the anatomy and physiology of pain in birds, with consideration of some of its differences from mammalian pain. From transduction to transmission, modulation, projection, and perception, birds possess the neurologic components necessary to respond to painful stimuli and they likely perceive pain in a manner similar to mammals. This article also describes the current understating of opioid receptors, inflammatory mediators, and additional factors in the modulation of pain in avian species.
Collapse
Affiliation(s)
- Jamie M Douglas
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, 1 Garrod Drive, Davis, CA 95616, USA
| | - David Sanchez-Migallon Guzman
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, 1 Garrod Drive, Davis, CA 95616, USA
| | - Joanne R Paul-Murphy
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, 1 Garrod Drive, Davis, CA 95616, USA.
| |
Collapse
|
16
|
|
17
|
Bruce LL, Erichsen JT, Reiner A. Neurochemical compartmentalization within the pigeon basal ganglia. J Chem Neuroanat 2016; 78:65-86. [PMID: 27562515 DOI: 10.1016/j.jchemneu.2016.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 01/20/2023]
Abstract
The goals of this study were to use multiple informative markers to define and characterize the neurochemically distinct compartments of the pigeon basal ganglia, especially striatum and accumbens. To this end, we used antibodies against 12 different neuropeptides, calcium-binding proteins or neurotransmitter-related enzymes that are enriched in the basal ganglia. Our results clarify boundaries between previously described basal ganglia subdivisions in birds, and reveal considerable novel heterogeneity within these previously described subdivisions. Sixteen regions were identified that each displayed a unique neurochemical organization. Four compartments were identified within the dorsal striatal region. The neurochemical characteristics support previous comparisons to part of the central extended amygdala, somatomotor striatum, and associational striatum of mammals, respectively. The medialmost part of the medial striatum, however, has several unique features, including prominent pallidal-like woolly fibers and thus may be a region unique to birds. Four neurochemically distinct regions were identified within the pigeon ventral striatum: the accumbens, paratubercular striatum, ventrocaudal striatum, and the ventral area of the lateral part of the medial striatum that is located adjacent to these regions. The pigeon accumbens is neurochemically similar to the mammalian rostral accumbens. The pigeon paratubercular and ventrocaudal striatal regions are similar to the mammalian accumbens shell. The ventral portions of the medial and lateral parts of the medial striatum, which are located adjacent to accumbens shell-like areas, have neurochemical characteristics as well as previously reported limbic connections that are comparable to the accumbens core. Comparisons to neurochemically identified compartments in reptiles, mammals, and amphibians indicate that, although most of the basic compartments of the basal ganglia were highly conserved during tetrapod evolution, uniquely avian compartments may exist as well.
Collapse
Affiliation(s)
- Laura L Bruce
- Department of Biomedical Sciences, Creighton University, Omaha NE, 68178, USA.
| | | | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
18
|
The Conservative Evolution of the Vertebrate Basal Ganglia. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-12-802206-1.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Puelles L, Ayad A, Alonso A, Sandoval J, MartÍnez-de-la-Torre M, Medina L, Ferran J. Selective early expression of the orphan nuclear receptorNr4a2identifies the claustrum homolog in the avian mesopallium: Impact on sauropsidian/mammalian pallium comparisons. J Comp Neurol 2015; 524:665-703. [DOI: 10.1002/cne.23902] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/17/2022]
Affiliation(s)
- L. Puelles
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| | - A. Ayad
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| | - A. Alonso
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| | - J.E. Sandoval
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| | - M. MartÍnez-de-la-Torre
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| | - L. Medina
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine; University of Lleida, and IRBLleida Institute of Biomedical Research of Lleida; Lleida 25198 Spain
| | - J.L. Ferran
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| |
Collapse
|
20
|
Clancy MM, KuKanich B, Sykes IV JM. Pharmacokinetics of butorphanol delivered with an osmotic pump during a seven-day period in common peafowl (Pavo cristatus). Am J Vet Res 2015; 76:1070-6. [DOI: 10.2460/ajvr.76.12.1070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Selvam R, Jurkevich A, Kuenzel WJ. Distribution of the vasotocin type 4 receptor throughout the brain of the chicken,Gallus gallus. J Comp Neurol 2014; 523:335-58. [DOI: 10.1002/cne.23684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/21/2014] [Accepted: 09/23/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Rajamani Selvam
- Center of Excellence for Poultry Science; University of Arkansas; Fayetteville Arkansas 72701
| | - Alexander Jurkevich
- Molecular Cytology Research Core Facility; University of Missouri; Columbia Missouri 65211
| | - Wayne J. Kuenzel
- Center of Excellence for Poultry Science; University of Arkansas; Fayetteville Arkansas 72701
| |
Collapse
|
22
|
Ceulemans SM, Guzman DSM, Olsen GH, Beaufrère H, Paul-Murphy JR. Evaluation of thermal antinociceptive effects after intramuscular administration of buprenorphine hydrochloride to American kestrels (Falco sparverius). Am J Vet Res 2014; 75:705-10. [PMID: 25061700 DOI: 10.2460/ajvr.75.8.705] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the thermal antinociceptive effects and duration of action of buprenorphine hydrochloride after IM administration to American kestrels (Falco sparverius). ANIMALS 12 healthy 3-year-old American kestrels. PROCEDURES Buprenorphine hydrochloride (0.1, 0.3, and 0.6 mg/kg) and a control treatment (saline [0.9% NaCl] solution) were administered IM in a randomized crossover experimental design. Foot withdrawal response to a thermal stimulus was determined 1 hour before (baseline) and 1.5, 3, and 6 hours after treatment administration. Agitation-sedation scores were determined 3 to 5 minutes before each thermal stimulus. Adverse effects were monitored for 6 hours after treatment administration. RESULTS Buprenorphine hydrochloride at 0.1, 0.3, and 0.6 mg/kg, IM, increased thermal threshold for 6 hours, compared with the response for the control treatment. There were no significant differences among buprenorphine treatments. A mild sedative effect was detected at a dose of 0.6 mg of buprenorphine/kg. CONCLUSION AND CLINICAL RELEVANCE At the doses tested, buprenorphine hydrochloride resulted in thermal antinociception in American kestrels for at least 6 hours, which suggested that buprenorphine has analgesic effects in this species. Further studies with longer evaluation periods and additional forms of noxious stimuli, formulations, dosages, and routes of administration are needed to fully evaluate the analgesic effects of buprenorphine in American kestrels.
