1
|
Oka Y. Neural Control of Sexual Behavior in Fish. Zoolog Sci 2023; 40:128-140. [PMID: 37042692 DOI: 10.2108/zs220108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 03/17/2023]
Abstract
Many vertebrate species show breeding periods and exhibit series of characteristic species-specific sexual behaviors only during the breeding period. Here, secretion of gonadal sex hormones from the mature gonads has been considered to facilitate sexual behaviors. Thus, the sexual behavior has long been considered to be regulated by neural and hormonal mechanisms. In this review, we discuss recent progress in the study of neural control mechanisms of sexual behavior with a focus on studies using fish, which have often been the favorite animals used by many researchers who study instinctive animal behaviors. We first discuss control mechanisms of sexual behaviors by sex steroids in relation to the anatomical studies of sex steroid-concentrating neurons in various vertebrate brains, which are abundantly distributed in evolutionarily conserved areas such as preoptic area (POA) and anterior hypothalamus. We then focus on another brain area called the ventral telencephalic area, which has also been suggested to contain sex steroid-concentrating neurons and has been implicated in the control of sexual behaviors, especially in teleosts. We also discuss control of sex-specific behaviors and sexual preference influenced by estrogenic signals or by olfactory/pheromonal signals. Finally, we briefly summarize research on the modulatory control of motivation for sexual behaviors by a group of peptidergic neurons called terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons, which are known to be especially developed in fishes among various vertebrate species.
Collapse
Affiliation(s)
- Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Kalarani A, Vinodha V, Moses IR. Inter-relations of brain neurosteroids and monoamines towards reproduction in fish. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
3
|
Mishra S, Chaube R. Distribution and localization of 3β-hydroxysteroid dehydrogenase (3β-HSD) in the brain and its regions of the catfish Heteropneustes fossilis. Gen Comp Endocrinol 2017; 241:80-88. [PMID: 27163792 DOI: 10.1016/j.ygcen.2016.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 11/20/2022]
Abstract
In vertebrates, steroids are synthesized de novo in the central and peripheral nervous system, independent of peripheral steroidogenic glands, such as the adrenal, gonads and placenta. 3β-Hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD) is a key steroidogenic enzyme in vertebrate gonads, placenta and adrenal. It mediates the oxidation and isomerization reactions of progesterone from pregnenolone, 17-hydroxyprogesterone from 17-hydroxypregnenolone and androstenedione from dehydroepiandrosterone. In the present study, we examined the expression of 3β-HSD cDNA by real time-PCR and localization of the mRNA by in situ hybridization in the brain and its regions during the different phases of the reproductive cycle of the catfish Heteropneustes fossilis. Further, 3β-HSD activity was assayed biochemically to show seasonal variations. We showed significant seasonal and sexual dimorphic changes in the levels of transcript abundance in the whole brain and its regions. In whole brain, level was the highest in post-spawning phase and lowest in spawning phase in males. In females, there was a progressive increase through resting phase to pre-spawning phase, a decline in the spawning phase and increase in the post-spawning phase. In the preparatory phase, the highest transcript level was seen in medulla oblongata and the lowest in pituitary in males. In females, the level was the highest in the hypothalamus and lowest in olfactory bulb and pituitary. However, in the pre-spawning phase, in males it was the highest in telencephalon and hypothalamus and lowest in pituitary. In females, the highest transcript level was in olfactory bulb and lowest in pituitary. 3β-HSD enzyme activity showed significant seasonal variation in the brain, the highest in the resting phase and lowest in the preparatory and spawning phases. In situ hybridization showed the presence of 3β-HSD transcript was especially high in the cerebellum region. The presence of 3β-HSD in the brain may indicate steroidogenesis in the catfish brain.
Collapse
Affiliation(s)
- Surabhi Mishra
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Radha Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
4
|
Alvarado SG, Lenkov K, Williams B, Fernald RD. Social Crowding during Development Causes Changes in GnRH1 DNA Methylation. PLoS One 2015; 10:e0142043. [PMID: 26517121 PMCID: PMC4627844 DOI: 10.1371/journal.pone.0142043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 10/16/2015] [Indexed: 12/30/2022] Open
Abstract
Gestational and developmental cues have important consequences for long-term health, behavior and adaptation to the environment. In addition, social stressors cause plastic molecular changes in the brain that underlie unique behavioral phenotypes that also modulate fitness. In the adult African cichlid, Astatotilapia burtoni, growth and social status of males are both directly regulated by social interactions in a dynamic social environment, which causes a suite of plastic changes in circuits, cells and gene transcription in the brain. We hypothesized that a possible mechanism underlying some molecular changes might be DNA methylation, a reversible modification made to cytosine nucleotides that is known to regulate gene function. Here we asked whether changes in DNA methylation of the GnRH1 gene, the central regulator of the reproductive axis, were altered during development of A. burtoni. We measured changes in methylation state of the GnRH1 gene during normal development and following the gestational and developmental stress of social crowding. We found differential DNA methylation within developing juveniles between 14-, 28- and 42-day-old. Following gestational crowding of mouth brooding mothers, we saw differential methylation and transcription of GnRH1 in their offspring. Taken together, our data provides evidence for social control of GnRH1 developmental responses to gestational cues through DNA methylation.
Collapse
Affiliation(s)
- Sebastian G Alvarado
- Biology Department and Neuroscience Institute, Gilbert Hall, Stanford University, 371 Serra Mall, Stanford, Palo Alto, Califorinia 94305, United States of America
| | - Kapa Lenkov
- Biology Department and Neuroscience Institute, Gilbert Hall, Stanford University, 371 Serra Mall, Stanford, Palo Alto, Califorinia 94305, United States of America
| | - Blake Williams
- Biology Department and Neuroscience Institute, Gilbert Hall, Stanford University, 371 Serra Mall, Stanford, Palo Alto, Califorinia 94305, United States of America
| | - Russell D Fernald
- Biology Department and Neuroscience Institute, Gilbert Hall, Stanford University, 371 Serra Mall, Stanford, Palo Alto, Califorinia 94305, United States of America
| |
Collapse
|
5
|
D’Aniello B, Polese G, Luongo L, Scandurra A, Magliozzi L, Aria M, Pinelli C. Neuroanatomical relationships between FMRFamide-immunoreactive components of the nervus terminalis and the topology of olfactory bulbs in teleost fish. Cell Tissue Res 2015; 364:43-57. [DOI: 10.1007/s00441-015-2295-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/07/2015] [Indexed: 10/22/2022]
|
6
|
Umatani C, Misu R, Oishi S, Yamaguchi K, Abe H, Oka Y. GnRH suppresses excitability of visual processing neurons in the optic tectum. J Neurophysiol 2015; 114:2775-84. [PMID: 26354319 DOI: 10.1152/jn.00710.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022] Open
Abstract
Animals change their behavior in response to sensory cues in the environment as well as their physiological status. For example, it is generally accepted that their sexual behavior is modulated according to seasonal environmental changes or the individual's maturational/reproductive status, and neuropeptides have been suggested to play important roles in this process. Some behavioral modulation arises from neuropeptide modulation of sensory information processing in the central nervous system, but the neural mechanisms still remain unknown. Here we focused on the neural basis of neuropeptide modulation of visual processing in vertebrates. The terminal nerve neurons that contain gonadotropin-releasing hormone 3 (TN-GnRH3 neurons) are suggested to modulate reproductive behavior and have massive projections to the optic tectum (OT), which plays an important role in visual processing. In the present study, to examine whether GnRH3 modulates retino-tectal neurotransmission in the OT, we analyzed the effect of GnRH3 electrophysiologically and morphologically. We found that field potentials evoked by optic tract fiber stimulation, which represent retino-tectal neurotransmission, were modulated postsynaptically by GnRH3. Whole cell recording from postsynaptic neurons in the retino-tectal pathway suggested that GnRH3 activates large-conductance Ca(2+)-activated K(+) (BK) channels and thereby suppresses membrane excitability. Furthermore, our improved morphological analysis using fluorescently labeled GnRH peptides showed that GnRH receptors are localized mainly around the cell bodies of postsynaptic neurons. Our results indicate that TN-GnRH3 neurons modulate retino-tectal neurotransmission by suppressing the excitability of projection neurons in the OT, which underlies the neuromodulation of behaviorally relevant visual information processing by the neuropeptide GnRH3.
