1
|
Trigeminal Sensory Supply Is Essential for Motor Recovery after Facial Nerve Injury. Int J Mol Sci 2022; 23:ijms232315101. [PMID: 36499425 PMCID: PMC9740813 DOI: 10.3390/ijms232315101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Recovery of mimic function after facial nerve transection is poor. The successful regrowth of regenerating motor nerve fibers to reinnervate their targets is compromised by (i) poor axonal navigation and excessive collateral branching, (ii) abnormal exchange of nerve impulses between adjacent regrowing axons, namely axonal crosstalk, and (iii) insufficient synaptic input to the axotomized facial motoneurons. As a result, axotomized motoneurons become hyperexcitable but unable to discharge. We review our findings, which have addressed the poor return of mimic function after facial nerve injuries, by testing the hypothesized detrimental component, and we propose that intensifying the trigeminal sensory input to axotomized and electrophysiologically silent facial motoneurons improves the specificity of the reinnervation of appropriate targets. We compared behavioral, functional, and morphological parameters after single reconstructive surgery of the facial nerve (or its buccal branch) with those obtained after identical facial nerve surgery, but combined with direct or indirect stimulation of the ipsilateral infraorbital nerve. We found that both methods of trigeminal sensory stimulation, i.e., stimulation of the vibrissal hairs and manual stimulation of the whisker pad, were beneficial for the outcome through improvement of the quality of target reinnervation and recovery of vibrissal motor performance.
Collapse
|
2
|
Demonstration of three-dimensional contact point determination and contour reconstruction during active whisking behavior of an awake rat. PLoS Comput Biol 2022; 18:e1007763. [PMID: 36108064 PMCID: PMC9477318 DOI: 10.1371/journal.pcbi.1007763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
The rodent vibrissal (whisker) system has been studied for decades as a model of active touch sensing. There are no sensors along the length of a whisker; all sensing occurs at the whisker base. Therefore, a large open question in many neuroscience studies is how an animal could estimate the three-dimensional (3D) location at which a whisker makes contact with an object. In the present work we simulated the shape of a real rat whisker to demonstrate the existence of several unique mappings from triplets of mechanical signals at the whisker base to the three-dimensional whisker-object contact point. We then used high speed video to record whisker deflections as an awake rat whisked against a peg, and used the mechanics resulting from those deflections to extract the contact points along the peg surface. These results demonstrate that measurement of specific mechanical triplets at the base of a biological whisker can enable 3D contact point determination during natural whisking behavior. The approach is viable even though the biological whisker has non-ideal, non-planar curvature, and even given the rat’s real-world choices of whisking parameters. Visual intuition for the quality of the approach is provided in a video that shows the contour of the peg gradually emerging during active whisking behavior.
Collapse
|
3
|
Zhou J, Liu G, Zhang X, Wu C, Ma M, Wu J, Hou L, Yin B, Qiang B, Shu P, Peng X. Comparison of the Spatiotemporal Expression Patterns of Three Cre Lines, Emx1IRES-Cre, D6-Cre and hGFAP-Cre, Commonly Used in Neocortical Development Research. Cereb Cortex 2021; 32:1668-1681. [PMID: 34550336 DOI: 10.1093/cercor/bhab305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/14/2022] Open
Abstract
Emx1IRES-Cre, D6-Cre and hGFAP-Cre are commonly used to conditionally manipulate gene expression or lineage tracing because of their specificity in the dorsal telencephalon during early neurogenesis as previously described. However, the spatiotemporal differences in Cre recombinase activity would lead to divergent phenotypes. Here, we compared the patterns of Cre activity in the early embryos among the three lines by mating with reporter mice. The activities of Emx1IRES-Cre, D6-Cre and hGFAP-Cre were observed in the dorsal telencephalon, starting from approximately embryonic day 9.5, 11.5 and 12.5, respectively. Although all the three lines have activity in radial glial cells, Emx1IRES-Cre fully covers the dorsal and medial telencephalon, including the archicortex and cortical hem. D6-Cre is highly restricted to the dorsal telencephalon with anterior-low to posterior-high gradients, partially covers the hippocampus, and absent in the cortical hem. Moreover, both Emx1IRES-Cre and hGFAP-Cre exhibit Cre activity outside the dorsal neocortex. Meanwhile, we used the three Cre lines to mediate Dicer knockout and observed inconsistent phenotypes, including discrepancies in radial glial cell number, survival and neurogenesis in the neocortex and hippocampus. Together we proved differences in Cre activity can perturb the resultant phenotypes, which aid researchers in appropriate experimental design.
Collapse
Affiliation(s)
- Jiafeng Zhou
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Gaoao Liu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiaoling Zhang
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chao Wu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Mengjie Ma
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jiarui Wu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Lin Hou
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Bin Yin
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Boqin Qiang
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Pengcheng Shu
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.,Chinese Institute for Brain Research, Beijing, 102206, China
| | - Xiaozhong Peng
- The State Key Laboratory of Medical Molecular Biology, Neuroscience Center, Medical Primate Research Center and Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.,Institute of Medical Biology of the Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| |
Collapse
|
4
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
The evolution and multi-molecular properties of NF1 cutaneous neurofibromas originating from C-fiber sensory endings and terminal Schwann cells at normal sites of sensory terminations in the skin. PLoS One 2019; 14:e0216527. [PMID: 31107888 PMCID: PMC6527217 DOI: 10.1371/journal.pone.0216527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/24/2019] [Indexed: 12/30/2022] Open
Abstract
In addition to large plexiform neurofibromas (pNF), NF1 patients are frequently disfigured by cutaneous neurofibromas (cNF) and are often afflicted with chronic pain and itch even from seemingly normal skin areas. Both pNFs and cNF consist primarily of benign hyperproliferating nonmyelinating Schwann cells (nSC). While pNF clearly arise within deep nerves and plexuses, the role of cutaneous innervation in the origin of cNF and in chronic itch and pain is unknown. First, we conducted a comprehensive, multi-molecular, immunofluorescence (IF) analyses on 3mm punch biopsies from three separate locations in normal appearing, cNF-free skin in 19 NF1 patients and skin of 16 normal subjects. At least one biopsy in 17 NF1 patients had previously undescribed micro-lesions consisting of a small, dense cluster of nonpeptidergic C-fiber endings and the affiliated nSC consistently adjoining adnexal structures—dermal papillae, hair follicles, sweat glands, sweat ducts, and arterioles—where C-fiber endings normally terminate. Similar micro-lesions were detected in hind paw skin of mice with conditionally-induced SC Nf1-/- mutations. Hypothesizing that these microlesions were pre-cNF origins of cNF, we subsequently analyzed numerous overt, small cNF (s-cNF, 3–6 mm) and discovered that each had an adnexal structure at the epicenter of vastly increased nonpeptidergic C-fiber terminals, accompanied by excessive nSC. The IF and functional genomics assays indicated that neurturin (NTRN) and artemin (ARTN) signaling through cRET kinase and GFRα2 and GFRα3 co-receptors on the aberrant C-fiber endings and nSC may mutually promote the onset of pre-cNF and their evolution to s-cNF. Moreover, TrpA1 and TrpV1 receptors may, respectively, mediate symptoms of chronic itch and pain. These newly discovered molecular characteristics might be targeted to suppress the development of cNF and to treat chronic itch and pain symptoms in NF1 patients.
Collapse
|
6
|
McCulloch PF, Lahrman KA, DelPrete B, DiNovo KM. Innervation of the Nose and Nasal Region of the Rat: Implications for Initiating the Mammalian Diving Response. Front Neuroanat 2018; 12:85. [PMID: 30483070 PMCID: PMC6243009 DOI: 10.3389/fnana.2018.00085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/28/2018] [Indexed: 11/13/2022] Open
Abstract
Most terrestrial animals demonstrate an autonomic reflex that facilitates survival during prolonged submersion under water. This diving response is characterized by bradycardia, apnea and selective increases in peripheral vascular resistance. Stimulation of the nose and nasal passages is thought to be primarily responsible for providing the sensory afferent signals initiating this protective reflex. Consequently, the primary objective of this research was to determine the central terminal projections of nerves innervating the external nose, nasal vestibule and nasal passages of rats. We injected wheat germ agglutinin (WGA) into specific external nasal locations, into the internal nasal passages of rats both with and without intact anterior ethmoidal nerves (AENs), and directly into trigeminal nerves innervating the nose and nasal region. The central terminations of these projections within the medulla were then precisely mapped. Results indicate that the internal nasal branch of the AEN and the nasopalatine nerve, but not the infraorbital nerve (ION), provide primary innervation of the internal nasal passages. The results also suggest afferent fibers from the internal nasal passages, but not external nasal region, project to the medullary dorsal horn (MDH) in an appropriate anatomical way to cause the activation of secondary neurons within the ventral MDH that express Fos protein during diving. We conclude that innervation of the anterior nasal passages by the AEN and nasopalatine nerve is likely to provide the afferent information responsible for the activation of secondary neurons within MDH during voluntary diving in rats.