Collapse
Affiliation(s)
- Susanne M Ceulemans
- Department of Companion Animal Medicine, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Farries MA. How 'basal' are the basal ganglia? BRAIN, BEHAVIOR AND EVOLUTION 2014; 82:211-4. [PMID: 24335184 DOI: 10.1159/000356101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022]
|
24
|
Chitty J. Exotic pets - are we serving them well? J Small Anim Pract 2014; 55:485-6. [PMID: 25274279 DOI: 10.1111/jsap.12276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Guzman DSM, Drazenovich TL, Olsen GH, Willits NH, Paul-Murphy JR. Evaluation of thermal antinociceptive effects after oral administration of tramadol hydrochloride to American kestrels (Falco sparverius). Am J Vet Res 2014; 75:117-23. [PMID: 24471747 DOI: 10.2460/ajvr.75.2.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the thermal antinociceptive and sedative effects and duration of action of tramadol hydrochloride after oral administration to American kestrels (Falco sparverius). ANIMALS 12 healthy 3-year-old American kestrels. PROCEDURES Tramadol (5, 15, and 30 mg/kg) and a control suspension were administered orally in a masked randomized crossover experimental design. Foot withdrawal response to a thermal stimulus was determined 1 hour before (baseline) and 0.5, 1.5, 3, 6, and 9 hours after treatment. Agitation-sedation scores were determined 3 to 5 minutes before each thermal stimulus test. RESULTS The lowest dose of tramadol evaluated (5 mg/kg) significantly increased the thermal foot withdrawal thresholds for up to 1.5 hours after administration, compared with control treatment values, and for up to 9 hours after administration, compared with baseline values. Tramadol at doses of 15 and 30 mg/kg significantly increased thermal thresholds at 0.5 hours after administration, compared with control treatment values, and up to 3 hours after administration, compared with baseline values. No significant differences in agitation-sedation scores were detected between tramadol and control treatments. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated oral administration of 5 mg of tramadol/kg significantly increased thermal nociception thresholds for kestrels for 1.5 hours, compared with a control treatment, and 9 hours, compared with baseline values; higher doses resulted in less pronounced antinociceptive effects. Additional studies with other types of stimulation, formulations, dosages, routes of administration, and testing times would be needed to fully evaluate the analgesic and adverse effects of tramadol in kestrels and other avian species.
Collapse
|
26
|
Vicario A, Abellán A, Desfilis E, Medina L. Genetic identification of the central nucleus and other components of the central extended amygdala in chicken during development. Front Neuroanat 2014; 8:90. [PMID: 25309337 PMCID: PMC4159986 DOI: 10.3389/fnana.2014.00090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/19/2014] [Indexed: 01/11/2023] Open
Abstract
In mammals, the central extended amygdala shows a highly complex organization, and is essential for animal survival due to its implication in fear responses. However, many aspects of its evolution are still unknown, and this structure is especially poorly understood in birds. The aim of this study was to define the central extended amygdala in chicken, by means of a battery of region-specific transcription factors (Pax6, Islet1, Nkx2.1) and phenotypic markers that characterize these different subdivisions in mammals. Our results allowed the identification of at least six distinct subdivisions in the lateral part of the avian central extended amygdala: (1) capsular central subdivision; (2) a group of intercalated-like cell patches; (3) oval central nucleus; (4) peri-intrapeduncular (peri-INP) island field; (5) perioval zone; and (6) a rostral part of the subpallial extended amygdala. In addition, we identified three subdivisions of the laterodorsal bed nucleus of the stria terminalis (BSTLd) belonging to the medial region of the chicken central extended amygdala complex. Based on their genetic profile, cellular composition and apparent embryonic origin of the cells, we discuss the similarity of these different subdivisions of chicken with different parts of the mouse central amygdala and surrounding cell masses, including the intercalated amygdalar masses and the sublenticular part of the central extended amygdala. Most of the subdivisions include various subpopulations of cells that apparently originate in the dorsal striatal, ventral striatal, pallidal, and preoptic embryonic domains, reaching their final location by either radial or tangential migrations. Similarly to mammals, the central amygdala and BSTLd of chicken project to the hypothalamus, and include different neurons expressing proenkephalin, corticotropin-releasing factor, somatostatin or tyrosine hydroxylase, which may be involved in the control of different aspects of fear/anxiety-related behavior.