Collapse
Affiliation(s)
- Chie Umatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Misu
- Laboratory of Bioorganic Medical Chemistry and Chemogenomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Oishi
- Laboratory of Bioorganic Medical Chemistry and Chemogenomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuhiko Yamaguchi
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute (BSI), Saitama, Japan; and
| | - Hideki Abe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan; Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan;
| |
Collapse
|
7
|
Takahashi A, Islam MS, Abe H, Okubo K, Akazome Y, Kaneko T, Hioki H, Oka Y. Morphological analysis of the early development of telencephalic and diencephalic gonadotropin-releasing hormone neuronal systems in enhanced green fluorescent protein-expressing transgenic medaka lines. J Comp Neurol 2015; 524:896-913. [DOI: 10.1002/cne.23883] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Akiko Takahashi
- Department of Biological Science; Graduate School of Science, The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - M. Sadiqul Islam
- Department of Biological Science; Graduate School of Science, The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Hideki Abe
- Department of Biological Science; Graduate School of Science, The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Yasuhisa Akazome
- Department of Biological Science; Graduate School of Science, The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science; Graduate School of Medicine, Kyoto University; Kyoto Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science; Graduate School of Medicine, Kyoto University; Kyoto Japan
| | - Yoshitaka Oka
- Department of Biological Science; Graduate School of Science, The University of Tokyo; Bunkyo-ku Tokyo Japan
| |
Collapse
|
8
|
Kawai T, Abe H, Oka Y. Burst generation mediated by cholinergic input in terminal nerve-gonadotrophin releasing hormone neurones of the goldfish. J Physiol 2013; 591:5509-23. [PMID: 23959678 DOI: 10.1113/jphysiol.2013.258343] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Peptidergic neurones play a pivotal role in the neuromodulation of widespread areas in the nervous system. Generally, it has been accepted that the peptide release from these neurones is regulated by their firing activities. The terminal nerve (TN)-gonadotrophin releasing hormone (GnRH) neurones, which are one of the well-studied peptidergic neurones in vertebrate brains, are characterised by their spontaneous regular pacemaker activities, and GnRH has been suggested to modulate the sensory responsiveness of animals. Although many peptidergic neurones are known to exhibit burst firing activities when they release the peptides, TN-GnRH neurones show spontaneous burst firing activities only infrequently. Thus, it remains to be elucidated whether the TN-GnRH neurones show burst activities and, if so, how the mode switching between the regular pacemaking and bursting modes is regulated in these neurones. In this study, we found that only a single pulse electrical stimulation of the neuropil surrounding the TN-GnRH neurones reproducibly induces transient burst activities in TN-GnRH neurones. Our combined physiological and morphological data suggest that this phenomenon occurs following slow inhibitory postsynaptic potentials mediated by cholinergic terminals surrounding the TN-GnRH neurones. We also found that the activation of muscarinic acetylcholine receptors induces persistent opening of potassium channels, resulting in a long-lasting hyperpolarisation. This long hyperpolarisation induces sustained rebound depolarisation that has been suggested to be generated by a combination of persistent voltage-gated Na(+) channels and low-voltage-activated Ca(2+) channels. These new findings suggest a novel type of cholinergic regulation of burst activities in peptidergic neurones, which should contribute to the release of neuropeptides.
Collapse
Affiliation(s)
- Takafumi Kawai
- Y. Oka: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
9
|
Okita K, Takatani T, Nakayasu J, Yamazaki H, Sakiyama K, Ikeda K, Arakawa O, Sakakura Y. Comparison of the localization of tetrodotoxin between wild pufferfish Takifugu rubripes juveniles and hatchery-reared juveniles with tetrodotoxin administration. Toxicon 2013; 71:128-33. [PMID: 23747273 DOI: 10.1016/j.toxicon.2013.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
To reveal the accumulation profile of tetrodotoxin (TTX) in pufferfish Takifugu rubripes juveniles, we compared the localization of TTX in various tissues among wild juveniles and hatchery-reared juveniles with or without TTX administration using immunohistochemical technique with anti-TTX monoclonal antibody. Immuno-positive reaction was observed in hepatic tissue, basal cell of skin and olfactory, olfactory epithelium, optic nerve and brain (optic tectum, cerebellum, medulla oblongata) of wild juveniles (body length: BL, 4.7-9.4 cm). TTX was detected in the same tissues as wild juveniles and epithelial cell layer of intestine of hatchery-reared juveniles (BL, 5.0-5.3 cm) to which TTX was orally administrated. No positive reaction was observed from the tissues of hatchery-reared juveniles without TTX administration. These results suggest that orally administrated TTX to the non-toxic cultured juveniles is accumulated in the same manner of wild juveniles. In addition, our study revealed that pufferfish accumulates TTX in the central nervous system.
Collapse
Affiliation(s)
- Kogen Okita
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-Machi, Nagasaki 852-8521, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Servili A, Herrera-Pérez P, Kah O, Muñoz-Cueto JA. The retina is a target for GnRH-3 system in the European sea bass, Dicentrarchus labrax. Gen Comp Endocrinol 2012; 175:398-406. [PMID: 22138555 DOI: 10.1016/j.ygcen.2011.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/21/2011] [Accepted: 11/11/2011] [Indexed: 12/11/2022]
Abstract
The European sea bass expresses three GnRH (Gonadotrophin Releasing Hormone) forms that exert pleiotropic actions via several classes of receptors. The GnRH-1 form is responsible for the endogenous regulation of gonadotrophin release by the pituitary gland but the role of GnRH-2 and GnRH-3 remains unclear in fish. In a previous study performed in sea bass, we have provided evidence of direct links between the GnRH-2 cells and the pineal organ and demonstrated a functional role for GnRH-2 in the modulation of the secretory activity of this photoreceptive organ. In this study, we have investigated the possible relationship between the GnRH-3 system and the retina in the same species. Thus, using a biotinylated dextran-amine tract-tracing method, we reveal the presence of retinopetal cells in the terminal nerve of sea bass, a region that also contains GnRH-3-immunopositive cells. Moreover, GnRH-3-immunoreactive fibers were observed at the boundary between the inner nuclear and the inner plexiform layers, and also within the ganglion cell layer. These results strongly suggest that the GnRH-3 neurons located in the terminal nerve area represent the source of GnRH-3 innervation in the retina of this species. In order to clarify whether the retina is a target for GnRH, the expression pattern of GnRH receptors (dlGnRHR) was also analyzed by RT-PCR and in situ hybridization. RT-PCR revealed the retinal expression of dlGnRHR-II-2b, -1a, -1b and -1c, while in situ hybridization only showed positive signals for the receptors dlGnRHR-II-2b and -1a. Finally, double-immunohistochemistry showed that GnRH-3 projections reaching the sea bass retina end in close proximity to tyrosine hydroxylase (dopaminergic) cells, which also expressed the dlGnRHR-II-2b receptor subtype. Taken together, these results suggest an important role for GnRH-3 in the modulation of dopaminergic cell activities and retinal functions in sea bass.
Collapse
Affiliation(s)
- Arianna Servili
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEIMAR), E-11510 Puerto Real, Spain
| | | | | | | |
Collapse
|
11
|
Kawai T, Abe H, Akazome Y, Oka Y. Neuromodulatory Effect of GnRH on the Synaptic Transmission of the Olfactory Bulbar Neural Circuit in Goldfish, Carassius auratus. J Neurophysiol 2010; 104:3540-50. [DOI: 10.1152/jn.00639.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is well known as a hypophysiotropic hormone that is produced in the hypothalamus and facilitates the release of gonadotropins from the pituitary gonadotropes. On the other hand, the functions of extrahypothalamic GnRH systems still remain elusive. Here we examined whether the activity of the olfactory bulbar neural circuits is modulated by GnRH that originates mainly from the terminal nerve (TN) GnRH system in goldfish ( Carassius auratus). As the morphological basis, we first observed that goldfish TNs mainly express salmon GnRH (sGnRH) mRNA and that sGnRH-immunoreactive fibers are distributed in both the mitral and the granule cell layers. We then examined by extracellular recordings the effect of GnRH on the electrically evoked in vitro field potentials that arise from synaptic activities from mitral to granule cells. We found that GnRH enhances the amplitude of the field potentials. Furthermore, these effects were observed in both cases when the field potentials were evoked by stimulating either the lateral or the medial olfactory tract, conveying functionally different sensory information, separately, and suggesting that GnRH may modulate the responsiveness to wide categories of odorants in the olfactory bulb. Because GnRH also changed the paired-pulse ratio, it is suggested that the increased amplitude of the field potential results from changes in the presynaptic glutamate release of mitral cells rather than the increase in the glutamate receptor sensitivity of granule cells. These results suggest that TN regulates the olfactory responsiveness of animals appropriately by releasing sGnRH peptides in the olfactory bulbar neural circuits.
Collapse
Affiliation(s)
- Takafumi Kawai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hideki Abe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yasuhisa Akazome
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Selvaraj S, Kitano H, Fujinaga Y, Amano M, Takahashi A, Shimizu A, Yoneda M, Yamaguchi A, Matsuyama M. Immunological characterization and distribution of three GnRH forms in the brain and pituitary gland of chub mackerel (Scomber japonicus). Zoolog Sci 2010; 26:828-39. [PMID: 19968470 DOI: 10.2108/zsj.26.828] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The presence of three gonadotropin-releasing hormone (GnRH) forms in the brain of the chub mackerel, Scomber japonicus, namely, salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II), and seabream GnRH (sbGnRH), was confirmed by combined high performance liquid chromatography (HPLC) and time-resolved fluoroimmunoassay (TR-FIA). Immunocytochemical localization of the three GnRH forms in the brain was Investigated by using specific antisera, to elucidate possible roles of each GnRH form in reproduction in this species, and double immunolabeling was used to localize GnRH-ir (immunoreactive) fibers Innervating the pituitary. sGnRH-ir neurons were localized in the ventral olfactory bulb and terminal nerve ganglion region. Further, sGnRH-ir fibers were found in different regions of the brain, with prominent fibers running in parallel in the preoptic area (POA) without entering the pituitary. cGnRH-II-ir cell bodies were observed only in the midbrain tegmentum region, with a wide distribution of fibers, which were dense in the midbrain tegmentum and spinal cord. SbGnRH-ir cell bodies were localized in the nucleus preopticus of the POA, with fibers in the olfactory bulb, POA, and hypothalamus. Among the three GnRH forms, only SbGnRH-ir fibers innervated the pituitary gland from the preoptic-hypothalamic region, targeting follicle stimulating hormone (FSH) and luteinizing hormone (LH)-producing cells in the proximal pars distalis, as demonstrated by double immunocytochemistry. The localization of the GnRH-ir system was similar in male and female fish. These results demonstrate that multiple GnRH forms exist in the brain of the chub mackerel and suggest that they serve different functions, with SbGnRH having a significant role in reproduction in stimulating FSH- and LH-producing cells, and sGnRH and cGnRH-II serving as neurotransmitters or neuromodulators.