Collapse
Affiliation(s)
- Paul F McCulloch
- Department of Physiology, College Graduate Studies, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Kenneth A Lahrman
- Department of Physiology, College Graduate Studies, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Benjamin DelPrete
- Department of Physiology, College Graduate Studies, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Karyn M DiNovo
- Department of Physiology, College Graduate Studies, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
7
|
Early life vincristine exposure evokes mechanical pain hypersensitivity in the developing rat. Pain 2018; 158:1647-1655. [PMID: 28722694 DOI: 10.1097/j.pain.0000000000000953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vincristine (VNC) is commonly used to treat pediatric cancers, including the most prevalent childhood malignancy, acute lymphoblastic leukemia. Although clinical evidence suggests that VNC causes peripheral neuropathy in children, the degree to which pediatric chemotherapeutic regimens influence pain sensitivity throughout life remains unclear, in part because of the lack of an established animal model of chemotherapy-induced neuropathic pain during early life. Therefore, this study investigated the effects of VNC exposure between postnatal days (P) 11 and 21 on mechanical and thermal pain sensitivity in the developing rat. Low doses of VNC (15 or 30 μg/kg) failed to alter nociceptive withdrawal reflexes at any age examined compared with vehicle-injected littermate controls. Meanwhile, high dose VNC (60 μg/kg) evoked mechanical hypersensitivity in both sexes beginning at P26 that persisted until adulthood and included both static and dynamic mechanical allodynia. Hind paw withdrawal latencies to noxious heat and cold were unaffected by high doses of VNC, suggesting a selective effect of neonatal VNC on mechanical pain sensitivity. Gross and fine motor function appeared normal after VNC treatment, although a small decrease in weight gain was observed. The VNC regimen also produced a significant decrease in intraepidermal nerve fiber density in the hind paw skin by P33. Overall, the present results demonstrate that high-dose administration of VNC during the early postnatal period selectively evokes a mechanical hypersensitivity that is slow to emerge during adolescence, providing further evidence that aberrant sensory input during early life can have prolonged consequences for pain processing.
Collapse
|
8
|
Olson W, Abdus-Saboor I, Cui L, Burdge J, Raabe T, Ma M, Luo W. Sparse genetic tracing reveals regionally specific functional organization of mammalian nociceptors. eLife 2017; 6:29507. [PMID: 29022879 PMCID: PMC5648527 DOI: 10.7554/elife.29507] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/11/2017] [Indexed: 12/31/2022] Open
Abstract
The human distal limbs have a high spatial acuity for noxious stimuli but a low density of pain-sensing neurites. To elucidate mechanisms underlying regional differences in processing nociception, we sparsely traced non-peptidergic nociceptors across the body using a newly generated MrgprdCreERT2 mouse line. We found that mouse plantar paw skin is also innervated by a low density of Mrgprd+ nociceptors, while individual arbors in different locations are comparable in size. Surprisingly, the central arbors of plantar paw and trunk innervating nociceptors have distinct morphologies in the spinal cord. This regional difference is well correlated with a heightened signal transmission for plantar paw circuits, as revealed by both spinal cord slice recordings and behavior assays. Taken together, our results elucidate a novel somatotopic functional organization of the mammalian pain system and suggest that regional central arbor structure could facilitate the “enlarged representation” of plantar paw regions in the CNS.
Collapse
Affiliation(s)
- William Olson
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Ishmail Abdus-Saboor
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Lian Cui
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Justin Burdge
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Tobias Raabe
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
9
|
Abstract
A fundamental question in the investigation of any sensory system is what physical signals drive its sensory neurons during natural behavior. Surprisingly, in the whisker system, it is only recently that answers to this question have emerged. Here, we review the key developments, focussing mainly on the first stage of the ascending pathway - the primary whisker afferents (PWAs). We first consider a biomechanical framework, which describes the fundamental mechanical forces acting on the whiskers during active sensation. We then discuss technical progress that has allowed such mechanical variables to be estimated in awake, behaving animals. We discuss past electrophysiological evidence concerning how PWAs function and reinterpret it within the biomechanical framework. Finally, we consider recent studies of PWAs in awake, behaving animals and compare the results to related studies of the cortex. We argue that understanding 'what the whiskers tell the brain' sheds valuable light on the computational functions of downstream neural circuits, in particular, the barrel cortex.
Collapse
|
10
|
Estebanez L, Férézou I, Ego-Stengel V, Shulz DE. Representation of tactile scenes in the rodent barrel cortex. Neuroscience 2017; 368:81-94. [PMID: 28843997 DOI: 10.1016/j.neuroscience.2017.08.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 11/29/2022]
Abstract
After half a century of research, the sensory features coded by neurons of the rodent barrel cortex remain poorly understood. Still, views of the sensory representation of whisker information are increasingly shifting from a labeled line representation of single-whisker deflections to a selectivity for specific elements of the complex statistics of the multi-whisker deflection patterns that take place during spontaneous rodent behavior - so called natural tactile scenes. Here we review the current knowledge regarding the coding of patterns of whisker stimuli by barrel cortex neurons, from responses to single-whisker deflections to the representation of complex tactile scenes. A number of multi-whisker tunings have already been identified, including center-surround feature extraction, angular tuning during edge-like multi-whisker deflections, and even tuning to specific statistical properties of the tactile scene such as the level of correlation across whiskers. However, a more general model of the representation of multi-whisker information in the barrel cortex is still missing. This is in part because of the lack of a human intuition regarding the perception emerging from a whisker system, but also because in contrast to other primary sensory cortices such as the visual cortex, the spatial feature selectivity of barrel cortex neurons rests on highly nonlinear interactions that remained hidden to classical receptive field approaches.
Collapse
Affiliation(s)
- Luc Estebanez
- Unité de Neuroscience, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France
| | - Isabelle Férézou
- Unité de Neuroscience, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France
| | - Valérie Ego-Stengel
- Unité de Neuroscience, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France
| | - Daniel E Shulz
- Unité de Neuroscience, Information et Complexité (UNIC), Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Ikeda R, Gu JG. Electrophysiological property and chemical sensitivity of primary afferent neurons that innervate rat whisker hair follicles. Mol Pain 2016; 12:12/0/1744806916685570. [PMID: 27927797 PMCID: PMC5207362 DOI: 10.1177/1744806916685570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Whisker hair follicles are sensory organs that sense touch and perform tactile discrimination in animals, and they are sites where sensory impulses are initiated when whisker hairs touch an object. The sensory signals are then conveyed by whisker afferent fibers to the brain for sensory perception. Electrophysiological property and chemical sensitivity of whisker afferent fibers, important factors affecting whisker sensory processing, are largely not known. In the present study, we performed patch-clamp recordings from pre-identified whisker afferent neurons in whole-mount trigeminal ganglion preparations and characterized their electrophysiological property and sensitivity to ATP, serotonin and glutamate. Of 97 whisker afferent neurons examined, 67% of them are found to be large-sized (diameter ≥45 µm) cells and 33% of them are medium- to small-sized (diameter <45 µm) cells. Almost every large-sized whisker afferent neuron fires a single action potential but many (40%) small/medium-sized whisker afferent neurons fire multiple action potentials in response to prolonged stepwise depolarization. Other electrophysiological properties including resting membrane potential, action potential threshold, and membrane input resistance are also significantly different between large-sized and small/medium-sized whisker afferent neurons. Most large-sized and many small/medium-sized whisker afferent neurons are sensitive to ATP and/or serotonin, and ATP and/or serotonin could evoke strong inward currents in these cells. In contrast, few whisker afferent neurons are sensitive to glutamate. Our results raise a possibility that ATP and/or serotonin may be chemical messengers involving sensory signaling for different types of rat whisker afferent fibers.
Collapse
Affiliation(s)
- Ryo Ikeda
- Department of Anesthesiology, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Orthopaedic Surgery, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Jianguo G Gu
- Department of Orthopaedic Surgery, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, AL, USA
- Jianguo G Gu, Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, 901 19th Street South Birmingham, AL 35294, USA.
| |
Collapse
|
12
|
Lucianna FA, Albarracín AL, Vrech SM, Farfán FD, Felice CJ. The mathematical whisker: A review of numerical models of the rat׳s vibrissa biomechanics. J Biomech 2016; 49:2007-2014. [PMID: 27260019 DOI: 10.1016/j.jbiomech.2016.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/27/2016] [Accepted: 05/15/2016] [Indexed: 11/25/2022]
Abstract
The vibrissal system of the rat refers to specialized hairs the animal uses for tactile sensory perception. Rats actively move their whiskers in a characteristic way called "whisking". Interaction with the environment produces elastic deformation of the whiskers, generating mechanical signals in the whisker-follicle complex. Advances in our understanding of the vibrissal complex biomechanics is of interest not only for the biological research field, but also for biomimetic approaches. The recent development of whisker numerical models has contributed to comprehending its sophisticated movements and its interactions with the follicle. The great diversity of behavioral patterns and complexities of the whisker-follicle ensemble encouraged the creation of many different biomechanical models. This review analyzes most of the whisker biomechanical models that have been developed so far. This review was written so as to render it accessible to readers coming from different research areas.
Collapse
Affiliation(s)
- Facundo Adrián Lucianna
- Laboratorio de Medios e Interfases (LAMEIN), Instituto Superior de Investigaciones Biológicas (INSIBIO), Universidad Nacional de Tucumán (UNT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina.
| | - Ana Lía Albarracín
- Laboratorio de Medios e Interfases (LAMEIN), Instituto Superior de Investigaciones Biológicas (INSIBIO), Universidad Nacional de Tucumán (UNT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| | - Sonia Mariel Vrech
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Center for Numerical and Computational Methods in Engineering (CEMCI), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - Fernando Daniel Farfán
- Laboratorio de Medios e Interfases (LAMEIN), Instituto Superior de Investigaciones Biológicas (INSIBIO), Universidad Nacional de Tucumán (UNT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| | - Carmelo José Felice
- Laboratorio de Medios e Interfases (LAMEIN), Instituto Superior de Investigaciones Biológicas (INSIBIO), Universidad Nacional de Tucumán (UNT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
13
|
Genç B, Lagrimas AKB, Kuru P, Hess R, Tu MW, Menichella DM, Miller RJ, Paller AS, Özdinler PH. Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line. PLoS One 2015. [PMID: 26222784 PMCID: PMC4519325 DOI: 10.1371/journal.pone.0132815] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.