Collapse
Affiliation(s)
- Alba Vicario
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| |
Collapse
|
27
|
Guzman DSM, Drazenovich TL, KuKanich B, Olsen GH, Willits NH, Paul-Murphy JR. Evaluation of thermal antinociceptive effects and pharmacokinetics after intramuscular administration of butorphanol tartrate to American kestrels (Falco sparverius). Am J Vet Res 2014; 75:11-8. [PMID: 24370240 DOI: 10.2460/ajvr.75.1.11] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate antinociceptive effects and pharmacokinetics of butorphanol tartrate after IM administration to American kestrels (Falco sparverius). ANIMALS Fifteen 2- to 3-year-old American kestrels (6 males and 9 females). PROCEDURES Butorphanol (1, 3, and 6 mg/kg) and saline (0.9% NaCl) solution were administered IM to birds in a crossover experimental design. Agitation-sedation scores and foot withdrawal response to a thermal stimulus were determined 30 to 60 minutes before (baseline) and 0.5, 1.5, 3, and 6 hours after treatment. For the pharmacokinetic analysis, butorphanol (6 mg/kg, IM) was administered in the pectoral muscles of each of 12 birds. RESULTS In male kestrels, butorphanol did not significantly increase thermal thresholds for foot withdrawal, compared with results for saline solution administration. However, at 1.5 hours after administration of 6 mg of butorphanol/kg, the thermal threshold was significantly decreased, compared with the baseline value. Foot withdrawal threshold for female kestrels after butorphanol administration did not differ significantly from that after saline solution administration. However, compared with the baseline value, withdrawal threshold was significantly increased for 1 mg/kg at 0.5 and 6 hours, 3 mg/kg at 6 hours, and 6 mg/kg at 3 hours. There were no significant differences in mean sedation-agitation scores, except for males at 1.5 hours after administration of 6 mg/kg. CONCLUSION AND CLINICAL RELEVANCE Butorphanol did not cause thermal antinociception suggestive of analgesia in American kestrels. Sex-dependent responses were identified. Further studies are needed to evaluate the analgesic effects of butorphanol in raptors.
Collapse
Affiliation(s)
- David Sanchez-Migallon Guzman
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616
| | | | | | | | | | | |
Collapse
|
28
|
Guzman DSM, KuKanich B, Drazenovich TL, Olsen GH, Paul-Murphy JR. Pharmacokinetics of hydromorphone hydrochloride after intravenous and intramuscular administration of a single dose to American kestrels (Falco sparverius). Am J Vet Res 2014; 75:527-31. [DOI: 10.2460/ajvr.75.6.527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Pharmacokinetics of tramadol and its primary metabolite O-desmethyltramadol in African penguins (Spheniscus demersus). J Zoo Wildl Med 2014; 45:93-9. [PMID: 24712167 DOI: 10.1638/2013-0190r.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Analgesia is an important part of veterinary medicine, but until recently there have been limited studies on analgesic drugs in avian species. Tramadol represents an orally administered opioid drug that has shown analgesic potential in numerous species, including mammals, birds, and reptiles. The objective of this study was to determine the pharmacokinetic parameters of tramadol and its primary metabolite, O-desmethyltramadol (M1), after oral administration of tramadol hydrochloride (HCl) in African penguins (Spheniscus demersus). A dose of 10 mg/kg of tramadol HCl was administered orally to 15 birds, and blood was collected at various time points from 0 to 36 hr. Tramadol and M1 concentrations were determined and were consistent with therapeutic concentrations in humans through 12 hr in 9/15 birds for tramadol and 36 hr in 14/15 birds for M1. Based on these findings and a comparison with other avian studies, an oral dose of 10 mg/kg of tramadol once daily appears to be a promising analgesic option for African penguins.