Collapse
Affiliation(s)
- Sethu Selvaraj
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kawai T, Oka Y, Eisthen H. The role of the terminal nerve and GnRH in olfactory system neuromodulation. Zoolog Sci 2010; 26:669-80. [PMID: 19832678 DOI: 10.2108/zsj.26.669] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Animals must regulate their sensory responsiveness appropriately with respect to their internal and external environments, which is accomplished in part via centrifugal modulatory pathways. In the olfactory sensory system, responsiveness is regulated by neuromodulators released from centrifugal fibers into the olfactory epithelium and bulb. Among the modulators known to modulate neural activity of the olfactory system, one of the best understood is gonadotropin-releasing hormone (GnRH). This is because GnRH derives mainly from the terminal nerve (TN), and the TN-GnRH system has been suggested to function as a neuromodulator in wide areas of the brain, including the olfactory bulb. In the present article we examine the modulatory roles of the TN and GnRH in the olfactory epithelium and bulb as a model for understanding the ways in which olfactory responses can be tuned to the internal and external environments.
Collapse
Affiliation(s)
- Takafumi Kawai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
14
|
Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O. Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol 2010; 165:438-55. [PMID: 19393655 DOI: 10.1016/j.ygcen.2009.04.017] [Citation(s) in RCA: 519] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/08/2009] [Accepted: 04/17/2009] [Indexed: 11/28/2022]
Abstract
This review aims at synthesizing the most relevant information regarding the neuroendocrine circuits controlling reproduction, mainly gonadotropin release, in teleost fish. In teleosts, the pituitary receives a more or less direct innervation by neurons sending projections to the vicinity of the pituitary gonadotrophs. Among the neurotransmitters and neuropeptides released by these nerve endings are gonadotrophin-releasing hormones (GnRH) and dopamine, acting as stimulatory and inhibitory factors (in many but not all fish) on the liberation of LH and to a lesser extent that of FSH. The activity of the corresponding neurons depends on a complex interplay between external and internal factors that will ultimately influence the triggering of puberty and sexual maturation. Among these factors are sex steroids and other peripheral hormones and growth factors, but little is known regarding their targets. However, very recently a new actor has entered the field of reproductive physiology. KiSS1, first known as a tumor suppressor called metastin, and its receptor GPR54, are now central to the regulation of GnRH, and consequently LH and FSH secretion in mammals. The KiSS system is notably viewed as instrumental in integrating both environmental cues and metabolic signals and passing this information onto the reproductive axis. In fish, there are two KiSS genes, KiSS1 and KiSS2, expressed in neurons of the preoptic area and mediobasal hypothalamus. Pionneer studies indicate that KiSS and GPR54 expression seem to be activated at puberty. Although precise information as to the physiological effects of KiSS1 in fish, notably on GnRH neurons and gonadotropin release, is still limited, KiSS neurons may emerge as the "gatekeeper" of puberty and reproduction in fish as in mammals.
Collapse
Affiliation(s)
- Yonathan Zohar
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD, USA
| | | | | | | |
Collapse
|
15
|
Abe H, Oka Y. Primary culture of the isolated terminal nerve-gonadotrophin-releasing hormone neurones derived from adult teleost (dwarf gourami, Colisa lalia) brain for the study of peptide release mechanisms. J Neuroendocrinol 2009; 21:489-505. [PMID: 19302187 DOI: 10.1111/j.1365-2826.2009.01866.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Terminal nerve (TN)-gonadotrophin-releasing hormone (GnRH) neurones are suggested to release GnRH peptides from widely-branched neural processes and the somatodendritic regions, depending on their firing activities. The released GnRH may exert its neuromodulatory actions on GnRH receptors located on various target neurones. The electrophysiological and morphological characteristics of TN-GnRH neurones, which are shared with other peptidergic neurones of vertebrate brains, are thought to represent general features of neuromodulatory and ⁄ or neurosecretory neurones. To address questions concerning the ways in which the electrical activities of peptidergic (TN-GnRH) neuronal somata affect GnRH release from different neuronal compartments, we established a primary culture system of TN-GnRH neurones, which will facilitate simultaneous recordings of various physiological signals from different compartments of a single TN-GnRH neurone cultured in a flat plane. The whole brain of an adult freshwater teleost, the dwarf gourami, was dissected out. The TN-GnRH neurones were then isolated and plated on a coverslip in culture medium. The isolated TN-GnRH neurones could be cultured for up to 2 weeks. In culture, the neurones grew both axon- and dendrite-like neurites, and these processes were phenotypically similar to those found in situ. Unlike the neurones in situ, the cultured neurones had somewhat depolarised resting membrane potentials and showed no spontaneous discharge, which, however, should not be considered to comprise unhealthy culture conditions. Instead, they showed subthreshold spontaneous membrane potential oscillations and could be induced to fire in phasic or tonic patterns. In addition, stimulus-induced exocytotic events could be demonstrated in the soma and neurites using a fluorescent dye, FM1-43. Thus, the present isolated culture of TN-GnRH neurones will open up a wide range of possibilities for studying cellular mechanism of exocytosis, generation of spontaneous firing activity, and neurite outgrowth in peptidergic neurones.
Collapse
Affiliation(s)
- Hideki Abe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Japan.
| | | |
Collapse
|
16
|
Kanda S, Akazome Y, Matsunaga T, Yamamoto N, Yamada S, Tsukamura H, Maeda KI, Oka Y. Identification of KiSS-1 product kisspeptin and steroid-sensitive sexually dimorphic kisspeptin neurons in medaka (oryzias latipes). Endocrinology 2008; 149:2467-76. [PMID: 18202129 DOI: 10.1210/en.2007-1503] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, a novel physiologically active peptide, kisspeptin (metastin), has been reported to facilitate sexual maturation and ovulation by directly stimulating GnRH neurons in several mammalian species. Despite its importance in the neuroendocrine regulation of reproduction, kisspeptin neurons have only been studied in mammals, and there has been no report on the kisspeptin or kisspeptin neuronal systems in nonmammalian vertebrates. We used medaka for the initial identification of the KiSS-1 gene and the anatomical distribution of KiSS-1 mRNA expressing neurons (KiSS-1 neurons) in the brain of nonmammalian species. In situ hybridization for the medaka KiSS-1 gene cloned here proved that two kisspeptin neuronal populations are localized in the hypothalamic nuclei, the nucleus posterioris periventricularis and the nucleus ventral tuberis (NVT). Furthermore, NVT KiSS-1 neurons were sexually dimorphic in number (male neurons >> female neurons) under the breeding conditions. We also found that the number of KiSS-1 neurons in the NVT but not that in the nucleus posterioris periventricularis was positively regulated by ovarian estrogens. The fact that there were clear differences in the number of NVT KiSS-1 neurons between the fish under the breeding and nonbreeding conditions strongly suggests that the steroid-sensitive changes in the KiSS-1 mRNA expression in the NVT occur physiologically, according to the changes in the reproductive state. From the present results, we conclude that the medaka KiSS-1 neuronal system is involved in the central regulation of reproductive functions, and, given many experimental advantages, the medaka brain may serve as a good model system to study its physiology.
Collapse
Affiliation(s)
- Shinji Kanda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Maruska KP, Tricas TC. Gonadotropin-Releasing Hormone and Receptor Distributions in the Visual Processing Regions of Four Coral Reef Fishes. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:40-56. [PMID: 17389794 DOI: 10.1159/000101068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 09/24/2006] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is widely distributed in the brain of fishes where it may function as a neuromodulator of sensory processing and behavior. Immunocytochemical and neuronal label experiments were conducted on species from four families of coral reef fishes (Chaetodontidae, butterflyfish; Pomacentridae, damselfish; Gobiidae, goby; and Labridae, wrasse) to assess conservation of GnRH targets in the visual processing retina and brain. In all species, GnRH-immunoreactive (-ir) axons from the terminal nerve project principally to the boundary between the inner plexiform (IPL) and inner nuclear (INL) layers of the retina, and are less prominent in the optic nerve, ganglion cell, IPL and INL. However, the density of GnRH innervation within the retina differed among fish species with highest concentrations in the damselfish and butterflyfish and lowest in the goby and wrasse. Experiments also show that GnRH receptors are associated with GnRH-ir axons within the fish retina primarily at the IPL-INL boundary, the region of light-dark adaptation and image processing of contrast, motion or color. GnRH-ir axons overlapped central projections of retinal ganglion cell axons primarily within the stratum album centrale and stratum griseum centrale of the tectum in all species, and were concentrated in several diencephalic visual processing centers. GnRH receptors are also localized to diencephalic visual centers and the stratum griseum periventriculare of the tectum, where motion perception and coordination of motor behavioral responses in three-dimensional space occur. This work demonstrates that the basic neural substrates for peptide-sensory convergence are conserved at multiple processing levels in the visual system of several reef fishes. Species differences in GnRH innervation to the retina and GnRH receptor distributions may be related to phylogeny, their use of vision in natural behaviors, or possibly binding properties of the antibodies. Future studies are needed to characterize the exact GnRH variants and receptor types found in these species so that possible functional consequences of GnRH influence on vision can be defined.