Collapse
Affiliation(s)
- Barış Genç
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Amiko Krisa Bunag Lagrimas
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Pınar Kuru
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Robert Hess
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Michael William Tu
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Daniela Maria Menichella
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Richard J. Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - Amy S. Paller
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
- Departments of Dermatology and Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
- Skin Disease Research Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
- Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
| | - P. Hande Özdinler
- Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States of America
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sensory Hairs in the Bowhead Whale,Balaena mysticetus(Cetacea, Mammalia). Anat Rec (Hoboken) 2015; 298:1327-35. [DOI: 10.1002/ar.23163] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 11/07/2022]
|
15
|
Ramírez G, Rodríguez F, Herráez P, Suárez-Bonnet A, Andrada M, Espinosa-de-los-Monteros A. Morphologic and immunohistochemical features of Merkel cells in the dog. Res Vet Sci 2014; 97:475-80. [DOI: 10.1016/j.rvsc.2014.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 09/20/2014] [Accepted: 10/10/2014] [Indexed: 11/24/2022]
|
16
|
Marshall CD, Rozas K, Kot B, Gill VA. Innervation patterns of sea otter (Enhydra lutris) mystacial follicle-sinus complexes. Front Neuroanat 2014; 8:121. [PMID: 25400554 PMCID: PMC4212681 DOI: 10.3389/fnana.2014.00121] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/11/2014] [Indexed: 11/25/2022] Open
Abstract
Sea otters (Enhydra lutris) are the most recent group of mammals to return to the sea, and may exemplify divergent somatosensory tactile systems among mammals. Therefore, we quantified the mystacial vibrissal array of sea otters and histologically processed follicle-sinus complexes (F - SCs) to test the hypotheses that the number of myelinated axons per F - SC is greater than that found for terrestrial mammalian vibrissae and that their organization and microstructure converge with those of pinniped vibrissae. A mean of 120.5 vibrissae were arranged rostrally on a broad, blunt muzzle in 7-8 rows and 9-13 columns. The F-SCs of sea otters are tripartite in their organization and similar in microstructure to pinnipeds rather than terrestrial species. Each F-SC was innervated by a mean 1339 ± 408.3 axons. Innervation to the entire mystacial vibrissal array was estimated at 161,313 axons. Our data support the hypothesis that the disproportionate expansion of the coronal gyrus in somatosensory cortex of sea otters is related to the high innervation investment of the mystacial vibrissal array, and that quantifying innervation investment is a good proxy for tactile sensitivity. We predict that the tactile performance of sea otter mystacial vibrissae is comparable to that of harbor seals, sea lions and walruses.
Collapse
Affiliation(s)
- Christopher D. Marshall
- Department of Marine Biology, Texas A&M UniversityGalveston, TX, USA
- Department of Wildlife and Fisheries Sciences, Texas A&M UniversityTX, USA
| | - Kelly Rozas
- Department of Marine Biology, Texas A&M UniversityGalveston, TX, USA
| | - Brian Kot
- Department of Marine Biology, Texas A&M UniversityGalveston, TX, USA
| | - Verena A. Gill
- Marine Mammals Management, U.S. Fish and Wildlife ServiceAnchorage, Alaska, USA
| |
Collapse
|
17
|
Heaton JT, Sheu SH, Hohman MH, Knox CJ, Weinberg JS, Kleiss IJ, Hadlock TA. Rat whisker movement after facial nerve lesion: evidence for autonomic contraction of skeletal muscle. Neuroscience 2014; 265:9-20. [PMID: 24480367 DOI: 10.1016/j.neuroscience.2014.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/03/2014] [Accepted: 01/19/2014] [Indexed: 11/25/2022]
Abstract
Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic denervation was from autonomic, cholinergic axons traveling within the infraorbital branch of the trigeminal nerve (ION). Rats underwent unilateral facial nerve transection with repair (N=7) or resection without repair (N=11). Post-operative whisking amplitude was measured weekly across 10weeks, and during intraoperative stimulation of the ION and facial nerves at ⩾18weeks. Whisking was also measured after subsequent ION transection (N=6) or pharmacologic blocking of the autonomic ganglia using hexamethonium (N=3), and after snout cooling intended to elicit a vasodilation reflex (N=3). Whisking recovered more quickly and with greater amplitude in rats that underwent facial nerve repair compared to resection (P<0.05), but individual rats overlapped in whisking amplitude across both groups. In the resected rats, non-facial-nerve-mediated whisking was elicited by electrical stimulation of the ION, temporarily diminished following hexamethonium injection, abolished by transection of the ION, and rapidly and significantly (P<0.05) increased by snout cooling. Moreover, fibrillation-related whisker movements decreased in all rats during the initial recovery period (indicative of reinnervation), but re-appeared in the resected rats after undergoing ION transection (indicative of motor denervation). Cholinergic, parasympathetic axons traveling within the ION innervate whisker pad vasculature, and immunohistochemistry for vasoactive intestinal peptide revealed these axons branching extensively over whisker pad muscles and contacting neuromuscular junctions after facial nerve resection. This study provides the first behavioral and anatomical evidence of spontaneous autonomic innervation of skeletal muscle after motor nerve lesion, which not only has implications for interpreting facial nerve reinnervation results, but also calls into question whether autonomic-mediated innervation of striated muscle occurs naturally in other forms of neuropathy.
Collapse
Affiliation(s)
- James T Heaton
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, United States.
| | - Shu Hsien Sheu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02114, United States
| | - Marc H Hohman
- Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, United States
| | - Christopher J Knox
- Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, United States
| | - Julie S Weinberg
- Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, United States
| | - Ingrid J Kleiss
- Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, United States; Department of Otorhinolaryngology and Head & Neck Surgery, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Tessa A Hadlock
- Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, United States
| |
Collapse
|
18
|
Pi LQ, Jin XH, Hwang ST, Lee WS. Effects of calcitonin gene-related peptide on the immune privilege of human hair follicles. Neuropeptides 2013; 47:51-7. [PMID: 22975462 DOI: 10.1016/j.npep.2012.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 06/19/2012] [Accepted: 07/16/2012] [Indexed: 10/27/2022]
Abstract
The hair follicle is a widely available and instructive miniature organ in the human body that experiences major histocompatibility complex (MHC) class I dependent immune privilege (IP). There are various regulation factors that act on the generation, maintenance, and collapse of hair follicle IP. Neuropeptides such as calcitonin gene-related peptide (CGRP) are created in many organs, including skin, and display various immune regulation effects. The purpose of this study was to investigate the phenotypic effect of CGRP on the hair follicle's IP. First, we used interferon-γ (IFN-γ) to generate ectopic MHC antigen expression model in cultured human hair follicles as previously described. Then, we examined the effects of CGRP on the regulation of ectopic MHC antigen expression in cultured human hair follicles using reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemical staining techniques. IFN-γ (75 IU/ml) induced ectopic MHC expression. CGRP down-regulated INF-γ-induced ectopic MHC class I mRNA expression. These down-regulated effects were especially evident in 10(-8)M. In addition, CGRP also suppressed the staining intensity related to the expression of MHC class I and MHC class I-pathway related molecules (β2-microglobulin), but had no effect on MHC class II antigen expression. Taken together, these results indicate that CGRP might be an important regulatory factor for IP maintenance and restoration of IP via suppression of MHC class I antigen.
Collapse
Affiliation(s)
- Long-Quan Pi
- Department of Dermatology and Institute of Hair and Cosmetic Medicine, Yonsei University, Wonju College of Medicine, Wonju, Republic of Korea
| | | | | | | |
Collapse
|
19
|
Hanke W, Wieskotten S, Marshall C, Dehnhardt G. Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012. [PMID: 23180048 DOI: 10.1007/s00359-012-0778-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pinnipeds, that is true seals (Phocidae), eared seals (Otariidae), and walruses (Odobenidae), possess highly developed vibrissal systems for mechanoreception. They can use their vibrissae to detect and discriminate objects by direct touch. At least in Phocidae and Otariidae, the vibrissae can also be used to detect and analyse water movements. Here, we review what is known about this ability, known as hydrodynamic perception, in pinnipeds. Hydrodynamic perception in pinnipeds developed convergently to the hydrodynamic perception with the lateral line system in fish and the sensory hairs in crustaceans. So far two species of pinnipeds, the harbour seal (Phoca vitulina) representing the Phocidae and the California sea lion (Zalophus californianus) representing the Otariidae, have been studied for their ability to detect local water movements (dipole stimuli) and to follow hydrodynamic trails, that is the water movements left behind by objects that have passed by at an earlier point in time. Both species are highly sensitive to dipole stimuli and can follow hydrodynamic trails accurately. In the individuals tested, California sea lions were clearly more sensitive to dipole stimuli than harbour seals, and harbour seals showed a superior trail following ability as compared to California sea lions. Harbour seals have also been shown to derive additional information from hydrodynamic trails, such as motion direction, size and shape of the object that caused the trail (California sea lions have not yet been tested). The peculiar undulated shape of the harbour seals' vibrissae appears to play a crucial role in trail following, as it suppresses self-generated noise while the animal is swimming.