Collapse
|
30
|
Geelen S, Guzman DSM, Souza MJ, Cox S, Keuler NS, Paul-Murphy JR. Antinociceptive effects of tramadol hydrochloride after intravenous administration to Hispaniolan Amazon parrots (Amazona ventralis). Am J Vet Res 2013; 74:201-6. [DOI: 10.2460/ajvr.74.2.201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Stevenson TJ, Calabrese MD, Ball GF. Variation in enkephalin immunoreactivity in the social behavior network and song control system of male European starlings (Sturnus vulgaris) is dependent on breeding state and gonadal condition. J Chem Neuroanat 2012; 43:87-95. [DOI: 10.1016/j.jchemneu.2011.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/12/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
|
32
|
Souza MJ, Martin-Jimenez T, Jones MP, Cox SK. Pharmacokinetics of oral tramadol in red-tailed hawks (Buteo jamaicensis). J Vet Pharmacol Ther 2011; 34:86-8. [PMID: 21219350 DOI: 10.1111/j.1365-2885.2010.01211.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- M J Souza
- Department of Comparative Medicine, University of Tennessee, College of Veterinary Medicine, Knoxville, TN 37996,USA.
| | | | | | | |
Collapse
|
33
|
Singh PM, Johnson C, Gartrell B, Mitchinson S, Chambers P. Pharmacokinetics of butorphanol in broiler chickens. Vet Rec 2011; 168:588. [PMID: 21628341 DOI: 10.1136/vr.d1191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Butorphanol tartrate (2 mg/kg) was injected intravenously in 18 healthy broiler chickens to study its pharmacokinetics. Plasma samples were analysed by a highly sensitive high-performance liquid chromatography with diode-array detection method and pharmacokinetic parameters were calculated from the mean pooled data. With non-compartmental analysis, the terminal half-life (T(1/2.z)) was 71.3 minutes, clearance was 67.6 ml/minute/kg and the apparent volume of distribution was 6.9 l/kg. The concentration-time curve was also fitted to a two-compartmental model. In this analysis, elimination half-life (T(1/2β)) was 69.3 minutes, clearance was 74.6 ml/minute/kg and volume of distribution at steady state was 5.6 l/kg. The micro rate constants k(21), k(12) and k(10) were 0.034, 0.050 and 0.029, respectively. Butorphanol was well distributed in the chickens with rapid clearance. It remained above the minimum effective concentration for analgesia in mammals for approximately two hours in the chickens.
Collapse
Affiliation(s)
- P M Singh
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Numerous analgesics are available for use in animals, but only a few have been used or studied in zoologic species. Tramadol is a relatively new analgesic that is available in an inexpensive, oral form, and is not controlled. Studies examining the effect of tramadol in zoologic species suggest that significant differences exist in pharmacokinetics parameters as well as analgesic dynamics. This article reviews the current literature on the use of tramadol in humans, domestic animals, and zoologic species.
Collapse
Affiliation(s)
- Marcy J Souza
- Department of Comparative Medicine, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA.
| | | |
Collapse
|
35
|
Khurshid N, Hameed LS, Mohanasundaram S, Iyengar S. Opioid modulation of cell proliferation in the ventricular zone of adult zebra finches (Taenopygia guttata). FASEB J 2010; 24:3681-95. [PMID: 20495180 DOI: 10.1096/fj.09-146746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Besides modulating pain, stress, physiological functions, motivation, and reward, the opioid system has been implicated in developmental and adult mammalian neurogenesis and gliogenesis. In adult male songbirds including zebra finches, neurons generated from the ventricular zone (VZ) of the lateral ventricles are incorporated throughout the telencephalon, including the song control nuclei, HVC, and area X. Although the endogenous opioid met-enkephalin is present in neurons adjacent to the VZ and is upregulated in song control regions during singing, it is not known whether the opioid system can modulate adult neurogenesis/gliogenesis in zebra finches. We used quantitative RT-PCR and in situ hybridization to demonstrate that μ- and δ-opioid receptors are expressed by the VZ of adult male zebra finches. Treating cultured VZ cells from male birds with the opioid antagonist naloxone led to an increase in cell proliferation measured by 5-bromo-2-deoxyuridine incorporation, whereas administering met-enkephalin had the opposite effect, compared with saline-treated cultures. Systemically administering naloxone (2.5 mg/kg body wt) to adult male zebra finches for 4 d also led to a significant increase in cell proliferation in the ventral VZ of these birds, compared with saline-treated controls. Our results show that cell proliferation is augmented by naloxone in the VZ adjacent to the anterior commissure, suggesting that the endogenous opioids modulate adult neurogenesis/gliogenesis by inhibiting cell proliferation in songbirds.
Collapse
Affiliation(s)
- Nazia Khurshid
- Division of Systems Neuroscience, National Brain Research Centre, Manesar, India
| | | | | | | |
Collapse
|
36
|
Souza MJ, Martin-Jimenez T, Jones MP, Cox SK. Pharmacokinetics of intravenous and oral tramadol in the bald eagle (Haliaeetus leucocephalus). J Avian Med Surg 2010; 23:247-52. [PMID: 20235455 DOI: 10.1647/1082-6742-23.4.247] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Analgesia is becoming increasingly important in veterinary medicine, and little research has been performed that examined pain control in avian species. Tramadol is a relatively new drug that provides analgesia by opioid (mu), serotonin, and norepinephrine pathways, with minimal adverse effects. To determine the pharmacokinetics of tramadol and its major metabolite O-desmethyltramadol (M1) in eagles, 6 bald eagles (Haliaeetus leucocephalus) were each dosed with tramadol administered intravenously (4 mg/kg) and orally (11 mg/kg) in a crossover study. Blood was collected at various time points between 0 and 600 minutes and then analyzed with high-performance liquid chromatography to determine levels of tramadol and M1, the predominate active metabolite. The terminal half-life of tramadol after intravenous dosing was 2.46 hours. The maximum plasma concentration, time of maximum plasma concentration, and terminal half life for tramadol after oral dosing were 2156.7 ng/ml, 3.75 hours, and 3.14 hours, respec vely. In addition, the oral bioavailability was 97.9%. Although plasma concentrations of ramadol and M1 associated with analgesia in any avian species is unknown, based on the obtained data and known therapeutic levels in humans, a dosage of 5 mg/kg PO q12h is recommended for bald eagles. Pharmacodynamic studies are needed to better determine plasma levels of tramadol and M1 associated with analgesia in birds.