Collapse
Affiliation(s)
- Karen P Maruska
- University of Hawaii at Manoa, Department of Zoology, Honolulu, Hawaii, USA.
| | | |
Collapse
|
18
|
Repérant J, Ward R, Miceli D, Rio JP, Médina M, Kenigfest NB, Vesselkin NP. The centrifugal visual system of vertebrates: a comparative analysis of its functional anatomical organization. ACTA ACUST UNITED AC 2006; 52:1-57. [PMID: 16469387 DOI: 10.1016/j.brainresrev.2005.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 11/24/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
The present review is a detailed survey of our present knowledge of the centrifugal visual system (CVS) of vertebrates. Over the last 20 years, the use of experimental hodological and immunocytochemical techniques has led to a considerable augmentation of this knowledge. Contrary to long-held belief, the CVS is not a unique property of birds but a constant component of the central nervous system which appears to exist in all vertebrate groups. However, it does not form a single homogeneous entity but shows a high degree of variation from one group to the next. Thus, depending on the group in question, the somata of retinopetal neurons can be located in the septo-preoptic terminal nerve complex, the ventral or dorsal thalamus, the pretectum, the optic tectum, the mesencephalic tegmentum, the dorsal isthmus, the raphé, or other rhombencephalic areas. The centrifugal visual fibers are unmyelinated or myelinated, and their number varies by a factor of 1000 (10 or fewer in man, 10,000 or more in the chicken). They generally form divergent terminals in the retina and rarely convergent ones. Their retinal targets also vary, being primarily amacrine cells with various morphological and neurochemical properties, occasionally interplexiform cells and displaced retinal ganglion cells, and more rarely orthotopic ganglion cells and bipolar cells. The neurochemical signature of the centrifugal visual neurons also varies both between and within groups: thus, several neuroactive substances used by these neurons have been identified; GABA, glutamate, aspartate, acetylcholine, serotonin, dopamine, histamine, nitric oxide, GnRH, FMRF-amide-like peptides, Substance P, NPY and met-enkephalin. In some cases, the retinopetal neurons form part of a feedback loop, relaying information from a primary visual center back to the retina, while in other, cases they do not. The evolutionary significance of this variation remains to be elucidated, and, while many attempts have been made to explain the functional role of the CVS, opinions vary as to the manner in which retinal activity is modified by this system.
Collapse
Affiliation(s)
- J Repérant
- CNRS UMR 5166, MNHN USM 0501, Département Régulation, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, C. P. 32, 7 rue Cuvier, 75231 Paris cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
19
|
Neuromodulatory Functions of Terminal Nerve‐GnRH Neurons. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1546-5098(06)25011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
20
|
Pandolfi M, Muñoz Cueto JA, Lo Nostro FL, Downs JL, Paz DA, Maggese MC, Urbanski HF. GnRH systems of Cichlasoma dimerus (Perciformes, Cichlidae) revisited: a localization study with antibodies and riboprobes to GnRH-associated peptides. Cell Tissue Res 2005; 321:219-32. [PMID: 15947973 DOI: 10.1007/s00441-004-1055-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 11/16/2004] [Indexed: 10/25/2022]
Abstract
The distribution of cells that express three prepro-gonadotropin-releasing hormones (GnRH), corresponding to salmon GnRH, sea bream GnRH (sbGnRH), and chicken II GnRH, was studied in the brain and pituitary of the South American cichlid fish, Cichlasoma dimerus. Although the ontogeny and distribution of GnRH neuronal systems have previously been examined immunohistochemically with antibodies and antisera against the various GnRH decapeptides, we have used antisera against various perciform GnRH-associated peptides (GAPs) and riboprobes to various perciform GnRH+GAPs. The results demonstrate that: (1) the GnRH neuronal populations in the forebrain (salmon and sea bream GAPs; sGAP and sbGAP, respectively) show an overlapping pattern along the olfactory bulbs, nucleus olfacto-retinalis, ventral telencephalon, and preoptic area; (2) projections with sGAP are mainly located in the forebrain and contribute to the pituitary innervation, with projections containing chicken GAP II being mainly distributed along the mid and hindbrain and not contributing to pituitary innervation, whereas sbGAP projections are restricted to the ventral forebrain, being the most important molecular form in relation to pituitary innervation; (3) sbGnRH (GnRH I) neurons have an olfactory origin; (4) GAP antibodies and GAP riboprobes are valuable tools for the study of various GnRH systems, by avoiding the cross-reactivity problems that occur when using GnRH antibodies and GnRH riboprobes alone.
Collapse
Affiliation(s)
- Matías Pandolfi
- Laboratorio de Embriología Animal, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina
| | | | | | | | | | | | | |
Collapse
|
21
|
Haneda K, Oka Y. Selective modulation of voltage-gated calcium channels in the terminal nerve gonadotropin-releasing hormone neurons of a teleost, the dwarf gourami (Colisa lalia). Endocrinology 2004; 145:4489-99. [PMID: 15231709 DOI: 10.1210/en.2004-0353] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH neurons in the terminal nerve (TN) have been suggested to function as a neuromodulatory system that regulates long-lasting changes in the animal behavior. Here we examined electrophysiological properties of TN-GnRH neurons in a teleost (dwarf gourami, Colisa lalia), focusing on the voltage-gated Ca2+ channels, which are thought to be coupled to several cellular events such as GnRH release. TN-GnRH neurons showed low-voltage activated (LVA) currents and three types of pharmacologically distinct high-voltage activated (HVA) currents. The L- and N-type currents constituted 30.7 +/- 3.1 and 41.0 +/- 3.9%, respectively, of HVA currents, which was recorded at the holding potential of -60 mV to inactivate the LVA currents. Although P/Q-type current was small and negligible, R-type current accounted for the remaining 23.6 +/- 1.6% of HVA currents. Next we examined the possibility of Ca2+ channel modulation induced by GnRH released in a paracrine/autocrine manner. HVA currents of up to 40% was inhibited by the application of salmon GnRH, which is the same molecular species of GnRH as is synthesized by TN-GnRH neurons themselves. However, salmon GnRH had no measurable effects on LVA currents. The inhibition of HVA currents had a dose dependence (EC50 was 11.5 nm) and type specificity among different HVA currents; N- and R-type currents were preferentially inhibited, but L-type currents had by far lower sensitivity. The physiological significance of different Ca2+ influx pathways, and their paracrine/autocrine regulation mechanisms in TN-GnRH neurons are discussed.
Collapse
Affiliation(s)
- Kosuke Haneda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
22
|
Ishizaki M, Iigo M, Yamamoto N, Oka Y. Different modes of gonadotropin-releasing hormone (GnRH) release from multiple GnRH systems as revealed by radioimmunoassay using brain slices of a teleost, the dwarf gourami (Colisa lalia). Endocrinology 2004; 145:2092-103. [PMID: 14715708 DOI: 10.1210/en.2003-0960] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has become a general notion that there are multiple GnRH systems in the vertebrate brains. To measure GnRH release activities from different GnRH systems, we conducted a static incubation of brain-pituitary slices under various conditions, and GnRH released into the incubation medium was measured by RIA. The slices were divided into two parts, one containing GnRH neurons in the preoptic area and axon terminals in the pituitary (POA-GnRH slices), and the other containing the cell bodies and fibers of terminal nerve-GnRH neurons and midbrain tegmentum-GnRH neurons (TN-TEG-GnRH slices). We demonstrated that GnRH release was evoked by high [K(+)](o) depolarizing stimuli (in both POA-GnRH and TN-TEG-GnRH slices) via Ca(2+) influx through voltage-gated Ca(2+) channels. The most prominent result was the presence of conspicuous sexual difference in the amount of GnRH release in the POA-GnRH slices. The GnRH release from TN-TEG-GnRH slices also showed a small sexual difference, which was by far more inconspicuous than that of POA-GnRH slices. Immunohistochemical analysis using an antiserum specific to the seabream GnRH (sbGnRH; suggested to be specific to POA-GnRH neurons) revealed the presence of a much larger number of POA-GnRH neurons in males than in females. This clear morphological sexual difference is suggested to underlie that of GnRH release in the POA-GnRH slices.