Collapse
Affiliation(s)
- Wolf Hanke
- Institute for Biosciences, Chair of Sensory and Cognitive Ecology, Rostock University, Albert-Einstein-Strasse 3, 18059, Rostock, Germany.
| | | | | | | |
Collapse
|
20
|
Quist BW, Hartmann MJZ. Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration. J Neurophysiol 2012; 107:2298-312. [PMID: 22298834 DOI: 10.1152/jn.00372.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rats actively tap and sweep their large mystacial vibrissae (whiskers) against objects to tactually explore their surroundings. When a vibrissa makes contact with an object, it bends, and this bending generates forces and bending moments at the vibrissa base. Researchers have only recently begun to quantify these mechanical variables. The present study quantifies the forces and bending moments at the vibrissa base with a quasi-static model of vibrissa deflection. The model was validated with experiments on real vibrissae. Initial simulations demonstrated that almost all vibrissa-object collisions during natural behavior will occur with the concave side of the vibrissa facing the object, and we therefore paid particular attention to the role of the vibrissa's intrinsic curvature in shaping the forces at the base. Both simulations and experiments showed that vibrissae with larger intrinsic curvatures will generate larger axial forces. Simulations also demonstrated that the range of forces and moments at the vibrissal base vary over approximately three orders of magnitude, depending on the location along the vibrissa at which object contact is made. Both simulations and experiments demonstrated that collisions in which the concave side of the vibrissa faces the object generate longer-duration contacts and larger net forces than collisions with the convex side. These results suggest that the orientation of the vibrissa's intrinsic curvature on the mystacial pad may increase forces during object contact and provide increased sensitivity to detailed surface features.
Collapse
Affiliation(s)
- Brian W Quist
- Biomedical Engineering Department, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | | |
Collapse
|
21
|
Mosconi T, Gruber T. Immunohistochemical comparison of whisker pad cutaneous innervation in Swiss Webster and hairless mice. Somatosens Mot Res 2010; 27:149-73. [PMID: 20961209 DOI: 10.3109/08990220.2010.513597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To establish the mouse mutant, hairless (Hr), as a useful model for future analyses of target-ending interactions, we assessed the cutaneous innervation in the whisker pad after loss of primary hair targets. Postnatal (P) development of fur in Hr begins similarly to that of "normal" Swiss Webster (SW) mice. Around P10, hairs are shed and the follicles rendered permanently incompetent. Hair loss progresses rostrocaudally until the entire skin is denuded. Substantial alterations in the distribution and density of sensory and autonomic endings in the mystacial pad vibrissal and intervibrissal fur innervation were discovered. Pilo-neural complexes innervating fur hairs were dismantled in Hr. Epidermal innervation in SW was rich; only a few endings expressed growth-associated protein-43 kdal (GAP), suggesting limited changes in axonal elongation. Innervation in Hr formed a dense layer passing upward through the thickened epidermis, with substantial increases among all types of endings. Vibrissal follicle-sinus complexes were also hyperinnervated. Endings in Hr vibrissae and fur were strongly GAP-positive, suggesting reorganization of innervation. Dermal and vascular autonomic innervation in both strains co-localized tyrosine hydroxylase and neuropeptide Y, but only in Hr did neuropeptide Y co-localize calcitonin gene-related peptide (CGRP) and express GAP immunolabeling. Stereological quantitation of trigeminal ganglia revealed no differences in neuron number between Hr and SW, although there were small increases in cell volume in Hr trigeminal ganglion cells. These results suggested that a form of collateral sprouting was active in Hr mystacial pads, not in response to local injury, but as a result of loss of primary target tissues.
Collapse
Affiliation(s)
- Tony Mosconi
- Department of Physical Therapy Education, Western University of Health Sciences, Pomona, CA 91766, USA.
| | | |
Collapse
|
22
|
Taylor AM, Peleshok JC, Ribeiro-da-Silva A. Distribution of P2X3-immunoreactive fibers in hairy and glabrous skin of the rat. J Comp Neurol 2009; 514:555-66. [DOI: 10.1002/cne.22048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Hasegawa H, Wang F. Visualizing mechanosensory endings of TrkC-expressing neurons in HS3ST-2-hPLAP mice. J Comp Neurol 2008; 511:543-56. [PMID: 18839409 DOI: 10.1002/cne.21862] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Somatosensory neurons are classified into three main types according to their modalities: nociceptive, thermal, and mechanosensory. Within each modality group, neurons can be further divided into morphologically and functionally distinct subclasses. Here we show that heparan sulfate D-glucosaminyl 3-O-sulfotransferase 2 (HS3ST-2) is a marker for specific subsets of TrkC-expressing cutaneous low-threshold mechanosensory and proprioceptive mechanosensory neurons. Two-color in situ analysis revealed that almost all HS3ST-2 signals colocalized with TrkC but not with TrkA or TrkB mRNA. To visualize the morphological subtypes of HS3ST-2/TrkC-expressing neurons, we generated a HS3ST-2-hPLAP knock-in mouse line, in which HS3ST-2-expressing neurons and their projections are labeled by human placental alkaline phosphatase (hPLAP). AP staining in these mice demonstrated that sensory endings of muscle spindles and Golgi tendon organs as well as the cutaneous mechanosensory Merkel and longitudinal lanceolate endings in the whiskers are strongly positive for hPLAP activity. In contrast, no nociceptive endings are labeled. In the glabrous and hairy skin, rare Merkel endings and transverse lanceolate endings are weakly stained. During development, each type of nerve endings forms at different time point. Muscle innervations differentiate first, followed by formation of cutaneous sensory endings. Our results revealed the subtype identities of TrkC-positive mechanosensory neurons and demonstrated the usefulness of HS3ST-2 as a genetic marker for these subclasses of neurons.
Collapse
Affiliation(s)
- Hiroshi Hasegawa
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
24
|
Czech NU, Klauer G, Dehnhardt G, Siemers BM. Fringe for foraging? Histology of the bristle-like hairs on the tail membrane of the gleaning bat, Myotis nattereri. ACTA CHIROPTEROLOGICA 2008. [DOI: 10.3161/150811008x414872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Pavlov SP, Grosheva M, Streppel M, Guntinas-Lichius O, Irintchev A, Skouras E, Angelova SK, Kuerten S, Sinis N, Dunlop SA, Angelov DN. Manually-stimulated recovery of motor function after facial nerve injury requires intact sensory input. Exp Neurol 2008; 211:292-300. [PMID: 18381213 DOI: 10.1016/j.expneurol.2008.02.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/20/2008] [Accepted: 02/12/2008] [Indexed: 12/23/2022]
Abstract
We have recently shown in rat that daily manual stimulation (MS) of vibrissal muscles promotes recovery of whisking and reduces polyinnervation of muscle fibers following repair of the facial nerve (facial-facial anastomosis, FFA). Here, we examined whether these positive effects were: (1) correlated with alterations of the afferent connections of regenerated facial motoneurons, and (2) whether they were achieved by enhanced sensory input through the intact trigeminal nerve. First, we quantified the extent of total synaptic input to motoneurons in the facial nucleus using synaptophysin immunocytochemistry following FFA with and without subsequent MS. We found that, without MS, this input was reduced compared to intact animals. The number of synaptophysin-positive terminals returned to normal values following MS. Thus, MS appears to counteract the deafferentation of regenerated facial motoneurons. Second, we performed FFA and, in addition, eliminated the trigeminal sensory input to facial motoneurons by extirpation of the ipsilateral infraorbital nerve (IONex). In this paradigm, without MS, vibrissal motor performance and pattern of end-plate reinnervation were as aberrant as after FFA without MS. MS did not influence the reinnervation pattern after IONex and functional recovery was even worse than after IONex without MS. Thus, when the sensory system is intact, MS restores normal vibrissal function and reduces the degree of polyinnervation. When afferent inputs are abolished, these effects are eliminated or even reversed. We conclude that rehabilitation strategies must be carefully designed to take into account the extent of motor and/or sensory damage.
Collapse
Affiliation(s)
- Stoyan P Pavlov
- Department of Anatomy, Histology, Embryology, Medical University Varna, Bulgaria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Siau C, Xiao W, Bennett GJ. Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells. Exp Neurol 2006; 201:507-14. [PMID: 16797537 PMCID: PMC1805691 DOI: 10.1016/j.expneurol.2006.05.007] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 04/29/2006] [Accepted: 05/05/2006] [Indexed: 11/30/2022]
Abstract
Experimental painful peripheral neuropathies produced by the chemotherapeutic drugs, paclitaxel and vincristine, are produced by relatively low doses that do not cause axonal degeneration in peripheral nerve. Using quantitative immunolabeling with the PGP9.5 antibody, we have investigated whether these painful neuropathies might be associated with degeneration that is confined to the region of the sensory fiber's receptor terminals in the skin. Because complete and partial nerve transections are known to cause an increase in PGP9.5 in epidermal Langerhans cells (LCs), we also examined whether this effect occurs in chemotherapy-treated animals. At the time of peak pain severity, rats with paclitaxel- and vincristine-evoked painful peripheral neuropathies had a significant decrease (24% and 44%, respectively) in the number of intraepidermal nerve fibers (IENF) in the hind paw glabrous skin and an increase (217% and 121%, respectively) in the number of PGP9.5-positive LCs, relative to control. However, neither loss of IENF nor an increase in PGP9.5-positive LCs was found in rats with a painful peripheral neuropathy evoked by the anti-HIV agent, 2',3'-dideoxycytidine. We also confirmed that there is a decrease in IENF and an increase in PGP9.5-positive LCs in rats with neuropathic pain following a partial nerve injury (CCI model) and in rats with a complete sciatic nerve transection. Partial degeneration of the intraepidermal innervation suggests mechanisms that might produce chemotherapy-evoked neuropathic pain, and activation of cutaneous LCs suggests possible neuroimmune interactions that might also have a role.