Collapse
Affiliation(s)
- Marcy J Souza
- Department of Comparative Medicine, University of Tennessee, College of Veterinary Medicine, 2407 River Dr., Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
37
|
|
38
|
Sladky KK, Kinney ME, Johnson SM. Effects of opioid receptor activation on thermal antinociception in red-eared slider turtles (Trachemys scripta). Am J Vet Res 2010; 70:1072-8. [PMID: 19719421 DOI: 10.2460/ajvr.70.9.1072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the effects of mu-, delta-, and kappa-opioid receptor (MOR, DOR, and KOR, respectively) activation on thermal antinociception in red-eared slider turtles Trachemys scripta. ANIMALS 51 adult turtles. PROCEDURES Infrared heat stimuli were applied to the plantar surface of turtle hind limbs. Thermal hind limb withdrawal latencies (HLWLs) were measured before (baseline) and at intervals after SC administration of various doses of saline (0.9% NaCl) solution (SS), MOR, DOR, or KOR agonists (3 to 13 turtles/treatment). Treatment with a DOR antagonist SC prior to DOR agonist administration was also evaluated. RESULTS Treatment with an MOR agonist ([D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin acetate salt [DAMGO; 1.3 or 6.6 mg/kg]) increased HLWLs (from baseline) at 2 to 8 hours after injection; at the higher dose, the maximum mean increase was 5.6 seconds at 4 hours. Treatment with a DOR agonist ([D-Ala(2), D-Leu(5)]-enkephalin acetate salt [DADLE; 25 mg/kg]) increased mean HLWL by 11.3 seconds at 4 hours; however, treatment with DADLE (5.8 mg/kg) or with another DOR agonist ([D-Pen(2),(5)]-enkephalin hydrate [DPDPE; 1.2 or 6.3 mg/kg]) did not alter HLWL, compared with SS effects. Administration of a DOR antagonist (naltrindole hydrochloride; 10 mg/kg) prior to DADLE administration (25 mg/kg) increased mean HLWL by 2.7 seconds at 4 hours. One KOR agonist, U50488 ([-]-trans-[1S,2S]-U50488 hydrochloride hydrate; 6.7 mg/kg) decreased HLWL steadily from 2 to 24 hours (less than baseline value); another KOR agonist, U69593 ([+]-[5alpha,7alpha,8beta]-N-Methyl-N-[7-{1-pyrrolidinyl}-1-oxaspiro{4.5}dec-8-yl]-benzene-acet-amide; 6.7 or 26 mg/kg) did not alter HLWLs, compared with SS effects. CONCLUSIONS AND CLINICAL RELEVANCE Opioid-dependent thermal antinociception in turtles appeared to be attributable mainly to MOR activation with a relatively minor contribution of DOR activation.
Collapse
Affiliation(s)
- Kurt K Sladky
- Department of Surgical Sciences, Center for Global Health, School of Veterinary Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
39
|
Reiner A. The Conservative Evolution of the Vertebrate Basal Ganglia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/b978-0-12-374767-9.00002-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Expression of μ- and δ-opioid receptors in song control regions of adult male zebra finches (Taenopygia guttata). J Chem Neuroanat 2009; 37:158-69. [DOI: 10.1016/j.jchemneu.2008.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 12/03/2008] [Accepted: 12/03/2008] [Indexed: 11/20/2022]
|
41
|
Riters LV. Evidence for opioid involvement in the motivation to sing. J Chem Neuroanat 2009; 39:141-50. [PMID: 19995531 DOI: 10.1016/j.jchemneu.2009.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/25/2009] [Accepted: 03/27/2009] [Indexed: 11/17/2022]
Abstract
Songbirds produce high rates of song within multiple social contexts, suggesting that they are highly motivated to sing and that song production itself may be rewarding. Progress has been made in understanding the neural basis of song learning and sensorimotor processing, however little is known about neurobiological mechanisms regulating the motivation to sing. Neural systems involved in motivation and reward have been conserved across species and in songbirds are neuroanatomically well-positioned to influence the song control system. Opioid neuropeptides within these systems play a primary role in hedonic reward, at least in mammals. In songbirds, opioid neuropeptides and receptors are found throughout the song control system and within several brain regions implicated in both motivation and reward, including the medial preoptic nucleus (POM) and ventral tegmental area (VTA). Growing research shows these regions to play a role in birdsong that differs depending upon whether song is sexually motivated in response to a female, used for territorial defense or sung as part of a flock but not directed towards an individual (undirected song). Opioid pharmacological manipulations and immunocytochemical data demonstrate a role for opioid activity possibly within VTA and POM in the regulation of song production. Although future research is needed, data suggest that opioids may be most critically involved in reinforcing song that does not result in any obvious form of immediate externally mediated reinforcement, such as undirected song produced in large flocks or during song learning. Data are reviewed supporting the idea that dopamine activity underlies the motivation or drive to sing, but that opioid release is what makes song production rewarding.