Collapse
Affiliation(s)
- Mami Ishizaki
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | | | | | | |
Collapse
|
23
|
Médina M, Repérant J, Ward R, Miceli D. Centrifugal visual system of Crocodylus niloticus: a hodological, histochemical, and immunocytochemical study. J Comp Neurol 2004; 468:65-85. [PMID: 14648691 DOI: 10.1002/cne.10959] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The retinopetal neurons of Crocodylus niloticus were visualized by retrograde transport of rhodamine beta-isothiocyanate or Fast Blue administered by intraocular injection. Approximately 6,000 in number, these neurons are distributed in seven regions extending from the mesencephalic tegmentum to the rostral rhombencephalon, approximately 70% being located contralaterally to the injected eye. None of the centrifugal neurons projects to both retinae. The retinopetal neurons are located in rostrocaudal sequence in seven regions: the formatio reticularis lateralis mesencephali, the substantia nigra, the griseum centralis tectalis, the nucleus subcoeruleus dorsalis, the nucleus isthmi parvocellularis, the locus coeruleus, and the commissura nervi trochlearis. The greatest number of cells (approximately 93%) is found in the nucleus subcoeruleus dorsalis. The majority are multipolar or bipolar in shape and resemble the ectopic centrifugal visual neurons of birds, although a small number of monopolar neurons resembling those of the avian isthmo-optic nucleus may also be observed. A few retinopetal neurons in the griseum centralis tectalis were tyrosine hydroxylase (TH) immunoreactive. Moreover, in the nuclei subcoeruleus dorsalis and isthmi parvocellularis, both ipsilaterally and contralaterally, approximately one retinopetal neuron in three (35%) was immunoreactive to nitric oxide synthase (NOS), and a slightly higher proportion (38%) of retinopetal neurons were immunoreactive for choline acetyltransferase (ChAT). Some of them contained colocalized ChAT and NOS/reduced nicotinamide adenine dinucleotide phosphate-diaphorase. Fibers immunoreactive to TH, serotonin (5-HT), neuropeptide Y (NPY), or Phe-Met-Arg-Phe-amide (FMRF-amide) were frequently observed to make intimate contact with rhodamine-labeled retinopetal neurons. These findings are discussed in relation to previous results obtained in other reptilian species and in birds.
Collapse
Affiliation(s)
- Monique Médina
- Centre National de la Recherche Scientifique UMR8570-MNHN USM0302, F-75005 Paris, France.
| | | | | | | |
Collapse
|
24
|
Abstract
Gonadotropin-releasing hormone (GnRH) is a decapeptide, which has been isolated from the hypothalamus as a releasing hormone of gonadotropins from the pituitary. However, subsequent morphological studies have demonstrated the presence of multiple GnRH neuronal groups outside the hypothalamus and preoptic area. In most vertebrate lineages studied to date, GnRH neuronal groups are present along the terminal nerve and in the midbrain tegmentum, in addition to a population in the preoptico-hypothalamic areas. The presence of GnRH fibers in extrahypothalamic areas has also been demonstrated, indicating a significance for GnRH neurons in functions other than those that are purely hypophysiotropic. Among vertebrate lineages, GnRH neurons have been most extensively studied in teleost fish through morphological, electrophysiological, behavioral and molecular approaches. To date, studies on differential roles of GnRH neuronal groups have been mostly restricted to teleosts. In the present review, the anatomy and functions of each GnRH neuronal group are reconsidered, based mainly on knowledge from teleosts. Recent findings in teleosts indicate that the preoptico-hypothalamic GnRH neurons are hypophysiotropic and that GnRH neurons of the terminal nerve and midbrain tegmentum regulate neural activities in various regions, including extrahypothalamic areas. The latter populations presumably serve as neuromodulatory systems to control aspects of neural functions such as reproductive behavior. Similar functional differentiation may be generalized to other vertebrate lineages as well.
Collapse
Affiliation(s)
- Naoyuki Yamamoto
- Department of Anatomy, Laboratory for Comparative Neuromorphology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
25
|
Laberge F, Hara TJ. Non-oscillatory discharges of an F-prostaglandin responsive neuron population in the olfactory bulb-telencephalon transition area in lake whitefish. Neuroscience 2003; 116:1089-95. [PMID: 12617950 DOI: 10.1016/s0306-4522(02)00717-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our previous studies on olfactory bulbar responses in salmonid fishes suggest that pheromone signals might be processed by a mechanism distinct from that of other odorants. Using in vivo single-unit and electroencephalographic recordings, we investigated response characteristics of olfactory neurons in lake whitefish, Coregonus clupeaformis, a species characterized by high electrophysiological and behavioral sensitivities to the reproductive pheromone candidates F-prostaglandins. We found a neuron population responsive to F-prostaglandins in the ventromedial brain tissue strip connecting the olfactory bulb to the telencephalon. Of the 64 neurons examined in this area, 33% showed excitatory and 11% inhibitory responses to F-prostaglandins, while 52% were non-responsive to all the stimuli tested. Both phasic and tonic F-prostaglandin neuron response patterns were observed during the 10-s stimulus period; some responses were delayed from the onset of stimulation, and some persisted for a long time following stimulus cessation. This neuron population did not induce synchronized oscillatory waves upon stimulation with F-prostaglandins, despite massive discharges. We demonstrate for the first time that the olfactory bulb-telencephalon area of the brain is a distinct neural structure through which putative reproductive pheromone signals are integrated. Amino acid and F-prostaglandin neuron population discharges have different temporal characteristics, suggesting different processing mechanisms exist for odorant and pheromone signals. The observed sustained neuron discharges may play a role in amplifying pheromone signals required for triggering stereotyped neuroendocrine and/or behavior changes.
Collapse
Affiliation(s)
- F Laberge
- Department of Zoology, University of Manitoba, Manitoba, Winnipeg, Canada R3T 2N2.
| | | |
Collapse
|
26
|
Affiliation(s)
- Yoshitaka Oka
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Kanagawa 238-0225, Japan.
| |
Collapse
|
27
|
Abstract
Gonadotropin-releasing hormone (GnRH) projections from the terminal nerve to the retina are common in fish, but have not been reported in mammals. However, GnRH fibers have been seen previously in the optic nerves (but not retinas) of rats and monkeys. Using prairie voles, we tested the hypotheses that (1) GnRH-immunoreactive (-ir) neurons project into the optic nerve and (2) the retina expresses GnRH receptor mRNA as determined by reverse transcription-polymerase chain reaction (RT-PCR) combined with Southern blotting. In both adult and postnatal-day-2 voles, GnRH-ir fibers were observed within the optic nerve. In adult voles, GnRH-ir fibers projected only a short distance into the optic nerve compared with the much longer length of projections in neonates. Fibers immunoreactive for GnRH were not seen in the retinas of neonates or adults. However, RT-PCR-Southern blotting demonstrated GnRH receptor expression in the retina of adult voles. This study supports the hypothesis that GnRH has the potential of modulating visual processing in the retina of mammals.
Collapse
Affiliation(s)
- Celeste R Wirsig-Wiechmann
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
28
|
Tiwary BK, Kirubagaran R, Ray AK. Gonadotropin releasing hormone (GnRH) neurones of triploid catfish, Heteropneustes fossilis (Bloch): an immunocytochemical study. Comp Biochem Physiol A Mol Integr Physiol 2002; 132:375-80. [PMID: 12020653 DOI: 10.1016/s1095-6433(02)00037-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gonadotropin-releasing hormone (GnRH), a regulator of gonadal maturation in vertebrates, is primarily secreted by neurosecretory cells of the pre-optic area (POA) in the forebrain of teleosts. GnRH-immunoreactive (GnRH-ir) cells of this area demonstrate positive correlation in number and size of soma with gonadal maturity and directly innervate the pituitary in most teleosts. Gonadal development in triploid fish remains impaired due to genetic sterility. The gonadal immaturity in triploid fish may be due to low levels of gonadotropin and sex steroids during the vitellogenic phase of reproductive cycle. However, the nature of GnRH-ir cells in triploid fish is not yet known. Triploid catfish (H. fossilis) showed significant decrease (P<0.001) in size and number of immunoreactive-GnRH cells of POA and low immunoreactivity in pituitary in comparison to their diploid full-sibs during the late pre-spawning phase of ovarian cycle. This study suggests that low activity of GnRH-cells in triploid may be due to lack of positive feedback stimulation by sex steroids and/or reduced responsiveness of sensory cells to environmental cues required for gonadal maturation in teleosts.
Collapse
Affiliation(s)
- Basant K Tiwary
- Department of Animal Physiology, Bose Institute, P-1/12, C.I.T. Scheme VII M, Calcutta 700 054, India
| | | | | |
Collapse
|
29
|
Sakamoto H, Ukena K, Tsutsui K. Activity and localization of 3beta-hydroxysteroid dehydrogenase/ Delta5-Delta4-isomerase in the zebrafish central nervous system. J Comp Neurol 2001; 439:291-305. [PMID: 11596055 DOI: 10.1002/cne.1351] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Little information is available for neurosteroidogenesis in the central nervous system (CNS) of lower vertebrates. Therefore, in the present study, we examined the enzymatic activity and localization of 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4-isomerase (3betaHSD), a key steroidogenic enzyme, in the CNS of adult male zebrafish to clarify central progesterone biosynthesis. Biochemical studies together with HPLC analysis revealed that the zebrafish brain converted pregnenolone to progesterone, suggesting the enzymatic activity of 3betaHSD. This conversion was significantly reduced by trilostane, a specific inhibitor of 3betaHSD. By using Western immunoblotting with the polyclonal antiserum directed against purified bovine adrenal 3betaHSD, a 3betaHSD-like substance was found in homogenates of the zebrafish brain. Immunocytochemical analysis was then undertaken to investigate the localization of the 3betaHSD-like substance in the zebrafish brain and spinal cord. Clusters of immunoreactive cell bodies were localized in the dorsal telencephalic areas (D), central posterior thalamic nucleus (CP), preoptic nuclei (NPO), posterior tuberal nucleus (PTN), paraventricular organ (PVO), and nucleus of medial longitudinal fascicle (NMLF). 3betaHSD-like immunoreactivity was also observed in somata of cerebellar Purkinje neurons. A widespread distribution of immunoreactive fibers was found throughout the brain and spinal cord. In addition, positively stained cells were restricted to other organs, such as the pituitary and retina. Preabsorbing the antiserum with purified bovine adrenal microsome resulted in a complete absence of 3betaHSD-like immunoreactivity. These results suggest that the fish CNS possesses steroidogenic enzyme 3betaHSD and produces progesterone. The present study further provides the first immunocytochemical mapping of the site of 3betaHSD expression in the fish CNS.