Collapse
Affiliation(s)
- Chiang Siau
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
27
|
Erzurumlu RS, Chen ZF, Jacquin MF. Molecular determinants of the face map development in the trigeminal brainstem. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2006; 288:121-34. [PMID: 16432893 PMCID: PMC3556733 DOI: 10.1002/ar.a.20285] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The perception of external sensory information by the brain requires highly ordered synaptic connectivity between peripheral sensory neurons and their targets in the central nervous system. Since the discovery of the whisker-related barrel patterns in the mouse cortex, the trigeminal system has become a favorite model for study of how its connectivity and somatotopic maps are established during development. The trigeminal brainstem nuclei are the first CNS regions where whisker-specific neural patterns are set up by the trigeminal afferents that innervate the whiskers. In particular, barrelette patterns in the principal sensory nucleus of the trigeminal nerve provide the template for similar patterns in the face representation areas of the thalamus and subsequently in the primary somatosensory cortex. Here, we describe and review studies of neurotrophins, multiple axon guidance molecules, transcription factors, and glutamate receptors during early development of trigeminal connections between the whiskers and the brainstem that lead to emergence of patterned face maps. Studies from our laboratories and others' showed that developing trigeminal ganglion cells and their axons depend on a variety of molecular signals that cooperatively direct them to proper peripheral and central targets and sculpt their synaptic terminal fields into patterns that replicate the organization of the whiskers on the muzzle. Similar mechanisms may also be used by trigeminothalamic and thalamocortical projections in establishing patterned neural modules upstream from the trigeminal brainstem.
Collapse
Affiliation(s)
- Reha S Erzurumlu
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | |
Collapse
|
28
|
Cahusac PMB, Senok SS, Hitchcock IS, Genever PG, Baumann KI. Are unconventional NMDA receptors involved in slowly adapting type I mechanoreceptor responses? Neuroscience 2005; 133:763-73. [PMID: 15908129 DOI: 10.1016/j.neuroscience.2005.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 02/24/2005] [Accepted: 03/04/2005] [Indexed: 11/25/2022]
Abstract
Specific immunohistochemical staining for NMDA receptor NR2A/B subunits was found in the outer root sheath layer of rat sinus hair (whisker) follicle. Co-localization with CK 20 confirmed that Merkel cells were stained. The NR2A/B staining seen on Merkel cells was pericellular. In addition it appeared that NF70-positive staining was in close proximity to, but did not colocalise with NR2A/B immunoreactivity, indicating that NR2A/B was only expressed by Merkel cells and not their adjacent nerve terminals. Merkel cells and the nerve terminals have previously been associated with electrophysiological recordings from slowly adapting type I (St I) mechanoreceptor unit activity. Pharmacological experiments with isolated sinus hairs using a wide range of ionotropic glutamate receptor antagonists found that only certain NMDA receptor blockers depressed St I unit responses to mechanical stimuli. AMPA/kainate receptor antagonists (CNQX and NBQX, 100 microM) had no effect, nor did classical competitive NMDA receptor antagonists, D-AP5 (600 microM) and R-CPP (100 microM), nor the NMDA glycine site antagonist 5,7-dichlorokynurenic acid (100 microM). The only effective NMDA receptor blockers were those selective for the polyamine site: ifenprodil (IC50 20 microM) and Ro 25-6981 (IC50 approximately 50 microM), and the associated ion channel: MK 801, ketamine and (+/-)-1-(1,2-diphenylethyl)piperidine (IC50 < 100 microM). The two enantiomers of MK 801 were equipotent. All effects were long lasting, consistent with their non-/uncompetitive actions. The most potent drug tested, ifenprodil, at an effective dose of 30 microM, had a mean recovery time of 74 min. A three-fold increase in drug concentration was required to depress St II units (associated with non-synaptic lanceolate endings). Changes in Zn2+ did not affect St I unit responses. These data suggest that unconventional NMDA receptors are involved in St I unit responses, but question the notion of a glutamatergic synapse between the Merkel cell and nerve terminal.
Collapse
Affiliation(s)
- P M B Cahusac
- Department of Psychology, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | | | | | | | | |
Collapse
|
29
|
Marshall CD, Amin H, Kovacs KM, Lydersen C. Microstructure and innervation of the mystacial vibrissal follicle-sinus complex in bearded seals,Erignathus barbatus (Pinnipedia: Phocidae). ACTA ACUST UNITED AC 2005; 288:13-25. [PMID: 16342212 DOI: 10.1002/ar.a.20273] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vibrissal follicle-sinus complexes (F-SCs) are sensory receptors of the mammalian integument system. They are best developed within Pinnipedia. The objective of this study was to investigate the F-SCs of bearded seals (Erignathus barbatus) for benthic foraging adaptations. Bearded seals possessed approximately 244 mystacial F-SCs. In this species, F-SCs consisted of an outer dermal capsule (DC) surrounding a blood sinus system [upper cavernous sinus (UCS), ring sinus (RS), and lower cavernous sinus (LCS)] and concentric rings of epidermal tissue. The UCS comprised up to 62% of the F-SC length and may function as thermal protection for mechanoreceptors. A large asymmetrical ringwulst was located in the RS. A deep vibrissal nerve penetrated the DC at its base and terminated on mechanoreceptors in the epidermal tissues of the LCS and RS. The mean number of myelinated axons per F-SC was 1,314 (range, 811-1,650) and was among the highest number of axons per F-SC reported to date. An estimated mean number of 320,616 myelinated axons innervate the entire mystacial vibrissal array. Merkel-Neurite complexes (MNCs) and small simple laminated corpuscles were found in the region of the LCS. Myelinated axons also terminated on MNCs and lanceolate endings apical to the ringwulst. The number of F-SCs, their geometry in the mystacial region, the number of myelinated axons per F-SC, and the distribution of mechanoreceptors support the premise that pinniped vibrissae are sensitive active-touch receptor systems, and that structural differences in bearded seals, relative to other phocids, may be adaptations for benthic foraging.
Collapse
|
30
|
Fünfschilling U, Ng YG, Zang K, Miyazaki JI, Reichardt LF, Rice FL. TrkC kinase expression in distinct subsets of cutaneous trigeminal innervation and nonneuronal cells. J Comp Neurol 2004; 480:392-414. [PMID: 15558783 PMCID: PMC2710130 DOI: 10.1002/cne.20359] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurotrophin-activated receptor tyrosine kinases (Trks) regulate sensory neuron survival, differentiation, and function. To permanently mark cells that ever express TrkC-kinase, mice with lacZ and GFP reporters of Cre recombinase activity were crossed with mice having IRES-cre inserted into the kinase-containing exon of the TrkC gene. Prenatal reporter expression matched published locations of TrkC-expression. Postnatally, more trigeminal neurons and types of mystacial pad innervation expressed reporter than immunodetectable TrkC, indicating that some innervation transiently expresses TrkC-kinase. Reporter-tagged neurons include all those that immunolabel for TrkC, a majority for TrkB, and a small proportion for TrkA. TrkA neurons expressing TrkC-reporter range from small to large size and supply well-defined types of mystacial pad innervation. Virtually all small neurons and C-fiber innervation requires TrkA to develop, but TrkC-reporter is present in only a small proportion that uniquely innervates piloneural complexes of guard hairs and inner conical bodies of vibrissa follicle-sinus complexes. TrkC-reporter is expressed in nearly all presumptive Adelta innervation, which is all eliminated in TrkA knockouts and partially eliminated in TrkC knockouts. Many types of Abeta-fiber innervation express TrkC-reporter including all Merkel, spiny, and circumferentially oriented lanceolate endings, and some reticular and longitudinally oriented lanceolate endings. Only Merkel endings require TrkC to develop and survive, whereas the other endings require TrkA and/or TrkB. Thus, TrkC is required for the existence of some types of innervation that express TrkC, but may have different functions in others. Many types of nonneuronal cells affiliated with hair follicles and blood vessels also express TrkC-reporter but lack immunodetectable TrkC.
Collapse
Affiliation(s)
- Ursula Fünfschilling
- Program in Neuroscience, Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143-0723
| | - Yu-Gie Ng
- Program in Neuroscience, Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143-0723
| | - Keling Zang
- Program in Neuroscience, Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143-0723
| | - Jun-Ichi Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Medical School, Osaka 565-0871, Japan
| | - Louis F. Reichardt
- Program in Neuroscience, Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143-0723
| | - Frank L. Rice
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208
| |
Collapse
|
31
|
Guha U, Gomes WA, Samanta J, Gupta M, Rice FL, Kessler JA. Target-derived BMP signaling limits sensory neuron number and the extent of peripheral innervation in vivo. Development 2004; 131:1175-86. [PMID: 14973275 DOI: 10.1242/dev.01013] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The role of target-derived BMP signaling in development of sensory ganglia and the sensory innervation of the skin was examined in transgenic animals that overexpress either the BMP inhibitor noggin or BMP4 under the control of a keratin 14 (K14) promoter. Overexpression of noggin resulted in a significant increase in the number of neurons in the trigeminal and dorsal root ganglia. Conversely, overexpression of BMP4 resulted in a significant decrease in the number of dorsal root ganglion neurons. There was no significant change in proliferation of trigeminal ganglion neurons in the noggin transgenic animals, and neuron numbers did not undergo the normal developmental decrease between E12.5 and the adult, suggesting that programmed cell death was decreased in these animals. The increase in neuron numbers in the K14-noggin animals was followed by an extraordinary increase in the density of innervation in the skin and a marked change in the pattern of innervation by different types of fibers. Conversely, the density of innervation of the skin was decreased in the BMP4 overexpressing animals. Further Merkel cells and their innervation were increased in the K14-noggin mice and decreased in the K14-BMP4 mice. The changes in neuron numbers and the density of innervation were not accompanied by a change in the levels of neurotrophins in the skin. These findings indicate that the normal developmental decrease in neuron numbers in sensory ganglia depends upon BMP signaling, and that BMPs may limit both the final neuron number in sensory ganglia as well as the extent of innervation of targets. Coupled with prior observations, this suggests that BMP signaling may regulate the acquisition of dependence of neurons on neurotrophins for survival, as well as their dependence on target-derived neurotrophins for determining the density of innervation of the target.