Collapse
Affiliation(s)
- Lauren V Riters
- Department of Zoology, 361 Birge Hall, 430 Lincoln Avenue, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
42
|
Person AL, Gale SD, Farries MA, Perkel DJ. Organization of the songbird basal ganglia, including area X. J Comp Neurol 2008; 508:840-66. [PMID: 18398825 DOI: 10.1002/cne.21699] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Area X is a songbird basal ganglia nucleus that is required for vocal learning. Both Area X and its immediate surround, the medial striatum (MSt), contain cells displaying either striatal or pallidal characteristics. We used pathway-tracing techniques to compare directly the targets of Area X and MSt with those of the lateral striatum (LSt) and globus pallidus (GP). We found that the zebra finch LSt projects to the GP, substantia nigra pars reticulata (SNr) and pars compacta (SNc), but not the thalamus. The GP is reciprocally connected with the subthalamic nucleus (STN) and projects to the SNr and motor thalamus analog, the ventral intermediate area (VIA). In contrast to the LSt, Area X and surrounding MSt project to the ventral pallidum (VP) and dorsal thalamus via pallidal-like neurons. A dorsal strip of the MSt contains spiny neurons that project to the VP. The MSt, but not Area X, projects to the ventral tegmental area (VTA) and SNc, but neither MSt nor Area X projects to the SNr. Largely distinct populations of SNc and VTA dopaminergic neurons innervate Area X and surrounding the MSt. Finally, we provide evidence consistent with an indirect pathway from the cerebellum to the basal ganglia, including Area X. Area X projections thus differ from those of the GP and LSt, but are similar to those of the MSt. These data clarify the relationships among different portions of the oscine basal ganglia as well as among the basal ganglia of birds and mammals.
Collapse
Affiliation(s)
- Abigail L Person
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
43
|
Ottinger MA, Corbitt C, Hoffman R, Thompson N, Russek-Cohen E, Deviche P. Reproductive aging in Japanese quail, Coturnix japonica is associated with changes in central opioid receptors. Brain Res 2006; 1126:167-75. [PMID: 17045975 DOI: 10.1016/j.brainres.2006.08.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Revised: 08/28/2006] [Accepted: 08/29/2006] [Indexed: 11/28/2022]
Abstract
Quantitative in vitro autoradiography was used to measure specific mu and delta opioid receptor densities in regions of the Japanese quail, Coturnix japonica, brain that regulates reproductive endocrine and behavioral responses to determine the possible involvement of the opioid system in reproductive decline seen during aging. Densities were measured in selected brain regions of young sexually active (YAM), young photoregressed (YPM), old reproductively senescent (OIM) male, young active (YF), and old senescent female (OF) Japanese quail. Medial and lateral septum (SM, SL), medial preoptic area (POM), and n. intercollicularis (ICo) were of particular interest for reproductive responses. Similar to previous observations, mu and delta opioid receptors showed differential distributions in the areas measured. Some age-related changes were observed, with lower SM mu receptor densities in aged males (OIM) than females or young males (YAM). Densities of mu receptors in the POM and in other areas examined did not vary with sex or age. Similarly, OIM males had lower densities of delta receptors in the SM than young males (YAM and YPM); POM delta receptor densities were also low in OIM males compared to the YPM males, and YAM males were intermediate. Interestingly, photoregressed males (YPM) had higher SL delta receptor densities than any other group. Thus there were age-related differences detected in mu receptor densities among groups in the SM of OIM relative to other groups; and the mu and delta receptor densities did not differ in females with brain region. Additionally for delta receptors specifically, YF and OF did not differ from OIM for any brain region and similarly had lower densities of delta receptors compared to YAM males. These data provide support for regional differences in opioid receptor distribution and for age- and sex-related differences in delta opioid receptor densities. The direction of change presents an interesting dichotomy in that, compared to young active males, delta opioid receptor densities increased with loss of reproductive function in the YPM, whereas receptor densities decreased in the OIM. Plasma androgen levels were relatively low in both these groups compared to the young active males. This observation suggests that there is an age-related loss in the ability of this receptor system to respond to circulating and centrally produced steroid hormones in the POM and in some septal regions, compared to young animals that are responding to environmental cues. Furthermore, these data support an active role of the opioid peptide system in the inhibition of the reproductive axis in photoregression.