Collapse
Affiliation(s)
- H Sakamoto
- Laboratory of Brain Science, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | | | | |
Collapse
|
30
|
González-Martínez D, Madigou T, Zmora N, Anglade I, Zanuy S, Zohar Y, Elizur A, Muñoz-Cueto JA, Kah O. Differential expression of three different prepro-GnRH (gonadotrophin-releasing hormone) messengers in the brain of the european sea bass (Dicentrarchus labrax). J Comp Neurol 2001; 429:144-55. [PMID: 11086295 DOI: 10.1002/1096-9861(20000101)429:1<144::aid-cne11>3.0.co;2-b] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The expression sites of three prepro-gonadotrophin-releasing hormones (GnRHs), corresponding to seabream GnRH (sbGnRH: Ser(8)-mGnRH, mammalian GnRH), salmon GnRH (sGnRH: Trp(7)Leu(8)-mGnRH), and chicken GnRH-II (cGnRH-II: His(5)Trp(7)Tyr(8)-mGnRH) forms were studied in the brain of a perciform fish, the European sea bass (Dicentrarchus labrax) by means of in situ hybridization. The riboprobes used in this study correspond to the three GnRH-associated peptide (GAP)-coding regions of the prepro-GnRH cDNAs cloned from the same species (salmon GAP: sGAP; seabream GAP: sbGAP; chicken GAP-II: cIIGAP), which show little oligonucleotide sequence identity (sGAP versus sbGAP: 42%; cIIGAP versus sbGAP: 36%; sGAP versus cIIGAP: 41%). Adjacent paraffin sections (6 mm) throughout the entire brain were treated in parallel with each of the three anti-sense probes and the corresponding sense probes, demonstrating the high specificity of the hybridization signal. The results showed that both sGAP and sbGAP mRNAs had a broader expression in the olfactory bulbs, ventral telencephalon, and preoptic region, whereas cIIGAP mRNA expression was confined to large cells of the nucleus of the medial longitudinal fascicle. In the olfactory bulbs, both the signal intensity and the number of positive cells were higher with the sGAP probe, whereas sbGAP mRNA-expressing cells were more numerous and intensely stained in the preoptic region. Additional isolated sbGAP-positive cells were detected in the ventrolateral hypothalamus. These results demonstrate a clear overlapping of sGAP- and sbGAP-expressing cells in the forebrain of the European sea bass, in contrast to previous reports in other perciforms showing a clear segregation of these two cell populations.
Collapse
Affiliation(s)
- D González-Martínez
- Departamento de Biología Animal, Vegetal y Ecología, Facultad de Ciencias del Mar, Universidad de Cádiz, 11510 Puerto Real, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Afferent sources to the ganglion (ggl) of the terminal nerve (TN) were studied in percomorph teleosts the tilapia and dwarf gourami. After tracer applications to the TN-ggl and the surrounding bulbus olfactorius, retrogradely labeled neurons were present in the area dorsalis telencephali pars posterior (Dp), area ventralis telencephali pars ventralis et supracommissuralis (Vv and Vs), nucleus tegmento-olfactorius of Prasada Rao and Finger (1984), and locus coeruleus. In the contralateral bulbus olfactorius labeled cells were observed, and terminals were seen in the TN-ggl. Tracer injection experiments to the possible sources of origin to the TN-ggl were then performed. Tracer applications to the nucleus tegmento-olfactorius labeled abundant terminals in the TN-ggl but labeled very few in the bulbus olfactorius proper. Retrogradely labeled neurons were present in the nucleus ventromedialis thalami, nucleus commissurae posterioris, area pretectalis pars dorsalis et ventralis, nucleus sensorius nervi trigemini, and formatio reticularis pars superius et medius. Tracer applications to the Dp or Vs/Vv labeled terminals mainly in the bulbus olfactorius proper. However, terminals to the TN-ggl were supplied from labeled axons on their way to the bulbus olfactorius. Tracer injections to the locus coeruleus labeled only a few fibers around the TN-ggl. These results suggest that the TN-ggl receives somatosensory and visual inputs from the nucleus tegmento-olfactorius and olfactory inputs from the bulbus olfactorius and telencephalic subdivisions, which receive secondary olfactory projections. The locus coeruleus may also send fibers to the TN-ggl.
Collapse
Affiliation(s)
- N Yamamoto
- Department of Anatomy, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo 113-8602,
| | | |
Collapse
|
32
|
Abstract
Alternative reproductive tactics within one sex, adult sex or role change, and reproductive suppression are all forms of reproductive plasticity commonly exhibited among teleost fishes. The two neuropeptides that have been most extensively studied with regard to such behavioral plasticity are gonadotropin releasing hormone (GnRH) and arginine vasotocin (AVT). Here, we review intra- and intersexual variation in the number and size of GnRH and AVT neurons along with gonadal phenotype in those species of teleosts showing intraspecific plasticity in reproductive behavior. In several species, male dimorphisms in the number and/or size of GnRH neurons in the forebrain's preoptic area parallel a divergence in relative gonad size and reproductive tactics. The available studies of AVT-containing neurons in the preoptic area also indicate intrasexual dimorphisms among males, although a proximate link to other reproductive traits and behavioral outcomes is more difficult to recognize. For both GnRH and AVT, there are also species-typical patterns in the coupling between structural (e.g., neuronal and gonadal) traits and reproductive tactic expressed, which likely reflect distinct patterns of adaptation to particular ecological environments. As discussed, neurophysiological, biochemical, and receptor density studies are now essential to establish the functional significance of the diverse organizational patterns of GnRH and AVT neurons in teleosts. Similar studies also need to be carried out in species of other vertebrate groups that show comparable behavioral plasticity.
Collapse
Affiliation(s)
- C M Foran
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
33
|
Rodríguez-Gómez FJ, Rendón MC, Sarasquete C, Muñoz-Cueto JA. Distribution of gonadotropin-releasing hormone immunoreactive systems in the brain of the Senegalese sole, Solea senegalensis. THE HISTOCHEMICAL JOURNAL 1999; 31:695-703. [PMID: 10646833 DOI: 10.1023/a:1003917913297] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present paper reports the immunohistochemical distribution of the gonadotropin-releasing hormone (GnRH) structures in the brain of the Senegalese sole, Solea senegalensis. In this study, we have used two antibodies against the salmon GnRH and chicken GnRH-II forms and the streptavidin-biotin-peroxidase complex method. Immunoreactive cell bodies are observed at the junction between the olfactory bulbs and the telencephalon (terminal nerve ganglion cells), in the ventral telencephalon, in the preoptic parvocellular nucleus, and in the synencephalic nucleus of the medial longitudinal fasciculus. GnRH-immunoreactive fibres were found extensively throughout the brain, located in the telencephalon, preoptic area, hypothalamus, hypophysis, optic tectum, midbrain and rhombencephalon. The antisera used in this study against the two GnRH forms exhibited cross-reactivity on the same cell masses and did not allow cell populations expressing different GnRH forms to be discriminated clearly. However, anti-salmon GnRH immunostained the GnRH cells and fibres of the forebrain much more intensely, whereas the anti-chicken GnRH antiserum shows a higher immunoreactivity on synencephalic cells of the medial longitudinal fasciculus.
Collapse
Affiliation(s)
- F J Rodríguez-Gómez
- Department of Animal Biology, Plant Biology and Ecology, Faculty of Marine Sciences, University of Cádiz, Spain
| | | | | | | |
Collapse
|
34
|
Abe H, Oka Y. Characterization of K+ currents underlying pacemaker potentials of fish gonadotropin-releasing hormone cells. J Neurophysiol 1999; 81:643-53. [PMID: 10036267 DOI: 10.1152/jn.1999.81.2.643] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endogenous pacemaker activities are important for the putative neuromodulator functions of the gonadotropin-releasing hormone (GnRH)-immunoreactive terminal nerve (TN) cells. We analyzed several types of voltage-dependent K+ currents to investigate the ionic mechanisms underlying the repolarizing phase of pacemaker potentials of TN-GnRH cells by using the whole brain in vitro preparation of fish (dwarf gourami, Colisa lalia). TN-GnRH cells have at least four types of voltage-dependent K+ currents: 1) 4-aminopyridine (4AP)-sensitive K+ current, 2) tetraethylammonium (TEA)-sensitive K+ current, and 3) and 4) two types of TEA- and 4AP-resistant K+ currents. A transient, low-threshold K+ current, which was 4AP sensitive and showed significant steady-state inactivation in the physiological membrane potential range (-40 to -60 mV), was evoked from a holding potential of -100 mV. This current thus cannot contribute to the repolarizing phase of pacemaker potentials. TEA-sensitive K+ current evoked from a holding potential of -100 mV was slowly activating, long lasting, and showed comparatively low threshold of activation. This current was only partially inactivated at steady state of -60 to -40 mV, which is equivalent to the resting membrane potential. TEA- and 4AP-resistant sustained K+ currents were evoked from a holding potential of -100 mV and were suggested to consist of two types, based on the analysis of activation curves. From the inactivation and activation curves, it was suggested that one of them with low threshold of activation may be partly involved in the repolarizing phase of pacemaker potentials. Bath application of TEA together with tetrodotoxin reversibly blocked the pacemaker potentials in current-clamp recordings. We conclude that the TEA-sensitive K+ current is the most likely candidate that contributes to the repolarizing phase of the pacemaker potentials of TN-GnRH cells.