Collapse
MESH Headings
- Animals
- Base Sequence
- Bone Morphogenetic Protein 4
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Bone Morphogenetic Proteins/pharmacology
- Carrier Proteins
- Cell Count
- DNA, Complementary/genetics
- Ganglia, Spinal/embryology
- Ganglia, Spinal/growth & development
- Ganglia, Spinal/metabolism
- Gene Expression Regulation, Developmental
- In Situ Hybridization
- Keratin-14
- Keratins/genetics
- Mice
- Mice, Transgenic
- Nerve Growth Factor/pharmacology
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Peripheral Nerves/embryology
- Peripheral Nerves/growth & development
- Peripheral Nerves/metabolism
- Promoter Regions, Genetic
- Proteins/genetics
- Proteins/metabolism
- Signal Transduction
- Skin/innervation
- Trigeminal Ganglion/embryology
- Trigeminal Ganglion/growth & development
- Trigeminal Ganglion/metabolism
Collapse
Affiliation(s)
- Udayan Guha
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
32
|
Suzuki M, Watanabe Y, Oyama Y, Mizuno A, Kusano E, Hirao A, Ookawara S. Localization of mechanosensitive channel TRPV4 in mouse skin. Neurosci Lett 2004; 353:189-92. [PMID: 14665413 DOI: 10.1016/j.neulet.2003.09.041] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A transient receptor potential (TRP) family, TRPV4, is a calcium-permeable swell-activated channel, playing a role in cutaneous mechanosensation. To elucidate the localization in the mechanosensitive endings, we found with immunohistochemistry in mice that TRPV4 was expressed both by small (low threshold) and large (high threshold) dorsal root ganglia neurons. In addition to free nerve endings, TRPV4 was specifically located at cutaneous mechanosensory terminals co-localized with neurofilament 200, including Meissner, Merkel, penicillate and intraepidermal terminals but not including hair follicle palisades. The distribution suggests that the sensation of pressure by mechanosensitive TRPV4 channel is transmitted through A- as well as C-fiber.
Collapse
Affiliation(s)
- Makoto Suzuki
- Department of Pharmacology, Jichi Medical School, Kawachi, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Mammals acquire much of their sensory information by actively moving their sensory organs. Yet, the principles of encoding by active sensing are not known. Here we investigated the encoding principles of active touch by rat whiskers (vibrissae). We induced artificial whisking in anesthetized rats and recorded from first-order neurons in the trigeminal ganglion. During active touch, first-order trigeminal neurons presented a rich repertoire of responses, which could not be inferred from their responses to passive deflection stimuli. Individual neurons encoded four specific events: whisking, contact with object, pressure against object, and detachment from object. Whisking-responsive neurons fired at specific deflection angles, reporting the actual whiskers' position with high precision. Touch-responsive neurons encoded the horizontal coordinate of objects' position by spike timing. These findings suggest two specific encoding-decoding schemes for horizontal object position in the vibrissal system.
Collapse
Affiliation(s)
- Marcin Szwed
- Department of Neurobiology, The Weizmann Institute, 76100 Rehovot, Israel
| | | | | |
Collapse
|
34
|
Park TJ, Comer C, Carol A, Lu Y, Hong HS, Rice FL. Somatosensory organization and behavior in naked mole-rats: II. Peripheral structures, innervation, and selective lack of neuropeptides associated with thermoregulation and pain. J Comp Neurol 2003; 465:104-20. [PMID: 12926019 DOI: 10.1002/cne.10824] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
African naked mole-rats are subterranean rodents that have a robust orienting response to stimulation of unique vibrissa-like body hairs that are widely spaced over an otherwise hairless skin. To determine whether these large body hairs have a specialized organization similar to facial vibrissae, the structure and innervation of facial vibrissa follicles, body hair follicles, and intervening skin in naked mole-rats was compared with that in rats and a furred African mole-rat species (the common mole-rat). Immunofluorescence and lectin-binding analyses revealed that the body hair follicles in naked mole-rats were exceptionally large and well innervated, similar to guard hairs of furred species. However, these body vibrissae lacked the anatomic specializations and unique types of innervation affiliated with follicle sinus complexes of facial vibrissae. In contrast to the furred species, naked mole-rats had a paucity of Abeta-fiber Merkel endings at all peripheral locations. Naked mole-rats also were completely lacking in cutaneous C-fibers immunoreactive for substance P and calcitonin gene-related peptide. In contrast, the hairless skin of the naked mole-rats had an exceptional abundance of presumptive Adelta-fibers. The unusual features of the cutaneous innervation in naked mole-rats are presumably adaptations to their subterranean environment and that they are the only known poikilothermic mammal. The features of this mammalian model system provide unique opportunities to discriminate mechanisms related to tactile spatial orientation, vascular regulation, and nociception.
Collapse
Affiliation(s)
- Thomas J Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Paré M, Behets C, Cornu O. Paucity of presumptive ruffini corpuscles in the index finger pad of humans. J Comp Neurol 2003; 456:260-6. [PMID: 12528190 DOI: 10.1002/cne.10519] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Classically recognized as the cutaneous stretch receptors associated with the slowly adapting type II (SAII) primary afferents, Ruffini corpuscles have rarely been reported in the skin, despite numerous histologic investigations. Electrophysiological recordings of the primary afferents in humans suggest that SAII fibers represent approximately 15% of the myelinated mechanosensitive axons in the peripheral nerves innervating the volar surface of the hand. In the present study, an analysis of glabrous skin was conducted in human donors to assess the distribution of Ruffini and Ruffini-like corpuscles in the distal phalanx of the index finger. Only one presumptive Ruffini corpuscle was found in the skin processed for double immunofluorescence labeling with antibodies against protein gene product 9.5 and neurofilament 200-kDa subunit. Based on their relatively scattered distributions, we conclude that very few SAII primary afferents are likely to terminate as Ruffini corpuscles in human glabrous skin.
Collapse
Affiliation(s)
- Michel Paré
- Center for Neuropharmacology and Neuroscience, Albany Medical College, New York 12208, USA.
| | | | | |
Collapse
|
36
|
Verzè L, Paraninfo A, Viglietti-Panzica C, Panzica GC, Ramieri G. Expression of neuropeptides and growth-associated protein 43 (GAP-43) in cutaneous and mucosal nerve structures of the adult rat lower lip after mental nerve section. Ann Anat 2003; 185:35-44. [PMID: 12597125 DOI: 10.1016/s0940-9602(03)80006-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The reinnervation of the adult rat lower lip has been investigated after unilateral section of the mental nerve. Rats were sacrificed at 4, 7, 9, 14, 30, and 90 days after the operation. A further group of animals with section of the mental nerve and block of the alveolar nerve regeneration, was sacrificed at 14 days. Specimens were processed for immunocytochemistry with antibodies against PGP 9.5, GAP-43 or neuropeptides (CGRP, SP and VIP). Four days after nerve section, axonal degeneration seems evident in the mental nerve branches and inside skin and mucosa. GAP-43 immunoreactivity is intense in the mental nerve 7 days after nerve section and it reaches its maximal expression and distribution in peripheral nerve fibres at 14 days. At 30 days, the decline in its expression is associated with the increase of PGP9.5-, SP-, and CGRP immunopositivity. VIP is observed only in perivascular fibres at all times observed. Present results suggest that, after sensory denervation of the rat lip, nerve fibres in skin and mucosa remain at lower density than normal. The different time courses in the expression of neuropeptides and GAP-43 suggest a possible early involvement of GAP-43 in peripheral nerve regeneration.
Collapse
Affiliation(s)
- L Verzè
- Laboratory of Neuroendocrinology, Department of Anatomy, Pharmacology and Forensic Medicine, University of Torino, Corso Massimo D'Azeglio 52, I-10126 Torino, Italy.
| | | | | | | | | |
Collapse
|
37
|
Fundin BT, Rice FL, Ernfors P. Patterned gene programs and target remodeling following axotomy at a major site for sensory innervation. JOURNAL OF NEUROBIOLOGY 2002; 53:370-80. [PMID: 12382264 DOI: 10.1002/neu.10118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The genetic mechanisms that a target uses to reestablish the connections of regenerating axons were explored using oligonucleotide microarrays and real-time PCR. In normal and denervated mouse vibrissa follicles, patterns of genetic regulation were assessed in adjacent targets that normally receive different types of sensory and autonomic innervation. We show that a target remodeling occurs following axotomy involving reduced hair growth, altered hair follicle integrity and remodeling of the extracellular matrix. Also, we found two orphan receptors putatively involved in hair growth. Our data further demonstrate region-specific regulation of genes putatively involved in target-axon interactions. Thus, this study shows for the first time that major target remodeling occurs following denervation and suggests putative functions for several novel genes.