Collapse
Affiliation(s)
- M A Ottinger
- Dept. of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Suárez J, Dávila JC, Real MA, Guirado S, Medina L. Calcium-binding proteins, neuronal nitric oxide synthase, and GABA help to distinguish different pallial areas in the developing and adult chicken. I. Hippocampal formation and hyperpallium. J Comp Neurol 2006; 497:751-71. [PMID: 16786551 DOI: 10.1002/cne.21004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To better understand the formation and adult organization of the avian pallium, we studied the expression patterns of gamma-aminobutyric acid (GABA), calbindin (CB), calretinin (CR), and neuronal nitric oxide synthase (nNOS) in the hippocampal formation and hyperpallium of developing and adult chicks. Each marker showed a specific spatiotemporal expression pattern and was expressed in a region (area)-specific but dynamic manner during development. The combinatorial expression of these markers was very useful for identifying and following the development of subdivisions of the chicken hippocampal formation and hyperpallium. In the hyperpallium, three separate radially arranged subdivisions were present since early development showing distinct expression patterns: the apical hyperpallium (CB-rich); the intercalated hyperpallium (nNOS-rich, CB-poor); the dorsal hyperpallium (nNOS-poor, CB-moderate). Furthermore, a novel division was identified (CB-rich, CR-rich), interposed between hyper- and mesopallium and related to the lamina separating both, termed laminar pallial nucleus. This gave rise at its surface to part of the lateral hyperpallium. Later in development, the interstitial nucleus of the apical hyperpallium became visible as a partition of the apical hyperpallium. In the hippocampal formation, at least five radial divisions were observed, and these were compared with the divisions proposed recently in adult pigeons. Of note, the corticoid dorsolateral area (sometimes referred as caudolateral part of the parahippocampal area) contained CB immunoreactivity patches coinciding with Nissl-stained cell aggregates, partially resembling the patches described in the mammalian entorhinal cortex. Each neurochemical marker was present in specific neuronal subpopulations and axonal networks, providing insights into the functional maturation of the chicken pallium.
Collapse
Affiliation(s)
- Juan Suárez
- Department of Cell Biology, Genetics, and Physiology, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Giolli RA, Blanks RHI, Lui F. The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. PROGRESS IN BRAIN RESEARCH 2006; 151:407-40. [PMID: 16221596 DOI: 10.1016/s0079-6123(05)51013-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accessory optic system (AOS) is formed by a series of terminal nuclei receiving direct visual information from the retina via one or more accessory optic tracts. In addition to the retinal input, derived from ganglion cells that characteristically have large receptive fields, are direction-selective, and have a preference for slow moving stimuli, there are now well-characterized afferent connections with a key pretectal nucleus (nucleus of the optic tract) and the ventral lateral geniculate nucleus. The efferent connections of the AOS are robust, targeting brainstem and other structures in support of visual-oculomotor events such as optokinetic nystagmus and visual-vestibular interaction. This chapter reviews the newer experimental findings while including older data concerning the structural and functional organization of the AOS. We then consider the ontogeny and phylogeny of the AOS and include a discussion of similarities and differences in the anatomical organization of the AOS in nonmammalian and mammalian species. This is followed by sections dealing with retinal and cerebral cortical afferents to the AOS nuclei, interneuronal connections of AOS neurons, and the efferents of the AOS nuclei. We conclude with a section on Functional Considerations dealing with the issues of the response properties of AOS neurons, lesion and metabolic studies, and the AOS and spatial cognition.
Collapse
Affiliation(s)
- Roland A Giolli
- Department of Anatomy and Neurobiology, University of California, College of Medicine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
47
|
Riters LV, Schroeder MB, Auger CJ, Eens M, Pinxten R, Ball GF. Evidence for opioid involvement in the regulation of song production in male European starlings (Sturnus vulgaris). Behav Neurosci 2005; 119:245-55. [PMID: 15727529 DOI: 10.1037/0735-7044.119.1.245] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many social animals vocalize at high rates, suggesting that vocal communication is highly motivated and rewarding. In songbirds, much is known about the neural control of vocal behavior; however, little is known about neurobiological mechanisms regulating the motivation to communicate. This study examined a possible role for opioid neuropeptides in motivation and reward associated with song production in male European starlings (Sturnus vulgaris). Peripheral opioid blockade facilitated male song production. Furthermore, methionine-enkephalin immunolabeled fiber densities within brain regions in which opioids are known to regulate motivation and reward (i.e., the medial preoptic nucleus and ventral tegmental area) related positively to male song production. These data suggest that song production might be regulated by opioid activity within motivation and reward neural systems.