Collapse
Affiliation(s)
- H Abe
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan
| | | |
Collapse
|
35
|
Yamamoto N, Parhar IS, Sawai N, Oka Y, Ito H. Preoptic gonadotropin-releasing hormone (GnRH) neurons innervate the pituitary in teleosts. Neurosci Res 1998; 31:31-8. [PMID: 9704976 DOI: 10.1016/s0168-0102(98)00022-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In most teleosts, there are three groups of gonadotropin-releasing hormone (GnRH) neurons. In this study we addressed the question of GnRH neuronal innervation of the pituitary in the dwarf gourami and the tilapia using immunocytochemistry combined with biocytin tract tracing. Biocytin was applied to the pituitary attached to the brain in vitro. Similar results were obtained in both species. GnRH neurons retrogradely labeled with biocytin were observed only in the preoptic area. These results indicate that preoptic GnRH neurons innervate the pituitary. Negative labeling of biocytin in the terminal-nerve and midbrain GnRH neurons suggests that these two GnRH neuronal populations do not project to the pituitary. Biocytin-positive but GnRH-negative neurons were also observed in the preoptic area and the ventromedial parts of the hypothalamus, suggesting neuropeptidergic and aminergic innervation of the pituitary besides GnRH.
Collapse
Affiliation(s)
- N Yamamoto
- Department of Anatomy, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
36
|
Abstract
To obtain insight into the development of the heterogeneous intracerebral populations of luteinizing hormone-releasing hormone (LHRH) neurons, their spatiotemporal appearance was examined at different stages in normal rat embryos, in nasal epithelial explants in vitro, and in intrauterine nasal-operated embryos. Following the appearance of nerve cell adhesion molecule in the nasal placode at embryonic day (E) 12.5, LHRH neurons, generated in the nasal placode at E13.5, penetrated the forebrain vesicle (FV) by E14.5-15.5. After E16.5, as the FV elongated to form the olfactory bulb, the migrating neurons traversed posteriorly through the interhemispheric space to penetrate the septopreoptic (S-P) area. By E18.5, LHRH neurons were detected in the preoptic-diagonal band (P-D) area as well as in the S-P region, along with some scattered extrahypothalamic LHRH neurons. To determine the source of these neurons, we separately cultured dissected parts of E12.5 nasal pit epithelium. Neuronal generation was predominantly from the medial wall epithelium (NAP), but some LHRH neurons originated in the roof epithelium. Cocultures of the NAP (E12.5) with the FV, median eminence-arcuate complex, Rathke's pouch, mesencephalon, or medulla oblongata from E14.5 embryos revealed the ability of LHRH cells to penetrate all of these tissues. Uni- or bilateral nasal destruction was conducted at E16.5 or E15.5, respectively, and examined at E18.5 and E21.5. In the operated embryos, most LHRH neurons were present in the P-D system and some in the S-P area. This finding suggests that the neurons generated before E15.5 are primarily predisposed to form the P-D system, whereas those derived afterward form the S-P system.
Collapse
Affiliation(s)
- S Daikoku
- Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Japan.
| | | |
Collapse
|
37
|
Degani G, Mananos EL, Jackson K, Abraham M, Zohar Y. Changes in plasma and pituitary GtH-II levels in vitro and in vivo in female blue gourami during the end of vitellogenesis and final oocyte maturation. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-010x(19971101)279:4<377::aid-jez7>3.0.co;2-l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Neuropeptide Y (NPY) induces gonad reversal in the protogynous bluehead wrasse,Thalassoma bifasciatum (Teleostei: Labridae). ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-010x(19971001)279:2<133::aid-jez4>3.0.co;2-p] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Foran CM, Myers DA, Bass AH. Modification of gonadotropin releasing hormone (GnRH) mRNA expression in the retinal-recipient Thalamus. Gen Comp Endocrinol 1997; 106:251-64. [PMID: 9169121 DOI: 10.1006/gcen.1997.6875] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the environmental cues that trigger reproductive behaviors are known for many species, the mechanisms through which these signals influence the neurochemistry of the brain to produce behavior have been elusive. In this study, we describe a retinally modulated system of gonadotropin releasing hormone (GnRH) producing neurons in the thalamus of the plainfin midshipman fish, Porichthys notatus. Previously, we cloned and sequenced the cDNA for prepro-GnRH in midshipman. Here, using in situ hybridization, we localized prepro-GnRH mRNA to the ventrolateral nucleus of the thalamus, three divisions of the preoptic area, the ganglion of the terminal nerve, and the olfactory bulb. Since the thalamus, terminal nerve ganglion, and preoptic area have been associated with visual functions, we investigated the retinal connections in midshipman. In particular, biocytin tract tracing delineated a reciprocal connection between the ventrolateral nucleus of the thalamus and the retina. Retinofugal projections are exclusively contralateral. Experimental manipulation of this retinalthalamic loop through complete optic nerve transection shows that GnRH mRNA expression in the contralateral ventrolateral nucleus may be influenced by the retina. We hypothesize that a reciprocal retinothalamic GnRH circuit is important in modulating the expression of seasonal reproductive behaviors.
Collapse
Affiliation(s)
- C M Foran
- Section of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
40
|
Quanbeck C, Sherwood NM, Millar RP, Terasawa E. Two populations of luteinizing hormone-releasing hormone neurons in the forebrain of the rhesus macaque during embryonic development. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970414)380:3<293::aid-cne1>3.0.co;2-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Amano M, Urano A, Aida K. Distribution and function of gonadotropin-releasing hormone (GnRH) in the teleost brain. Zoolog Sci 1997; 14:1-11. [PMID: 9200976 DOI: 10.2108/zsj.14.1] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M Amano
- Nikko Branch, National Research Institute of Aquaculture, Tochigi, Japan
| | | | | |
Collapse
|
42
|
Breuckmann A, Paris F, Schreibman MP, Blüm V. Immunoreactive gonadotropin-releasing hormone (GnRH) in the brain and pituitary of adult and juvenile swordtails (Xiphophorus helleri, Teleostei, Poeciliidae). J Morphol 1996; 230:55-67. [DOI: 10.1002/(sici)1097-4687(199610)230:1<55::aid-jmor5>3.0.co;2-m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Yamamoto N, Uchiyama H, Ohki-Hamazaki H, Tanaka H, Ito H. Migration of GnRH-immunoreactive neurons from the olfactory placode to the brain: a study using avian embryonic chimeras. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 95:234-44. [PMID: 8874898 DOI: 10.1016/0165-3806(96)00078-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous studies suggest that gonadotropin-releasing hormone (GnRH) neurons appear in the olfactory placode and subsequently migrate into the brain during embryonic development. The aim of the present study was to obtain direct evidence for migration of GnRH neurons from the olfactory placode into the brain. Olfactory placodes from quail embryos were transplanted isotopically and isochronically, to replace the unilaterally ablated olfactory placodes of chick embryos. The chimeric embryos were allowed to develop for several days until they reached the embryonic stages when GnRH neurons are seen in the brain in normal embryos. Quail olfactory epithelia were formed in the host chick embryos. Quail olfactory nerves were also formed and reached the olfactory bulb or primordial olfactory bulb. GnRH-immunoreactive cells of quail origin revealed by a triple staining method were observed in the quail olfactory epithelium, quail olfactory nerve, chick olfactory bulb, and septo-preoptic area. These results indicate that GnRH neurons originate in the olfactory placode and migrate into the telencephalon including the septo-preoptic area. A migratory route of GnRH neurons was well documented by the use of a quail neuron-specific antibody, QN. The migratory route in the brain is discussed with special reference to the terminal nerve. A GnRH-immunoreactive neuronal group of chick origin appeared in the diencephalon of chimeric embryos. These diencephalic neurons may be of non-placodal origin. FMRFamide-immunoreactive neurons of quail origin were also found in the quail olfactory nerve and the host olfactory bulb, suggesting that FMRFamide neurons also originate in the olfactory placode and migrate into the brain.