Collapse
Affiliation(s)
- Bengt T Fundin
- Unit of Molecular Neurobiology, MBB, Karolinska Institute, Scheelesvag 1, 17177 Stockholm, Sweden
| | | | | |
Collapse
|
38
|
Radzievsky AA, Cowan A, Byrd C, Radzievsky AA, Ziskin MC. Single millimeter wave treatment does not impair gastrointestinal transit in mice. Life Sci 2002; 71:1763-70. [PMID: 12151054 DOI: 10.1016/s0024-3205(02)01944-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Millimeter wave treatment (MWT) is based on those biological effects that develop following skin exposure to low power electromagnetic waves. This method of treatment is in wide clinical use in several Eastern European countries for treatment of a variety of conditions, including pain syndromes. However, most treatment modes of MWT were developed empirically, and certain indications and contraindications for the use of MWT remain to be established. In our previous blind experiments we have shown that the hypoalgesic effect of MWT may be quantitatively evaluated, and most probably mediated by the neural system in general, and the system of endogenous opioids in particular. Taking in consideration a well-known ability of opioids to cause gastrointestinal disturbances, which could limit clinical application of MWT, the main aim of the present study was to investigate whether a single MWT, that can produce opioid-related hypoalgesia, may also retard gut transit and colorectal passage in mice. The charcoal meal test was used to quantitatively evaluate upper gastrointestinal transit, and the glass bead test was employed to examine colonic propulsion in mice. MWT was applied to the nose area of mice. The MWT characteristics were: frequency = 61.22 GHz; incident power density = 15 mW/cm(2); and duration = 15 min. The results obtained have shown that MWT does not significantly change small intestinal or colonic transit in mice, and thus suppression of gastrointestinal motility should not be a setback in the clinical use of MWT.
Collapse
Affiliation(s)
- Alexander A Radzievsky
- Center for Biomedical Physics, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA.
| | | | | | | | | |
Collapse
|
39
|
Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL. Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 2002; 449:103-19. [PMID: 12115682 DOI: 10.1002/cne.10277] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our confocal three-dimensional analyses revealed substantial differences in the innervation to vibrissal follicle-sinus complexes (FSCs) in the rat and cat. This is the first study using anti-protein gene product 9.5 (PGP9.5) immunolabeling and confocal microscopy on thick sections to examine systematically the terminal arborizations of the various FSC endings and to compare them between two species, the rat and the cat, that have similar-appearing FSCs but different exploratory behaviors, such as existence or absence of whisking. At least eight distinct endings were clearly discriminated three dimensionally in this study: 1) Merkel endings at the rete ridge collar, 2) circumferentially oriented lanceolate endings, 3) Merkel endings at the level of the ring sinus, 4) longitudinally oriented lanceolate endings, 5) club-like ringwulst endings, 6) reticular endings, 7) spiny endings, and 8) encapsulated endings. Of particular contrast, each nerve fiber that innervates Merkel cells at the level of the ring sinus in the rat usually terminates as a single, relatively small cluster of endings, whereas in the cat they terminate en passant as several large clusters of endings. Also, individual arbors of reticular endings in the rat ramify parallel to the vibrissae and distribute over wide, overlapping territories, whereas those in the cat ramify perpendicular and terminate in tightly circumscribed territories. Otherwise, the inner conical body of rat FSCs contains en passant, circumferentially oriented lanceolate endings that are lacking in the cat, whereas the cavernous sinus of the cat has en passant corpuscular endings that are lacking in the rat. Surprisingly, the one type of innervation that is the most similar in both species is a major set of simple, club-like endings, located at the attachment of the ringwulst, that had not previously been recognized as a morphologically unique type of innervation. Although the basic structure of the FSCs is similar in the rat and cat, the numerous differences in innervation suggest that these species would have different tactile capabilities and perceptions possibly related to their different vibrissa-related exploratory behaviors.
Collapse
Affiliation(s)
- Satomi Ebara
- Department of Anatomy, Meiji University of Oriental Medicine, Hiyoshi-cho, Funai-gun, Kyoto 629-0392, Japan.
| | | | | | | | | |
Collapse
|
40
|
Petersen KL, Rice FL, Suess F, Berro M, Rowbotham MC. Relief of post-herpetic neuralgia by surgical removal of painful skin. Pain 2002; 98:119-26. [PMID: 12098623 DOI: 10.1016/s0304-3959(02)00029-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present a case of longstanding PHN treated by skin excision of the area of greatest pain (11.3 x 26.0 cm(2)). The operation reduced pain, eliminated tactile allodynia, and facilitated greatly reduced medication use over a 1-year follow-up period. Fourteen punch biopsies and 10 strips of skin (each 10 mm long) from the excised painful PHN skin were qualitatively assessed by double-label immunofluorescence using antibodies against protein-gene-product 9.5 (PGP9.5), 200 kDa neurofilament protein (NF), calcitonin gene-related peptide (CGRP) and vanilloid receptor-1 (VR-1). Compared with a punch biopsy from mirror image skin, the pattern of cutaneous innervation in PHN skin was consistently and substantially different. The results may explain the anatomical basis of the capsaicin-response test and have implications for our understanding of clinical mechanisms underlying PHN pain.
Collapse
Affiliation(s)
- Karin L Petersen
- Department of Neurology, UCSF Pain Clinical Research Center, University of California-San Francisco, 1701 Divisadero Street, Suite 480, San Francisco, CA 94115, USA.
| | | | | | | | | |
Collapse
|
41
|
Matsuo S, Ichikawa H, Henderson TA, Silos-Santiago I, Barbacid M, Arends JJ, Jacquin MF. trkA modulation of developing somatosensory neurons in oro-facial tissues: tooth pulp fibers are absent in trkA knockout mice. Neuroscience 2001; 105:747-60. [PMID: 11516838 DOI: 10.1016/s0306-4522(01)00223-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To investigate the nerve growth factor requirement of developing oro-facial somatosensory afferents, we have studied the survival of sensory fibers subserving nociception, mechanoreception or proprioception in receptor tyrosine kinase (trkA) knockout mice using immunohistochemistry. trkA receptor null mutant mice lack nerve fibers in tooth pulp, including sympathetic fibers, and showed only sparse innervation of the periodontal ligament. Ruffini endings were formed definitively in the periodontal ligament of the trkA knockout mice, although calcitonin gene-related peptide- and substance P-immunoreactive fibers were reduced in number or had disappeared completely. trkA gene deletion had also no obvious effect on the formation of Meissner corpuscles in the palate. In the vibrissal follicle, however, some mechanoreceptive afferents were sensitive for trkA gene deletion, confirming a previous report [Fundin et al. (1997) Dev. Biol. 190, 94-116]. Moreover, calretinin-positive fibers innervating longitudinal lanceolate endings were completely lost in trkA knockout mice, as were the calretinin-containing parent cells in the trigeminal ganglion.These results indicate that trkA is indispensable for developing nociceptive neurons innervating oral tissues, but not for developing mechanoreceptive neurons innervating oral tissues (Ruffini endings and Meissner corpuscles), and that calretinin-containing, trkA dependent neurons in the trigeminal ganglion normally participate in mechanoreception through longitudinal lanceolate endings of the vibrissal follicle.
Collapse
Affiliation(s)
- S Matsuo
- Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Skin biopsies that are immunostained to identify nerve fibers provide a new tool for assessing the small caliber nociceptors that terminate in the epidermis, as well as other cutaneous nerve fibers. Skin biopsies can be performed in multiple sites and can be repeated over time, so that a spatiotemporal profile of epidermal innervation can be constructed. This approach may help assess the progression of fiber loss in disease and of regeneration and re-innervation with treatment.
Collapse
Affiliation(s)
- J W Griffin
- Johns Hopkins Hospital, Baltimore, Maryland 21187, USA.
| | | | | |
Collapse
|
43
|
Transport and localization of the DEG/ENaC ion channel BNaC1alpha to peripheral mechanosensory terminals of dorsal root ganglia neurons. J Neurosci 2001. [PMID: 11306621 DOI: 10.1523/jneurosci.21-08-02678.2001] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mammalian brain sodium channel (BNaC, also known as BNC/ASIC) proteins form acid-sensitive and amiloride-blockable sodium channels that are related to putative mechanosensory channels. Certain BNaC isoforms are expressed exclusively in dorsal root ganglia (DRG) and have been proposed to form the ion channels mediating tissue acidosis-induced pain. With antibody labeling, we find that the BNaC1alpha isoform is expressed by most large DRG neurons (low-threshold mechanosensors not involved in acid-induced nociception) and few small nociceptor neurons (which include high-threshold mechanoreceptors). BNaC1alpha is transported from DRG cell bodies to sensory terminals in the periphery, but not to the spinal cord, and is located specifically at specialized cutaneous mechanosensory terminals, including Meissner, Merkel, penicillate, reticular, lanceolate, and hair follicle palisades as well as some intraepidermal and free myelinated nerve endings. Accordingly, BNaC1alpha channels might participate in the transduction of touch and painful mechanical stimuli.
Collapse
|
44
|
Harris SJ, Jahoda CA. A correlation between versican and neurofilament expression patterns during the development and adult cycling of rat vibrissa follicles. Mech Dev 2001; 101:227-31. [PMID: 11231081 DOI: 10.1016/s0925-4773(00)00561-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Versican, a proteoglycan recently implicated in hair follicle induction, has been shown to influence axon outgrowth in vitro and in vivo. We used immunohistochemistry to study the relationship between versican expression and innervation, during rat vibrissa follicle development and the adult hair cycle. During development, nerve fibres were commonly associated with areas of weak versican expression, and the path of axons appeared to be delineated by sharp boundaries of versican expression. Versican expression changed in the lower follicle dermis during the adult hair follicle cycle but remained strong around the follicle neck reflecting the constant innervation. Our observations show a correlation between versican expression and peripheral innervation indicating that versican may have a dual role in hair follicle biology.