Collapse
Affiliation(s)
- Lauren V Riters
- Department of Zoology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Yamamoto K, Reiner A. Distribution of the limbic system-associated membrane protein (LAMP) in pigeon forebrain and midbrain. J Comp Neurol 2005; 486:221-42. [PMID: 15844168 DOI: 10.1002/cne.20562] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The limbic system-associated membrane protein (LAMP) is an adhesion molecule involved in specifying regional identity during development, and it is enriched in the neuropil of limbic brain regions in mammals but also found in some somatic structures. Although originally identified in rat, LAMP is present in diverse species, including avians. In this study, we used immunolabeling with a monoclonal antibody against rat LAMP to examine the distribution of LAMP in pigeon forebrain and midbrain. LAMP immunolabeling was prominent in many telencephalic regions previously noted as limbic in birds. These regions include the hippocampal complex, the medial nidopallium, and the ventromedial arcopallium. Subpallial targets of these pallial regions were also enriched in LAMP, such as the medial-most medial striatum. Whereas some telencephalic areas that have not been regarded as limbic were also LAMP-rich (e.g., the hyperpallium intercalatum and densocellulare of the Wulst, the mesopallium, and the intrapeduncular nucleus), most nonlimbic telencephalic areas were LAMP-poor (e.g., field L, the lateral nidopallium, and somatic basal ganglia). Similarly, in the diencephalon and midbrain, prominent LAMP labeling was observed in such limbic areas as the dorsomedial thalamus, the hypothalamus, the ventral tegmental area, and the central midbrain gray, as well as in a few nonlimbic areas such as nucleus rotundus, the shell of the nucleus pretectalis, the superficial tectum, and the parvocellular isthmic nucleus. Thus, as in mammals, LAMP in birds appears to be enriched in most known forebrain and midbrain limbic structures but is present as well in some somatic structures.
Collapse
Affiliation(s)
- Kei Yamamoto
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
49
|
Brox A, Puelles L, Ferreiro B, Medina L. Expression of the genes Emx1, Tbr1, and Eomes (Tbr2) in the telencephalon of Xenopus laevis confirms the existence of a ventral pallial division in all tetrapods. J Comp Neurol 2004; 474:562-77. [PMID: 15174073 DOI: 10.1002/cne.20152] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To investigate the pallial organization and the exact location and extension of the ventral pallium in amphibians, we cloned a fragment of the homeobox XenopusTbr1 (xTbr1) gene and analyzed its expression compared with that of the genes xEomes (Tbr2) and xEmx1 in the telencephalon of the frog Xenopus laevis during embryonic and larval development. The expression of xEmx1 was also analyzed in the adult frog. We compared the expression patterns of these pallial marker genes with that of the subpallial gene xDistal-less-4 (xDll4). Our results indicate that the whole pallium of Xenopus expresses the T-box genes xTbr1 and xEomes (in proliferating cells and/or mantle) during embryonic and larval development, and the expression of these genes is topographically complementary to that of xDll4 in the subpallium. In addition to their massive expression in the pallium, both xTbr1 and xEomes are expressed in a few dispersed cells in the subpallium, which may represent immigrant cells of pallial origin, because these genes are not found in the subpallial proliferating cells. On the other hand, during development xEmx1 is expressed in a large part of the pallium (proliferating and postmitotic cells) except for an area adjacent to the pallio-subpallial boundary, where xEmx1 is observed only in some mantle cells. This pallial area poor in xEmx1 expression and poor in expression of the subpallial gene xDll4, but expressing the pallial marker genes xTbr1 and xEomes, appears to represent the amphibian ventral pallium, comparable to that described in other vertebrates (Puelles et al. [2000] J. Comp. Neurol. 424:409-438). In the adult frog, the ventral pallium appears to include the rostral part of the lateral amygdalar nucleus as well as a large part of the medial amygdalar nucleus (as defined by Marín et al. [1998] J. Comp. Neurol. 392:285-312). In contrast, the caudal part of the previously termed lateral amygdalar nucleus shows strong xEmx1 expression and may be a lateral pallial derivative. The possible homology of these amphibian amygdalar nuclei is discussed. Finally, expression of xTbr1, xEomes, and xEmx1 is observed in the mitral cell layer of the olfactory bulb from early developmental stages, further supporting that this structure is a pallial derivative.
Collapse
Affiliation(s)
- Aurora Brox
- Department of Human Anatomy, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
50
|
Zeng S, Zhang X, Peng W, Zuo M. Immunohistochemistry and neural connectivity of the Ov shell in the songbird and their evolutionary implications. J Comp Neurol 2004; 470:192-209. [PMID: 14750161 DOI: 10.1002/cne.11042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The neuropeptide immunohistochemistry and neural connectivity of areas surrounding the thalamic auditory nucleus (the nucleus ovoidalis [Ov]), as well as the areas to which it is connected, were investigated in a songbird, the Bengalese finch. The results showed that met-enkephalin was present in the Ov shell and most of the areas connected to it, but not in the Ov core. Anterograde and retrograde tracing studies showed that the Ov shell was more widely connected than the Ov core. The Ov shell was mainly connected to: 1). areas flanking the primary telencephalic auditory field (i.e., fields L2b, L1, and L3) and areas surrounding the robust nucleus of the archistriatum (RA); 2). several hypothalamic areas such as the nucleus ventromedialis hypothalami (VMN) and the nucleus anterior medialis hypothalami (AM). Some of these areas connected to the Ov shell are thought to be involved in auditory mediated neurosecretory activities. These results, which are similar to those reported previously in non-songbirds, suggest that the Ov shell and other surrounding areas of auditory and song-control nuclei are conserved in birds. These findings are discussed in terms of the evolution of the core-and-surround organization of auditory and song-control nuclei.
Collapse
Affiliation(s)
- Shaoju Zeng
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | | | | | | |
Collapse
|