Collapse
Affiliation(s)
- N Yamamoto
- Department of Anatomy, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
44
|
Park MK, Kogo H, Kawashima S, Wakabayashi K. Characterization of gonadotropin-releasing hormone (GnRH)-immunoreactive protein in the rat pineal gland. J Neurosci Res 1995; 41:386-93. [PMID: 7563231 DOI: 10.1002/jnr.490410311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of the present study was to characterize GnRH-like substance(s) in the rat pineal gland using a monoclonal antibody, LRH13, as a probe. The epitope of LRH13 is between 2nd and 5th amino acid residues of the mammalian GnRH, and its immunological characters were previously defined by us. LRH13 could show strong immunological signal on the rat pineal gland. Immunoblot after SDS-PAGE of the pineal gland preparations showed a LRH13 immunoreactive band with apparent mol wt 52 kilo-Dalton (kD), which is much bigger than that of hypothalamic GnRH precursor (10 kD). The 52 kD protein, however, was detected from insoluble fraction of the pineal homogenate and liberated from the fraction by Triton X-100 (2%) treatment. On the other hand, NaCl (140 mM and 500 mM) or EDTA (10 mM) treatment failed to liberate. Two-dimensional gel electrophoresis showed that the 52 kD protein is a mixture of two proteins with different isoelectric points (pI approximately 6.8 and 7.0). Both proteins showed identical patterns of peptide mapping by V8 protease digestion, and they might be originated from the same peptide. These results suggest that the rat pineal GnRH-immunoreactive substance has a unique property as a membrane associate protein.
Collapse
Affiliation(s)
- M K Park
- Zoological Institute, Graduate School of Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
45
|
Kim MH, Oka Y, Amano M, Kobayashi M, Okuzawa K, Hasegawa Y, Kawashima S, Suzuki Y, Aida K. Immunocytochemical localization of sGnRH and cGnRH-II in the brain of goldfish, Carassius auratus. J Comp Neurol 1995; 356:72-82. [PMID: 7629310 DOI: 10.1002/cne.903560105] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The immunocytochemical distribution of salmon gonadotropin-releasing hormone (sGnRH) and chicken GnRH-II (cGnRH-II) neurons in the brain of goldfish was examined using respective antisera. Salmon GnRH-immunoreactive (ir) cell bodies were localized in the area between the olfactory nerve and the olfactory bulb (the terminal nerve ganglion), the ventral telencephalon, the preoptic area, and the hypothalamus. Chicken GnRH-II-ir cell bodies were observed in the same areas as were those of sGnRH, although the number of cell bodies were fewer than those of sGnRH. In addition, chicken GnRH-II-ir cell bodies were also observed in the midbrain tegmentum where no sGnRH-ir cell bodies were found. Both sGnRH-ir and cGnRH-II-ir fibers were distributed not only in the hypothalamus and the pituitary gland but also in various brain areas from the olfactory bulb to the spinal cord. The wide distribution of GnRH-ir fibers suggests that in the goldfish, sGnRH and cGnRH-II not only regulate gonadotropin release from the pituitary gland but also function as neuromodulators in various brain regions.
Collapse
Affiliation(s)
- M H Kim
- Department of Fisheries, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yamamoto N, Oka Y, Amano M, Aida K, Hasegawa Y, Kawashima S. Multiple gonadotropin-releasing hormone (GnRH)-immunoreactive systems in the brain of the dwarf gourami, Colisa lalia: immunohistochemistry and radioimmunoassay. J Comp Neurol 1995; 355:354-68. [PMID: 7636018 DOI: 10.1002/cne.903550303] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study characterizes gonadotropin-releasing hormone (GnRH) neuronal groups that are located in several different brain regions by investigating GnRH molecular species and projection patterns in an anabantid fish, Colisa lalia. First, we examined the molecular species of GnRHs in extracts of the brain and the pituitary by reverse-phase high-performance liquid chromatography followed by radioimmunoassays. We found salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II), and an unfamiliar GnRH-like substance. Next, to examine the distribution of each GnRH molecule in different GnRH neuronal groups, we performed immunohistochemistry using four kinds of antisera and an antibody. Furthermore, we performed brain lesioning experiments of terminal nerve (TN) cells, the most conspicuous GnRH-immunoreactive cells in Colisa lalia. Comparisons of immunoreactive structures between TN-lesioned fish and untreated fish elucidated the projection area of each neuronal group. Three major neuronal groups were observed. TN-GnRH cells, which are located in the transitional area between the olfactory bulb and the telencephalon, showed strong sGnRH and weaker cGnRH-II immunoreactivity. TN-GnRH cells projected to wide areas of the central nervous system from the olfactory bulb to the spinal cord. The second group, located in the preoptic area, showed only sGnRH immunoreactivity and projected only to the pituitary. The third one, located in the midbrain tegmentum, exhibited strong cGnRH-II and weaker sGnRH immunoreactivity. This cell group projected mainly to brain regions posterior to the hypothalamus and the spinal cord. These different projection patterns suggest functional differentiation of each GnRH neuronal group.
Collapse
Affiliation(s)
- N Yamamoto
- Zoological Institute, Faculty of Science, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Andersson E, Bogerd J, Borg B, Sharp PJ, Sherwood NM, Goos HJT. Characterization and localization of gonadotropin-releasing hormone in the brain and pituitary of the three-spined stickleback, Gasterosteus aculeatus. Cell Tissue Res 1995. [DOI: 10.1007/bf00318162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Oka Y. Tetrodotoxin-resistant persistent Na+ current underlying pacemaker potentials of fish gonadotrophin-releasing hormone neurones. J Physiol 1995; 482 ( Pt 1):1-6. [PMID: 7730975 PMCID: PMC1157748 DOI: 10.1113/jphysiol.1995.sp020494] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. Gonadotrophin-releasing hormone (GnRH)-immunoreactive terminal nerve (TN) cells show endogenous regular beating discharges, which may be related to their putative neuromodulator functions. The ionic mechanism underlying the pacemaker potential was studied using intracellular and patch-pipette current clamp recordings from a whole brain in vitro preparation of a small fish brain. 2. The pacemaker potentials were resistant to 1.5-3 microM tetrodotoxin (TTX) and were not affected by Ca2+ channel blockers (amiloride, Ni2+, Co2+, Cd2+) or in Ca(2+)-free solution. In contrast, the pacemaker potentials were readily blocked by substituting tetramethylammonium or choline for Na+ in the perfusing solution, and the resting membrane potential became more hyperpolarized than the control level. 3. The present results suggest that the TTX-resistant persistent Na+ current, INa(slow), supplies the persistent depolarizing drive and plays an important role in the generation of pacemaker potentials in TN GnRH cells.
Collapse
Affiliation(s)
- Y Oka
- Zoological Institute, Graduate School of Science, University of Tokyo, Japan
| |
Collapse
|
49
|
Maejima K, Oka Y, Park MK, Kawashima S. Immunohistochemical double-labeling study of gonadotropin-releasing hormone (GnRH)-immunoreactive cells and oxytocin-immunoreactive cells in the preoptic area of the dwarf gourami, Colisa lalia. Neurosci Res 1994; 20:189-93. [PMID: 7808702 DOI: 10.1016/0168-0102(94)90037-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The distribution of gonadotropin-releasing hormone (GnRH)-immunoreactive (ir) cells in the preoptic area (POA) of the dwarf gourami, Colisa lalia, was immunohistochemically studied. These neurons form cell columns on both sides of the common ventricle, and their axons project to the pituitary gland by forming distinct bundles. Also examined was the distribution of isotocin (IST) cells in the POA by using an anti-oxytocin (OXT) serum which has been proven to crossreact with IST. These two kinds of immunoreactive cells were distributed quite similarly in the POA. However, by using an immunofluorescence double-labeling method on thinner sections we found that a population of small IST cells in the ventral POA were also immunoreactive to GnRH, but that large IST cells in the dorsal POA were not immunoreactive to GnRH, and small GnRH-ir cells in the most ventral POA were not immunoreactive to the OXT antiserum. In the pituitary gland, GnRH-ir fibers were found in both the neurohypophysis and proximal pars distalis, but IST fibers were found only in the neurohypophysis.
Collapse
Affiliation(s)
- K Maejima
- Zoological Institute, School of Science, University of Tokyo, Japan
| | | | | | | |
Collapse
|
50
|
Francis RC, Lee HN, Fernald RD. Ontogeny of gonadotropin releasing hormone-containing neurons in the teleost brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 78:151-60. [PMID: 8026070 DOI: 10.1016/0165-3806(94)90021-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We investigated changes in two gonadotropin releasing hormone (GnRH)-containing neuronal populations during juvenile development in the African teleost, Haplochromis burtoni. Juveniles were sampled at weekly intervals and GnRHir neurons were identified through immunocytochemistry (ICC), then counted and measured on computer-captured video images. Soma size of GnRH neurons in the preoptic area (POA), which regulate gonadotropin release from the pituitary, is socially modulated in adults. Here we show that in juveniles the soma size of these neurons increases as a linear function of body weight. Terminal nerve (TN) GnRHir neurons, in contrast, are not involved in pituitary regulation and their soma size is not socially modulated in adults. In juveniles, soma size of these neurons is a quadratic function of body size and the covariance of soma size and body size is much less than in the POA GnRHir neurons. In both populations, GnRHir neuronal number covaries with body size or age only in the earliest juvenile stages. Analysis of the development of these two distinct GnRHir neuronal populations provides insight into their functional differentiation in adults.
Collapse
Affiliation(s)
- R C Francis
- Department of Psychology, Stanford University, CA 94305-2130
| | | | | |
Collapse
|