Collapse
Affiliation(s)
- S J Harris
- Biological Sciences Department, University of Durham, South Road, DH1 3LE, Durham, UK.
| | | |
Collapse
|
45
|
Müller T. Supravital methylene blue staining of piloneural complexes of common fur hair follicles in the rat. Biotech Histochem 2000; 75:245-50. [PMID: 11131564 DOI: 10.3109/10520290009085127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Light microscopic observations employing supravital methylene blue staining are presented for piloneural complexes of common fur hairs in the mystacial pad of the rat snout. The investigation revealed anatomical details of piloneural complexes belonging to follicles of both vellus and guard hairs. In the methylene blue stained preparations, different types of palisade-like lanceolate nerve fiber endings could be discriminated. The thicker vellus and thinner guard hairs (hair diameter: 15-25 microm) exhibited a different innervation pattern compared to the thicker guard hairs, and two subtypes of piloneural complexes could be distinguished. Both subtypes were characterized by slightly stained lanceolate endings and the absence of a circular nerve fiber plexus. One subtype, however, showed strongly stained spines originating from the lanceolate endings. A few spines of adjacent lanceolate endings appeared in contact with each other. In the second subtype, these spines were replaced by anastomoses suggesting a delicate terminal nerve fiber network. The moderately stained lanceolate endings located primarily at the follicles of thicker guard hairs (hair diameter: 30-40 microm) showed smooth outlines, but were characterized by the occurrence of an intensely stained additional circular nerve fiber plexus. The differences in the morphology of piloneural complexes associated with the follicles of common fur hairs suggest differences regarding their mechanoreceptive tasks.
Collapse
Affiliation(s)
- T Müller
- Institute for Anatomy, University of Mainz, Germany.
| |
Collapse
|
46
|
Abstract
The longitudinal lanceolate endings are ubiquitous sensory terminals in the sinus and nonsinus hairs of mammals that form a palisade around the hair follicle. To analyze how the nerve endings detect hair movements, the present study re-examined their fine structure and relationships with surrounding connective tissue in rat vibrissae by using a combination of three methods: immunohistochemistry for S-100 protein, scanning electron microscopy of NaOH-macerated specimens, and transmission electron microscopy of serial sections. Observations showed the lanceolate endings to be represented by triplet units with a flattened axon terminal flanked on each side by a Schwann cell lamella, as reported previously. Two distinct parts were discriminated in the lanceolate ending: a principal portion in which the axon terminal protruded numerous fine fingers from between the Schwann cell coverings, and an apical cone that enclosed a large axon finger in an attenuated Schwann sheath. Long foot processes of Schwann cells fanned out distally from each apical cone. The principal portions of the lanceolate endings were firmly linked to the surrounding connective tissue by the narrow edges equipped with axon fingers, suggesting their continuous deformation by sustained hair deflections. In contrast, the apical cones were freely suspended in an amorphous matrix with only the end feet of the Schwann cell projections attached to rigid tissue elements. This part of the ending was proposed as a possible transducer site to generate rapidly adapting receptor potentials, both retreating and overshooting during the acceleration and deceleration phases of a given vibrissal movement.
Collapse
Affiliation(s)
- H Takahashi-Iwanaga
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| |
Collapse
|
47
|
Abstract
We examined the effects of neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT-3) on trigeminal axon growth patterns. Embryonic (E13-15) wholemount explants of the rat trigeminal pathway including the whisker pads, trigeminal ganglia, and brainstem were cultured in serum-free medium (SFM) or SFM supplemented with NGF or NT-3 for 3 days. Trigeminal axon growth patterns were analyzed with the use of lipophilic tracer DiI. In wholemount cultures grown in SFM, trigeminal axon projections, growth patterns, and differentiation of peripheral and central targets are similar to in vivo conditions. We show that in the presence of NGF, central trigeminal axons leave the tract and grow into the surrounding brainstem regions in the elongation phase without any branching. On the other hand, NT-3 promotes precocious development of short axon collaterals endowed with focal arbors along the sides of the central trigeminal tract. These neurotrophins also affect trigeminal axon growth within the whisker pad. Additionally, we cultured dissociated trigeminal ganglion cells in the presence of NGF, NT-3, or NGF+NT-3. The number of trigeminal ganglion cells, their size distribution under each condition were charted, and axon growth was analyzed following immunohistochemical labeling with TrkA and parvalbumin antibodies. In these cultures too, NGF led to axon elongation and NT-3 to axon arborization. Our in vitro analyses suggest that aside from their survival promoting effects, NGF and NT-3 can differentially influence axon growth patterns of embryonic trigeminal neurons.
Collapse
Affiliation(s)
- Emel Ulupinar
- Department of Cell Biology and Anatomy and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Mark F. Jacquin
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Reha S. Erzurumlu
- Department of Cell Biology and Anatomy and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
- Correspondence to: Dr. Reha Erzurumlu, Department of Cell Biology and Anatomy, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112.
| |
Collapse
|
48
|
Radzievsky AA, Rojavin MA, Cowan A, Alekseev SI, Ziskin MC. Hypoalgesic effect of millimeter waves in mice: dependence on the site of exposure. Life Sci 2000; 66:2101-11. [PMID: 10823349 DOI: 10.1016/s0024-3205(00)00536-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Based on a hypothesis of neural system involvement in the initial absorption and further processing of the millimeter electromagnetic waves (MW) signal, we reproduced, quantitatively assessed and compared the analgesic effect of a single MW treatment, exposing areas of skin possessing different innervation densities. The cold water tail flick test (cTFT) was used to assess experimental pain in mice. Three areas of exposure were used: the nose, the glabrous skin of the right footpad, and the hairy skin of the mid back at the level of T5-T10. The MW exposure characteristics were: frequency = 61.22 GHz; incident power density = 15mW/cm2; and duration = 15 min. The maximum hypoalgesic effect was achieved by exposing to MW the more densely innervated skin areas--the nose and the footpad. The hypoalgesic effect in the cTFT after MW exposure to the murine back, which is less densely innervated, was not statistically significant. These results support the hypothesis of neural system involvement in the systemic response to MW.
Collapse
Affiliation(s)
- A A Radzievsky
- Center for Biomedical Physics, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | |
Collapse
|
49
|
Krimm RF, Davis BM, Albers KM. Cutaneous overexpression of neurotrophin-3 (NT3) selectively restores sensory innervation in NT3 gene knockout mice. JOURNAL OF NEUROBIOLOGY 2000; 43:40-9. [PMID: 10756065 DOI: 10.1002/(sici)1097-4695(200004)43:1<40::aid-neu4>3.0.co;2-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neurotrophin-3 (NT3) is essential for development of sensory innervation to the skin. NT3 supports the postnatal survival of primary sensory neurons that mediate mechanoreception and their Merkel cell containing touch dome end organs (Airaksinen et al., 1996). In this study we determined whether NT3 overexpressed in the skin could restore innervation lost when endogenous NT3 levels were reduced. Hybrid mice that overexpress NT3 in basal keratinocytes but lack one endogenous NT3 allele (K14-NT3/NT3(+/-)) were compared to NT3 overexpresser (K14-NT3) mice, heterozygous knockout (NT3(+/-)) mice, and littermate control mice. In line with previous analyses, NT3(+/-) mice lost 63% of the Merkel cells associated with touch domes, 67% of touch dome units and the associated SAI innervation. All of these parameters were restored to overexpresser levels in K14-NT3/NT3(+/-) mice. Knockout NT3(+/-) mice also had a 31% reduction of L4/L5 dorsal root ganglion cells and a 24% reduction of myelinated axons in the saphenous cutaneous nerve. These losses were also restored in hybrid K14-NT3/NT3(+/-) mice, though only to control mouse values. These results indicate that overexpression of NT3 in skin of NT3(+/-) knockout mice rescued most cutaneous neurons lost in NT3(+/-) mice, but was unable to rescue NT3-dependent neurons that project to noncutaneous sensory targets.
Collapse
Affiliation(s)
- R F Krimm
- Department of Pathology and Laboratory Medicine, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
50
|
Abstract
The innervation of the digits on the raccoon forepaw was examined by using immunochemistry for protein gene product 9.5, calcitonin-gene related peptide, substance P, neuropeptide-Y, tyrosine hydroxylase, and neurofilament protein. The larger-caliber axons in the ventral glabrous skin terminate as Pacinian corpuscles deep in the dermis, small corpuscles and Merkel endings around the base of dermal papillae, and Merkel endings on rete pegs in dermal papillae. Extensive fine-caliber innervation terminates in the epidermis and on the microvasculature. The innervation is more dense in the distal than in the proximal volar pads. Pacinian endings are also concentrated in the transverse crease separating the distal and proximal pads. In the dorsal hairy skin, hair follicles are well innervated with piloneural complexes. Merkel innervation is located under slight epidermal elevations and in some large Merkel rete pegs located at the apex of transverse skin folds just proximal to the claw. No cutaneous Ruffini corpuscles were found anywhere on the digit. The claw is affiliated with dense medial and lateral beds of Pacinian endings, bouquets of highly branched Ruffini-like endings at the transition from the distal phalanx and unmyelinated innervation in the skin around the perimeter. Encapsulated endings are located at the lateral edge of the articular surface of the distal phalanx. Extensive fine-caliber innervation is affiliated with sweat glands and with the vasculature and is especially dense at presumptive arteriovenous sphincters. Virtually all of the sweat gland and vascular innervation is peptidergic, whereas most of the unmyelinated epidermal innervation is nonpeptidergic.
Collapse
Affiliation(s)
- F L Rice
- Center for Neuropharmacology and Neuroscience, Albany Medical College, New York 12208, USA.
| | | |
Collapse
|